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ANIMAL‑SPOT enables 
animal‑independent signal 
detection and classification using 
deep learning
Christian Bergler 1*, Simeon Q. Smeele 2,3,4, Stephen A. Tyndel 2,5, Alexander Barnhill 1, 
Sara T. Ortiz 6, Ammie K. Kalan 7, Rachael Xi Cheng 8, Signe Brinkløv 9, Anna N. Osiecka 10, 
Jakob Tougaard 11, Freja Jakobsen 12, Magnus Wahlberg 12, Elmar Nöth 1, Andreas Maier 1 & 
Barbara C. Klump 2*

Bioacoustic research spans a wide range of biological questions and applications, relying on 
identification of target species or smaller acoustic units, such as distinct call types. However, manually 
identifying the signal of interest is time-intensive, error-prone, and becomes unfeasible with large 
data volumes. Therefore, machine-driven algorithms are increasingly applied to various bioacoustic 
signal identification challenges. Nevertheless, biologists still have major difficulties trying to transfer 
existing animal- and/or scenario-related machine learning approaches to their specific animal datasets 
and scientific questions. This study presents an animal-independent, open-source deep learning 
framework, along with a detailed user guide. Three signal identification tasks, commonly encountered 
in bioacoustics research, were investigated: (1) target signal vs. background noise detection, (2) 
species classification, and (3) call type categorization. ANIMAL-SPOT successfully segmented human-
annotated target signals in data volumes representing 10 distinct animal species and 1 additional 
genus, resulting in a mean test accuracy of 97.9%, together with an average area under the ROC 
curve (AUC) of 95.9%, when predicting on unseen recordings. Moreover, an average segmentation 
accuracy and F1-score of 95.4% was achieved on the publicly available BirdVox-Full-Night data corpus. 
In addition, multi-class species and call type classification resulted in 96.6% and 92.7% accuracy on 
unseen test data, as well as 95.2% and 88.4% regarding previous animal-specific machine-based 
detection excerpts. Furthermore, an Unweighted Average Recall (UAR) of 89.3% outperformed the 
multi-species classification baseline system of the ComParE 2021 Primate Sub-Challenge. Besides 
animal independence, ANIMAL-SPOT does not rely on expert knowledge or special computing 
resources, thereby making deep-learning-based bioacoustic signal identification accessible to a broad 
audience.

In order to gain deeper insights and a better understanding about animal communication, it is imperative to 
identify vocalization prototypes, derive linguistic patterns, and correlate acoustic paradigms with corresponding 
behavioral observations. Therefore, it is mandatory to perform in-depth data analysis of large-scale bioacoustic 
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data archives in order to draw statistically significant and representative hypotheses regarding the vocal reper-
toire of a particular species. Passive Acoustic Monitoring (PAM) concepts1–3 are widely used to acquire massive 
bioacoustic data collections4–7, without affecting the natural animal habitats8 and thus significantly increase the 
probability to observe all natural communicative patterns, following the observer’s paradox principle9. Fur-
thermore, PAM-based approaches strongly benefit from decreasing costs for recording equipment and data 
storage10–13, combined with recent technological advances14–20. However, time- and human-resource restric-
tions prohibit a profound and comprehensive manual data analysis. Consequently, machine (deep) learning 
approaches are increasingly applied in bioacoustic research21,22 and have shown to be a productive avenue to 
identify target animal species (e.g., marine mammals23–26, birds27,28, bats29, mosquitos30), smaller acoustic units 
such as call types (e.g., bird call types27,31) and group-level differences within target animal species (e.g., killer 
whale pods32). Despite a growing deployment of various machine (deep) learning techniques in the field of bio-
acoustics, essential research tasks such as target species identification and call type classification still prove to 
be extremely difficult and challenging.

Machine (deep) learning approaches are often designed for a particular animal species and lack data-related 
model adaption and hyperparameter fine-tuning options. In addition, the software and/or source code is often 
not publicly available, combined with missing or insufficient user guidelines which describe required data prepa-
ration, network training setup, and model evaluation. It thereby often precludes not just a general transfer to 
animal- and user-specific research questions, but mainly prevents non-computer science operators to train their 
own use-case and animal-specific models, which in turn significantly hampers progress in research on animal 
communication. In this study, we introduce ANIMAL-SPOT, an open-source machine learning framework that 
enables biologists to independently train and evaluate animal-specific deep learning-based classification models 
in order to address fundamental biological research questions, including target/noise detection and/or species/
call type identification.

Three typical scenarios present themselves when attempting to identify the vocalizations of a target species 
or individual: (1) The target signal appears without confounding factors such as other similar vocalizations 
and the task is to determine the target signal with respect to background noise, (2) the target signal appears in 
conjunction with other, dissimilar, species-specific vocalizations and the signal of interest must be distinguished 
between other bioacoustic signals and background noise, and (3) the target signal appears with other signals, 
some of which share similar properties to the target vocalizations and the model must differentiate between 
similar signals, dissimilar signals, as well as background noise. The approach described here allows a researcher 
to address all of these tasks, with slight differences in data structure as well as usage of the trained models.

A detailed user guide33, provided in conjunction with this work which describes the data setup as well as 
model configuration, allows users to create and apply models with no prior deep learning knowledge. The core 
deep learning workflow took inspiration from ORCA-SPOT34, a ResNet-1835-based Convolutional Neural Net-
work (CNN), originally designed for segmenting killer whale (Orcinus orca) vocalizations from environmental 
background noise. ANIMAL-SPOT has been adapted and extended to become an animal-independent deep 
learning framework, evaluating bioacoustic target versus environmental noise detection for 10 species-specific 
data volumes and 1 additional genus-based dataset, next to the publicly available BirdVox-Full-Night36 reposi-
tory. In addition, multi-species classification has been performed in two different scenarios: (1) as a downstream 
process, using previously machine-detected and extracted genus-specific target signals, and (2) as a stand-alone 
procedure, analyzing the Computational Paralinguistics Challenge Primate (ComParE-PRS)37,38 multi-species 
data volume. Moreover, multi-class call type classification has been exemplarily conducted for a single species, 
using the same downstream approach. The ANIMAL-SPOT workflow is generalizable, enabling unparalleled 
flexibility in processing task- and animal-specific bioacoustic data corpora. Figure 1 visualizes all animal species-
specific spectrograms (10 different species, 1 additional genus), representing a single vocalization event.

In summary, ANIMAL-SPOT provides a publicly-available animal-independent bioacoustic machine learning 
environment, which allows scientists, regardless of their technical backgrounds, to train and evaluate species-
specific deep neural networks, supported by detailed user guidelines, in order to answer fundamental biological 
research questions (target/sound detection, species classification, and call type recognition). To the best of the 
authors’ knowledge, this is the first study presenting an animal-independent and publicly-available deep learn-
ing framework, evaluated across many bioacoustic signal identification scenarios. As input data, we use many 
annotated datasets from a broad range of animal species and provide evaluation results using these as well as 
publicly available species detection and classification challenge data corpora.

Materials and methods
Bioacoustic signal identification and classification scenarios.  Signal identification can be per-
formed at different levels: (1) taxonomic group (e.g., all birds), (2) species (e.g., monk parakeet), or (3) call type 
(e.g., contact call). The level highly influences data preparation and classification complexity. Raising taxonomic 
specialization simultaneously leads to an increase of the labeled data granularity being required for an adequate 
network training. Furthermore, classification intricacy grows with the level of taxonomic detail. The network 
has to learn and derive features, being robust against all potential types of environmental noise as well as other 
animal sounds, except the signals of interest, including within-species variation. The level of taxonomy also 
affects the amount of chosen network output classes—binary detection (e.g., delphinidae vs. noise) or multi-class 
classification (killer whale vs. white-sided dolphin vs. bottlenose dolphin vs. noise)—which in turn impacts clas-
sification complexity. An adequate identification scenario is therefore determined by the biological use-case and 
taxonomic depth, in combination with the available data material, recorded via active/passive acoustic monitor-
ing. Regarding the animal corpora, two initial data material situations are possible: (1) dataset only contains 
background noise and target signals, or (2) dataset includes background noise, target signals, and other vocaliza-
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tions that often resemble the target signal. Consequently, the following classification procedures are conceivable: 
(1) binary target/noise detection—isolating environmental noise from the taxonomic-dependent animal signals 
according to the above mentioned data scenarios, or (2) multi-class species/call type recognition—classifying 
between multiple target species or call types, combined with the illustrated potential data situations. To ensure 
a robust, animal-independent identification procedure, a binary target/noise detection at the desired taxonomic 
level (e.g., animal genus) has to be conducted first, to remove noise and other irrelevant animal vocalizations 
in advance. Taxonomic depth leads to an increasing spectral closeness between signals being represented in the 
noise class, which results in less distinctive network features separating both classes. Depending on the initial 
model performance for the chosen taxonomic rank, target/noise data distribution might be restructured with 
respect to a higher, more generic taxonomic level (e.g. genus to order-level). Based on the respective detection 
result, subsequent multi-class classification can be conducted with respect to more specific taxonomic ranks, 
such as animal species (e.g., Blue-winged vs. Golden-winged warbler) or different call types (e.g., monk parakeet 
alarm, contact, and other calls), ending up in a multi-stage classification procedure. ANIMAL-SPOT is also 
capable of performing recognition with respect to different species-specific regional differences (dialects) as well 
as individual identification. Sufficient representative data for dialects of interest or individual-specific vocaliza-
tions, in the same way as for the other multi-class classification problems described here, is the only precluding 
factor. Filtering away noise and other animal vocalizations via the two-step approach enables focus on analysis 
of regional differences (dialects) and acoustic identification of individuals. Instructions on model configuration 
and necessary data structure will be further detailed in the user guide33 with examples.

Animal species and recording setup.  In order to show and prove animal independence, 10 different 
species and 1 additional genus within the chordate phylum were chosen. The overall goal was to test model 
robustness for as many different habitat types (urban parks, marine reserve, arctic landice), frequency ranges 
(30 Hz for Atlantic cod to 100,000 Hz for Pygmy pipistrelle), vocalization durations (echolocation sweeps in ms 
to long roars of multiple seconds), signal-to-noise ratios (urban parks versus noise isolated laboratory), noise 
characteristics (underwater noise, human narrations, other species), as well as recording setups (passive acoustic 
monitoring—e.g., Harbour seals—versus focal follows—e.g., Blue-/Golden-winged warblers). A detailed sum-
mary regarding all animal-specific recording and data collection setups, utilized within this study, is given in 
Supplementary Table S1.

Bioacoustic data material.  No animals were approached for this study specifically but rather all data used 
were collected by distinct research teams under their own ethics guidelines. In case of binary detection, each 
species/genus target and noise was manually annotated. The target class contained only vocalizations produced 
by the target species/genus (see Table 1). In cases where further sub-classification was envisioned (species level 

Figure 1.   Animal-specific data (10 different species, 1 additional genus) utilized to investigate the ANIMAL-
SPOT framework (created via Inkscape39, Version 0.92.3).
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for the two warblers—Table 2, call type level regarding monk parakeets—Table 3), these were labeled as well, 
but all assigned to the target class. The noise class included all other sound segments, such as environmental/
background noise, human narrations, and other animal sounds. While both the number of annotated segments 
and the class distribution differed for each species, the ratio between vocalization and noise ranges from ≈20% 
up to ≈57% for all listed data archives. To perform embedded noise augmentation, additional noise segments 
were provided for some of the species (see Table 1). ANIMAL-SPOT was trained and evaluated in three differ-
ent experiments: (1) detection between target and noise to separate noise from valuable animal signals, and (2) 
multi-class species classification, and (3) multi-class call type identification. Besides the annotated detection data 

Table 1.   Animal-specific data corpora and distribution. *Additional noise augmentation training samples: 
[1.1] cockatiel—180 (2.87 min.), [1.2] monk parakeet—105 (1.08 min.), [1.3] Blue-/Golden-winged 
warbler—500 (10.03 min.), [1.4] Harbour seal—2,531 (32.74 min.), [1.5] killer whale—6715 (258.27 min.), 
[1.6] Pygmy pipistrelle—543 (1.80 min.), [1.7] chimpanzee—1446 (40.34 min.). 1 Samples (smp[#]), 2sample 
duration in minutes (smp[min.]), 3sample percentage (smp[%]), 4summed target/noise duration of the three 
unseen test recordings ( 

∑
r[min.]). Significant values are in bold.

Dataset

Label type

Target label Noise label
∑

 labels

smp[#]1 smp[min.]2 smp[%]3
∑

r[min.]4 smp[#]1 smp[min.]2 smp[%]3
∑

r[min.]4 smp[#]1 smp[min.]2 smp[%]3
∑

r[min.]4

Cockatiel* 1271 12.41 40.9 2.46 1840 41.68 59.1 179.10 3111 54.09 100.0 181.56

Sulphur-crested 
cockatoo 1495 15.26 41.1 3.37 2145 34.99 58.9 46.81 3640 50.25 100.0 50.18

Peach-fronted 
conure 1174 12.35 55.2 0.22 952 8.88 44.8 4.53 2126 21.23 100.0 4.75

Monk parakeet* 3133 17.20 46.4 0.63 3612 75.25 53.6 12.63 6745 92.45 100.0 13.26

Blue-/golden-
winged warbler* 1616 48.99 32.0 5.43 3431 95.10 68.0 14.57 5047 144.09 100.0 20.00

Chinstrap 
penguin 906 4.86 20.8 0.82 3454 15.40 79.2 3.26 4360 20.26 100.0 4.08

Atlantic cod 382 3.14 30.6 0.19 867 6.00 69.4 20.82 1249 9.14 100.0 21.01

Harbour seal* 2900 55.18 56.4 7.79 2245 58.67 43.6 22.21 5145 113.85 100.0 30.00

Killer whale34* 17,104 649.45 27.8 20.64 44,323 2076.36 72.2 121.49 61,427 2725.81 100.0 142.13

Pygmy pipist-
relle* 1570 0.18 31.0 0.10 3490 4.94 69.0 1.11 5060 5.12 100.0 1.21

Chimpanzee* 7079 231.17 57.2 2.89 5305 174.44 42.8 87.11 12,384 405.61 100.0 90.00

BirdVox-Full-
Night36 35,402 295.02 50.0 − 35,402 295.02 50.0 − 70,804 588 100.0 −

Table 2.   Blue-/golden-winged warbler data distribution. Significant values are in bold.

Label type

Distribution

Samples Min. %-samples

Blue-winged warbler 707 21.16 22.4

Golden-winged warbler 909 27.83 28.8

Other bird 542 13.39 17.2

Noise 1000 26.10 31.6

 
∑

3158 88.48 100.0

Table 3.   Monk parakeet call type data and distribution. Significant values are in bold.

Label type

Distribution

Samples Min. %-samples

Alarm call 798 5.61 24.5

Contact call 689 3.61 21.2

Other call 764 3.06 23.5

Noise 1000 25.65 30.8
∑

3251 37.93 100.0
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corpora, reported in Table 1, three additional unseen recordings were provided for the 10 different species and 
1 extra genus, with low, medium, and high appearance of target vocalizations. These were additionally used to 
validate model performance. In order to prove detection accuracy even further, an additional publicly-available 
dataset was utilized—the BirdVox-Full-Night data archive—presented by Lostanlen et al.36 for the evaluation 
of approaches designed to detect avian flight calls (see Table 1, last row). The original dataset consists of 9.8 h 
of audio, recorded by six sensors placed in the area around Ithaca, New York, which were manually annotated 
resulting in 35,402 500 ms-long flight calls of nocturnally migrating birds of about 25 species of passerines. 
To balance the dataset an equal number of 500-ms-long noise samples were added to the dataset, resulting in 
70,804 files (see Table 1, last row). Regarding the BirdVox-Full-Night archive, there were no additional unseen 
recordings, compared to the remaining data repositories listed in Table 1. Multi-class species classification was 
conducted between Blue-winged and Golden-winged warbler (see Table  2). In addition the Computational 
Paralinguistics Challenge Primate (ComParE-PRS)37,38 dataset was used to distinguish between four different 
primate species (see Table 4). The dataset includes over 10,000 annotated vocalizations from Chimpanzees (Pan 
troglodytes), Mandrills (Mandrillus sphinx), Red-capped mangabeys (Cercocebus torquatus), and a mixed group 
of Guenons (Cercopithecus spp.). Additionally, exactly the same number of noise samples as vocalizations were 
extracted to make up the noise class38. Multi-class call type classification was computed for three main call type 
classes of monk parakeet vocalizations including alarm, contact, and other calls, listed in Table 3. Across all 
multi-class scenarios, the existing target class repertoire was extended by an additional noise category to simu-
late real-world scenarios, as well as cover and handle potential false alarms caused within the first detection stage 
(see Supplementary Figs. S5 and S6).

Deep learning concepts and network architectures.  Convolutional Neural Networks (CNNs) were 
utilized in order to identify animal vocalizations of interest. A CNN is an end-to-end deep learning architecture 
based on the principles of pattern recognition including a feature learning and classification component being 
able to efficiently process the complexity of 2-dimensional input data (e.g., images, spectrograms)34,40,41. Con-
volutional layers are responsible for feature learning, while the classification part is done by the fully connected 
layers40. Convolutional layers embed and represent the following important concepts34,40: (1) local receptive 
fields, (2) shared weights, and (3) subsampling (pooling). Due to the fact that convolutional and pooling lay-
ers only compute linear operations, CNNs integrate activation layers (e.g., Rectified Linear Unit34,42) as well as 
normalization layers (e.g., batch normalization34,43) to handle the non-linearity within the data and to ensure a 
more stabilized and regularized training procedure34. Several repetitive sequentially ordered sequences of con-
volutional, pooling, normalization, and activation layers lead to extracted and learned features which are used as 
input for the fully-connected layer projecting the features on the respective output classes34. The core concept of 
the presented deep learning framework is based on a so-called Residual Network (ResNet)35. A ResNet is a net-
work architecture, which is built up from different concatenated residual layers35. A residual layer is constructed 
from an arrangement of building blocks which in turn consist of weight (e.g., convolutional, fully-connected), 
normalization (e.g. batch-norm43), and activation layers (e.g., ReLU42), as well as residual-/skip-connections. 
Due to this residual-/skip-connection technique it is possible to learn a residual mapping F(x) = H(x)− x 
instead of a direct underlying mapping H(x) for a given input x35, enabling to counteract the accuracy degrada-
tion problem (accuracy decrease after saturation region, by further increasing network depth, compared to shal-
lower versions of the network35) and training deeper nets. Different numbers and structures of building blocks 
result in various ResNet architectures. Well known and established ResNet models are ResNet18, ResNet34, 
ResNet50, ResNet101, and ResNet15235. For more detailed insights about residual learning/networks see He 
et al.35.

ANIMAL–SPOT.  The deep learning framework consists of a ResNet18-based CNN, derived from ORCA-
SPOT34, our previous killer whale deep detection model, which has been adapted and extended to handle all 
kinds of vocalizing animals. The initial max-pooling layer within the traditional ResNet18 architecture has been 
removed to avoid losing too much resolution at the early stage of the training process34. Depending on the size 
of the temporal domain T of the input spectrogram, defined by the chosen training sequence length and corre-
sponding FFT-settings, a 512-large global-averaged pooled feature vector, derived from the 512 × F × T feature 
maps of the last residual layer (see Fig. 2), is generated and mapped to a subsequent fully-connected layer34. In 

Table 4.   The INTERSPEECH 2021 Computational Paralinguistics Challenge Primate (ComParE-PRS)37,38 
data archive and distribution. Significant values are in bold.

Label type

Distribution

Samples Min. %-samples

Chimpanzee 6652 59.76 32.0

Mandrills 2623 13.14 12.7

Red-capped mangabeys 627 5.31 3.0

Guenons 476 1.69 2.3

Noise 10,378 172.97 50.0
∑

20,756 252.87 100.0
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order to solve the final n-class classification problem the 512 hidden units of the fully-connected layer are pro-
cessed onto an output layer consisting of n output nodes depending on the classification task (e.g., two classes 
for target/noise detection, or multiple classes for species/call type classification). ANIMAL-SPOT is capable of 
handling any number of output classes, and consequently dealing with multi-class classification scenarios as 
well. Moreover, ANIMAL-SPOT integrates a refactored version of the entire data parsing and pre-processing 
pipeline of ORCA-SPOT34, next to additional normalization techniques, in order to handle and fulfill all needed 
prerequisites required for dealing with various animal data sources (see Fig. 1 and Tables 1, 2, 3, 4), in combina-
tion with varying classification scenarios. Although advances in neural network structures have been made in 
recent years, the focus of ANIMAL-SPOT is not a specific type of architecture (e.g., ResNet18, etc.). Instead, the 
aim of ANIMAL-SPOT is to provide an open-source, animal-independent, and expandable machine learning 
framework, together with a robust and efficient data preprocessing pipeline. We add support by profound user 
guidelines to address the broadest possible audience. In addition, the capacity of the model used here is com-
paratively small, which facilitate researchers who may not have the opportunity to access powerful hardware, 
to train and evaluate their own animal- and task-specific models. Within the ANIMAL-SPOT framework it is 
possible to integrate any kind of architectural model designs, allowing the deployment of other novel and user-
preferred deep neural network concepts.

Data preprocessing.  Independent of the classification scenario all species and their corresponding data 
repositories (see Tables 1, 2, and 3), followed the same generic data preprocessing pipeline. The core functions 
are applicable for all animals, however each species requires an animal-specific parameter set (see Supplemen-
tary Table S2) in order to guarantee valid data preparation and representation of the corresponding signal char-
acteristics (e.g., typical vocalization duration, frequency range, sampling rate, Fast-Fourier-Transform (FFT) 
parameters, etc.). The entire preprocessing pipeline of ANIMAL-SPOT consists of the following steps: (1) con-
version to mono and re-sampling, (2) Short-Time-Fourier-Transform (STFT) to convert the time signal into 
a F  ×  T-large power-spectrogram using an animal-characteristic FFT window-length and step-size, where F 
characterizes the frequency domain and T describes the time domain, (3) integrated and concurrent signal aug-
mentation with respect to the previous derived F × T-large power-spectrogram applying uniformly distributed 
random scalings including intensity, pitch, and time augmentation within given intervals (see Supplementary 
Table S2), where the default interval might slightly vary from species to species, (4) linear frequency compres-
sion (nearest neighbor, 256 frequency bins) representing a frequency range between fmin and fmax , while ignor-
ing other frequency regions, chosen according to the typical spectral vocalization areas of the corresponding 
animals, resulting in a 256 × T compressed power spectrogram, (5) noise augmentation by adding a pitch-/
time-augmented and frequency-compressed noise spectrogram utilizing a uniformly distributed randomly cho-
sen signal-to-noise ratio (SNR), (6) power-spectrogram conversion to decibel (dB) scale, (7) 0/1-min/max- or 
0/1-dB-normalization, either using the spectral minimum and maximum, or applying a minimum and reference 
decibel level, dependent on the respective target species, to normalize the spectral envelope, and (8) random 
sub-sampling or zero-padding of the spectrogram according to the chosen sequence length, leading to a final 
256 × T augmented and normalized spectral clip being used as network input. Figure 3 visualizes example net-
work input spectrograms for each species, preprocessed according to the illustrated pipeline.

Network training and evaluation.  Due to ANIMAL-SPOT’s ResNet18-based feature extraction and 
compression path (see Fig. 2), each input spectrogram is compressed by a factor of 16 during encoding, both 
in time T and in frequency F domain. The remaining F × T features for each of the 512 channels are mapped 
to the corresponding fully connected layer, conducting global average pooling, followed by a projection to the 
number of parametrizable output nodes/classes. During training, random data augmentation and sub-sampling/
padding, can be enabled. However, to compare validation and test set results across various models, random 
data augmentation and sub-sampling/padding was disabled. Validation and test samples were centered and 
either zero-padded or sub-sampled, in case the original length did not match the chosen sequence length34. 
ANIMAL-SPOT was implemented in PyTorch17 using a cross entropy loss in combination with a batch-size of 
8 for all animals, together with an Adam optimizer applying an initial learning of 10−5 , β1 = 0.5, and β2 = 0.999. 
Additionally, ANIMAL-SPOT integrates a learning rate decay of 1/2 after 4 epochs without any improvement 
on the validation set. The training was stopped after an animal-specific number of epochs (see Supplementary 

Figure 2.   ANIMAL-SPOT Network Architecture (created via Inkscape39, Version 0.92.3).
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Table S2) if no improvement was achieved on the validation set (early stopping). The accuracy was chosen as an 
appropriate network validation criterion. ANIMAL-SPOT integrates an intelligent data split mechanism, capa-
ble of automatically identifying all class labels, assuming that data preparation was performed in the prescribed 
format33, and ensures that samples of a particular recording are only present in one of the splits. By default, the 
data split is 70% for training, 15% validation, and 15% test. However, it may differ depending on the original data 
distribution in combination with the above mentioned recording restriction (see Supplementary Tables S4–S6). 
Regarding the two challenge datasets—BirdVox-Full-Night36 and ComParE-PRS37,38—the original predefined 
data splits have been applied for reasons of comparison. Network training and evaluation was computed utiliz-
ing mid-range graphics processing units (GPUs) (e.g., Nvidia GTX 1080), as well as standard central processing 
units (CPUs), showing the broad applicability of the training setup. Supplementary Table S2 reports all animal-
specific network-hyperparameters.

ANIMAL-SPOT’s network performance was evaluated via the following experimental constellations: (1) 
animal- and scenario-specific model evaluation for target/noise detection (see Supplementary Table S3) and 
multi-class classification (see Supplementary Tables S4, S5, S6), reporting various performance metrics regard-
ing training, validation, and unseen test set, (2) evaluation of animal-specific target/noise detection networks 
on three fully-annotated unseen test recordings, performing a sliding window approach in combination with 
a given window-length ǫ and step-size κ to frame-wise segment between target and noise, and (3) inspection 
and verification of the multi-class classification models for warblers and monk parakeets based on the machine-
segmented and extracted signal parts of step 2, generated by the corresponding segmentation models.

The first evaluation scenario visualizes the following training, validation, and test metrics: accuracy (ACC), 
true-positive-rate (TPR), false-positive-rate (FPR), precision (PREC), F1-score (F1), and area under the ROC 
curve (AUC). In case of the ComParE-PRS37,38 primate species recognition challenge, only the unweighted aver-
age recall (UAR) was reported due to comparability reasons.

The second evaluation procedure classifies audio sections for each of the three unseen, animal-specific test 
recordings, depending on the defined window-length ǫ and step-size κ , affecting the signal overlap, as a whole. 
Machine-predicted audio chunks are compared frame-by-frame with the ground truth34. Each predicted frame/
segment of the unseen recordings, together with the respective frame-wise network confidence (probability), 
allow to present the ROC-curve44 and its respective AUC​34. In addition, frames showing a larger value than a 
model confidence δ , are transformed into an annotation with its corresponding start and end time. Therefore, 
successive frames of the same label (noise = 0 or target = 1) are concatenated and extracted as one annotation 
excerpt34. Frame-wise smoothing was used to mark classified noise segments as target frames if the neighboring 
signal chunks are exclusively labeled as target signals34. Neighboring frames are frames which include preced-
ing or subsequent signal content of the current sound segment because of the respective overlap34. ANIMAL-
SPOT-S refers to the smoothed version, whereas ANIMAL-SPOT corresponds to the non-smoothed variant 
(see Supplementary Figs. S2–S12). Additionally, the predicted, smoothed, and extracted network detections 
with an exemplary model confidence of δ ≥ 50% and δ ≥ 90% , were used to calculate and report time-wise 
precision (PREC) versus corresponding recall (TPR), in order to show intersection accuracy between machine- 
and human-annotated labels. To calculate time-based precision and recall all ground truth annotations, which 
are not further apart than a merging factor ξ = ǫ

2
 (half of the prediction window in seconds), were combined to 

one annotation, since such cases lead to sliding windows ǫ , while at least half of the window contains animal 
vocalizations. In case of time-wise precision calculation an additional overlapping factor � = ǫ

2
 was introduced, 

Figure 3.   ANIMAL-SPOT preprocessed 256 × 128-large network input spectrograms (256 frequency bins, 128 
time frames) utilizing animal-specific network-hyperparameters listed in Supplementary Table S2 (created via 
Inkscape39, Version 0.92.3).
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extending the ground truth annotation start and end accordingly (start − � , end + � ), covering overlapping 
predictions at the annotation borders.

The third and last evaluation scenario reports results on multi-class classification by presenting the following 
evaluation criteria on training, validation, and test data: (1) accuracy, (2) confusion matrix, and (3) UAR (only for 
the ComParE-PRS37,38 dataset). Additionally, the model was evaluated on the corresponding machine-annotated 
warbler and monk parakeet results, utilizing the same sliding window approach. However, during prediction of 
the multiple classes, a noise identification was only considered as correct if the network confidence was higher 
than > 85%, due to the assumption that the previous detection process has a low false positive rate. If the network’s 
confidence regarding noise was lower than this boundary, but still the highest probability, it was ignored and the 
second largest confidence value was chosen as correct prediction. The chosen window length, in combination 
with the input file duration, ends up in two potential cases: (1) window length is larger than the input file dura-
tion, leading to an updated window equal to the pre-segmented audio clip, and (2) window size is shorter than 
the input file size, leading to a sliding, frame-wise classification approach determined by window- and step-size, 
while only considering full windows in order to avoid potential misclassification. If multiple sequentially-ordered 
frame-wise classifications per pre-segmented file exist, probabilities of each frame and predicted class are summed 
up cumulatively. Finally, the class providing the largest probability mass was selected. All detection and multi-
class species/call type classification metrics are visualized and illustrated in Figs. 4, 5, 6, as well as Supplementary 
Table S7 and Supplementary Figs. S2–S12.

ANIMAL‑SPOT guide.  The ANIMAL-SPOT Guide33 is a step-by-step and detailed user guide, publicly 
available together with the source code33, which enables researchers to train and evaluate animal-specific deep 
neural networks on their own bioacoustic data corpora (see Supplementary Fig. S1). The guidelines involve: 
(1) operating-system independent installation, data preparation, and detailed documentation of the ANIMAL-
SPOT source code33, (2) instructions and guidance in order to set up, train, and evaluate animal- and scenario-
specific architectures, as well as (3) use-case dependent prediction of unseen data material utilizing stand-alone 
noise/target detection models, species/call type classification networks, or a combined version of detection and 
subsequent classification (see Supplementary Fig. S1). The ANIMAL-SPOT guide provides a detailed descrip-
tion with respect to the following three scenarios: (1) single-stage detection between animal vocalizations of 
interest and noise, based on unseen data, (2) single-stage classification of animal species and/or specific call 
types directly on unseen raw audio material, and (3) a combined version of step 1 and 2 by firstly pre-segmenting 
unseen audio recordings, followed by subsequent classification (animal species, call types, etc.), while taking 
only the respective pre-segmented target vocalizations as input.

Experiments
Animal‑species target/noise segmentation.  In a first experiment animal-species segmentation was 
performed for all animal-specific (see Fig. 1) data volumes listed in Table 1. Data partitioning was conducted 
for each animal-specific data archive (see Supplementary Table S3), whereas the training set comprises ≈70%, 
validation and test set each ≈15% of the total labeled data corpora listed in Table 1. Using the respective data 
distributions in combination with the animal-specific network-hyper-parameters presented in Supplemen-
tary Table S2, different ANIMAL-SPOT architectures were trained and evaluated according to the previously 
described network training and evaluation procedure. An exception is the BirdVox-Full-Night36 challenge data-
set (see Table 1, last row), which used the same data distribution, training, and evaluation procedure as described 
in Lostanlen et al.36, in order to allow a meaningful comparison with the original results. Consequently, a leave-
one-out testing procedure whereby one unit of the given six was utilized for testing and the other five were used 
for training and validation. This results in exactly the same data split as reported, but also means that there exist 
no additional and unseen data available for further evaluation, as it was the case for all other data corpora listed 

Figure 4.   Overall summary across all 11 animal-specific segmentation models (10 different species, 1 
additional genus), visualizing performance metrics with respect to the animal-specific, unseen, human-labeled 
test data (1.1), ROC-curves and AUC-Range (1.2), as well as threshold-dependent precision/recall values (1.3), 
both based on the animal-related unseen recording tapes (see also species-specific results in Supplementary 
Figs. S2–S12 and Supplementary Table S7) (created via Inkscape39, Version 0.92.3).
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Table 1. For reasons of comparison and the sake of completeness, parts of the already published results on killer 
whales (see ORCA-SPOT34) are reported and visualized as well.

Multi‑class species and call type classification.  As baseline for the second experiment, results of the 
first target/noise (binary) animal-species segmentation were utilized, next to a pure stand-alone multi-species 

Figure 5.   Multi-class warbler species identification results, visualizing spectrogram examples of Blue-/Golden-
winged warblers (1.1,1.2), multi-class training/validation accuracy (1.3), confusion matrix regarding the 
unseen human-labeled test data (1.4), as well as confusion matrix concerning previous machine-based warbler 
detection (1.5) (created via Inkscape39, Version 0.92.3).

Figure 6.   Multi-class call type classification results, visualizing spectrogram examples of alarm, contact, and 
other call types (1.1–1.3), multi-class training/validation accuracy (1.4), confusion matrix regarding the unseen 
human-labeled test data (1.5), as well as confusion matrix concerning previous machine-based monk parakeet 
detection (1.6) (created via Inkscape39, Version 0.92.3).
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classification scenario without pre-segmentation. To demonstrate, prove and verify performance of the proposed 
multi-step classification procedure, three of the 12 animal species (see Fig.  1) were utilized—Golden-/Blue-
winged warblers (genus) and monk parakeets.

In case of the warblers a subsequent multi-class classification model, trained on the data and distribution listed 
in Supplementary Table S4, was used to further separate the genus-specific and previously machine-segmented 
data pool into Golden-winged, Blue-winged warblers, other birds, and noise. To counteract possible false alarms 
from the segmentation phase, two classes—other birds and noise—were introduced besides the corresponding 
signals of interest.

The proposed multi-stage approach was further evaluated training a multi-class classification network to dif-
ferentiate between various monk parakeet call types, using the data and distribution in Supplementary Table S5, 
including contact, alarm, and other calls, as well as noise, in order to handle previous segmentation errors.

In case of the golden- and blue-winged warblers, a total of 210 machine-annotated audio segments were 
extracted utilizing a network confidence of ≥ 90%. Under identical conditions 103 monk parakeet machine 
segmentations were predicted and extracted. Example spectrograms for golden-/blue-winged warbler vocaliza-
tions, as well as for the various monk parakeet call types, are visualized in Figs. 5 and 6.

In order to assess the efficacy of the multi-stage approach, instead of a single-stage multi-class approach, a 
multi-class model was exemplarily trained to perform detection and classification of Golden-winged warbler, 
Blue-winged warbler, and noise (pure background noise, other birds) in one step, using exactly the same three 
unseen, manually labeled recordings for evaluation as during the detection phase within the multi-stage proce-
dure (see Table 1). The three audio files contain either: (1) only Golden-winged warblers, (2) only Blue-winged 
warblers, (3) a combination of both warbler types. The model used the same data distribution for Golden-/
Blue-winged warbler as stated in Supplementary Table S4, together with the warbler noise distribution listed in 
Supplementary Table S3.

Nevertheless, in order to also show and demonstrate the possibility of directly training a multi-species clas-
sification network without previous segmentation, the ComParE-PRS dataset (see Table 4) was used to distinguish 
between 4 different primate species as well as background noise, trained on the given data distribution listed in 
Supplementary Table S6.

Results
Animal‑species target/noise segmentation.  ANIMAL-SPOT successfully segmented all 10 target spe-
cies, as well as the additional genus, leading to an overall mean test set accuracy of 97.9% (range: 94.5–99.8%). 
Additionally, an average area under the ROC curve (AUC) of 95.9% (range: 91.7–99.1%) across all 33 unseen 
animal-specific recordings (3 tapes per detection scenario) was achieved (see Supplementary Table S7. Besides 
network generalization on the unseen tapes, a detailed performance overview with respect to model training, 
validation, and testing is reported and visualized in Supplementary Figs.  S2–S12. In addition, all detection 
results are summarized and available in Supplementary Table S7. Moreover, Fig. 4 summarizes detection results 
in a compressed version, averaged across all 11 animal-specific segmentation models (10 different species, 1 
additional genus), visualizing: (1) network performance metrics based on the animal-specific human-annotated 
training, validation, and testing repositories (see Supplementary Table S3, Fig. 4—1.1), (2) model results across 
all 11 averaged Receiver-Operating-Characteristics44 (ROC) curves by visualizing 2 out of 11 curves, indicating 
the minimum and maximum AUC, spanning the average AUC-range where all other remaining ROC-curves 
are located (Fig. 4—1.2), and (3) network output across all 11 averaged and threshold-dependent precision/
recall scores (Fig. 4—1.3). Apart from the segmentation results of all 11 animal-specific segmentation models 
(10 different species, 1 additional genus), ANIMAL-SPOT also successfully processed the BirdVox-Full-Night36 
dataset. In comparison to the results given by Lostanlen et  al.36, with the best performance coming from a 
CNN with noise augmentation, which resulted in an average accuracy of 94.9% and an average F1-Score of 
62.7%, ANIMAL-SPOT achieved a slightly better average accuracy of 95.4% and a significantly better F1-Score 
of 95.4%. These results were achieved by training 10 models for each unit and taking the average of the results 
when removing the best and worst two performing models, resulting in an average over six models for each unit.

Multi‑class species and call type classification.  Multi-class species classification was applied to the 
previous warbler target/noise detection results (see Supplementary Fig.  S6), in order to further separate the 
machine-segmented warbler species vocalizations, exemplarily visualized in Fig. 5—1.1,1.2, into Blue-winged 
and Golden-winged warbler, resulting in a multi-class (4-classes) species identification scenario. Therefore, 
ANIMAL-SPOT, trained in a multi-class species classification scenario using the data listed in Supplementary 
Table S4, achieved an overall accuracy of 96.6% for the human-labeled unseen test set, as well as 95.2% with 
respect to the total number of 210 previously machine-detected audio segments (see Supplementary Fig. S6). 
Moreover, training and validation accuracy is shown besides two confusion matrices (4 classes), visualizing the 
aforementioned results achieved on the respective unseen human-labeled and machine-segmented test corpora 
(see Fig. 5—1.3–1.5, Supplementary Fig. S6).

Compared to the results of the proposed two-stage approach, which includes target/noise detection and down-
stream multi-class identification, the single-stage method, which performs both, detection and classification, in a 
multi-class model at once, performed significantly worse. Across all three unseen warbler recordings the Golden-/
Blue-winged warbler detection model (threshold δ ≥ 0.9) identified a total of 210 potential vocalizations of inter-
est, resulting in a time-based precision of 95.3% (see Supplementary Fig. S6). All 210 of the segmented samples 
were then used for downstream multi-class classification. In comparison, the 3-class single-stage approach 
detected 233 warbler events, with 200 true predictions resulting in a sample-based precision of 85.8%, whereas 
just 77.3% (180 out of 233 vocal events) were detected and classified as the correct warbler species. In the case 
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of the two-stage approach multi-species classification achieved an accuracy of 95.2% (see Fig. 5). This indicates 
that a two-step approach, where the network can focus more on the distinguishing features of the individual bird 
species without also having to filter out as much noise, is preferable to a single-step approach.

Besides all the results regarding warbler-species classification, ANIMAL-SPOT was also successfully deployed 
to identify various primate species using the Computational Paralinguistics Challenge Primate (ComParE-
PRS)37,38 data archive. The initial challenge investigation utilizes five different approaches for feature extraction 
and classification of primate vocalizations, namely openSMILE45, openXBOW46, DeepSpectrum47, AuDeep48, 
and End2You49 in conjunction with either an SVM (openSMILE, openXBOW, DeepSpectrum, AuDeep) or a 
recurrent neural network (RNN) (End2You) for the final classification. The initial baseline for the challenge, 
calculated by majority voting using the best configuration for each approach, reported the best unweighted 
average recall (UAR) of 87.5%37,38. In comparison, ANIMAL-SPOT outperformed the baseline achieving a UAR 
of 89.3%. Multi-class call type classification was applied to the previous monk parakeet target/noise detection 
results (see Supplementary Fig. S5), similarly to the warblers, however, with the aim to classify between different 
call types visualized in Fig. 6—1.1–1.3, leading to a multi-class (4 classes) monk parakeet call type classification 
scenario. For this purpose, ANIMAL-SPOT was trained on the data listed in Supplementary Table S5. The final 
model achieved an overall test set accuracy of 92.7%, compared to 88.4% on the previous machine-based detec-
tion results (see Fig. 6—1.4–1.6, Supplementary Fig. S5).

Discussion and future outlook
In total, 10 different species and 1 extra genus (see Figs. 1, 4, Supplementary Figs. S2–S12), as well as the publicly-
available BirdVox-Full-Night36 dataset, were analyzed in a binary detection scenario in order to prove ANIMAL-
SPOT’s ability to generalize across a wide variety of sound-types and to assess the feasibility of the proposed 
multi-stage detection/classification pipeline (see Figs. 5 and 6). As the results on the unseen recordings prove, 
promising time-wise and threshold-dependent recall/precision values were achieved, indicating an accurate 
intersection between ANIMAL-SPOT’s predictions and the actual ground truth (see Fig. 4—1.3, Supplementary 
Table S7 and Supplementary Figs. S2–S12). In addition, ROC-curves and corresponding AUC values show a 
significant reduction of the species-dependent and original noise-heavy data material (see Fig. 4—1.2). Thus, 
threshold-dependent recall and false-positive-rate combinations can be derived according to the respective use-
case, which in turn considerably speeds up and improves downstream data analysis. Furthermore, the combined 
strong results seen in both unseen test set as well as unseen real-world recordings, suggest no indication of model 
overfitting and prove network generalization across all different animal species.

The improvements with respect to the publicly available BirdVox-Full-Night36 dataset are also very promis-
ing, as the detection accuracy was improved by 0.6%, which indicates an error reduction of about 12%, besides 
a significant improvement of 32.7% regarding the F1-Score.

ANIMAL-SPOT integrates a large repertoire of distinct parameterization options for setting up data pre-
processing and network training (see Supplementary Table S2). Thus, ANIMAL-SPOT performs equally across 
wide ranges of temporal contexts (e.g average vocalization duration of Pygmy pipistrelles compared to killer 
whales), frequency ranges (e.g low-range Atlantic cod and Harbour seal vocalizations, mid-range bird sounds, 
and ultrasound bat signals), as well as spectral patterns (e.g., pulse-like structure of the Harbour seal or warbler 
signals and harmonic properties of the killer whale, Atlantic cod, and chimpanzee vocalizations). It is even pos-
sible to learn and distinguish between spectral call structures which are very similar to noise, seen in ANIMAL-
SPOT’s exemplary ability to distinguish Sulphur-crested cockatoo, Harbour seal, monk parakeet, and chimpanzee 
vocalizations from very similar background noise. In case of binary target/noise detection, ANIMAL-SPOT is 
especially useful in recording situations where the noise characteristics are an order of magnitude larger than 
the amount of valuable animal vocalizations.

ANIMAL-SPOT’s parameterization capacity also enables flexible adaptations regarding model architecture, 
data preprocessing, and network training/evaluation, allowing researchers to address and answer various specific 
bioacoustic research questions. Furthermore, the binary-class target/noise detection process enables researchers 
to separate target species that show poor results in the single-stage binary target/noise detection scenario. This 
can occur especially when the target species spectrally resemble other vocalizing species that are also found in 
the unseen recordings. In such situations the primary focus is on a generic distinction between target vocaliza-
tions and superfluous noise, making subtle spectral differences of other species difficult to model, because of 
generalization properties across both classes leading to increasing mis-classifications. This phenomenon was 
observed in case of Blue-winged and Golden-winged warblers, after both were individually trained and analyzed 
on species level, which demonstrated significant performance variations. However, using a two-step identifica-
tion scenario consisting of target/noise detection at genus level (see Supplementary Fig. S6), and subsequent 
multi-class species classification, ANIMAL-SPOT achieved an overall test set accuracy of 96.6% on unseen test 
data, which had been labeled by a human expert, and an accuracy of 95.2% on the target detections identified 
by ANIMAL-SPOT in the target/noise detection scenario (see Fig. 5).

In addition, the same two-step approach was successfully applied to distinguish and classify between different 
monk parakeet call types, resulting in 92.7% test set accuracy for human-annotated samples, and 88.4% with 
respect to the machine-performed detection results (see Supplementary Fig. S5, see Fig. 6). These combined 
results demonstrate the wide range of biological scenarios which can be covered by ANIMAL-SPOT in combina-
tion with user- and animal-specific data material. In both multi-class classification scenarios—warbler species 
and monk parakeet call types—ANIMAL-SPOT extracts and classifies centered signal sections of the unseen 
network test set samples according to the training sequence length (see Supplementary Table S2, see Figs. 5—1.4 
and 6—1.5). However, the pre-segmented audio chunks, different in length, were classified by utilizing a sliding 
window approach, together with the corresponding settings (see Figs. 5—1.5 and 6—1.6). At each frame the 
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maximum probability of all classes was chosen. The class showing the highest probability mass across the entire 
signal was selected as the final network hypothesis. In both experiments, each of the confusion matrices show 
comprehensible and similar results, being an auspicious indicator for model generalization across various data 
(see Figs. 5—1.4,1.5 and 6—1.5,1.6). Furthermore, sequence length and step-size are very important parameters 
to guarantee robust predictions. In terms of species and/or call type classification the step-size should be an 
order of magnitude smaller than the sequence length, in order to guarantee sufficient overlap and not to miss 
important spectral features during the prediction phase.

ANIMAL-SPOT demonstrated also great results in terms of single-stage multi-species primate classifica-
tion, by outperforming the ComParE baseline system. The final result of 89.3% also exceeds the UAR of 88.3% 
presented by challenge competitor Illium et al.50, who applied a vision transformer to the classification problem. 
Müller et al.51 report the same UAR of 89.3% while applying a Deep Recurrent Neural Network. The remaining 
competitors who performed better than ANIMAL-SPOT utilized either ensembling of multiple classifiers, as in 
the case of Egas-López et al.52, who achieved a UAR of 89.8%, or data augmentation techniques such as SpecAug-
ment or MixUp and training tricks such as exponential moving average of the model weights, as presented by 
Thomas Pellegrini53, who achieved a UAR of 92.5% on the test set. ANIMAL-SPOT is therefore placed squarely 
in the middle of the top challenge performers despite using only a single, relatively simple classifier and basic 
augmentation techniques.

In order to robustly train and report promising results, data volume, distribution, and variation is crucial. 
Moreover, the data corpus must be representative with respect to unseen real-world data. If these criteria are not 
fulfilled, models often lead to significantly worse results, despite promising training, validation, and test metrics. 
In order to enlarge data variation, especially for small animal corpora, various embedded spectral augmentations 
were computed (see Supplementary Table S2). However, such augmentation variants and corresponding values 
must be determined independently for each animal species and can therefore not be generalized. In particular, 
noise augmentation must be applied carefully, because of differing Signal-to-Noise-Ratio (SNR) between the 
original sounds and utilized noise data, particularly in case of animal vocalizations being very similar to noise 
data (e.g., Sulphur-crested cockatoo, distant chimpanzee pant-hoot versus bird vocalizations in the same fre-
quency range). Therefore, it is essential to ensure that noise samples, chosen for augmentation, are representative 
and independent from training, validation, and test noise excerpts. Despite promising scenario- and animal-
specific results on the unseen test data, audio recordings, machine-driven pre-detections, and challenge datasets 
(see Figs. 4, 5, 6, Supplementary Figs. S2–S12, and Supplementary Table S7), the performance may still vary to 
a certain extent, due to the following reasons: (1) non-representative data and/or insufficient training data, (2) 
recording artifacts introducing spectral outliers which are difficult to interpret by the network, (3) other animal 
vocalizations or noise characteristics showing a similar spectral envelope as the target sounds, (4) strong deviation 
of the signal intensities compared to the chosen reference and minimum dB-values of the 0/1-dB-normalization 
during training (see Supplementary Table S2), (5) overlapping animal signals and human narrations, (6) vocali-
zation types of a given species which have significant spectral and temporal differences between each other, and 
(7) window-length ǫ and step-size κ used during prediction phase. Figure 7 visualizes different examples of such 
animal- and task-specific misclassifications, caused by the previously illustrated error sources, which significantly 
influence network prediction results.

Figure 7.   Spectrogram examples visualizing potential error sources leading to performance drops of ANIMAL-
SPOT (created via Inkscape39, Version 0.92.3).
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Furthermore, during multi-class classification, special attention needs to be paid towards correct machine-
based detection outputs indicating one of the following scenarios: (1) multiple vocalizations of the same and/
or different species/call types within a single segment, (2) truncated signals, either at the beginning or end of 
a segment, and (3) overlapping vocalizations. Examples of the above mentioned and remaining challenges are 
visualized in Fig. 8.

In addition, data collection should be conducted via a consistent recording setup. Including data material 
originating from varying recording environments and/or setups will result in spurious outputs unless sufficient 
examples of this variation is represented in the training and validation datasets.

ANIMAL-SPOT’s performance and network training stabilization strongly correlates with the chosen hyper-
parameter setup, respective data structure and distribution, as well as model initialization. In order to identify 
the best fitting training setup for a certain species and classification procedure, a parametric search within the 
target-specific value range (with regards to e.g., signal frequency range, average sound duration, type of vocaliza-
tion) should be performed. Additionally suitable prediction settings—window length ǫ and step-size κ—as well as 
network parameters (see Supplementary Table S2) are very important. Window length ǫ has to be approximately 
in the same dimension as the network training length. To ensure adequate prediction settings, ANIMAL-SPOT 
should be evaluated on a small portion of unseen manually labeled recordings, before processing large unseen 
data archives. Moreover, network initialization, as well as random augmentations during training, may impact 
network performance, especially in case of small training corpora, affecting final model performance despite 
similar training, validation, and test set metrics.

Researchers face various acoustic detection scenarios, namely simple target/noise segmentation, identification 
of target signals among other distinct animal-specific vocalizations, and the recognition of target vocalizations 
among other similar animal-related vocalizations. All these scenarios can be addressed by the ANIMAL-SPOT 
framework and its underlying methods. For the simple case of identifying a target signal among nondescript 
background noise a simple one-step procedure can be applied as well as utilization of the framework-supplied 
noise augmentation to account for differences in signal-to-noise ratios in varying real-world conditions. Similarly, 
in the case where the target signal is dissimilar to the to other known vocalizations, a one-step model application 
procedure can be applied, and the classification is altered from a binary target-noise scenario to a multi-class 
problem which includes vocalizations from other known species present in the recordings. Finally, when dealing 
with the scenario in which the target vocalization exhibits similar characteristics such as to make them difficult 
to discern from each other, a multi-step approach can be taken, as was shown when attempting to accurately 
distinguish between Blue and Golden-winged warblers (see Fig. 5) or different monk parakeet call types (see 
Fig. 6). The same applies to the recognition of species-specific dialects and single individuals. The first task is 
to eliminate to the fullest extent the background noise (pure noise, other dissimilar animal vocalizations) from 
the classification problem. After background noise is removed from the data, it appears that the model is more 
capable of distinguishing between similar acoustic features through the focus on other spectral characteristics 
and features. Note that, due to the relatively small model sizes used here, a two-step approach could also be 
applied to the case where vocalizations are dissimilar without incurring a significant penalty with respect to 
computation time.

Besides the animal-independent target/noise and multi-step/class identification results (see Figs. 4, 5, and 6), 
this study also puts special emphasis on the proposed ANIMAL-SPOT guide33 (see Supplementary Fig. S1), which 
enables researchers to setup their own user-specific deep learning framework, without the need of prior machine-
learning knowledge. The ANIMAL-SPOT guide33 describes the entire software framework from beginning to 
end, including OS-specific installation manuals regarding all necessary software components, data preparation 
and processing guidelines, as well as detailed descriptions on how to setup, train, and run the final network 
prediction/evaluation on unseen data (see Supplementary Fig. S1).

The entire deep learning framework, as well as user- and animal-specific setup, can be verified and evaluated 
through the additionally provided example data archive on monk parakeets54 , which is publicly available33, next 
to all the source code and user-friendly instruction manual. This guide enables the bioacoustic community to 
independently train/evaluate task- and animal-specific deep models in order to gain deeper insights into animal 
communication and understanding.

Figure 8.   Machine-segmented spectrograms for Blue-/Golden-winged warblers and monk parakeets, 
visualizing various challenging scenarios for a potential subsequent multi-class classification (created via 
Inkscape39, Version 0.92.3).
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Many different fields of potential future follow-up work arise, such as (1) animal-specific representation55 
and/or transfer learning, utilizing larger labeled/unlabeled bioacoustic data corpora and/or other data archives 
(e.g., ImageNet56), (2) investigation regarding various deep network architectures (e.g., CNN-LSTM25, ResNeXt57, 
Inception/Inception-ResNet58, or Transformer-based approaches59), and (3) animal-independent signal enhance-
ment/denoising60, acting as additional data preprocessing option. To the best of the authors knowledge, ANI-
MAL-SPOT is the first open-source33 machine learning approach, capable of handling various bioacoustic signal 
identification scenarios (binary target/noise detection, multi-class species/call type classification), verified on a 
wide portfolio of animal vocalizations from different animal taxa and challenge datasets. In combination with a 
detailed user guide, ANIMAL-SPOT allows the broader bioacoustic research community to develop their own 
task-specific deep neural networks, on virtually any animal species.

Data availibility
The acoustic data archives supporting the findings of this study are available from the respective data owners 
upon reasonable request. Contact details can be obtained from the corresponding author. Upon acceptance, 
the code for ANIMAL-SPOT, besides the entire ANIMAL-SPOT guidelines, all together with an example data 
corpus54, will be made publicly available at https://​github.​com/​Chris​tianB​ergler.
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