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Abstract 
The use of a centralised planning scheduler in fieldbus-
based systems requiring real-time operation has proved 
to be a good compromise between operational flexibility 
and timeliness guarantees. 
In this paper a preliminary implementation of a 
hardware scheduling coprocessor based in the planning 
paradigm is presented. The coprocessor is installed in a 
special node of the fieldbus, the bus arbiter, and 
generates scheduling tables to be dispatched by the node 
CPU. With this solution it is possible to decrease the 
response time to changes in the system configuration or 
message parameters of the software-based planning 
scheduler. This opens the possibility of allowing 
automatic on-line changes requested by system nodes in 
addition to the ones requested by human operators, thus 
improving system reactivity. 
In this paper the focus is on the coprocessor’s interface 
with the node CPU and its overall functionality. Initial 
calculations showing the feasibility of the unit and its 
expected performance are also derived. 
  
1. Introduction 
 
The dissemination of embedded fieldbus based 
distributed systems in real-time applications has triggered 
a significant research activity on many of the related 
problems and associated solutions. One of them is the 
improvement of distributed embedded systems reactivity 
and flexibility without loosing the timeliness guarantees 
required for a real-time operation. Some promising results 
have been studied in [1], concerning the use of a planning 
scheduler technique in systems based on low-processing 
power microcontrollers and in fieldbuses such as CAN 
[2] and FIP [3]. This technique and an associated 
protocol named FTT-CAN (flexible time-triggered 
protocol), proposed in [4], can be used to achieve real-
time performance in distributed systems based in CAN, 
keeping a runtime overhead in the nodes that is 
compatible with the CPUs of most industrial embedded 
applications. However, a further step towards systems 
reactivity implies decreasing the response time to 
required changes. This can be achieved with several 
solutions, including the use of a specific scheduling 
coprocessor implemented in hardware. 
In this paper, preliminary results concerning the 
development and use of a scheduling coprocessor in a 
CAN-based distributed system are presented. Since the 
coprocessor implements a planning scheduler, the paper 
starts in section 2 with a short introduction of this 
technique. Next, in section 3, the motivation to adopt the 
hardware scheduler solution is briefly discussed and some 
previous works following the same line are shortly 

presented. In section 4 the coprocessor is described 
focusing on its functionality and interface with the node 
CPU. Its internal architecture is then briefly presented. 
This section also includes some figures showing the 
feasibility of the proposed architecture. The paper 
concludes, pointing out future improvements to the 
current architecture. 
 
2. The Planning Scheduler 
 
Message scheduling on a fieldbus can be done statically 
or dynamically. Table driven and priority-based 
approaches such as the ones in FIP and CAN 
respectively, fall in the category of static scheduling while 
dynamic scheduling can be done using planning based or 
best effort approaches. Although dynamic planning-based 
schedulers are not commonly found in current standard 
fieldbuses, recent work on the subject [5], has shown they 
could become a good compromise between the static and 
dynamic approaches. 
The planning scheduler and an associated dispatcher can 
be implemented in fieldbus-based systems imposing an 
overhead compatible with the low-processing power 
microprocessors or microcontrollers used as typical 
nodes’ CPUs. Also, it presents some degree of flexibility 
resulting from the possibility to change, from plan to 
plan, the message’s set, adding or deleting messages or 
changing their parameters. The underlying concept is the 
reservation of resources into the future. So, when a new 
message is accepted, the additional bus bandwidth 
required is reserved. To do this, the scheduler builds 
static schedules for consecutive fixed duration periods of 
time called plans. The static schedules are called plan 
tables. The creation of a plan table is overlapped with the 
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Figure 1 – The planning scheduler. 
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dispatching of the previous. In figure 1 the operation of 
the planning scheduler is illustrated. The dispatcher  
works with plan i, while the scheduler builds plan i+1. 
In common implementations of the planning scheduler, 
the available bus time is divided in fixed duration time 
slots called Elementary Cycles (ECs). Each plan includes 
a fixed number of ECs. Messages’ periods are then 
restricted to an integer multiple of the EC duration. 
Transmission time of the longest message is supposed to 
be less than the EC duration, then several messages fit, in 
principle, within an EC. 
The simple mechanism of this scheduler reduces run-time 
overhead mainly because it is invoked fewer times. So, 
comparing with a dynamic scheduler, each time it is 
invoked, instead of determining the next message to be 
transmitted, only, it determines all the bus activity, for all 
the messages, for a certain period of time corresponding 
to the plan duration.  
 
3. Scheduling in a dedicated Coprocessor 
 
3.1. Motivation 
 
Experimental results [6] taken in a CAN-based system 
where the planning scheduler was implemented supported 
on a protocol named FTT-CAN (Flexible Time-
Triggered) showed the exponential decrease of run-time 
overhead with the plan duration. Results from the same 
source have shown also that, for a typical EC duration of, 
say, 8.9ms, and 20-EC plans, the response time to a 
request of change in the message set is normally more 
than adequate when it comes from a human operator. 
Also, the response time can be reasonable for automatic 
changes during set-up or upgrade of the system. However, 
if more dynamic mechanisms are to be thought for the 
system operation, e.g., changing messages’ periodicity to 
react to a bus overload or to adapt the sampling period of 
a distributed control system (operation following a QoS - 
quality of service model), then the response time is 
clearly insufficient. To overcome this limitation the plan 
duration should be reduced. Adding to the increased 
runtime overhead caused by the reduction of the plan, the 
implementation of automatic procedures to allow on-line 
changes in the communication parameters will also 
require relevant processing power at the arbiter node 
CPU.  
Apart from the obvious solution of simply adopting a 
much more powerful CPU to keep up with all this 
processing needs, another interesting possibility is to use 
dedicated hardware to offload the node CPU in the 
scheduling task. The repetitive nature of the scheduling 
process, the robustness required for the arbiter node and 
the desire to reduce strongly the response time to changes 
led to choose the hardware coprocessor as the first 
solution to explore. This option was reinforced by the fact 
that the planning technique makes very easy the exchange 
of data between the coprocessor and the arbiter CPU, 
even when the worst case execution time of the 
scheduling process is not completely determined. The 
output of the scheduler is, in this case, a list of messages 
to be produced during several ECs. Although other 
solutions such as a scheduling coprocessor based in 
another CPU are yet to be studied in the future, the use of 
dedicated hardware is presently a good and easy option 
namely due to the availability of support tools [7].  

3.2. Related Work 
 
While virtually nothing has been reported on specialised 
hardware for message scheduling in fieldbuses, some 
recent papers have surfaced describing coprocessors 
aiming at improving the execution time and predictability 
of operating system functions. 
The Real Time Unit (RTU) reported in [8] is a complete 
multitasking kernel implemented in an ASIC. It consists 
of a number of units which handle most of the time-
critical functions of a typical real-time kernel. Task 
scheduling is based on the rate monotonic algorithm. The 
RTU can handle a maximum of 64 tasks at 8 priority 
levels, and supports up to 3 application processors. For 
each processor there is a dedicated ready queue. The 
prototype described was used in a VME system with 3 
CPU boards executing tasks. The interaction between the 
processors and RTU is through interrupts and registers 
which makes it easy to use the RTU with different types 
of processors. 
The Spring Scheduling CoProcessor (SSCoP) [9] is a 
VLSI coprocessor dedicated only to the task of 
scheduling. It was designed to work together with the 
Spring kernel and supports also multiple processors. The 
SSCoP can use different scheduling algorithms, 
considering shared resource requirements and precedence 
constraints. The operating system writes the attributes of 
a set of tasks in the coprocessors registers. Using these 
attributes SSCoP tries to build a complete feasible 
schedule, which, if successfully created, can be read back 
by the operating system. 
Finally, [10] describes a universal scheduling coprocessor 
for single processor systems. The coprocessor is provided 
with the task parameters and states, and gives back to the 
operating system the identification of the task that has to 
be executed next. The architecture approach is suited for 
the implementation of nearly every scheduling algorithm 
that is based on comparison of task parameters. The 
coprocessor was implemented in FPGA technology and 
its latest version uses the Enhanced Least-Laxity-First 
(ELLF) scheduling algorithm and  supports up to 32 tasks 
with a parameter resolution of 16-bits. 
 
4. The Planning Scheduler Coprocessor (PSCoP) 
 
The coprocessor (PSCoP) currently under development 
somehow differs from the previous solutions because it 
directly follows the planning paradigm. PSCoP has then a 
limited amount of memory to store a scheduler plan i.e. 
the identification of the messages that must be transmitted 
each EC of the plan. PSCoP memory is divided in two 
banks allowing the coprocessor to generate one schedule 
plan while the CPU dispatches the other. 
It the present stage of implementation PSCoP is targetted 
to work with the FTT-CAN protocol. This simplifies the 
interface with the node CPU as explained in the next 
paragraph. The solution described in 4.2 presents some 
degree of scalability since the number of messages can be 
adapted depending on the operational needs. 
 
4.1. The Node CPU Interface 
 
To start working, PSCoP needs to be initialised first with 
the parameters of each variable to be scheduled. These 
include the variable’s period (P), its initial phasing (Ph) 
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and associated transaction duration (C). The parameters 
of each variable are written by the node CPU in a three 
register slot within PSCoP’s interface. There are as many 
register slots as the maximum number of variables 
supported by the coprocessor. 
In this experimental version there is no support for 
explicit deadline or priority parameters. The deadline of 
all variables is assumed to be the same as their period. 
Relative priorities are dictated by the allocation of 
register slots. These are numbered 1 to N and have 
assigned decreasing priorities. The scheduling priority of 
a given variable is thus set by mapping its parameters to 
the appropriate register slot at initialisation time. Clearly, 
priorities are always static. 
The interface includes also an EC register which must be 
initialised with the elementary cycle duration parameter. 
A control/status register allows the CPU to start or stop 
the coprocessor, and provides information about the 
current state of the scheduling operation. 
After instructed to begin PSCoP starts generating 
schedules. The message schedule for each EC in the plan 
is presented to the node CPU as an N-bit word which 
identifies the transactions that must be carried out during 
that EC. If a transaction of message i is allocated in a 
given EC, then bit i is set in that EC schedule. 
This coding scheme was chosen in view of the FTT-CAN 
protocol-based experimental system where PSCoP is 
expected to be used. Since the FTT-CAN trigger message 
data field uses the same coding principle, the dispatching 
overhead is thus drastically reduced. 
 
4.2. Architecture Overview 
 
In devising a hardware structure where the planning 
scheduler functionality could be mapped, two separate 
activities were identified within the scheduler algorithm. 
One of them is performed in the context of each variable 
and acts basically as a timer, keeping track of the instants 
when the variable must be produced. The other concerns 
the placing of transactions in the respective ECs in the 
plan table. 
This partitioning of activities inspired the architecture 
depicted in figure 2. Here, the Variable’s Production 
Timer (VPT) units are responsible for the first activity 
while the Schedule Plan Builder (SPB) takes care of the 
second activity. 
Each variable to be scheduled is allocated to one VPT 
unit which holds the variable’s period (P) and initial 
phase (Ph) parameters. Global timing information 
received from the SPB allows all VPTs to be 

synchronised while keeping track of the EC schedule 
currently being generated. When a VPT detects that the 
scheduling for a particular EC where its variable should 
be produced has started, it signals the SPB requesting the 
allocation of the associated transaction. Based on the 
transactions’ duration (C) and on the remaining EC time 
left, the SPB unit decides to allocate or reject the 
transaction. If the transaction is accepted, further requests 
for allocation in the same EC (from other VPTs) are 
received, otherwise the current EC schedule is finished 
and a new one is started. 
Because more than one VPT can request allocation in the 
same EC, a mechanism must exist to help SPB to select 
which request to serve first. A daisy chain structure 
similar to the one commonly found in microprocessor-
based systems to solve interrupt or bus arbitration, is used 
with this purpose. The chain signal ripples through VPT1 
down to VPTN. When a VPT unit raises a request for 
allocation its chain signal output is deactivated. After this, 
the unit is allowed to communicate with SPB only if its 
chain signal input is true, which means that, in a 
contention situation, the leftmost VPT with a pending 
request is always the only one with the chain signal input 
set to true, and therefore the one which can engage 
communication with SPB. 
Besides the VPTs and SPB the PSCoP architecture 
includes two other functional blocks, the Configuration 
Control Unit (CCU) and the Schedule Plan Memory 
(SPM). The former includes control and status registers 
and provides access to the parameter registers in the 
VPTs and SPB. 
The SPM unit is where SPB builds the plans with the EC 
schedules it generates. In the SPM memories an EC 
schedule is represented by an N-bit word where each bit 
set represents a specific transaction in that EC. The 
diagram in figure 3 illustrates the relationship between the 
transactions placed in EC time slots, and EC schedules in 
the SPM. 
 
4.3. Preliminary Feasibility Assessment 
 
The first prototype of PSCoP will be implemented on a 
XC4010XL FPGA. It will have 64 VPTs and a parameter 
resolution of 8-bits. The memory banks in SPM will 
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Figure 2 - PSCoP architecture. SPB - Schedule Plan Builder; 
VPT - Variable's Production Timer; SPM - Schedule Plan  
Memory; CCU - Configuration Control Unit. 
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support 20-EC plans, or, in other words, will be 20 x 64-
bits FIFO memories. The prototype will be tested on a 
CAN master node based on a XS40 development kit from 
XESS Corporation [11]. 
At the time of writing the coprocessor is still in the design 
entry stage, and so simulation results are not yet 
available. Nevertheless, an accurate estimate of 
performance was obtained by carrying out a step by step 
analysis of the various phases of the coprocessor’s 
internal operation, counting the number of clock cycles 
required by each. 
Each variable allocation takes 6 clock cycles. In the end 
of each EC, another 3 clock cycles are needed to transfer 
the schedule to the SPM unit and to begin the next 
schedule. The time taken by PSCoP to build a complete 
plan with W ECs, tsched, can thus be expressed (in clock 
cycles) as written below, where Nv(ECi) is the number of 
variables allocated in ECi. 

To calculate a worst case scheduling time in our 
prototype version, we shall assume a maximum number of 
allocations in every EC of the plan. For this to occur all 
messages must have the smallest possible length, which, 
if we consider CAN2.0A format and a 1Mbit/s data rate, 
corresponds to a minimum transmission time of 44µs 
[12]. If we consider an EC duration of 1ms, then we can 
have at most 22 of these minimum length messages per 
EC, in every EC. Using the expression above, the 
scheduling time in this worst case scenario is computed as 
2700 clock cycles. Since the FPGA in the development 
board is clocked at 12MHz, this translates to 0.22ms, or 
1.1% of the time taken by the CPU to dispatch an entire 
plan. 
 
5. Concluding Remarks and Future Work 
 
A coprocessor for traffic scheduling in a field-bus system 
was described in this paper. Named PSCoP the 
coprocessor works according to the planning scheduler 
principle, and builds internally the plan tables in a format 
which is particularly adapted to the FTT-CAN protocol. 
Its architecture was defined with a main goal in mind: the 
design of a simple, working coprocessor which could be 
implemented in a medium-sized FPGA, and used as an 
initial testbed to obtain insight on the real performance 
gains and problems of the architecture. This is expected 
to allow the identification of the design changes needed to 
explore the whole benefits of the planning scheduler 
paradigm. 
A first implementation of PSCoP will be available 
shortly. As shown with the rough performance estimate 
given for this initial version working at a modest clock 
rate, PSCoP can easily create a plan table in a small 
fraction of an EC in a field-bus running at 1Mbit/s. This 
result is quite encouraging in the development of the 
coprocessor because it suggests that some of the 
performance room may be sacrificed in favour of a few 
design improvements and additional functionality. 
At this point it is clear that one of these improvements 
must concern the arbitration method used to resolve the 
contention between several VPTs requesting to allocate 
their transactions in the same EC. In fact the current 
daisy-chain mechanism, while very simple to implement, 

strongly compromises the operational flexibility of the 
planning scheduler. Once the variables are allocated to 
VPTs it is not possible to change dynamically their 
priorities. Also, it is not possible to introduce at run-time 
a new variable with a priority in between the ones already 
mapped. To get rid of these limitations we are 
considering to use a self-selection arbitration system in 
the next version of PSCoP. Since this scheme relies on 
dynamic priority vectors it will be easy to implement 
various scheduling policies like RM, EDF or simply 
priorities-based, and even to switch dynamically between 
these policies. Another interesting feature to include in 
this new design will be the possibility to change the plan 
size while the coprocessor is running. 
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