
Washington University School of Medicine Washington University School of Medicine 

Digital Commons@Becker Digital Commons@Becker 

2020-Current year OA Pubs Open Access Publications 

1-26-2024 

Tempo and mode of gene expression evolution in the brain across Tempo and mode of gene expression evolution in the brain across 

primates primates 

Katherine Rickelton 
University of Massachusetts Amherst 

Trisha M Zintel 
University of Massachusetts Amherst 

Jason Pizzollo 
University of Massachusetts Amherst 

Emily Miller 
University of Massachusetts Amherst 

John J Ely 
George Washington University 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.wustl.edu/oa_4 

 Part of the Medicine and Health Sciences Commons 

Please let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Rickelton, Katherine; Zintel, Trisha M; Pizzollo, Jason; Miller, Emily; Ely, John J; Raghanti, Mary Ann; 
Hopkins, William D; Hof, Patrick R; Sherwood, Chet C; Bauernfeind, Amy L; and Babbitt, Courtney C, 
"Tempo and mode of gene expression evolution in the brain across primates." Elife. 13, e70276 (2024). 
https://digitalcommons.wustl.edu/oa_4/3257 

This Open Access Publication is brought to you for free and open access by the Open Access Publications at 
Digital Commons@Becker. It has been accepted for inclusion in 2020-Current year OA Pubs by an authorized 
administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu. 

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/oa_4
https://digitalcommons.wustl.edu/open_access_publications
https://digitalcommons.wustl.edu/oa_4?utm_source=digitalcommons.wustl.edu%2Foa_4%2F3257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.wustl.edu%2Foa_4%2F3257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://becker.wustl.edu/digital-commons-becker-survey/?dclink=https://digitalcommons.wustl.edu/oa_4/3257
mailto:vanam@wustl.edu


Authors Authors 
Katherine Rickelton, Trisha M Zintel, Jason Pizzollo, Emily Miller, John J Ely, Mary Ann Raghanti, William D 
Hopkins, Patrick R Hof, Chet C Sherwood, Amy L Bauernfeind, and Courtney C Babbitt 

This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/oa_4/3257 

https://digitalcommons.wustl.edu/oa_4/3257


Rickelton et al. eLife 2024;13:e70276. DOI: https://doi.org/10.7554/eLife.70276 � 1 of 20

Tempo and mode of gene expression 
evolution in the brain across primates
Katherine Rickelton1,2*, Trisha M Zintel1,2, Jason Pizzollo1,2, Emily Miller1, 
John J Ely3,4, Mary Ann Raghanti5, William D Hopkins6, Patrick R Hof7,8, 
Chet C Sherwood3, Amy L Bauernfeind9,10, Courtney C Babbitt1*

1Department of Biology, University of Massachusetts Amherst, Amherst, 
United States; 2Molecular and Cellular Biology Graduate Program, University of 
Massachusetts Amherst, Amherst, United States; 3Department of Anthropology and 
Center for the Advanced Study of Human Paleobiology, The George Washington 
University, Washington, United States; 4MAEBIOS Epidemiology Unit, Alamogordo, 
United States; 5Department of Anthropology, School of Biomedical Sciences, 
and Brain Health Research Institute, Kent State University, Kent, United States; 
6Department of Comparative Medicine, Michale E. Keeling Center for Comparative 
Medicine,The University of Texas M D Anderson Cancer Centre, Bastrop, United 
States; 7New York Consortium in Evolutionary Primatology, New York, United States; 
8Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School 
of Medicine at Mount Sinai, New York, United States; 9Department of Neuroscience, 
Washington University School of Medicine, St. Louis, United States; 10Department of 
Anthropology, Washington University in St. Louis, St. Louis, United States

Abstract Primate evolution has led to a remarkable diversity of behavioral specializations 
and pronounced brain size variation among species (Barton, 2012; DeCasien and Higham, 2019; 
Powell et al., 2017). Gene expression provides a promising opportunity for studying the molec-
ular basis of brain evolution, but it has been explored in very few primate species to date (e.g. 
Khaitovich et al., 2005; Khrameeva et al., 2020; Ma et al., 2022; Somel et al., 2009). To under-
stand the landscape of gene expression evolution across the primate lineage, we generated and 
analyzed RNA-seq data from four brain regions in an unprecedented eighteen species. Here, 
we show a remarkable level of variation in gene expression among hominid species, including 
humans and chimpanzees, despite their relatively recent divergence time from other primates. 
We found that individual genes display a wide range of expression dynamics across evolu-
tionary time reflective of the diverse selection pressures acting on genes within primate brain 
tissue. Using our samples that represent a 190-fold difference in primate brain size, we identi-
fied genes with variation in expression most correlated with brain size. Our study extensively 
broadens the phylogenetic context of what is known about the molecular evolution of the brain 
across primates and identifies novel candidate genes for the study of genetic regulation of brain 
evolution.

Editor's evaluation
This is an important study that represents a significant contribution to our understanding of how 
gene expression in the primate brain has evolved across the extant primate phylogeny. It provides 
solid evidence for potential links between gene expression variation and brain size, although these 
are somewhat limited by the focus only on adult brains, since many key changes likely occur during 
development. Nevertheless, both the taxonomically broad data set and the analysis are likely to 
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be of broad interest to the evolutionary biology, anthropology, and comparative neuroscience 
communities.

Introduction
Primates are distinguished from other mammals by their large brains relative to body size (Boddy et al., 
2012; Martin, 1981; Smaers et al., 2021). Among the diversity of primate species, there is remark-
able variation in behavioral specializations, including differences in social structure, spatial, dietary and 
visual ecology, and locomotion (Powell et al., 2017; Barton, 2012; DeCasien and Higham, 2019). 
Despite the impressive array of cognitive attributes displayed by primates, molecular and cellular 
studies investigating various aspects of brain evolution tend to sample from a small number of species 
to address questions of how humans are unique. In large part, the emphasis on human brain evolu-
tion is warranted. Humans are unmatched in possessing exceptionally large brains and unparalleled 
cognitive abilities, such as language (Konopka and Roberts, 2016; Rilling, 2014). While valuable, the 
limited number of species included in prior research lacks a comprehensive perspective of the phylo-
genetic context in which the human brain evolved within the diversity of primates.

Although researchers have used a variety of approaches to assess whether the human brain is 
unique (Stout and Hecht, 2017) and how it might have evolved (Hrvoj-Mihic et al., 2013; Sousa 
et al., 2017a), the full potential for using gene expression to evaluate patterns of brain evolution 
in primates has not yet been met. Upon observing the remarkable similarity between human and 
chimpanzee protein sequences, King and Wilson, 1975 proposed that the basis of the physical and 
behavioral phenotypic differences between these two species must be found in changes within gene 
regulatory regions that drive expression. Previous studies have explored how changes in regulatory 
regions can influence gene expression but have often sampled various organs from species across 
broad spans of evolutionary time, such as mammals or vertebrates (Brawand et al., 2011; Breschi 
et al., 2016). In studies focusing on gene expression in primate brain tissues, research has mostly 
focused on the neocortex and cerebellum in human, chimpanzee, and rhesus macaque (Babbitt et al., 
2010; Blekhman et al., 2010; Khaitovich et al., 2005; Khaitovich et al., 2004; Khrameeva et al., 
2020; Konopka et al., 2012; Ma et al., 2022; Somel et al., 2009; Sousa et al., 2017b). However, 
new insights can be gained by sampling at greater neuroanatomical resolution from a broader array of 
primates. Examining gene expression of the brain from a more comprehensive landscape empowers 
novel inquiry in primate brain evolution, including questions pertaining to the sources of variation that 
drive expression differences, rates of expression change across the primate phylogenetic tree, and 
genes that correlate with brain size across primates.

In the current study, we sampled prefrontal cortex (PFC), primary visual cortex (V1), hippocampus 
(HIP), and lateral cerebellum (CBL) from 18 primate species, the broadest diversity of primates sampled 
in any study of gene expression in the brain to date, including species from several rarely-studied 
lineages. Our dataset represents 70–90 million years (Perelman et al., 2011) of primate evolution, 
providing a more thorough understanding of the evolution of gene expression across primates and 
allowing for an unprecedented view of how gene expression in the brain has changed over time across 
all major clades of primate phylogeny.

Results
Most variation can be explained at the species level, not by brain 
region
To understand how gene expression in the brain has evolved across the primate lineage, we gener-
ated and analyzed RNA-seq data from 18 primate species (including five hominoids, four cercopi-
thecoids, four platyrrhines, and five strepsirrhines, with 1–3 biological replicates) across four brain 
regions, including PFC, V1, HIP, and CBL (Figure 1, Supplementary file 1). The transcriptomes and 
gene models were assembled de novo (Haas et al., 2013) (see Materials and methods). We quan-
tified the expression of 15,017 orthologs within hominoids, and 3432 on-to-one orthologs across 
all 18 species (Supplementary files 2 and 3). Variation in interspecific mammalian gene expression 
has been shown to be less pronounced than that observed across samples from different organs, 

https://doi.org/10.7554/eLife.70276
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reflecting the diversity of underlying organ physiology (Brawand et al., 2011; Sudmant et al., 2015). 
Furthermore, it has been reported that the rate of gene expression divergence evolved more slowly 
within the cerebral cortex and cerebellum compared to other organ systems from developmentally 
distinct germ layers (Brawand et al., 2011; Khaitovich et al., 2005). To explore the variability of gene 
expression from distinct regions of the brain across our broad sampling of primates, we constructed a 
pairwise distance matrix of the 500 most variable protein-coding genes based on the standard devi-
ation of expression across samples (Methods). This subset of genes was enriched with glycoproteins, 
signal peptides, and plasma membrane proteins, with roles in immune function, molecular trafficking, 
and cell signaling. Using this distance matrix, we performed a principal coordinates analysis (PCoA) on 
data from all brain regions. Because our samples represent disparate regions of the same organ, we 
expected less variation to be attributed to brain regions than primate species or taxa, reflecting the 
similarity in physiology of brain tissues. Unsurprisingly, the variation from our complex gene expres-
sion dataset is represented across multiple axes of the PCoA (Supplementary file 4).

We plotted the first three axes and created polygons around data derived from samples sharing a 
common taxa (Figure 2a–c) or region (Figure 2d–f). As predicted, taxon assignment explains a large 
amount of variation to the dataset, with clear trends emerging independent of brain region. We find 
the greatest divergence in expression patterns among hominoid and strepsirrhine species, while there 
is more similarity observed among cercopithecoids and platyrrhines. The hominoids, displaying the 
greatest level of diversity of any primate phylogenetic group, demonstrate variation that is particularly 
apparent along Axis 1 and largely driven by human and chimpanzee expression patterns (Figure 2A, 
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Figure 1. Primate phylogeny showing the eighteen species sampled in this study. The scale bar for the branch 
lengths represents 10 million years of evolution. The phylogenetic tree is a consensus tree of 1000 iterations 
produced from 10kTrees v.3 (https://10ktrees.nunn-lab.org) based on data from GenBank. The insets demonstrate 
the approximate locations of the four brain regions sampled on a coronal section, midsagittal view, and lateral 
view (displayed left to right, respectively) of a schematized adult human brain.
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B). Strepsirrhines also exhibit a large amount of variation, especially apparent along Axis 2, which can 
mostly be attributed to the three species of lorises. When Axis 1 and 2 of the PCoA are plotted on 
the same bivariate plot (Figure 2a), the hominoids display more variation than the strepsirrhines by 
about 24% (Supplementary file 5). However, a large portion of the variation in the strepsirrhines is 
attributed to evolutionary divergence over about 63 million years (since the last common ancestor 
of lemurs and lorises), whereas the variation within hominoids has largely accrued over only 9 million 
years (since humans and chimpanzees shared an ancestor with gorillas). The hominoid and strepsir-
rhine samples represent similar variation in terms of sex and life stage, suggesting that these factors 
do not account for the variability seen in these taxa. Therefore, a remarkable finding of this analysis is 
how much variation is represented by hominoids, despite the fact that this lineage represents a much 
shorter evolutionary divergence time.

The cerebellum differs most significantly from the other three sampled 
brain regions
We observed trends in gene expression by brain region that are predominantly seen along Axis 3 
(Figure 2e–f). Here, we observe that the variation attributed to CBL is distinguished from that of PFC, 
V1, and HIP, which are very similar in their distributions. The fact that CBL differs in its pattern of gene 
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Figure 2. Patterns of brain gene expression across primates. The first three axes of a principal coordinates analysis (PCoA) are plotted in both rows but 
have different symbols and colors to emphasize expression patterns specific to taxa (upper row, a–c) and regions (lower row, d-f). Polygons in each plot 
surround the data points for taxa (upper row) and regions (lower row). Axes 1, 2, and 3 represent 12.8, 10.3, and 9.4% of variance, respectively.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The first three axes of the principal coordinates analysis (PCoA) are plotted in three bivariate plots.

Figure supplement 2. Gene expression phenogram of all sampled data.

Figure supplement 3. Gene expression phenograms by region.

https://doi.org/10.7554/eLife.70276
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expression from other brain regions (Hawrylycz et al., 2015; Hawrylycz et al., 2012; Itõ, 2012) is not 
surprising given that it is the only sampled region that develops from a different part of the embryonic 
neural tube (namely, the hindbrain vs. forebrain) and exhibits a neuronal packing density (predomi-
nantly glutamatergic granule cells) that far exceeds these other brain regions (Azevedo et al., 2009; 
Herculano-Houzel, 2011; Itō, 2012). Enrichments for cerebellar gene expression reveal expression 
changes to categories such as ‘Cell Surface Receptor Signaling Pathway,’ ‘Cell Projection Organi-
zation,’ and ‘Wnt Signaling Pathway.’ This is true for humans in relation to chimpanzees as well as 
other species with deeper evolutionary relationships. (Supplementary files 6 and 7). Notably, genes 
involved in cell migration and cell surface receptor signaling Emera et al., 2016 have been shown 
to mediate the cell-cell interactions necessary for axon guidance (Koropouli and Kolodkin, 2014). 
Although all the brain regions surveyed show some enrichment for categories related to cell signaling, 
the cerebellum shows a unique increase in signaling activity-related terms (both in the number of 
enrichment categories and the degree of change associated with these categories). This is indicative 
of region-specific differential expression.

Gene expression profiles accurately replicate phylogenetic 
relationships
To determine whether gene expression profiles can reconstruct known phylogenetic relationships 
among primates, we built expression phenograms (Methods) for all brain regions combined (Figure 2—
figure supplement 2) and each region separately (Figure 2—figure supplement 3). Samples that 
were derived from individuals of the same species tended to be grouped together, regardless of brain 
region, revealing that inter-individual differences are minor compared to other sources of variation. 
Gene expression profiles also replicated the phylogenetic relationships of closely related species (e.g. 
humans and chimpanzees; pig-tailed and rhesus macaques) when all regions were considered, but 
these relationships became less phylogenetically structured in the phenograms constructed using 
expression data from individual brain regions. All neighbor-joining phenograms accurately represent 
cercopithecoids and strepsirrhines as monophyletic groups; however, expression data produces para-
phyletic groups of hominoid and platyrrhine species. This result potentially reflects the fact that taxa 
with longer periods of independent evolution (i.e. strepsirrhines) are more likely to show divergent 
patterns of gene expression than more closely related groups. Meanwhile, a more dense sampling of 
cercopithecoids (three individuals per species), permits a fairly accurate reconstruction of this taxon.

Differential expression in the context of the Ornstein-Uhlenbeck model
Previous studies have used a variety of different approaches to model gene expression changes 
over time (Brawand et al., 2011; Perry et al., 2012). Here, we used a recently described Ornstein–
Uhlenbeck (OU) model to analyze neutral and conserved processes as determined by changing gene 
expression levels (Chen et al., 2019). OU processes have been proposed to model gene expression 
evolution as they model both drift and stabilizing selection (Rohlfs et al., 2014). Previous studies have 
shown how models that incorporate stabilizing selection are more accurately able to predict gene 
expression evolution in mammals than models that account only for neutral drift (Chen et al., 2019). 
Across all expressed one-to-one orthologs represented in the sampled primates, we found that ~15–
20% of genes show differential expression across all species-to-species comparisons (q-value <0.05). 
As expected, the relative amount of differential expression increases over evolutionary time, both 
between species and clades (Figure  3 and Figure  3—figure supplement 1 ). However, both the 
species and clade-wise comparisons show larger numbers of differentially expressed (DE) genes in the 
comparisons when strepsirrhines are included in the contrast, a result of the more than 60 million years 
of independent evolution of this taxon. In the prefrontal cortex, we see slightly smaller DE in humans 
as compared to siamang and baboon; however, in total number, this DE is not appreciably different 
(DE Human-Siamang n=251, DE Human-Baboon n=255) to other comparisons (DE Human-Rhesus 
Macaque n=315). Upset plots allow us to further analyze these unique patterns of differential expres-
sion (Figure 3—figure supplement 2). In the cerebellum, the lemur, baboon, and human samples are 
particularly unique and show relatively higher levels of DE compared to other species. However, in the 
hippocampus, visual cortex, and prefrontal cortex, the chimpanzees appear to show higher DE than 
the human samples. This suggests again that the cerebellum is a particularly unique brain structure 

https://doi.org/10.7554/eLife.70276
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and that chimpanzee gene expression is significantly different in the other three brain regions studied, 
warranting further analysis.

Human-specific enrichment for metabolic processes, neural 
development, and gene regulation
When comparing gene expression in the PFC of humans relative to other primates, human PFC shows 
an enrichment of metabolic processes, including ‘regulation of cellular metabolic process’ and ‘regu-
lation of macromolecule metabolic process’ (Supplementary files 6 and 7). Comparing human and 
chimpanzee PFC reveals that categories that support neural growth and development (e.g. ‘neuron 
projection morphogenesis,’ ‘cell morphogenesis involved in neuron differentiation’), gene regu-
lation, and metabolic processes are enriched as differentially expressed in human PFC relative to 
chimpanzees.

In addition to examining human and chimpanzee data in isolation, we also analyzed human-specific 
changes in expression within the context of other outgroup species. Using the Ornstein-Uhlenbeck 
process as a model of continuous trait evolution across our 18-species primate phylogeny, we again 
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Figure 3. Gene counts of differentially expressed (DE) genes between species and clades. Each row represents one of the four brain regions examined. 
The size of the circle represents the number of DE genes seen at q<0.05 (5% FDR). The comparisons on the left are between exemplar species or sets of 
species, comparisons on the right are between clades of primates.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Box Plots of Pearson Rank-based Correlation Coefficients for multiple species and brain region comparisons.

Figure supplement 2. Upset Plot of each brain region (color) showing the shared DEGs for select species across the phylogeny.

https://doi.org/10.7554/eLife.70276
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observe similar categories of enriched processes for the human prefrontal cortex in comparison to 
that of chimpanzees. These terms include ‘Nervous System Development,’ ‘Neurogenesis,’ ‘Glial Cell 
Differentiation,’ ‘Neuron Projection Morphogenesis,’ ‘Regulation of Gene Expression,’ and ‘Metabo-
lism.’ To further validate our results, we also looked at the human PFC in comparison to other primate 
species. In analyzing differential expression between the human and siamang PFC, we note that 
similar trends for enrichment are also found, such as ‘Neural Growth and Development’ and ‘Meta-
bolic Processes,’ and ‘Gene Regulation.’ Of interest, under the category of ‘Positive Regulation of 
Transcription by RNA polymerase II’ we find several genes that appear to be upregulated in humans 
compared to siamang: APP (amyloid precursor protein, related to plaque formation in Alzheimer’s 
disease) as well as PRKN (found to be causal in Parkinson’s disease) (Funayama et al., 2023). This 
supports the idea that these enrichments are human-specific, have relevance to important human 
neurodegenerative disease states, and are not a reflection of changes occurring within the chim-
panzee lineage.

Broader species comparisons show similar trends across evolutionary 
time
Beyond human and chimpanzee comparisons, we also note many interesting broader temporal trends 
observed from the EVEE-based differential expression analysis. When examining Hominini (humans 
and chimpanzees) compared to other Great Apes, terms related to ‘Regulation of Metabolic Process,’ 
‘Nervous System Development,’ and ‘Biosynthetic processes’ are all enriched within the hippocampus. 
Meanwhile, ‘Negative Regulation of Synaptic Transmission’ was enriched in the other ape species. In 
comparing the PFC of the Hominoid clade to that of the Strepsirrhine clade, we found that ‘Neuron 
Development and Differentiation’ was enriched. Overall, among various species and clade compari-
sons, there is a general trend of decreasing specificity in enrichment categories over increasing evolu-
tionary time. Using PFC data, we found that the relationship between humans and chimpanzees, some 
of the closest relatives in our dataset, shows terms related to ‘Synapse Assembly,’ ‘Regulation of Glial 
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Figure 4. Rates of change over genes and evolutionary time. a. Exemplar genes that show constraint (left panel) and variation (right panel) across 
primates (colors as in Figure 2). b. Mean squared expression difference plotted by evolutionary distance to humans across all orthologs that were 
expressed. Shapes denote the four brain regions, and the colors represent the four major primate clades represented in our samples.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Region-specific plots of mean square expression differences over evolutionary time for each of the four brain regions analyzed.

https://doi.org/10.7554/eLife.70276
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Cell Differentiation,’ ‘Regulation of Astrocyte Differentiation,’ ‘Axonogenesis,’ and ‘Neuron Projection 
Morphogenesis.’ Looking at a more distantly related species pair, the human and rhesus macaque 
comparison shows enrichment for terms related to ‘Cell Growth,’ ‘Cell Development,’ ‘Biological 
Regulation,’ ‘Neuron Projection Development,’ ‘Regulation of Neurogenesis,’ and ‘Positive Regula-
tion of RNA Biosynthetic Processes.’ The most distantly related species, humans and lemurs, have 
overall the largest number of differentially expressed genes, and with that, the broadest categories of 
enrichment. These include categories such as ‘Regulation of Developmental Processes,’ ‘Regulation 
of Nervous System Development,’ ‘Cell Development,’ and ‘Multicellular Organism Development’.

Our PCoA analyses showed that gene expression in brain regions sampled from the lorises (i.e. 
the slender loris, slow loris, and pygmy slow loris) diverged from other strepsirrhines, and other 
primates more generally (Figure  2—figure supplement 1). When strepsirrhines are compared to 
other primates in differential expression analyses, transcription factors, and other genes involved in 
gene transcription and translation and multiple biosynthetic pathways involved in cellular metabolism 
are among the categories of DE genes (Supplementary files 6 and 7).

Evolutionary rates of expression change across clades and brain 
regions
Using the OU model, we found that individual genes exhibit wide variation in expression dynamics 
across the primate lineage (Figure 4a). Enrichments for genes showing low variation or stabilizing 
selection (q=0.05) reveal categories related to transport and cellular localization (GO Biological 
Processes, Supplementary files 6 and 7). In contrast, genes that are less constrained or neutrally 
evolving (q>0.05) have a number of processes related to neuron morphogenesis, plasticity, and cell 
death. Yet, unlike sequence evolution, gene expression is not linear across evolutionary time but a 
saturation point in pairwise comparisons of gene expression is reached due to stabilizing selection 
pressures. Here, we find that pairwise expression differences between humans and the other species 
increasingly diverge with evolutionary distance in all brain regions sampled (Figure 4b); however, these 
pairwise comparisons do not seem to saturate with evolutionary time across the primate comparisons 
(Chen et al., 2019). We note that the saturation of pairwise expression differences from humans may 
be found at a phylogenetic node ancestral to primates (Figure 3—figure supplement 1).

Expression of a majority of genes evolves under stabilizing selection
We utilized EVEE-tools, developed in the context of the Ornstein-Uhlenbeck process of continuous 
trait evolution, to classify genes as primarily under the effects of stabilizing selection vs. a model of 
neutral drift (Chen et al., 2019). In this analysis, we found that across tissues, on average, 64% of 
genes fit better under stabilizing selection (64% CBL, 59% HIP, 72% PFC, and 60% V1; FDR-corrected 
q-value calculated via the BH procedure to correct for multiple hypothesis testing; FDR threshold of 
5% to determine significance). In the context of the OU model of continuous trait evolution, we found 
that the overall phylogenetic signal in brain expression divergence was slightly smaller than observed 
with edgeR over the entire combined dataset (EVEE: 4–6.7% across all single species comparisons 
using a logFC of +/-2; edgeR: 15–20%). However, the relative amount of differential expression does 
increase gradually with evolutionary distance (as expected based on results in edgeR). The only 
exception to this is the human and chimpanzee comparison, which shows considerable variation in 
differential expression across the four brain regions. Representing such a short period of evolutionary 
divergence, this increase in DE suggests direction selection within that lineage.

Evidence of potential directional selection in human and chimpanzee 
data
To better understand the outlier gene expression in this dataset, and overall to gain insight into genes 
that may be subject to directional selection pressures, we again used the EVEE-tools OU-based model 
to score our dataset for outlier expression. This requires the determination of the evolutionary mean 
and variance for each gene across our entire expression dataset, from which we then can compare to 
individual species expression data. Using this method, we found a small subset of genes to be defined 
as having an expression that deviates from the optimal OU-distribution (Z-score >2 or < –2, p-value 
<0.05) (Figure 4Figure 4—figure supplement 1). It is important to note that a significant FDR (<5%) 
was not reached in this dataset, among all species comparisons. This is expected based on previous 

https://doi.org/10.7554/eLife.70276
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applications of this package, in which a mammalian dataset was also unable to reach an FDR below 
18% (Chen et al., 2019). This is likely a reflection of the limitations of our phylogeny, and suggests that 
future projects should aim to sample even more broadly.

In our outlier expression analysis, we found that patterns of outlier gene expression occur in a 
species and tissue-specific manner (Supplementary file 10). For example, in the PFC, the chim-
panzee and marmoset samples appear to have the highest number of outlier genes deviating from 
average expression patterns (compared to human, siamang, baboon, rhesus macaque, and marmoset 
samples). We found this to be true regardless of how the dataset was normalized in order to deter-
mine the average expression for each gene (via defining a reference species). This is particularly inter-
esting and, in combination with differential expression analysis, highlights the chimpanzee PFC as 
a particularly divergent structure. In contrast to the PFC, outlier analysis in the CBL reveals that the 
human and lemur samples have the highest number of outlier genes.

Upon gene set category enrichment analysis, we find that many of these genes that are deemed 
‘outliers’ are related to functions in development, transcription, nervous system development, neuro-
genesis, and metabolism. For example, the chimpanzee PFC shows a significant upregulation in genes 
involved in energy storage and transfer, such as ETFA and NDUFS4, which are both involved in elec-
tron transport for ATP generation, as well as ANKH, implicated in phosphate transport (Szeri et al., 
2020; Henriques et al., 2021; Shil et al., 2021) We also see that the chimpanzee PFC shows unique 
expression patterns in genes related to synaptic activity and neurotransmitter release, including signif-
icant downregulation of GABRA4 and SYN1 (Fassio et al., 2011; Fan et al., 2020 Fan et al., 2020; 
Fassio et al., 2011). In contrast, the human CBL and PFC both display a significant upregulation of 
genes related to Amyloid protein production (APP), a major component of many neurodegenerative 
diseases with functions in synaptic signaling (O’Brien and Wong, 2011). Unique to the human CBL 
we also see enrichments in genes related to neurogenesis and synaptic activity, including SDK1, FZD5, 
and CDH10 (Redies et al., 2012; Slater et al., 2013; Bagot et al., 2016) This is suggestive of direc-
tional selection pressures occurring in a tissue-specific manner and encourages future investigation of 
these outlier genes.

Implications of using humans as a reference species
We continue to use humans as a reference species in these analyses as, compared with other primates, 
humans have exceptionally large brain sizes and unique cognitive abilities. However, we do recognize 
that there are some implications for having humans as a reference, especially given our data that 
would suggest human gene expression as being largely different from the rest of our primate dataset. 
To address this, we repeated analyses using EVEE-tools by including two additional reference species: 
siamang and rhesus macaque. The percentage of genes that fit better under the model of stabilizing 
selection (in comparison to neutral drift) is not statistically different from those observed when using 
humans as a reference (on average, 58–64% across all four major brain regions). We additionally 
looked at pairwise species comparisons to determine if the general trends of directional selection and 
differential gene expression were comparable to the human-reference data, and again confirmed that 
the effects of the reference species used for normalization here are negligible in terms of analyzing 
differential expression across our primate tree.

Correlation of gene expression to brain size and their change over 
evolutionary time
Because an increase in absolute brain size is one of the most striking characteristics of humans, we 
asked what subset of genes is correlated with this important biological trait across the primate tree. 
Our dataset provides a unique opportunity to evaluate this question, since the average brain size 
across our study species varies by ~190 fold. Using multivariate analysis (Methods), we defined gene 
lists most strongly correlated with brain size in each brain region (Supplementary file 8). Results indi-
cate that the same genes rank among those with the strongest positive correlation in PFC, V1, and 
HIP. CBL also shares some of these same genes but includes more variation among the genes most 
strongly correlated to overall brain size than the other three brain regions (Figure 5, Supplementary 
file 9), potentially reflecting the more recent expansion of the CBL relative to the rest of the neocortex 
(Miller et al., 2019; Smaers et al., 2018).

https://doi.org/10.7554/eLife.70276
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Discussion
We performed RNA-seq on four brain regions from 18 primate species, representing the broadest 
sampling for any gene expression study in primate brain tissue to date. Through more representa-
tive sampling of primate species, we found substantial variation in gene expression levels within the 
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Figure 5. Gene correlated with brain size by region. A clustering and heatmap of the loadings from PC2 of genes 
for the four regions examined (V1, HIP, PFC, and CBL).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. principal coordinates analysis (PCoA) of expression data from human samples of all four 
brain regions and primary neurons and astrocytes.

https://doi.org/10.7554/eLife.70276
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hominoid and strepsirrhine lineages, with the diversity among hominoids particularly impressive due 
to the recent divergence of this taxon. Using the OU model, we found that a substantial proportion 
of genes showed differential expression across species. The relative amount of differential expression 
increased over evolutionary time, both between species and clades. Additionally, when comparing 
gene expression across broader species and clade comparisons, we observed trends related to brain 
development, nervous system regulation, and cellular metabolism.

Our findings point to human-specific enrichment for metabolic processes, neural development, 
and gene regulation. The considerable diversity of gene expression in human and chimpanzee brain 
tissue has profound implications for understanding the distinct evolutionary processes that have acted 
upon the brains of the ancestral species of these two lineages. We observed a wide variety of expres-
sion dynamics of individual genes in the pairwise comparisons of humans to other primate species. 
Enrichments for genes under stabilizing selection indicated processes related to transport and cellular 
localization, while less constrained genes were associated with neuron morphogenesis, plasticity, and 
cell death. Importantly, gene expression evolution did follow a linear pattern, but did not reach a 
saturation point due to stabilizing selection pressures as seen in other studies (Chen et al., 2019). 
Less constrained, neutrally evolving patterns appeared to be the most prevalent pattern in each brain 
region studied, preventing a saturation point of stabilizing pressures to be reached within Primates 
with increased phylogenetic distance from humans. Lastly, we identified genes that are correlated with 
brain size across all major primate taxa, providing candidates for further inquiry.

Our deeper analysis of gene expression has revealed evolutionary patterns that were inaccessible 
with a more limited sampling of primate brain tissue. We anticipate that the candidate genes and data 
provided by this study will serve as a resource for many other lines of inquiry into human and non-
human primate brain evolution.

Materials and methods
Biological sample collection and RNA extraction
The sample includes brain tissue from human and nonhuman primates. All samples were obtained 
from adult individuals free from known neurological disease. If available, the right hemisphere was 
preferentially sampled. Human brain samples were obtained from the National Institute for Child 
Health and Human Development Brain and Tissue Bank for Developmental Disorders at the University 
of Maryland (Baltimore, MD). Chimpanzee brain tissue was obtained from the National Chimpanzee 
Brain Resource (https://www.chimpanzeebrain.org, supported by NIH grant NS092988). All other 
sources of brain tissue are listed in Supplementary file 1.

From each individual, we sampled four regions of the brain, including PFC, V1, HIP, and CBL. 
PFC was sampled from the frontal pole, corresponding to Brodmann’s area 10 in humans. In other 
primates, the PFC region sampled more broadly encompassed prefrontal cortical areas but was limited 
to the most anteriorly projecting part of the frontal pole. All V1 samples were dissected around the 
calcarine sulcus to include primary visual cortex (Brodmann’s area 17). Samples from both PFC and 
V1 contained all cortical layers and a small amount of underlying white matter (<10%). The HIP was 
sampled from the medial aspect of the temporal lobe and included all hippocampal subfields. The 
CBL was sampled from the most laterally projecting region of lateral hemisphere in all primates. In 
humans, the CBL region corresponded to Crus I or Crus II. CBL samples contained all layers of cere-
bellar cortex and a small amount of underlying white matter (<10%). Each sample was briefly homog-
enized using a Tissuelyzer (Qiagen), and the total RNA was isolated using an RNAeasy kit (Qiagen) 
with a DnaseI treatment.

Library preparation and sequencing
Single-end RNA-seq libraries were made using the NEBNext mRNA Library Prep Reagent Set for 
Illumina. Libraries were prepared in batches of 4–8 samples of randomly sampled species and brain 
regions. Library sizes were checked on the Bioanalyzer (Agilent). RNA-seq libraries were multiplexed 
on the NextSeq500 (Illumina) in the Genomics Resource Laboratory at the University of Massachusetts 
Amherst, also randomly distributed across NextSeq500 runs. All fastq files have been submitted to the 
SRA: https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA639850.

https://doi.org/10.7554/eLife.70276
https://www.chimpanzeebrain.org
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA639850
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Mapping and transcriptome analysis
Sequencing reads were assembled into species-specific transcriptomes (containing the reads from all 
four brain regions) using Trinity (Grabherr et al., 2011). With Trinity assembly, fragments of the orig-
inal RNA reads for each species are compiled and clustered into groups based on sequence similarity, 
which eventually are extended to reconstruct full-length transcripts (Grabherr et al., 2011). These 
transcripts were then blasted against the human blast nt database, with the alignment thresholds 
for the top hits from different clades listed in Supplementary file 2, similar to the approach in Perry 
et al., 2012. Individual libraries were then mapped to the species-specific transcriptome using bowtie 
(Langmead et al., 2009) in RSEM, and count tables were generated using RSEM (Li and Dewey, 
2011). Orthology assignments were additionally checked using the Ensemble one-to-one orthology 
alignments as a guide for the subset of species with a publicly available genome. Transcriptome quality 
was assessed using BUSCO to determine assembly and annotation completeness (Seppey et  al., 
2019), Supplementary file 3. We recognize that some of the species transcriptomes show relatively 
lower BUSCO completeness scores (namely the Slender Loris at 35.8% complete). We hypothesize 
that this is likely a reflection of the limited tissue sampling in this dataset of only brain tissue. Previous 
studies have shown that transcriptome assemblies from single tissue regions on average have lower 
completeness scores than assemblies composed of reads from a variety of tissue types (Simão et al., 
2015). This is likely a reflection of tissue-specific gene expression. As evidence of this, we further 
analyzed reads deemed as ‘missing’ by BUSCO and found that many of these showed little to no 
expression across the human brain (Uhlén et al., 2015) and Human Protein Atlas proteinatlas.org. We 
do not make any major conclusions about the Loris species in this manuscript and thus do not believe 
these BUSCO scores significantly affect the conclusions made in this manuscript. We only consider 
Loris data in concert with Lemurs, which by comparison have much more complete transcriptomes.

Distance-based data analyses (PCoA and phenograms)
We performed principal coordinates analyses (PCoA) based on a pairwise distance matrix of all 
137 samples. The distance matrix was comprised of the top 500 most variably expressed protein-
coding genes. Pairwise distances were calculated by leading log2 fold change, providing a symmet-
rical representation of the expression ratio centered around 0 (i.e. log2(2)=1 while log2(0.5) = –1) 
(Robinson et al., 2010). Creating the distance matrix and plotting the PCoA were performed using 
the plotMDS.DGElist function (based in limma) in the edgeR package in R. Although variation is repre-
sented across more than 20 axes (Supplementary file 4), the first three axes were plotted to compare 
patterns across primate taxa and brain region sampled (Figure 2, Figure 2—figure supplements 
1–3). Polygons overlap the data points representing taxa or brain region. The area of each polygon 
was computed using functions in the sp package of R. The chull() function was used to define the 
points around the perimeter of each polygon, and the Polygon() function calculated the area of each. 
Relative areas of each polygon are listed in Supplementary file 5. Figure 3 displays the same data as 
the PCoA but uses an array of colors allowing the data from each individual species to be visualized.

The same log2 fold change distance matrix was then used to create phenograms representing the 
similarity of gene expression profiles among samples. The minimum distance neighbor-joining func-
tion in the ‘ape’ package of R created a tree based on the method proposed by Saitou and Nei, 1987. 
The ​boot.​phylo function estimated the reliability of given nodes of the tree by resampling over 1000 
iterations. Although our objective in this analysis was to investigate patterns of evolution across the 
primate order and the brain regions, our sample included multiple individuals from the same species. 
By treating these samples separately, our analyses represent both within- and between-species vari-
ability in gene expression over time.

Analyzing differential expression
Counts were filtered and normalized using edgeR (Robinson et  al., 2010), with any multispecies 
comparisons using the GLM functionality (McCarthy et al., 2012). Gene Ontology enrichments were 
performed using the DAVID gene ontology tool 6.8 (Huang et al., 2009a; Huang et al., 2009b) and 
g:Profiler (Reimand et al., 2016). Supplementary files 6 and 7 shows results from ordered g:profiler 
enrichments (g:GOSt) performed on DE genes where q<0.05 (note, this is not ranked on polarity of 
expression, just absolute change) with all genes expressed in this study used as background.

https://doi.org/10.7554/eLife.70276
https://www.proteinatlas.org/
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Differential Expression was also analyzed using the package EVEE-tools to incorporate the 
Ornstein-Uhlenbeck model (Chen et al., 2019). Evolutionary means and variance values were calcu-
lated for each gene across the entire phylogeny for individual brain-region datasets as well as the 
entire RNA-seq bulk dataset in the context of the Ornstein-Uhlenbeck model. Differential expres-
sion was determined using a multivariate OU model. Regimes were defined by species/clades of 
interest (i.e. in human vs. chimpanzee comparisons, the human samples represent one regime in one 
model to compare to all other samples, represented by a second regime. In comparison, the chim-
panzee samples would be represented as an additional model and a separate regime.) p-values were 
calculated to represent the fit of each OU model (i.e. Human or Chimp-specific expression patterns) 
against a Brownian motion model. These were then corrected for multiple hypothesis testing using 
the Benjamini-Hochberg FDR procedure. We used an FDR threshold of 0.05 to define significance. 
Additionally, Akaike and Bayesian Information Criterion (AIC and BIC) scores were calculated for each 
gene for each model, and only genes with AIC and BIC scores significant against the null were consid-
ered in further analysis. Directionality of differential expression was further determined by comparing 
estimated mean expression levels for each regime in each model.

We also looked at differential expression beyond pairwise comparisons, again using EVEE-tools, to 
see how each individual species differed across the entire dataset. With this, one species of interest 
was treated as a single regime while all 17 other species were grouped as a second regime. The same 
criteria as above were used to determine significant differential expression, and this data was utilized 
to construct UpSet plots using the UpsetR package (Conway et al., 2017). We included only relevant 
species in these UpSet plots (representing each major primate clade) to simplify the graphs. Each 
graph is also separated by brain region, similar to previous analyses (Figure 3—figure supplement 2).

We also analyzed sources of variation in our data to determine how significant of an effect species 
differences have compared to other factors, including primate families and individual variation. For 
this, we conducted a correlation analysis utilizing the non-parametric Mann-Whitney U (MWU) test 
on the differentially expressed genes between humans and chimpanzees to other primate species. 
We focused this analysis on only those species with three individuals per brain region (olive baboon, 
rhesus macaque, and lemurs). Using the set of human-chimpanzee DEGs, we calculated the Spearman 
rank-based correlation coefficient between each species to either human or chimpanzee expression. 
We determined whether or not these correlation coefficients were significantly different across species 
and across brain regions using the Mann-Whitney U test. We determined that there was no significant 
correlation between any of the three species to human or chimpanzee expression in any of the four 
brain regions (Figure 3—figure supplement 1; Yapar et al., 2021). This suggests that the expression 
profiles of these more distantly related primates are equally similar to human and chimpanzee expres-
sion patterns. We also conducted additional Analysis of Covariates (ANCOVA) to confirm that other 
factors, namely age and sex, were not significant sources of variation in our gene expression analyses. 
These analyses, along with our PCoA plots, show that taxon identity and brain region are the two 
most significant determinants for DE. Additionally, differences in samples from the same individual are 
defined by differences at the level of brain region. ANCOVA analyses showed minor residual effects 
that we deemed as random and were not further analyzed for the purposes of this manuscript.

Outlier expression was determined using the scoreGenes.R script from the EVEE-Tools script suite 
(Chen et al., 2019). We compared the total dataset-normalized mean expression of a single gene 
to that of a single select species, in the context of the overall mean expression and variance across 
the dataset. We specifically analyzed outlier expression in a brain region-specific manner, looking at 
the datasets subset by individual brain region. To normalize the expression of the entire dataset, a 
single species was selected to be used as a reference in TMM normalization. For all outlier analyses 
except for humans, the human samples were used as a reference. For the human outlier analysis, the 
rhesus samples were used as a reference for normalization. Importantly, we tested the use of different 
reference species for dataset normalization and did not find a significant difference in the number of 
outlier genes and the enrichment categories associated. Z-scores were calculated for genes whose 
expression patterns fit an OU model (in comparison to the null model of Brownian Motion) and whose 
evolutionary mean is above 5 CPM for the entire dataset (Chen et al., 2019). In order to determine 
significant outliers, an FDR threshold of 0.05 was again employed, however at this level limited signif-
icance was found. Supplementary file 10 shows the results of this analysis for the CBL and PFC brain 
regions.

https://doi.org/10.7554/eLife.70276
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Phylogenetic and evolutionary distance analysis
Categorical enrichments for the contrasts between species and clades are in Supplementary file 6. 
The phylogenetic tree for primates was downloaded from the UCSC Genome Browser (30 primate 
species) (Kent et al., 2002). Distances between species were extracted using the Environment for 
Tree Exploration Toolkit (Huerta-Cepas et al., 2010). The residuals and mean squared expression 
differences of all orthologs across 18 species were found using the package EVEE (Chen et al., 2019), 
and in all contrasts, humans were used as the reference species. We then analyzed the subset of genes 
showing either broadly defined conserved (low) or neutral (higher) variation across species (low <q = 
0.05, high q>0.05), with categorical enrichments for these two groups in Supplementary file 7.

Comparisons of the heterogenous tissues used and single-cell gene 
expression data
In any study that derives results from homogenized tissue samples, the composition heterogeneity of 
the samples may drive differences in gene expression (Montgomery and Mank, 2016). To address 
this issue, we compared the expression of our tissue samples to recent studies that have performed 
single-cell RNA-seq on neurons and astrocytes. RNA-seq data from primary neurons and astrocytes 
were obtained from NCBI’s Gene Expression Omnibus (GEO) and processed in the same manner as 
the tissue samples for all human samples. These included four hippocampal astrocytes, four cortical 
astrocytes, and one cortical neuron from Zhang et  al., 2016 (GEO accession number GSE73721) 
and three pyramidal neuron samples isolated from an unspecified brain region by the ENCODE 
project (ENCODE Project Consortium, 2012; Davis et al., 2018) (accession numbers GSM2071331, 
GSM2071332, and GSM2071418). Only genes with counts greater than zero in all samples and 
(CPM)>1 in all 23 samples were included in this analysis (n=7111). A PCoA was made from a distance 
matrix of the top 500 most variably expressed genes by the pairwise biological coefficient of variation 
(method = “bcv”) across samples (Robinson et al., 2010). Creating the distance matrix and plotting 
the PCoA were performed using the plotMDS.DGElistfunction in the edgeR package in R. The PCoA 
of our human samples in comparison to primary neurons and astrocytes suggests that our heteroge-
neous tissue samples are not biased to contain more neurons or astrocytes as compared to each other 
(i.e. one tissue is not biased within this small sample set) (Figure 5—figure supplement 1), and is 
consistent with other neural cell and brain tissue comparisons (Khrameeva et al., 2020).

Additionally, prior knowledge of variation across primates in cell type composition of the brain is 
informative in interpreting bulk RNA-seq data. It is well known that neuron densities tend to decrease 
as brain size increases (Sherwood et  al., 2020). This suggests that larger brains accommodate a 
smaller number of neurons per unit volume compared to smaller brains. However, it is interesting to 
note that other structural elements, such as astrocytes (Munger et al., 2022), microglia (Dos Santos 
et al., 2020), and synapses (Sherwood et al., 2020), exhibit a relatively invariant density per unit 
volume across species. Despite changes in brain size, these essential components involved in neural 
communication and support maintain a consistent presence, emphasizing their crucial role in brain 
function regardless of the species' brain size. Thus, based on this previous research, in cross-species 
comparisons of bulk tissue, we can tentatively interpret differences in gene expression to reflect 
generally similar proportions of major cell types, except for neurons, which are expected to decrease 
in proportion with larger brain sizes.

Brain size analyses
Average species endocranial volumes (ECVs) were obtained primarily from Kamilar and Cooper, 2013 
and Isler et al., 2008 from the mean of male and female volumes. ECVs were used since reliable brain 
size data does not exist for all species samples. The data for human ECV (also averaged from male 
and female data points) was previously published by Coqueugniot and Hublin, 2012. Isler et al., 
2008 reported a minimal error when ECV was transformed to brain mass using the correction factor 
of 1.036 g/ml (Stephan, 1960), and we used this conversion to obtain brain mass estimates from ECVs 
for all species (Supplementary file 8).

Within each brain region, we performed a PCA on the species average gene expression of the 500 
most variable genes by standard deviation, using the prcomp function in R. For each regional PCA, 
14 PCs were required to account for about 90% of the variance in gene expression. We performed 
multiple regression analyses to determine which of the PCs could predict brain size. Using all 14 PCs 

https://doi.org/10.7554/eLife.70276
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accounted for at least 95% of the variation in each brain region. Akaike information criterion was 
applied. However, it was noted that for each brain region, PC2 was the most predictive of brain size 
by low (regional adjusted R2 values for PC2 against brain size were: PFC, 0.42; V1, 0.56; HIP, 0.50; CBL, 
0.36). The 500 genes and their loadings on PC2 are listed in Supplementary file 9. Across the four 
sampled regions, we find general uniformity in the extent to which individual genes affect brain size, 
but the cerebellum displays the most unique signature of the regions sampled (Figure 5).
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