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Abstract

Regions under balancing selection are characterized by dense polymorphisms and multiple persistent haplotypes, along with 
other sequence complexities. Successful identification of these patterns depends on both the statistical approach and the 
quality of sequencing. To address this challenge, at first, a new statistical method called LD-ABF was developed, employing 
efficient Bayesian techniques to effectively test for balancing selection. LD-ABF demonstrated the most robust detection of 
selection in a variety of simulation scenarios, compared against a range of existing tests/tools (Tajima's D, HKA, Dng, BetaScan, 
and BalLerMix). Furthermore, the impact of the quality of sequencing on detection of balancing selection was explored, as 
well, using: (i) SNP genotyping and exome data, (ii) targeted high-resolution HLA genotyping (IHIW), and (iii) whole-genome 
long-read sequencing data (Pangenome). In the analysis of SNP genotyping and exome data, we identified known targets and 
38 new selection signatures in genes not previously linked to balancing selection. To further investigate the impact of sequen
cing quality on detection of balancing selection, a detailed investigation of the MHC was performed with high-resolution HLA 
typing data. Higher quality sequencing revealed the HLA-DQ genes consistently demonstrated strong selection signatures other
wise not observed from the sparser SNP array and exome data. The HLA-DQ selection signature was also replicated in the 
Pangenome samples using considerably less samples but, with high-quality long-read sequence data. The improved statistical 
method, coupled with higher quality sequencing, leads to more consistent identification of selection and enhanced localization 
of variants under selection, particularly in complex regions.

Key words: balancing selection, statistical genetics, Bayesian, population genetics, sequencing platform, linkage disequili
briumhuman, human leukocyte antigen genes.
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Significance
Understanding evolutionary selection is critical to disentangling the connections between genetic variation and re
sponse to environmental exposures. Both analytical approach and quality of sequencing impact the ability to detect bal
ancing selection. Our new statistical model, LD-ABF, leverages phased data to improve detection of balancing selection 
signatures by looking for patterns of linkage disequilibrium and density of polymorphisms on haplotypes. A total of 38 
new selection signatures were identified in genes that were not previously known as being associated with balancing 
selection. Of the 38 new selection signals, fourteen were exclusively detected by LD-ABF whereas the remaining 24 were 
replicated by two or more methods. Notably, in the context of the canonical example of the HLA genes, we were able to 
better isolate the strong selection signal in HLA-DQ genes.

This, DQ-related signal, is not always observed in SNP array and exome sequencing but, is replicated consistently 
across world populations with targeted genotyping (IHIW) and in long-read samples (Pangenome). Further, we demon
strate that with improved sequencing, it is possible to detect the same evolutionary selection with considerably smaller 
sample sizes.

Introduction
Improved detection and understanding of balancing selec
tion in the human genome can provide valuable insight into 
heritable diseases and our species' adaptation to varying 
environmental exposures (Sabeti et al. 2007; Andrés et al. 
2009; Davydov et al. 2010; Gussow et al. 2016; Bitarello 
et al. 2018; Johnson and Voight 2018; Palamara et al. 
2018; Hayeck et al. 2019, 2022). Balancing selection takes 
place when evolutionary pressures maintain multiple alleles 
across a population. This stands in contrast to the process of 
negative selection (Davydov et al. 2010; Gussow et al. 
2016; Hayeck et al. 2019, 2022), which alone eliminates al
leles harmful to fitness whereas positive selection drives fa
vorable alleles toward fixation (Sabeti et al. 2007; Johnson 
and Voight 2018; Palamara et al. 2018). Negative selection 
or a full selective sweep toward fixation may result in overall 
depletion in variation over genomic regions under selective 
pressure whereas balancing selection results in more vari
ation. When balancing selection occurs, it not only affects 
the frequency of the variant directly under evolutionary 
pressure, but surrounding variants on the same haplo
types will also rise in frequency, in a process known as 
hitchhiking (Fig. 1). As a result, neutral regions near a lo
cus associated with balanced polymorphism will undergo 
an extended coalescence period. This will unveil denser 
clusters of closely positioned variants and impacts the local 
linkage disequilibrium (LD) patterns. Linkage disequilib
rium refers to the correlation among variants, and over 
time, recombination diminishes the original LD, concen
trating it more locally around the variants under selection 
(Slatkin 2008). Making inference on haplotypic patterns 
can improve power to detect selection (DeGiorgio et al. 
2014; Tennessen and Duraisingh 2021). The most accur
ate detection of LD requires phased data to make infer
ence on the probability of observing multiple alleles on 
the same haplotype.

However, phased data are not always available. Another 
approach to detect balancing selection is to test for devia
tions in the site frequency spectrum to find regions with 
elevated allele frequencies or deviation from expectation 
under neutral evolution (Tajima 1989; Wright and 
Charlesworth 2004). These tests for detecting deviation 
from expected neutral drift may be under powered in iden
tifying selective signals though. While there are tests specif
ically designed to directly assess LD, they are primarily 
tailored toward detecting positive selection and often focus 
on extended haplotypes that may have gone to fixation 
(Voight et al. 2006; Sabeti et al. 2007; Ferrer-Admetlla 
et al. 2014; Johnson and Voight 2018; Palamara et al. 
2018). Consequently, these tests are less well-suited to de
tect balancing selection.

To test for transspecies cases of balancing selection, al
ternative approaches utilize data from two closely related 
species to look for relative differences in sequence context 
(Hudson et al. 1987; DeGiorgio et al. 2014; Siewert and 
Voight 2017, 2020; Bitarello et al. 2018; Cheng and 
Degiorgio 2019). However, relying on polymorphism ana
lysis across closely related species primarily captures ancient 
signals that potentially affect the fitness of multiple species. 
So, these approaches may have limited sensitivity in detect
ing signatures or more recent selective pressures. While the 
identification of transspecies polymorphisms and the devel
opment of methods to detect such selective signals provide 
strong evidence of balancing selection, they likely represent 
only a small fraction of the overall balanced polymorphisms 
(Asthana et al. 2005; Tennessen and Duraisingh 2021). 
Methods that train their models in part with simulated 
and real data (Sheehan and Song 2016; Isildak et al. 
2021) have the potential for high power, however they re
quire considerably more resources like large grids of simu
lation or difficult to acquire training data along with 
specific model and evolutionary assumptions which may re
sult in overfitting.
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We concentrated on creating a test statistic that utilizes 
phased data to make direct inference on LD and investigate 
the role sequencing quality plays on such methods ability to 
detect selection. We developed LD approximate Bayesian 
factor (LD-ABF), a new robust statistical method that direct
ly investigates balancing selection by testing for both, dens
ity of polymorphisms and strength of LD on haplotypes. 
LD-ABF builds on the population genetics models of 
Siewert and Voight, which tested for patterns of balancing 
selection by looking for an excess of proximal SNPs that 
have very similar allele frequencies to the core SNP. 
Advancing from their approach LD-ABF requires phased 
haplotypes to make direct inference on LD which improves 
power of detection of more subtle or recent selection 
signals.

Since almost all methods (including LD-ABF) will be im
pacted by the density of polymorphisms, patterns of balan
cing selection were investigated using three distinct 
datasets derived from varying sequencing technologies to 
understand how different types of sequencing data impact 
the ability to detect selection signatures. First, we con
ducted a genome-wide selection scan using phased high- 
quality SNP array and exome sequence data derived from 
468 clinical samples, including 334 probands from trios 
(Table 1). Utilizing clinical trios provided improved phasing 
accuracy as the haplotypes of the children could be directly 
inferred from their parents (related samples removed after 
phasing), enhancing both the phasing and downstream 
statistical inference. Second, we focused in on the major 
histocompatibility complex (MHC). This region is of signifi
cant interest since it is critical to our immune response and 
is known to be under strong evolutionary pressure. 
However, the complex genomic nature of the MHC poses 
challenges for effective sequencing, often resulting in its 
neglect. To address this, we used targeted genotyping 

data focused on the HLA genes from thousands of unre
lated haplotypes worldwide in the 17th International HLA 
and Immunogenetics Workshop (IHIW) (Creary et al. 
2021). Lastly, we validated our findings and identified 
complex signal artifacts using an independent set of high- 
quality long-read whole-genome sequencing (WGS) sam
ples from the Human Pangenome Reference Consortium 
(Liao et al. 2023). This additional validation step helped en
sure the reliability and accuracy of our results.

Results

Overview of LD-ABF

Approaches to assess balancing selection by quantifying lo
cal polymorphisms and LD patterns are complicated by both 
rare variants (resulting in sparse data) and instances of close 
or perfect LD among variants (resulting in quasi or fully sepa
rated data). To address this, we implemented a Bayesian lo
gistic regression model using logF priors (the conjugate 
family for binomial logistic regression) which have been 

Table 1 
Detailed counts for CHOP trios and individuals collected for analysis that 
include both SNP array data and whole exome sequence data

Population Individuals Duo Trio Totals

AFR 11 9 34 54
AMR 8 12 44 64
EAS 10 1 17 28
EUR 47 33 221 301
SAS 1 2 18 21
Totals 77 57 334 468

The analysis of these samples involved performing genome-wide scans for 
balancing selection within the population, employing the different test 
statistics: LD-ABF, Dng, Tajima's D, and B2. Related individuals were removed to 
avoid biasing the analysis and the proband counts are listed here.

FIG. 1.—Evolutionary diagram depicting the progression of an allele under balancing selection. The X denotes the variant under selection, triangles are 
variants originating on the same haplotype denoted by the top lines with balancing selection variant. In the first pane, the variant is introduced on a single 
haplotype. Then after some time has passed evolutionary pressures favoring multiple alleles at the position of focus maintaining both haplotypes with and 
without the polymorphism, where hitchhiking effects are observed around the variant under balancing selection–inducing LD patterns. Recombination breaks 
the strong LD resulting in mosaics of the haplotypes, where strong hotspots will diffuse the LD effects of hitchhiking.
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shown to be effective in settings of both sparse and fully 
separated data without making major assumptions 
(Greenland and Mansournia 2015; Rahman and Sultana 
2017). The model with logF priors can be fit using estab
lished data augmentation techniques to efficiently estimate 
posterior coefficients (Greenland 2003, 2007; Greenland 
and Mansournia 2015). Then to test how well a SNP predicts 
its neighboring variants, we derived an ABF (Raftery 1995; 
Kass and Raftery 1995), where nested models are fit with 
and without a logistic regression coefficient for the test 
SNP being associated with its neighboring variant. Finally, 
the log of the products of ABFs for every base in a set 
window (here 1 kilobase [kb] was used) is taken to derive 
a combined score that measures both the density of 
polymorphisms and degree of LD around the test SNP 
(Methods). It is important to note this Bayesian approach 
scales with the sample size, meaning across populations 
with different sample sizes the test statistics will be on differ
ent scales.

Balancing Selection Simulations

Forward time simulations were implemented in SLiM 3.0 
(Haller and Messer 2019a, 2019b) and different statistics' 
ability to detect variants under selection, versus neutral 
drift, was compared. Primary focus was on the first two 
sets replicating scenarios as described in previous studies 
as benchmarks (Siewert and Voight 2017, 2020) to demon
strate relative utility of the new method. The last scenarios 
investigate more recent balancing selection. The simulation 
framework, adapted from Siewert and Voight, is designed 
to approximate three specific timescales: (i) the point of di
vergence between humans and chimpanzees (equivalent to 
around 250,000 generations, labeled “older”); (ii) the per
iod when the Homo clade underwent diversification (ap
proximately 100,000 generations, labeled “younger”); 
and (iii) the emergence of Homo sapiens (about 10,000 
generations ago, labeled “recent”). For events categorized 
as “older,” the selection mutation arises and progresses 
through 250,000 generations in the simulation. 
Conversely, for “younger” events, the balancing selection 
mutation is introduced, and the simulation advances 
through 100,000 generations. The supplementary section 
also delves into an additional scenario involving more “re
cent” balancing selection, occurring 10,000 generations 
in the past.

For each simulation scenario, sample sizes of 10,000 
were generated across 10 kb windows, assuming mutation 
rate and recombination rates of 2.5 × 10−8. In all cases, the 
balancing selection variant is introduced at the center of the 
10 kb region in simulation. An ancestral population is simu
lated for 100,000 generations and then a split occurs (to 
compare against B2 and β2,std, which requires closely re
lated species) then three different balancing selection scen
arios are simulated. In all time settings, three different 

equilibrium frequencies scenarios were simulated, {0.25, 
0.5, 0.75}, assuming heterozygous fitness of 1 + hs using 
a selection coefficient s of 10−2 and over dominance coef
ficient h dependent on the desired equilibrium allele fre
quency corresponding to {−0.5, 100, 1.5} (Hartl and Clark 
2007). An equilibrium frequency of 0.75 indicates the de
rived allele is under enough positive selection that it be
comes more common than the ancestral allele. These 
simulations therefore also indicate some level of detection 
of positive selection as well, assuming the evolutionary 
pressure is not a selective sweep that is strong enough to 
induce full fixation of the allele. Another set of additional 
simulations were run with “younger” mutations and an 
equilibrium frequency of 50% with a dominance coeffi
cient h at 100 but instead a selection coefficient of 10−4. 
This gave another scenario keeping the relative s ∗ h ratio 
closer across simulations, relative to the equilibrium fre
quencies of 25% and 75%. Further, for this set test statis
tics were computed for window sizes of (i) 100, (ii) 500, 
(iii) 1,000, and (iv) 5,000 bp to look for impact of window 
size on test statistics. For each of the ten total scenarios 
(three-time points vs. three equilibrium frequencies and 
one looking at window sizes), two thousand simulations 
were run along with an additional neutral set where no bal
ancing selection variant was introduced after the split.

The LD-ABF is compared to the HKA statistic (Hudson 
et al. 1987), Tajima's D (Tajima 1989), BetaScan β2,std, 
(Siewert and Voight 2017, 2020), B2 (Cheng and 
DeGiorgio 2020), and Dng statistic (Tennessen and 
Duraisingh 2021). Both HKA and Tajima's D are classic 
population genetics tests, where HKA detects signatures 
of excess polymorphism and Tajima's D tests shifts in the 
site frequency spectrum. Beta Scan's β looks at a test stat
istic and compares the weighted regional mutation rate 
relative to a neutral estimate. Beta Scan's β2,std and 
BalLerMix's B2 makes inference across species leveraging 
ancestral similarities and differences of closely related spe
cies (both β and β2,std were run and reported but, we only 
discuss β2,std since it consistently outperforms β). Dng is 
the sum of the correlation of the test variant with each 
neighboring variant in the window. Both the new method, 
LD-ABF and Dng require phase data. So, power analysis in
cludes haplotypes (to allow for LD-ABF and Dng to be fit) 
and cross species data are generated as well (to allow for 
β2,std and B2 to be fit). While not a comprehensive compari
son of all available methods, our analysis draws on recent 
studies that demonstrate the comparable or superior per
formance of these methods (Siewert and Voight 2017, 
2020; Tennessen and Duraisingh 2021). Additionally, our 
study highlights a range of conceptual approaches. In order 
to evaluate the methods, we calculated the area under the 
curve (AUC) and examined precision, recall, and F1 score at 
a false positive rate (FPR) of 5%. The F1 score is a measure 
of accuracy and is the harmonic mean of precision and 
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recall (supplementary fig. S2, Supplementary Material on
line and supplementary table S1, Supplementary Material
online). When the balancing selection variant is more re
cent in origin, the younger set, the improvement in predict
ive performance is greater for LD-ABF relative to the other 
methods: LD-ABF with AUC = 94.4% and F1 = 80.8%; 
Dng with AUC = 92.4% and F1 = 73.4%; Tajima's D with 
AUC = 91.9% and F1 = 71.9%; β2,std with AUC = 90.5% 
and F1 = 68.0%; B2 with AUC = 79.5% and F1 = 57.7%; 
and HKA with AUC = 68.4% and F1 = 39.6%. Although 
the classic Tajima's D appears third best in several cases, 
its performance appears inconsistent. For example, when 
examining younger variants at an equilibrium frequency 
of 25%, LD-ABF has an AUC = 93.4% and F1 = 76.8%, 
where Tajima's D has an AUC of 82.1% and F1 = 37.9%, 
corresponding to an AUC improvement of 11.3% and F1 
improvement of 38.9% with our new method. All of the 
methods appear to perform best for variants of more an
cient origin. For example, in the simulations where the bal
ancing selection variant appears 250,000 generations 
before completion at an equilibrium allele frequency of 
50%, the LD-ABF appears to perform best based on AUC 
and F1: LD-ABF with AUC = 98.3% and F1 = 93.3%; Dng 

with AUC = 97.4% and F1 = 90.5%; β2,std with AUC =  
96.9% and F1 = 88.8%; Tajima's D with AUC = 96.3% 
and F1 = 86.8%; B2 with AUC = 92.7% and F1 = 83.9%; 
and HKA with AUC = 83.0% and F1 = 64.3%. Generally, 
most of the methods other than HKA appear to perform 
well. Tajima's D does better toward an equilibrium fre
quency of 50% and worse at lower and higher frequencies; 
whereas Dng appears to show the flip performance, it per
formed better away from an equilibrium frequency of 50% 
and worse around 50%. Dng appears to be the pretty com
parable to LD-ABF away from MAF of 50%, for example in 
the older set at MAF of 25 they are both effective predictors 
with nearly identical AUC LD-ABF = 98.1% versus Dng =  
98.2% and F1 for both 92.3%. They are similar for other 
settings as well. LD-ABF and Dng are constructed in similar 
manners to leverage phased samples and perform compar
ably, although LD-ABF tends to do noticeably better 
for more recent subtler signal and around MAF of 50%. 
In “recent” balancing selection (supplementary fig. S2, 
Supplementary Material online and supplementary table 
S1, Supplementary Material online), LD-ABF appears to out
perform the Dng more consistently, showing up to 4.1% 
(LD-ABF = 67.4% and Dng = 63.3%) improvement in AUC 
and 7.0% (LD-ABF = 19.7 and 12.7) improvement in F1 
at an equilibrium frequency of 50%.The B2 and BetaScan 
methods utilize cross species inference and perform well 
with older selection, but they still consistently underper
form LD-ABF. This may denote the limitations of cross spe
cies selection analysis, especially for detecting more recent 
evolutionary events (Asthana et al. 2005). Both of these 
tests, B2 and β2,std, are likely to do better if the variant 

under selection is a transspecies polymorphisms. It should 
be noted that B2 allows for adaptive window sizes, which 
would likely improve its performance, but for consistency 
we restricted it in this analysis. For the scenario with varying 
window sizes (supplementary table S2, Supplementary 
Material online supplementary fig. S3, Supplementary 
Material online), at small window size of 100 bp all meth
ods do poorly, and it appears the granularity of test win
dows are not appropriate for any test. While a window 
size of 500 bp is a bit worse than 1,000 bp, they are similar; 
however, when extending further to 5,000 bp there's a no
ticeable drop in performance, again this seems really con
sistent across all of the methods. Generally, the optimum 
window size appears around 1,000 bp consistent with 
the previous literature (Siewert and Voight 2017, 2020). 
LD-ABF at a window size of 1,000 performs best across 
all methods and window sizes.

Among the compared methods (Tajima's D, HKA, Dng, β, 
β2,std, and B2), LD-ABF stands out as the most robust, con
sistently predicting signals of balancing selection with the 
top or within 0.1% of the top of the AUC for each scenario. 
Moreover, LD-ABF performs the best or second best in terms 
of accuracy in the replicated set of simulation scenarios 
adapted from Siewert and Voight. Other methods have 
more variability depending on the scenario. Tajima's D and 
HKA have been shown to be outperformed by newer meth
ods (Bitarello et al. 2023) where here this is especially seen 
with HKA. Further, all methods appear to either explicitly 
or implicitly take local SNP density into account in testing 
for selection; interestingly, this dependence on SNP density 
indicates that all tests are likely to be similarly hindered by 
real data in settings of limited or missing variants in large 
part due to platform limitations which we explore next.

Genome-Wide Scan for Balancing Selection in 
Clinical Trios

First, we analyzed 468 clinical samples from the Children's 
Hospital of Philadelphia (CHOP) with SNP array data and 
matching high coverage whole exome sequencing, includ
ing 334 trios (Table 1). By using clinical trios, there is im
proved phasing for children because when the sequence 
of the parents is known, then the child's haplotypes can 
more directly be inferred. This results in higher accuracy 
of phasing, and in turn test statistics, relative to computa
tional phasing using software leveraging population level 
reference panels. Related individuals may have the poten
tial to bias the scans; to prevent this, all individuals related 
to the proband were removed following phasing. Filtering 
on mapping quality, coverage, segmental duplications, re
peats, allelic transmission disequilibrium, and other quality 
control was performed on samples (details in Methods). 
The clinical samples were phased using SHAPEIT2 and 
then combined using 1000 Genomes Project (1KGP) 

Impact of Patterns in Linkage Disequilibrium and Sequencing Quality                                                                               GBE

Genome Biol. Evol. 16(2) https://doi.org/10.1093/gbe/evae009 Advance Access publication 1 February 2024                                    5

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article/16/2/evae009/7596324 by W

ashington U
niversity in St. Louis user on 13 February 2024

http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae009#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae009#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae009#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae009#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae009#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae009#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae009#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae009#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae009#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae009#supplementary-data


(Auton et al. 2015) super-populations in order to cluster 
into ancestral super-populations based on PCA 
(supplementary fig. S1, Supplementary Material online) 
(Auton et al. 2015) (see Methods). Afterwards the 1KGP 
samples were removed from the subsequent analysis. The 
1KGP and PCA were used to assign CHOP samples to super- 
populations and these CHOP super-populations were ana
lyzed separately. The super-populations designated here do 
not represent distinct local genetic populations, as they 
may possess unknown levels of substructure, thereby 
imposing limitations on the analysis. The choice of super- 
populations stems from the constrained availability of lar
ger sample sizes from more geographically specific genetic 
ancestral groups. Ideally, a more comprehensive dataset 
comprising larger sample sizes from well-defined, localized 
populations would enhance the robustness of the analysis. 
By using LD-ABF, Dng, Tajima's D, and B2 were calculated 
genome wide for each super-population to determine 
where different balancing selection events occurred and 
in what super-populations (Fig. 2A and B, supplementary 
fig. S4, Supplementary Material online). These three add
itional methods beyond the new test statistic were chosen 
because Tajima's D is a classic statistic widely used for dec
ades, Dng is the most similar in construction, and B2 com
pares against closely related species, chimps. Although LD 
will dissipate further away from a selection event, there is 
some spread beyond the immediate window to neighbor
ing regions. To identify unique selection events, when a lo
cal peak was identified for each test statistic, bases within a 
set neighborhood were excluded from additional peak de
termination. To be conservative in avoiding double count
ing peaks within long extended LD, the analysis was first 
performed using neighborhoods of 1 megabase (Mb) 
around the highest local scores. A follow-up analysis was 
then performed using 100 kb neighborhoods to detect 
peaks at a finer granularity (supplementary Online Data, 
Supplementary Material online). To further validate new se
lection signatures identified in genes that were not previ
ously known as being associated with selection, a 
minimum of 50% of the polymorphisms found in the 
1 kb region of the peak in the clinical trios needed to also 
be found in the Pangenome samples. This helps remove re
gions with possibly mappability issues. For the clinical trios, 
within each super-population labeled group, coordinates of 
the 100 highest peaks were used to identify candidate 
genes under balancing selection (supplementary Online 
Data, Supplementary Material online). Although LD-ABF is 
closely related to other statistics and could also be approxi
mated to be asymptotically chi-squared distributed 
(Methods), instead for LD-ABF and comparator methods 
we investigate signal peaks to better isolate strong patterns 
of possible evolutionary events. Among these, 64 genes 
were shared across super-populations (Fig. 2D), including 
key HLA genes. Furthermore, we investigated the top 10 

peaks of each super-population in detail (Fig. 2A and 
supplementary tables S3 to S6, Supplementary Material
online).

When comparing the methods, it was found that the top 
10 peaks identified by each test statistic typically over
lapped with at least one other method. However, the 
rank of the overlapping peak may be relatively lower, pos
sibly outside of the top 10, but still within the top 100 
(supplementary tables S5 and S6, Supplementary Material
online). For instance, for at least one super-population 
OR2T4, OR51F1, GBP4, OR51Q1, MMP26, ZNF280A, 
SP110, UGT1A5, UGT1A6, UGT1A7, OR52E6, ZNF568, 
UGT1A8, UGT1A10, UGT1A9, and FNDC1 fall in a top 10 
peak for LD-ABF and are not in the top 10 peaks of any 
other method; however, all of these were in the top 100 
peaks of at least one other method.

Focusing on the top peaks using LD-ABF, the top peak 
for the AFR super-population is in OR51B6 of the olfactory 
receptor (OR) gene cluster; for the SAS super-population, 
the top peak appears in HLA-DPA1, an MHC class II gene; 
and for AMR, EUR, and EAS super-populations, the top 
peak is in SIRPA, which encodes for a signal regulatory pro
tein of the immunoglobulin superfamily. In fact, peaks in 
SIRPA rank among the top 4 for each super-population. 
When looking at the other methods, it is also picked 
up as a top 100 peak at least one super-population. 
Among all top 100 peaks across super-populations de
tected by LD-ABF, a total of 38 genes not previously known 
to be under selection (Table 2 and supplementary table S7, 
Supplementary Material online and Fig. 2D) (Hayeck et al. 
2024) were tagged by signals of balancing selection 
(Table 2) (Hayeck et al. 2024), including 10 shared between 
all super-populations (Fig. 2D): TRMT9B, COL5A1, SNRPN, 
OR1S1, QRICH2, OR2T4, SNHG14, HCG20, KRTAP10-9 
and PGAP6. Of the 38 new genes with selection signals, 14 
were only found by LD-ABF: AADACL3, ARHGEF19, 
CCDC50, CFAP61, CRNKL1, FAM214A, KCNQ2, LRRC32, 
OR13G1, OR52Z1, PAX2, PCARE, CYP4F2, and 
MRGPRX4, whereas the remaining 24 were replicated by 
two or more methods. The 38 candidate genes identified 
resulted from inferences made at the super-population 
level. It is important to acknowledge that signatures 
of fine-scale local adaptation may resemble those identi
fied here. While this is less probable in, for example, 
European samples, it is not improbable in Africa, where 
high differentiation and local adaptation may be more 
common. In all instances, it is important to recognize 
this as a potential limitation of the results.

As expected, several other top peaks are in HLA genes. In 
fact, peaks in HLA-C, and -DPA1 are top 10 for LD-ABF in at 
least one super-population and shared among the top 100 
peaks across all super-populations. Additionally, all three 
are captured by the top peaks of every method except 
for Tajima's D (supplementary tables S5 and S6, 
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Supplementary Material online). Looking across the entire 
MHC (Fig. 2B), the three newer statistics (LD-ABF, Dng, 
and B2) effectively identify clear and consistent peaks clus
tering throughout the MHC, separating the class I, II, and III 

HLA genes. Their relative rankings, however, vary from 
super-population to super-population and across statistics. 
In the super-populations with the largest sample sizes, EUR 
and AMR, the highest HLA peak is found in -C, while for 

FIG. 2.—Genome-wide scan for balancing selection in clinical samples and gene patterns. Clinical samples were clustered based on 1KGP super- 
populations: African (AFR), American (AMR), East Asian (EAS), Southern Asian (SAS), and European (EUR). Genome-wide scans were performed within 
population to detect balancing selection, here in A) EUR genome wide comparing LD-ABF, Dng, Tajima's D, and B2 (other populations shown in 
supplementary fig. S4, Supplementary Material online) and B) a zoomed in plot across the MHC with class I and II HLA genes in the EUR clinical samples 
with different test statistics. The top ten peaks (where 1 Mb around a peak are ignored to determine subsequent peaks) are denoted with a dot and 
gene label, when it falls within a gene. Each statistic is plotted along with the line denoting the top 99.9% percentile for that test. Looking across the entire 
MHC, there appears to be several clusters of balancing selection signals centered around HLA genes. Three of these clusters (1. HLA-C, HLA-B; 2. HLA-DRB1, 
HLA-DQA1, HLA-DQB1; and 3. HLA-DPA1, HLA-DPB1) are separated by previously noted recombination hotspots (Cullen et al. 1997; Miretti et al. 2005; 
Nordin et al. 2020). Then restricting to the top 100 peaks, where LD-ABF scores in the immediate 1 Mb window around a peak are ignored to determine 
subsequent peaks, within each population is intersected with different C) HGNC gene families to get gene counts and the D) Venn diagram of unique 
and shared top 100 peak genes between populations with the two Asian populations combined with novel gene counts shown in parenthesis.
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AFR, EAS, and SAS, the highest HLA peak is found in -DPA1. 
In total, 13 HLA and other immunoglobulin superfamily 
genes are marked by top 100 LD-ABF peaks across all super- 
populations (Fig. 2B and supplementary table S8, 
Supplementary Material online). Immune related and cell 
surface receptor signaling genes are expected candidates 
for balancing or positive selection as their functionality is of
ten directly tied to environmental interactions. Consistent 
with this, we also detected LD-ABF peaks across 16 OR genes 
and several taste receptor genes (Fig. 2B and supplementary 

Online Data, Supplementary Material online). In addition, 
peaks were also seen across members of several other 
gene families (Tweedie et al. 2021), including zinc fingers 
(ZF) (13), cytochromes (4), solute carriers (4), and myosin 
heavy chains (5) (Fig. 2C).

Bases scoring in the top 99.9% LD-ABF genome wide 
were then intersected with known GWAS catalog signifi
cant SNPs (Buniello et al. 2019) to find overlap between 
strong signals of selection and known disease associated var
iants (Table 3 and supplementary table S9, Supplementary 

Table 2 
Novel signals of balancing selection in genes from genome-wide scan of clinical trios

Genes LD-ABF Dng B2 TD

AF AM EU EA SA AF AM EU EA SA AF AM EU EA SA AF AM EU EA SA

AADACL3 … 92 94 58 … … … … … … … … … … … … … … … …
ARHGEF19 … … … … 77 … … … … … … … … … … … … … … …
CCDC50 92 89 … … … … … … … … … … … … … … … … … …
CFAP61 … … 49 … … … … … … … … … … … … … … … … …
CRNKL1 65 91 49 96 44 … … … … … … … … … … … … … … …
FAM214A … … … 78 … … … … … … … … … … … … … … … …
KCNQ2 … … … 69 … … … … … … … … … … … … … … … …
KRTAP10–9a 51 49 55 47 39 … … … … … … … … … … … … … … …
LRRC32 … 76 88 … … … … … … … … … … … … … … … … …
MRGPRX4 … … … 53 81 … … … … … … … … … … … … … … …
OR13G1 … … … … 85 … … … … … … … … … … … … … … …
OR1S1a … 12 … 23 18 … … … … … … … … … … … … … … …
PAX2 57 … 100 … … … … … … … … … … … … … … … … …
PCARE … … 64 45 53 … … … … … … … … … … … … … … …
SELENOOa … … … 64 71 … … … … … … … … … … … … … … …
OR52Z1* 96 … … … 91 … … … … … … … … … … … … … … …
CYP4F2* … … … … 86 … … … … … … … … … … … … … … …
HLA-H* … … 83 … … 8 8 8 9 32 … … … … … … … … … …
TRMT9B 58 66 56 46 38 … … … 81 … … … … … … … … … … …
ZNF778* 65 … … … … … … … … … … … 54 … 69 … … … … …
CMYA5 … … … 72 … … … … … … 29 20 55 11 10 … … … … …
KLHDC7A … … … … 70 … … … … … … 50 77 … … … … … … …
MYH3 … 83 … 100 76 … … … … … 31 16 10 20 17 … … … … …
QRICH2 39 53 53 24 56 … … … … … … … 100 … … … … … … …
ZNF45 90 50 36 … 37 … … … … … … … 43 … … … … … … …
HCG20 26 … … … … … … … … … … … … … … 79 … … … …
KRTAP7-1 … … … 95 93 … … … … … … … … … … … … 74 … 83
ONECUT2 93 57 … 41 … … … … … … … … … … … … 28 … 79 …
PLEKHG4B … 99 83 81 62 … … … … … … … … … … … 80 … … …
SNHG14 55 46 45 38 48 … … … … … … … … … … … … 99 … …
SNRPN 55 46 45 38 48 … … … … … … … … … … … … 99 … …
OR10G9 … … … 71 … 95 … … 94 … 25 49 … … 37 … … … … …
OR2T4 15 10 57 5 4 21 42 28 18 26 … 51 … 39 … … … … … …
PGAP6 99 41 35 73 29 74 43 42 … 24 … … 70 … … … … … … …
PLEC … … 71 … … … … 31 … … … 13 31 68 97 … … … … …
ADGRF2 … 87 … 66 … 94 … … … … … … 98 … … … 39 48 … …
COL5A1 22 34 30 20 22 89 … 19 69 16 … 74 37 83 69 42 81 10 13 30
HCG17* … 72 … 63 62 … 27 … 25 36 … 83 67 44 74 … … … 3 30

The set of new selection signals not previously found in these genes before with their corresponding peak rank for each statistic using 1 Mb peak finding listed for the 
given statistic and corresponding population. Genes marked with the superscript “a” were also recognized as part of the top 100 peaks using methods other than LD-ABF, 
where peak detection was conducted with a different window size of 100 kb. 

*Denotes a gene that corresponds previously unknown gene under selection but, found using LD-ABF with the other peak finding window size of 100 kb.
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Table 3 
Top balancing selection signals in clinical samples at GWAS significantly associated SNPs

Pop Chr ID LD-ABF Genes Disease/trait Sequence context

AFR 11 rs5006884 0.69 OR51B6 Fetal hemoglobin levels Missense variant
6 rs9277354 0.43 HLA-DPB1 Antineutrophil cytoplasmic antibody-associated vasculitis Frameshift variant
6 rs9277356 0.43 HLA-DPB1 Response to hepatitis B vaccine Missense variant
6 rs1126506 0.42 HLA Anti-rubella virus IgG levels Splice region variant

20 rs17855611 0.39 NR Blood protein levels Missense variant
2 rs4988958 0.36 IL1Rl1, IL1RL2, 

IL18R1
Asthma (childhood onset) Synonymous variant

6 rs1042151 0.29 HLA-DPB1 Aspirin exacerbated respiratory disease in asthmatics, severe 
aplastic anemia

Missense variant

6 rs520692 0.26 C4A Feeling worry Missense variant
19 rs602662 0.26 FUT2 Folate pathway vitamin levels, pediatric autoimmune diseases, 

vitamin B12 levels
Missense variant

10 rs2249694 0.25 CYP2E1 Obesity-related traits Intron variant
6 rs2858331 0.24 HLA-DQA2 IgE levels Regulatory region 

Variant
AMR 11 rs5006884 0.67 OR51B6 Fetal hemoglobin levels Missense variant

6 rs1126506 0.50 HLA Anti-rubella virus IgG levels Splice region variant
6 rs9277354 0.49 HLA-DPB1 Antineutrophil cytoplasmic antibody-associated vasculitis Frameshift variant
6 rs9277356 0.49 HLA-DPB1 Response to hepatitis B vaccine Missense variant
6 rs2894204 0.47 NR Waist–hip ratio Intron variant

20 rs17855611 0.43 NR Blood protein levels Missense variant
2 rs4988958 0.38 IL1Rl1, IL1RL2, 

IL18R1
Asthma (childhood onset) Synonymous variant

6 rs9264638 0.38 HLA-C Beta-2 microglubulin plasma levels Intron variant
1 rs4525 0.37 F5 Blood protein levels Missense variant
6 rs1050451 0.35 HLA-B, HLA-C IgG galactosylation phenotypes (multivariate analysis) Missense variant
1 rs4524 0.34 F5 Venous thromboembolism Missense variant
6 rs34794906 0.34 HLA-C Reticulocyte count Synonymous variant
6 rs2516703 0.31 HCG17 Itch intensity from mosquito bite Intron variant

19 rs602662 0.30 FUT2 Folate pathway vitamin levels, pediatric autoimmune diseases, 
vitamin B12 levels

Missense variant

6 rs1042133 0.28 HLA-DPB1 Monocyte count Missense variant
EUR 11 rs5006884 3.01 OR51B6 Fetal hemoglobin levels Missense variant

2 rs4988958 2.27 IL1Rl1, IL1RL2, 
IL18R1

Asthma (childhood onset) Synonymous variant

6 rs9277354 2.14 HLA-DPB1 Antineutrophil cytoplasmic antibody-associated vasculitis Frameshift variant
6 rs9277356 2.14 HLA-DPB1 Response to hepatitis B vaccine Missense variant
6 rs1126506 2.13 HLA Anti-rubella virus IgG levels Splice region variant

17 rs1864325 1.69 MAPT Lumbar spine bone mineral density Intron variant
17 rs12373142 1.67 SPPL2C Chronic obstructive pulmonary disease Missense variant
6 rs2894204 1.63 NR Waist–hip ratio Intron variant
6 rs1050451 1.63 HLA-B, HLA-C IgG galactosylation phenotypes (multivariate analysis) Missense variant

19 rs602662 1.57 FUT2 Folate pathway vitamin levels, pediatric autoimmune diseases Missense variant
20 rs17855611 1.56 NR Blood protein levels Missense variant
8 rs56117011 1.51 PLEC Post-bronchodilator FEV1 Synonymous variant
8 rs35916068 1.51 PLEC Post-bronchodilator FEV1 Synonymous variant
6 rs520692 1.50 C4A Feeling worry Missense variant
6 rs9264638 1.50 HLA-C Beta-2 microglubulin plasma levels Intron variant
1 rs4525 1.47 F5 Blood protein levels Missense variant
8 rs55646585 1.44 PLEC Post-bronchodilator FEV1 Synonymous variant

SNPs that are both found to be significantly associated with a phenotype in the GWAS catalog and also have a strong selection signal in the top 99.9%. The results for 
clinical samples in the EUR, AFR, and AMR populations are here with the EAS and SAS populations continued in supplementary table S9, Supplementary Material online.
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Material online). Using 99.9% coincides with a more re
strictive threshold than the cutoff for top 100 peaks while 
still allowing for consideration of multiple variants of 
interest within the same peak. Many of the SNPs overlap
ping high LD-ABF scores were found to be associated with 
blood and immune related traits. Among these, the stron
gest signal for EAS was at rs17855611 in SIRPA associated 
with blood protein levels, and for SAS, at rs1126506 in 
HLA associated with Anti-rubella virus IgG levels, influen
cing the immune response against the rubella virus. In 
contrast, the strongest signals in AFR, AMR, and EUR 
were seen in OR51B6, which corresponds to rs5006884 
with known association to fetal hemoglobin (HbF) levels 
in sickle cell anemia, a classical example of balancing se
lection driven disease (Solovieff et al. 2010). This SNP 
lies upstream of the β-globin locus control region and is 
in close proximity to several candidate enhancers of 
HBG2 (Safran et al. 2021), which codes for the gamma-2 
subunit of HbF.

The analysis of the SNP array and exome sequencing 
data indicated strong selection signatures in genes asso
ciated with the immune and sensory systems, generally 
showing good consistency across methods (less so with 
Tajima's D). The presence of strong balancing selection in 
the MHC region was expected, but the SNP array analysis 
revealed inconsistent signals in the HLA genes among vari
ous super-populations. To further investigate this inconsist
ency, we look to targeted genotyping of the HLA genes.

Detailed Investigation of HLA Genes Using High-Quality 
Typing

Diversity in HLA genes have long been recognized as key ex
amples of balancing selection (Parham 2005; Barreiro and 
Quintana-Murci 2010; Lenz et al. 2016). Moreover, even 
though the MHC accounts for only 0.16% of the genome, 
39% of all GWAS SNPs that overlapped top LD-ABF scores 

occurred within the MHC. So, despite accounting for a frac
tion of a percent of the genome, over 2% of GWAS variants 
are found in the MHC. Furthermore, when testing the odds 
ratio of comparing the top 99.9% under balancing selection 
versus not under selection (GWAS variants within the MHC to 
those outside the MHC), there is an enrichment of over 
30-fold (Fishers exact P < 10−10). Despite these observations 
and its profound importance to the fields of immunology, im
munogenetics, and evolutionary biology, detailed follow-up 
and characterization of the MHC and its HLA genes have 
been limited. Fortunately, due to the importance of HLA 
matching for avoiding rejection and graft versus host disease 
in organ and stem cell transplants, detailed typing of selective 
HLA genes is routinely performed in the clinical setting 
(Petersdorf et al. 2014; Wiebe et al. 2018; Shieh et al. 
2021). Taking advantage of this, we utilized high-resolution 
HLA typing data from the IHIW to take a closer investigation 
of balancing selection across these genes. This dataset con
sists of over 3,500 samples, each providing 2 alleles per 
HLA gene typed at 4 field resolution and represents a diverse 
set of world populations (Methods).

Strikingly, the strongest LD-ABF signals were consistently 
observed in -DQA1, -DQB1, and DRB1 across all IHIW popula
tions and in Pangenome samples (Figs. 3 and 4 and 
supplementary figs. S6 to S10, Supplementary Material online). 
This contrasts with scans of the clinical samples, where either 
-C or -DPA1 were the top hits across the MHC depending on 
the population. Furthermore, within each HLA gene, consistent 
patterns of balancing selection were observed across all popu
lations, including strong signals in the intronic regions (Fig. 4
and supplementary figs. S6 to S9, Supplementary Material on
line). Similar observations are made when using other 
methods (not displayed here) where inferior sequencing 
coverage seems to diminish detection ability and lead to 
less reliable results, underscoring the significance of se
quencing quality in terms of inferring selective signals. 

FIG. 3.—Balancing selection in HLA-DQA1 and DQB1 comparing the clinical samples, 17th IHIW, and Pangenome. LD-ABF scores over A) DQA1 and 
B) DQB1 from independent samples of African ancestry are compared. Exonic regions are highlighted in purple. Exons are shaded in blue. The relative mag
nitude of the LD-ABF signals reflects the sample size of the population as any standard test statistic would. Clinical samples used a combination of SNP array 
and high coverage exome sequencing, the IHIW came data are high-resolution HLA genotyping, and the Pangenome are whole-genome long-read data. 
sequencing data.
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Not surprisingly, these regions with the highest LD-ABF 
scores corresponds to regions with the highest concen
tration of GWAS trait associated SNPs. A review of SNPs 
overlapping top LD-ABF scores revealed associations 
with traits like red blood cell count, leukemia, autism, 
schizophrenia, and asthma (supplementary table 10, 
Supplementary Material online). The sequence context 
of the majority of these SNPs was either intronic or mis
sense, which is expected in the context of balancing se
lection; as opposed to nonsense or loss of function 
variants, which would be expected in settings of purify
ing selection (Petrovski et al. 2013; Karczewski et al. 

2020). Looking over the exons of HLAs, the highest 
LD-ABF signals for both -DQA1 and -DQB1 were found 
in exon 2, which encode for extracellular domains key 
to peptide presentation. Diversity in the peptide-binding 
pocket ensures effective immune recognition of a wide 
range of foreign pathogens, in tune with mechanisms 
driving balancing selection.

Validation With Long-Read Pangenome Samples

To further validate LD-ABF testing and assess the impact 
of sequencing, we next looked at whole-genome HiFi 

FIG. 4.—Comparison of LD-ABF across IHIW populations for HLA-DQA1 and HLA-DQB1. Detailed look at consistent patterns of LD-ABF across the 
HLA-DQ* genes (with the largest signal in the IHIW samples) and eight world populations. Exons are shaded in blue. Different scales are proportional to 
the relative within-population sample sizes.

Impact of Patterns in Linkage Disequilibrium and Sequencing Quality                                                                               GBE

Genome Biol. Evol. 16(2) https://doi.org/10.1093/gbe/evae009 Advance Access publication 1 February 2024                                 11

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article/16/2/evae009/7596324 by W

ashington U
niversity in St. Louis user on 13 February 2024

http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae009#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae009#supplementary-data


PacBio sequencing data gathered by the Pangenome 
Consortium. Along with understanding how quality and 
coverage impact testing, these high-quality long-read sam
ples are expected to help remove artifacts introduced by in
accurate assembly and alignment of other platforms. This is 
especially applicable for genomic regions of high homology 
and complexity that are difficult or impossible to properly 
align and map when using short-read sequencing, includ
ing the MHC. Although these samples offer superior se
quencing quality, the largest population consists of just 
23 African samples; so, they are presented here predomin
antly for selective verification and not as part of the broader 
analysis. The other Pangenome populations were too small 
to perform statistical inference (Methods).

A key reason for exploring the Pangenome samples was 
to further study the SIRP region, which demonstrated sur
prisingly strong signal in the clinical samples both from 
LD-ABF and other methods (supplementary table S6, 

Supplementary Material online). The magnitude of the 

SIRPA LD-ABF signal is second only to the MHC in the 

Pangenome data, confirming strong balancing selection 
(Fig. 5A). However, the observed high signal of balancing 
selection in clinical samples at SIRPB1 was not replicated 
in the long-read samples and is likely artifactual, due to 
platform limitations (Fig. 5D). The signal was much smaller 
over the Pangenome and it also did not pass filtering criteria 
for matching at least half of the polymorphisms found in 
the clinical samples. There is a known copy number vari
ation in SIRPB1 potentially causing mapping or alignment 
issues that likely led to strong misleading signals in the clin
ical samples (Royo et al. 2018) (supplementary fig. 12, 
Supplementary Material online).

Beyond the MHC and SIRPA, the top 100 peaks in 
the Pangenome samples (supplementary online data, 
Supplementary Material online) included OR51B5, 
MYO3A, and OR6J1, which were also found to be top 
hits for clinical samples along with other studies (Asthana 
et al. 2005; Andrés et al. 2009; DeGiorgio et al. 2014; 
Bitarello et al. 2018).

FIG. 5.—Signals of balancing selection detected in the Pangenome samples. LD-ABF scores calculated from long-read HiFi PacBio data are shown 
a) genome wide and with a B) table detailing the top 5 LD-ABF peaks C) zoom in around the MHC D) zoom in around the SIRP genes.
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Signals of LD-ABF in HLA genes from African populations 
were compared across datasets. As the scale of LD-ABF sig
nal is a function of sample size, for this comparison, we fo
cus on the relative peaks and shapes of the distributions as 
opposed to the absolute LD-ABF scores. Since the data for 
the clinical samples are limited by the exome sequencing 
and variants on the SNP arrays, it became clear how incom
plete the data were as compared to the IHIW and 
the Pangenome (Fig. 3 and supplementary fig. 11, 
Supplementary Material online). The patterns of LD-ABF 
from the IHIW samples largely matched those of the 
Pangenome samples, with the exception of a problematic 
subregion within the HLA-DRB1 (supplementary fig. 10, 
Supplementary Material online). A dramatic peak centered 
on intron 5 of -DRB1 seen in the IHIW dataset was com
pletely absent in the Pangenome analysis. This intronic re
gion of DRB1 with the strong signal in the IHIW samples 
is known to contain an Alu and a LINE, long transposable 
elements that hinder accurate mapping of shorter sequen
cing reads. The known structural variation and disparate 
repeat elements in this region of DRB1 in short-read set
tings can result in issues when performing multiple se
quence alignment and therefore likely causes artifactual 
LD. These challenges are reconciled when using the 
Pangenome and consequently the false LD-ABF peak dissi
pated across the Pangenome samples. The Pangenome, 
and long-read sequencing in general, offers an invaluable 
resource for reconciling such artifacts while also providing 
dramatic replication of surprisingly strong signals, like 
that seen in SIRPA.

Discussion
LD-ABF improves detection of evolutionary selective pres
sures by evaluating both the magnitude of LD and the dens
ity of variation making direct inference on phased 
haplotypes. LD-ABF requires known haplotypes and like 
other test statistics is most effective when there are large 
sample sizes with good coverage. Leveraging LD-ABF, we 
analyzed three independent datasets representing different 
sequencing technologies, each with unique advantages 
and limitations. Our comparative analysis revealed that se
quencing strategies significantly influence the detection of 
selection patterns, implying that any population genetics 
study relying on polymorphism density and LD modeling 
may introduce biases due to sequencing limitations.

The objective was to develop a model that utilizes 
phased haplotypes to enhance the prediction of selection 
signatures. Analysis can be challenging in regions where 
phased data are sparse or some SNPs are in perfect LD, 
which are both common occurrences. However, incorpor
ating these factors directly into the model can improve stat
istical inference, which is precisely what LD-ABF achieves. 
Penalization methods offer valuable solutions to address 

issues related to separation (i.e. perfect LD) and data spars
ity, and they have foundations in both frequentist and 
Bayesian approaches. Penalty functions are commonly em
ployed to drive parameter estimates toward zero by incur
ring a cost for including parameters in the model. These 
methods are particularly effective in high-dimensional 
settings that involve parameter selection. In frequentist 
settings, this corresponds to maximizing likelihood estima
tion, β̂ = argmax{l(β) + r(β)}, where l(β) is the log likelihood 
and r(β) is the penalty. A common example is the Lasso pen
alty, r(β) = λ|β|, which is the absolute value of effect esti
mates with λ as a tuning parameter that modulates the 
coefficients by adding a cost for including the term in the 
model.

Greenland and coauthors (Greenland 2003, 2007; 
Greenland and Mansournia 2015; Mansournia et al. 
2018) have extensively investigated penalized functions 
and their Bayesian equivalents. Greenland proposes using 
a class of loss functions proportional to the information ma
trix, r(β) = ln(|I(β)|)m, where I is the fisher information and m 
is a hyper parameter. In particular, a form of this penalty 
function in binary outcome settings is equivalent to em
ploying logF priors and has been shown to mitigate bias 
and mean square error (MSE) in scenarios involving separ
ation and data sparsity (Discacciati et al. 2015). Similar to 
the Cauchy or t-distribution, logF priors increase the tail 
weight or skewness of the prior distribution. The logF distri
bution provides heavier tails than a multivariate normal dis
tribution but lighter tails than the Cauchy distribution. An 
additional advantage of using logF priors is that estimation 
with data augmentation techniques can be performed with 
calculations on the order of running a standard logistic re
gression model. Moreover, the logF prior belongs to the 
conjugate family for binomial logistic regression, making 
it a natural choice in such settings.

The MHC is a complicated region with notably strong LD 
that benefits from such analytical approaches. The MHC is a 
genomic region of particular interest both from a medical 
perspective and in terms of understanding evolutionary 
pressures. Numerous studies have established connections 
between over 700 diseases or traits and the MHC, making it 
the genomic region with the highest number of associa
tions of comparable size (Clark et al. 2015; Shieh et al. 
2018). While the MHC represents around 0.1% of the gen
ome, it corresponds to nearly 2% of all GWAS catalog as
sociations (Buniello et al. 2019).

The MHC has been extensively studied as a prominent 
example of balancing selection (Parham 2005; Barreiro 
and Quintana-Murci 2010; Lenz et al. 2016), with a specific 
focus on class I genes exhibiting stronger selection (Alter 
et al. 2017). Agreeing with previous literature strong signal 
was seen of the class II region and even focusing in on the 
HLA-D gene clusters (Leffler et al. 2013; DeGiorgio et al. 
2014; Teixeira et al. 2015; Siewert and Voight 2017; 
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Bitarello et al. 2018; Meyer et al. 2018; Cheng and 
DeGiorgio 2020); however, to our knowledge other studies 
did not consistently revealed the strongest signals in 
HLA-DQA1 and -DQB1 across all populations as in this 
study, as supported by the IHIW and Pangenome data 
(Figs. 3 to 5 and supplementary figs. S6 to S10, 
Supplementary Material online). This discrepancy could be 
attributed to the utilization of low resolution typing or older 
SNP array data in earlier studies, including our own analysis 
of SNP array and exome sequence data. The more recent in
sights provided by the IHIW and Pangenome initiatives chal
lenge these earlier observations.

In addition to emphasizing the robust balancing selec
tion signals observed in class II HLAs, the IHIW data demon
strated strong signals within intronic regions of the HLA 
genes, while the Pangenome data revealed strong signals 
within intergenic regions of the MHC as well (Figs. 3 and 
5, supplementary fig. 11, Supplementary Material online, 
and supplementary Online Data, Supplementary Material
online). These regions, which have received limited atten
tion in previous studies, were found to exhibit notable se
lection signatures. Many GWAS disease associated SNPs 
fall within these noncoding regions; our analysis here be
gins to offer some clues regarding the evolutionary forces 
that contributed to these polymorphisms. Although the 
clinical samples also showed strong signals across HLA 
genes, it alone would have missed much of these interest
ing intricacies due to the sparseness of the data, especially 
over introns and intergenic regions. Furthermore, the con
sistent patterns of balancing selection observed in the HLA 
genes across diverse populations in the IHIW data 
(supplementary figs. S6 to S10, Supplementary Material on
line) suggest the possibility of convergent evolution, a phe
nomenon previously documented in HLAs (O’Huigin et al. 
2011; Creary et al. 2021).

Similar to the MHC, one of the strongest signals of balan
cing selection across the genome was observed in SIRPA with
in the clinical samples. This signal was further validated in the 
independent sample set of the Pangenome (Fig. 5). Previous 
studies (Bitarello et al. 2018; Tennessen and Duraisingh 
2021) also noted selection around SIRPA, but the strength 
of the signal was not as pronounced as in this study, finding 
it as consistently a top 5th gene. Notably, in our study 
Tennessen's method, Dng, identified SIRPA as one of the top 
five genes across all clinical super-populations, similarly to 
LD-ABF. These findings suggest that discrepancies in rank or
dering of SIRPA was due to sequencing platforms, potentially 
resulting in poorer coverage, and differences in sample 
sources may have influenced previous results.

SIRPα plays a crucial role as an inhibitory receptor for CD47 
and is a key component of the “do-not-eat-me” signaling 
pathway, with potential implications in transplantation 
(Garcia-Sanchez et al. 2021). Similar to the HLA genes, the se
quences encoding the extracellular domain of SIRPα exhibit 

the strongest signal. Interestingly, structural analysis revealed 
that most polymorphisms in SIRPA do not affect CD47 bind
ing, unlike the variation observed in the complementary deter
mining regions of the HLA molecules and immunoglobulins. 
Instead, these polymorphisms cluster away from the CD47 
binding footprint and are believed to be under selection to 
minimize pathogen binding and manipulation of the 
“do-not-eat-me” signal (Hatherley et al. 2014).

In addition to HLAs and SIRPA, our analysis of top LD-ABF 
peaks across all super-populations (Table 2) revealed several 
other notable genes and gene families. OR genes formed 
the largest gene family under balancing selection, this is to 
be expected because the OR are responsible for the detection 
of odors. The ability to sense the environment detecting odors 
related to hazards, food, or social interactions, significantly in
fluences the survival and adaptation of a species. Notably, 
both HLAs and ORs are thought to have diversified through 
gene duplications and consequently both families reside in re
gions of high gene density. These observations, along with 
the high homology among members of HLAs, ORs, and other 
gene families identified in our study suggests that balancing 
selection and gene duplications are often the result of similar 
evolutionary pressures.

Furthermore, our analysis highlighted additional genes and 
gene families that showed evidence of balancing selection. 
These included taste receptor genes (TAS2R), genes asso
ciated with psychoactive and anti-inflammatory responses 
(CNR2), zinc finger genes (ZNF280A and ZNF568) that serve 
as binding molecules with DNA and RNA, and several cyto
chrome P450 genes. The cytochrome P450 enzymes play a 
crucial role in drug metabolism and lipid synthesis, catalyzing 
a wide range of reactions (Sayers et al. 2019). The identifica
tion of these diverse gene families suggests that balancing se
lection operates on genes involved in various biological 
processes, reflecting the intricate interplay between evolu
tionary pressures and functional adaptations.

Upon analyzing the top 100 peaks (within 1 Mb and 
100 kb neighborhoods) across all super-populations, we 
identified a total of 38 new selection signatures in genes 
that were not previously recognized to be under selection. 
Out of the 38 newly identified signals, the majority (24) 
were also detected by existing methods. However, several sig
nals would have been missed without employing LD-ABF. 
Notably, 14 genes were solely detected by LD-ABF, including 
members of expected gene families such as olfactory receptor 
genes and keratin-associated genes. While these specific 
genes had not been previously recognized as under selection, 
other genes in the same gene families have been identified in 
prior studies, further supporting their significance in evolu
tionary processes. This work has several limitations that pre
sent opportunities for future investigations. Firstly, due to 
limited sample availability, we had to utilize 1KGP super- 
populations. However, for a more comprehensive under
standing, it would be ideal to incorporate more distinct 
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subpopulations in future studies and this may have impacted 
the detection of the 38 candidate genes. Splitting our EUR 
samples into subpopulations we saw similar signals of selec
tion across the MHC and across HLA genes (supplementary 
fig. 14, Supplementary Material online), although we hasten 
that our population is not of an ideal size and representation 
of diverse populations to truly test that this is not an issue. We 
are currently working on follow-ups to characterize the rela
tive divergence in selection across more granular subpopula
tions. Additionally, future research should aim to explore local 
adaptations at the sub-population level. Moreover, the cur
rent method focuses on selection within populations without 
explicitly testing for relative differentiation. Future work could 
expand the existing statistical framework to directly assess 
and compare such differences.

It is important to acknowledge that the datasets used in this 
study may have limitations related to sequencing quality and 
potential underrepresentation of certain populations. It is 
worth noting that the clinical samples were obtained from in
dividuals visiting the Children's Hospital of Philadelphia for 
clinical assessment and were not specifically curated for the 
study of evolutionary selection. Therefore, the representative
ness of these datasets should be considered.

The presence of extensive repeat regions, structural 
variations, ectopic recombination, and other complex se
quences may introduce biases or generate artifact signals. 
The current analysis focuses on LD within a 1 kb window 
and does not examine long-range LD. To address these chal
lenges, the utilization of long-read sequencing (Logsdon 
et al. 2020) will play an increasingly crucial role in decipher
ing the complexity of the MHC and other regions of 
the genome with high homology or extensive LD. The future 
advancement of studies using novel technologies, like 
long-read sequencing, with large sample sizes hold the 
promise to uncover selection signal in regions that have 
traditionally been overlooked due to sequence complexity 
(supplementary fig. 13, Supplementary Material online). 
Additionally, employing advanced mapping and alignment 
techniques, such as population reference graphs (Dilthey 
et al. 2016), can enhance the genetic characterization of di
verse human populations (Eichler 2019). These methodo
logical advancements, when coupled with tools like 
LD-ABF, will contribute to a better understanding of the im
pact of evolutionary pressures on genomic functionality.

In conclusion, the limitations associated with sequencing 
platforms, including low coverage or incomplete sequen
cing, as well as challenges in mapping and alignment within 
complex regions, can hinder the accurate detection of evo
lutionary selection. This is because all methods directly or 
indirectly assess polymorphism density and the strength 
of LD. Our study highlights that a smaller yet high-quality 
long-read sequencing datasets have the potential to offer 
a more comprehensive understanding of evolutionary pat
terns compared to larger datasets generated using 

alternative sequencing platforms. Furthermore, by utilizing 
LD-ABF in conjunction with a combination of sequencing 
technologies, we were able to enhance the identification 
of selection signals and uncover novel targets of selection. 
Moving forward, in addition to ongoing statistical meth
odological advancements, a cost-effective approach for 
comprehensive characterization of complex genomic re
gions may involve the strategic utilization of high-quality 
sequencing data and a carefully curated set of samples. 
This integrated approach has the potential to provide valu
able insights into the intricate dynamics of evolutionary se
lection and improve our understanding of the genetic 
underpinnings of various traits and diseases.

Materials and Methods

Linkage Disequilibrium Approximate Bayesian Factor 
(LD-ABF)

The model aims to detect selection by testing for both level 
of linkage between the test variant with neighboring var
iants and density of polymorphisms around the test variant 
(Fig. 1). Phased individual level haplotype data was used to 
enable the clearest detection that the test variant of interest 
is in strong linkage with neighboring variants. To test for as
sociation between a given variant and neighboring variants 
first consider just testing the association between haplo
types of one variant versus one other neighboring variant. 
Take test variant xi, xi = {0, 1} where 0 corresponds to the 
major allele and 1 minor allele and i is the index for the in
dividual, and a neighboring variant yi = {0, 1}, again corre
sponds to the major or minor allele. A logistic regression 
model is a natural choice for the binary outcomes.

P(yi = 1|xi, β) = logit−1(β0j + β1jxi) 

where β1j corresponds to the log odds ratio of observing the 
alternate allele for neighboring variant j given we observe 
the alternate allele for the test variant. A standard frequen
tist approach may run into issues because it is common to 
see some SNPs in perfect LD or near perfect LD, this creates 
complete or quasi-complete separation—or rare variants 
lead to sparsity which can also results in non-identifiability 
of the model.

Taking likelihood given the data D, L(D|β) and 
log likelihood l(β) as the standard Bernoulli log 
likelihood for logistic regression, log{L(D|β)} = l(β) = 
􏽐

[yi log(πi) + (1 − yi) log (1 − πi)] with πi = exp(Xiβ)
1+ exp(Xiβ), the 

penalized log likelihood can be written in the form:

p(yi|xi, β) = l(β) +
m
2
β − mlog(1 + eβ). (1) 

It can be easily seen that at m = 0 is equivalent to the max
imum likelihood estimate (MLE)—further at m = 1 includes 
Jeffrey's prior in the one parameter model, which was used 
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in this setting based on the recommendations of Greenland 
and Mansournia (2015). This penalty is proportional to the 
posterior distribution with logF(m, m) priors, meaning esti
mating the function of the penalized log likelihood is 
equivalent to finding the posterior mode. We implemented 
a Bayesian logistic regression model using logF priors which 
enabled us to utilize established data augmentation 
techniques to efficiently estimate posterior coefficients 
(Greenland 2003, 2007; Greenland and Mansournia 2015).

To test for association between a test SNP and neighbor
ing variant, we use the ABF. The Bayes factor (Kass and 
Raftery 1995) has been used in a variety of settings includ
ing in extensive use GWAS (Wakefield 2007, 2009; Maller 
et al. 2012; Chen et al. 2020a) and the ABF in this setting 
plugging in equation (1) is defined as:

log{BFj} = log
p(y|M1,j)
p(y|M0,j)

􏼚 􏼛

≈ log
L(D|β̃0, β̃1)p(β̃0)p(β̃1)

L(D|β̃0)p(β̃0)

􏼨 􏼩

= l(β̃0, β̃1) +
m
2

β̃0 − mlog(1 + eβ̃0 ) +
m
2

β̃1 − mlog(1 + eβ̃1 )
􏽮 􏽯

− l(β̃0) +
m
2

β̃0 − mlog(1 + eβ̃0 )
􏽮 􏽯

.

(2)The generalized connection between the ABF and other 
common statistics is further described below in the supple
ment (Connection to Other Statistics). This test compares 
the posterior of the intercept only model M0,j = 
logit−1(β0j) versus the model with the neighboring variant 
M1,j = logit−1(β0j + β1jxi). If m were to be set to zero, and 
the data augmentation omitted, that would be proportion

al to a simple likelihood ratio test, log L(β0, β1)
L(β0)

􏽮 􏽯
(see 

Connection to Other Statistics). To get the test statistics 
across the entire neighboring region the product of these 
ABF between the test SNP and each neighboring SNP in a 
window of a thousand bases (five hundred bases up and 
downstream) were used, where the log is taken for compu
tational ease. The final statistic is the log product of the ABF 
across the entire window (here 1 kb was used) then divided 
by the window size, where both taking the log and dividing 
by the window size are done for interpretability, plugging in 
equation (2).

LD-ABF =
1
W

log
􏽙W

j=1

L(D|β̃0, β̃1)p(β̃0)p(β̃1)

L(D|β̃0)p(β̃0)

􏼢 􏼣

. (3) 

Monomorphic sites are considered to have uninforma
tive ABF of 1, meaning regions that are denser with poly
morphisms tend to have higher test statistics. Since 
LD-ABF is equivalent to the sum of the log of the ABF 
over a window the denser regions will tend have a larger 
sum over a window with less or no variants. The fast ap
proximation means the computational complexity scales 

with the number of logistic regression steps, S, and the win
dow size O(WS) while the memory scales with the sample 
size N and window size O(WN). Additionally, since SNPs 
outside a window do not contribute to the test—the soft
ware is set up to be parallelized over SNPs. For a 
detailed example walking through the calculations and 
data augmentation techniques for fast Bayesian 
estimation, see our online resources toy example at 
https://tris-10.github.io/LD-ABF/documentation/LD_ABF_ 
toyExample and code is available online at https://github. 
com/tris-10/LD-ABF.

Children's Hospital of Philadelphia Clinical Samples

In the clinical samples, 834 samples underwent quality con
trol and outlier filtering, leaving 468 with SNP array data 
and matching whole exome sequencing, including 334 
trios (Table 1). For samples to be included in the final ana
lysis they needed to have both SNP array and whole exome 
sequence data. For both platforms, phasing was done using 
SHAPEIT2 (Choi et al. 2018; Delaneau et al. 2019) and then 
the cross platform samples were merged maximizing over
lapping alternate allele matches. Since signals of selection 
can often be obscured or confounded by demographic 
shifts across populations, inference on each sample's an
cestry was completed to facilitate within-population ana
lysis. Using the first 10 principle components (PCs) 
calculated from the SNP array data, K-nearest neighbors 
clustering algorithm was run to group samples by their 
best matching 1000 Genomes Project (1KGP) (Auton 
et al. 2015) super-population—Africa (AFR), East Asia 
(EAS), Europe (EUR), South Asia (SAS), or the Americas 
(AMR) (supplementary fig. S1, Supplementary Material on
line). Sixteen outliers whose PC positions are more than six 
standard deviations away from the mean of any ancestral 
group were removed (Price et al. 2006; Galinsky et al. 
2016). Such inference is expected to have limitations since 
the samples were not collected prospectively with ancestry 
or ethnicity assessments.

For the SNP array data, 832,381 SNPs common to the 
3 SNP arrays were extracted. SNPs were then removed if 
they had genotyping call rate < 0.95, minor alleles fre
quency < 0.01. Individuals were removed if they had indi
vidual missing genotypes rates > 0.05. For the whole 
exome sequence data, within each family indels were sepa
rated from SNPs. Indels are excluded if QD < 2 or FS > 200 
or ReadPosRankSum < −20. SNPs are excluded if QD < 2 
or FS > 60 or MQ < 40 or MQRankSum < −12.5 or 
ReadPosRankSum < −8. Also within each family, geno
types variants were excluded if any individual had a variant 
with DP < 5 or GQ < 10. Exome data had to pass internal 
clinical filtering criteria including call quality by depth 
(QD) < 10 and Phred scaled P-value using Fisher's exact 
test (FS) > 5 with coverage on average at 80×. VCF files 
were then merged across families and missing genotypes 
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were assumed to be reference. Monomorphic, multi-allelic 
and variants with Mendel error rates > 0.01 were removed. 
In some cases, edges of telomeric regions appeared to 
cause errors in phasing using SHAPEIT2, so the last 4 var
iants on chromosome 1 and chromosome 3 were also re
moved to finish the phasing.

Several transmission filters were incorporated leveraging 
family relatedness because certain variants appeared to be 
incorrectly called due to homologous sequence stretches. 
Several filtering steps were performed to remove regions 
exhibiting higher heterozygosity than expected based on 
equilibrium frequencies. Two tests were implemented to re
move individuals that were excessively heterozygous. 
Relative to filtering out repeat masker regions entirely, 
this gives another way to remove potential artifacts by le
veraging family data without having to remove close to 
20% of variants. In settings where over 95% of families, ei
ther trios or duos, consisted of entirely heterozygous indivi
duals those variants were filtered out. Then looking at 
complete trios, if both parents are heterozygous at an al
lele, the transmission of either homozygous variant is ex
pected to be 25%. So, looking at each trio where both 
parents are heterozygous at a variant, a binomial test 
with a P-value threshold of 0.005 is constructed so the 
probability of success (i.e. seeing a homozygous proband) 
is P = 25% and for the number of observations, n, is equal 
to the number of families with heterozygous parents; var
iants that do not pass the threshold are then filtered out. 
Sometimes the reference allele was not the major allele, 
i.e. the major and minor allele were flipped, in which case 
if the minor allele occurred more than 95% it was removed, 
this is the same as a 5% MAF threshold.

Additional regional filters included removing regions 
that fell in the ENCODE black list regions https://github. 
com/Boyle-Lab/Blacklist/ (Amemiya et al. 2019) low com
plexity repeat regions (LCR): https://raw.githubuser 
content.com/lh3/varcmp/master/scripts/LCR-hs37d5.bed. 
gz, removing centromeres (acen) and telomers (gvar) UC 
genome browser and taking http://hgdownload.cse.ucsc. 
edu/goldenPath/hg19/database/cytoBand.txt.gz and any 
remaining indels. The ENCODE blacklist represent a large 
number of repeat elements in the genome or more gen
erally regions that have anomalous, unstructured, or 
high signal in next-generation sequencing experiments inde
pendent of cell line or experiment. Furthermore, the filtration 
process entailed the exclusion of segmental duplicates dis
playing a fraction of matching bases (fracMatch) exceeding 
95%, long terminal repeats (LTRs), and repeats possessing 
a 100mer mappability index below 1 (obtained from https:// 
hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/ 
wgEncodeMapability/wgEncodeCrgMapabilityAlign100mer. 
bigWig) via the UCSC Genome Browser. When running 
LD-ABF, the within-population variants were restricted to 
MAF > 0.05.

Similar setups across the different comparator methods 
were run as noted in the simulation study. B2 required add
itional handling. Whole-genome pairwise alignments from 
the UCSC Genome Browser were used to perform a com
parative analysis between human and chimpanzee gen
omes (http://hgdownload.cse.ucsc.edu/goldenpath/hg19/ 
vsPanTro6/hg19.panTro6.net.axt.gz). To generate input 
files containing relevant genetic information, the 
“getChrAxt.sh” script was employed to extract individual 
chromosomes followed by the use of the “parse_baller
mix_input_v2.py” script. The output files contained infor
mation on physical positions, genetic positions, and the 
number of derived and total observed alleles for each vari
ant in human chromosomal VCF files. To ensure a consist
ent sample size, positions with smaller sample sizes were 
removed from the input files. The generation of a site 
frequency spectrum file was achieved by concatenating 
all input files and running BalLeRMix_v2.py with the 
“–getSpect” flag. Finally, B2 statistics for each variant on 
every chromosome were estimated using the chromosomal 
input files and the site frequency spectrum.

Top 100 peaks for each population are reported online. 
To be conservative in avoiding double counting peaks with
in long extended LD, the analysis was first performed using 
neighborhoods of 1 Mb around the highest local scores. 
A follow-up analysis was then performed using 100 kb 
neighborhoods to detect peaks at a finer granularity 
(supplementary Online Data, Supplementary Material
online). The gene families are defined using Human 
Genome Organization (HUGO) gene naming HUGO 
Gene Nomenclature Committee (HGNC) (https://www. 
genenames.org/).

17th IHIW and IMGT

Samples were taken from the 17th IHIW, using reported 
high-resolution allele frequencies characterized by next- 
generation sequencing in unrelated populations (i.e. no 
known familiar relationship between samples) (17th IHIW 
Table 1). This dataset consists of over 3,500 samples, 
each providing 2 alleles per HLA gene typed at 4 field reso
lution and represents a diverse set of world populations: 
European Americans, African Americans, US Hispanics, 
Spanish, Mexican, Italian, Greek, Asian Pacific Islanders, 
Thai, Indian, Arab, and Europeans (taken from the 17th 
IHIW Table 1). Since the samples reported include allele fre
quencies using classic HLA nomenclature, to perform ana
lysis the data required matching on consensus sequencing 
then lifting over to reference. The observed alleles in 17th 
IHIW were matched with their established sequences, as 
described in the interational ImMunoGeneTics (IMGT) 
HLA database version 3.25.0, which is the version that 
most directly corresponds to the 17th IHIW and lifted 
over to Hg19. Indels, short tandem repeats (STRs), and 
missing variants were ignored for this analysis. In the 17th 
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IHIW dataset, alleles ending with “SG” in their name refer 
to STR allele ambiguity groups; when encountering such al
leles, we have removed the suffix to enable matching with a 
corresponding and representative IMGT allele. If an allele 
reported in 17th IHIW did not match up with a fully se
quenced HLA allele in IMGT 3.25.0 then it is omitted. This 
typically only occurred with rare alleles, where all but 
DPB1*01:01:01 had allele frequencies below 5%. Low fre
quency alleles are expected to have less of an impact on the 
analysis than higher frequency alleles since LD is typically 
less strong for rare alleles. Genes without genomic align
ment file for IMGT 3.25.0 were also omitted. Alleles were 
4 field typed except where amplicons do not extend the 
full length of the gene where ambiguities are noted by 
the 17th IHIW (http://17ihiw.org/wp-content/uploads/ 
2018/10/Readme-Unrelated-HLA-allele-and-haplotypes-FQ- 
tables_072318.pdf).

Pangenome Samples

Freeze 1 version 2 assembly data was downloaded from 
the Human Pangenome Reference Consortium (HPRC) re
pository. The assemblies were aligned to hg38 chromo
some 6 using minimap2 (v2.21) in asm20 mode. All 
contigs with a total alignment length exceeding 500 K 
were retained for variant calling. Filtered contigs were 
processed with Dipcall (v0.3), adjusted to use modified 
minimap2 alignment settings accounting for the high vari
ability in the MHC region (-x asm20 -m 10000 -z 10000,50 
-r 50000 –end-bonus=100 –secondary=no –cs -O 5,56 -E 
4,1 -B 5). The reference sequence was hg38 chr6 
masked between the HLA-DRA and HLA-DRB1 regions 
(32,494,000 to 32,565,000). The validity of the alignment 
settings was checked by extracting the contig sequences 
across each of the canonical HLA genes and typing with 
GenDx (v2.20.2) in PacBio Consensus mode. The resulting 
variant calls were restricted to SNPs between 29,657,092 
to 33,323,016 and merged into a single VCF using 
vcftools (v0.1.16). Public Dipcall variant calls across the 
entire genome were downloaded from the HPRC reposi
tory. Calls were restricted to SNPs outside of the MHC re
gion and merged into a single VCF. The two sets of variant 
calls were combined, and non-variant positions were set 
to homozygous reference if the position was within a re
gion reported as callable by Dipcall. The same filters for 
encode black list regions, LCR, centromere/telomere, 
and indels as were used on the clinical samples, just 
with LiftedOver to hg38. Samples were restricted to the 
African individuals and the two PC outliers were removed 
(supplementary fig. 14, Supplementary Material online). 
The largest population consists of just 23 African samples 
(after removing two PC outliers) and other populations 
were too small to perform statistical inference for this 
study. A scan was run filtering on segmental duplications 
and another without.

Supplementary Material
Supplementary material is available at Genome Biology and 
Evolution online.
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The IHIW samples allele frequencies were downloaded from 
the IHIW data website (http://17ihiw.org/17th-ihiw-ngs-hla- 
data/) and corresponding reference sequence was down
loaded and matched to IMGT (https://www.ebi.ac.uk/ipd/ 
imgt/hla/). Pangenome assemblies were downloaded from 
their website (https://s3-us-west-2.amazonaws.com/human- 
pangenomics/index.html?prefix=working/HPRC/HG01361/ 
assemblies/). In addition to the code, data files can be down
loaded from online data (https://github.com/tris-10/LD-ABF
Readme.md section Download LD-ABF supplemental 
files): (i) CHOP Trios: Genome Wide LD-ABF test statistics 
and peaks detailed for all included populations in Hg19, 
(ii) All 17th IHIW: HLA LD-ABF test statistics for all included 
populations, tab delimited sequence data generated from 
17th IHIW and IMGT 3.25 with lifted over alignments 
to Hg19 performed. Plots across all genes for all included 
populations, (iii) Pangenome Freeze 1 African samples: 
LD-ABF test statistics and variant calling vcfs in Hg38 for 
samples. Individual gene information was found in the 
NCBI gene database https://www.ncbi.nlm.nih.gov/gene/
and also through GeneCards www.genecards.org. 
HUGO Gene Name Committee was downloaded from 
https://www.genenames.org/data/genegroup/#!/group/ 
589. In addition to the code, data files (Hayeck et al. 2024) 
can be downloaded from online data (https://github.com/ 
tris-10/LD-ABF Readme.md section Download LD-ABF 
supplemental files).
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