
 1/4

PSCoP – A Planning Scheduler Coprocessor

E. Martins, P. Neves, J. Fonseca

evm@det.ua.pt; pneves@ua.pt; jaf@det.ua.pt
Departamento de Electrónica e Telecomunicações

Universidade de Aveiro
P-3810-193 Aveiro, Portugal

Abstract
The use of a centralised planning scheduler in fieldbus-
based systems requiring real-time operation has proved
to be a good compromise between operational flexibility
and timeliness guarantees.
In this paper a preliminary implementation of a
hardware scheduling coprocessor based in the planning
paradigm is presented. The coprocessor is installed in a
special node of the fieldbus, the bus arbiter, and
generates scheduling tables to be dispatched by the node
CPU. With this solution it is possible to decrease the
response time to changes in the system configuration or
message parameters of the software-based planning
scheduler. This opens the possibility of allowing
automatic on-line changes requested by system nodes in
addition to the ones requested by human operators, thus
improving system reactivity.
In this paper the focus is on the coprocessor’s interface
with the node CPU and its overall functionality. Initial
calculations showing the feasibility of the unit and its
expected performance are also derived.

1. Introduction

The dissemination of embedded fieldbus based
distributed systems in real-time applications has triggered
a significant research activity on many of the related
problems and associated solutions. One of them is the
improvement of distributed embedded systems reactivity
and flexibility without loosing the timeliness guarantees
required for a real-time operation. Some promising results
have been studied in [1], concerning the use of a planning
scheduler technique in systems based on low-processing
power microcontrollers and in fieldbuses such as CAN
[2] and FIP [3]. This technique and an associated
protocol named FTT-CAN (flexible time-triggered
protocol), proposed in [4], can be used to achieve real-
time performance in distributed systems based in CAN,
keeping a runtime overhead in the nodes that is
compatible with the CPUs of most industrial embedded
applications. However, a further step towards systems
reactivity implies decreasing the response time to
required changes. This can be achieved with several
solutions, including the use of a specific scheduling
coprocessor implemented in hardware.
In this paper, preliminary results concerning the
development and use of a scheduling coprocessor in a
CAN-based distributed system are presented. Since the
coprocessor implements a planning scheduler, the paper
starts in section 2 with a short introduction of this
technique. Next, in section 3, the motivation to adopt the
hardware scheduler solution is briefly discussed and some
previous works following the same line are shortly

presented. In section 4 the coprocessor is described
focusing on its functionality and interface with the node
CPU. Its internal architecture is then briefly presented.
This section also includes some figures showing the
feasibility of the proposed architecture. The paper
concludes, pointing out future improvements to the
current architecture.

2. The Planning Scheduler

Message scheduling on a fieldbus can be done statically
or dynamically. Table driven and priority-based
approaches such as the ones in FIP and CAN
respectively, fall in the category of static scheduling while
dynamic scheduling can be done using planning based or
best effort approaches. Although dynamic planning-based
schedulers are not commonly found in current standard
fieldbuses, recent work on the subject [5], has shown they
could become a good compromise between the static and
dynamic approaches.
The planning scheduler and an associated dispatcher can
be implemented in fieldbus-based systems imposing an
overhead compatible with the low-processing power
microprocessors or microcontrollers used as typical
nodes’ CPUs. Also, it presents some degree of flexibility
resulting from the possibility to change, from plan to
plan, the message’s set, adding or deleting messages or
changing their parameters. The underlying concept is the
reservation of resources into the future. So, when a new
message is accepted, the additional bus bandwidth
required is reserved. To do this, the scheduler builds
static schedules for consecutive fixed duration periods of
time called plans. The static schedules are called plan
tables. The creation of a plan table is overlapped with the

1 2 3... N
1 ...
1 2 ...
1 3 ...

 Ec 1
 Ec 2
 ...

Ec K

id bytes period type time
1
...
N

Scheduler

Dispatcher

Dispatch each
message to the bus

1 2 ...
1 ...
1 2 3 ...
1 ...

 Ec K+1
 Ec K+2
 ...

 Ec 2*K

plan (i) plan (i+1)

(Completely on-line)

Periodic messages desc. table

Figure 1 – The planning scheduler.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório do Instituto Politécnico de Castelo Branco

https://core.ac.uk/display/62717194?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PSCoP – A Planning Scheduler Coprocessor; E. Martins, P. Neves, J. Fonseca

 2/4

dispatching of the previous. In figure 1 the operation of
the planning scheduler is illustrated. The dispatcher
works with plan i, while the scheduler builds plan i+1.
In common implementations of the planning scheduler,
the available bus time is divided in fixed duration time
slots called Elementary Cycles (ECs). Each plan includes
a fixed number of ECs. Messages’ periods are then
restricted to an integer multiple of the EC duration.
Transmission time of the longest message is supposed to
be less than the EC duration, then several messages fit, in
principle, within an EC.
The simple mechanism of this scheduler reduces run-time
overhead mainly because it is invoked fewer times. So,
comparing with a dynamic scheduler, each time it is
invoked, instead of determining the next message to be
transmitted, only, it determines all the bus activity, for all
the messages, for a certain period of time corresponding
to the plan duration.

3. Scheduling in a dedicated Coprocessor

3.1. Motivation

Experimental results [6] taken in a CAN-based system
where the planning scheduler was implemented supported
on a protocol named FTT-CAN (Flexible Time-
Triggered) showed the exponential decrease of run-time
overhead with the plan duration. Results from the same
source have shown also that, for a typical EC duration of,
say, 8.9ms, and 20-EC plans, the response time to a
request of change in the message set is normally more
than adequate when it comes from a human operator.
Also, the response time can be reasonable for automatic
changes during set-up or upgrade of the system. However,
if more dynamic mechanisms are to be thought for the
system operation, e.g., changing messages’ periodicity to
react to a bus overload or to adapt the sampling period of
a distributed control system (operation following a QoS -
quality of service model), then the response time is
clearly insufficient. To overcome this limitation the plan
duration should be reduced. Adding to the increased
runtime overhead caused by the reduction of the plan, the
implementation of automatic procedures to allow on-line
changes in the communication parameters will also
require relevant processing power at the arbiter node
CPU.
Apart from the obvious solution of simply adopting a
much more powerful CPU to keep up with all this
processing needs, another interesting possibility is to use
dedicated hardware to offload the node CPU in the
scheduling task. The repetitive nature of the scheduling
process, the robustness required for the arbiter node and
the desire to reduce strongly the response time to changes
led to choose the hardware coprocessor as the first
solution to explore. This option was reinforced by the fact
that the planning technique makes very easy the exchange
of data between the coprocessor and the arbiter CPU,
even when the worst case execution time of the
scheduling process is not completely determined. The
output of the scheduler is, in this case, a list of messages
to be produced during several ECs. Although other
solutions such as a scheduling coprocessor based in
another CPU are yet to be studied in the future, the use of
dedicated hardware is presently a good and easy option
namely due to the availability of support tools [7].

3.2. Related Work

While virtually nothing has been reported on specialised
hardware for message scheduling in fieldbuses, some
recent papers have surfaced describing coprocessors
aiming at improving the execution time and predictability
of operating system functions.
The Real Time Unit (RTU) reported in [8] is a complete
multitasking kernel implemented in an ASIC. It consists
of a number of units which handle most of the time-
critical functions of a typical real-time kernel. Task
scheduling is based on the rate monotonic algorithm. The
RTU can handle a maximum of 64 tasks at 8 priority
levels, and supports up to 3 application processors. For
each processor there is a dedicated ready queue. The
prototype described was used in a VME system with 3
CPU boards executing tasks. The interaction between the
processors and RTU is through interrupts and registers
which makes it easy to use the RTU with different types
of processors.
The Spring Scheduling CoProcessor (SSCoP) [9] is a
VLSI coprocessor dedicated only to the task of
scheduling. It was designed to work together with the
Spring kernel and supports also multiple processors. The
SSCoP can use different scheduling algorithms,
considering shared resource requirements and precedence
constraints. The operating system writes the attributes of
a set of tasks in the coprocessors registers. Using these
attributes SSCoP tries to build a complete feasible
schedule, which, if successfully created, can be read back
by the operating system.
Finally, [10] describes a universal scheduling coprocessor
for single processor systems. The coprocessor is provided
with the task parameters and states, and gives back to the
operating system the identification of the task that has to
be executed next. The architecture approach is suited for
the implementation of nearly every scheduling algorithm
that is based on comparison of task parameters. The
coprocessor was implemented in FPGA technology and
its latest version uses the Enhanced Least-Laxity-First
(ELLF) scheduling algorithm and supports up to 32 tasks
with a parameter resolution of 16-bits.

4. The Planning Scheduler Coprocessor (PSCoP)

The coprocessor (PSCoP) currently under development
somehow differs from the previous solutions because it
directly follows the planning paradigm. PSCoP has then a
limited amount of memory to store a scheduler plan i.e.
the identification of the messages that must be transmitted
each EC of the plan. PSCoP memory is divided in two
banks allowing the coprocessor to generate one schedule
plan while the CPU dispatches the other.
It the present stage of implementation PSCoP is targetted
to work with the FTT-CAN protocol. This simplifies the
interface with the node CPU as explained in the next
paragraph. The solution described in 4.2 presents some
degree of scalability since the number of messages can be
adapted depending on the operational needs.

4.1. The Node CPU Interface

To start working, PSCoP needs to be initialised first with
the parameters of each variable to be scheduled. These
include the variable’s period (P), its initial phasing (Ph)

PSCoP – A Planning Scheduler Coprocessor; E. Martins, P. Neves, J. Fonseca

 3/4

and associated transaction duration (C). The parameters
of each variable are written by the node CPU in a three
register slot within PSCoP’s interface. There are as many
register slots as the maximum number of variables
supported by the coprocessor.
In this experimental version there is no support for
explicit deadline or priority parameters. The deadline of
all variables is assumed to be the same as their period.
Relative priorities are dictated by the allocation of
register slots. These are numbered 1 to N and have
assigned decreasing priorities. The scheduling priority of
a given variable is thus set by mapping its parameters to
the appropriate register slot at initialisation time. Clearly,
priorities are always static.
The interface includes also an EC register which must be
initialised with the elementary cycle duration parameter.
A control/status register allows the CPU to start or stop
the coprocessor, and provides information about the
current state of the scheduling operation.
After instructed to begin PSCoP starts generating
schedules. The message schedule for each EC in the plan
is presented to the node CPU as an N-bit word which
identifies the transactions that must be carried out during
that EC. If a transaction of message i is allocated in a
given EC, then bit i is set in that EC schedule.
This coding scheme was chosen in view of the FTT-CAN
protocol-based experimental system where PSCoP is
expected to be used. Since the FTT-CAN trigger message
data field uses the same coding principle, the dispatching
overhead is thus drastically reduced.

4.2. Architecture Overview

In devising a hardware structure where the planning
scheduler functionality could be mapped, two separate
activities were identified within the scheduler algorithm.
One of them is performed in the context of each variable
and acts basically as a timer, keeping track of the instants
when the variable must be produced. The other concerns
the placing of transactions in the respective ECs in the
plan table.
This partitioning of activities inspired the architecture
depicted in figure 2. Here, the Variable’s Production
Timer (VPT) units are responsible for the first activity
while the Schedule Plan Builder (SPB) takes care of the
second activity.
Each variable to be scheduled is allocated to one VPT
unit which holds the variable’s period (P) and initial
phase (Ph) parameters. Global timing information
received from the SPB allows all VPTs to be

synchronised while keeping track of the EC schedule
currently being generated. When a VPT detects that the
scheduling for a particular EC where its variable should
be produced has started, it signals the SPB requesting the
allocation of the associated transaction. Based on the
transactions’ duration (C) and on the remaining EC time
left, the SPB unit decides to allocate or reject the
transaction. If the transaction is accepted, further requests
for allocation in the same EC (from other VPTs) are
received, otherwise the current EC schedule is finished
and a new one is started.
Because more than one VPT can request allocation in the
same EC, a mechanism must exist to help SPB to select
which request to serve first. A daisy chain structure
similar to the one commonly found in microprocessor-
based systems to solve interrupt or bus arbitration, is used
with this purpose. The chain signal ripples through VPT1
down to VPTN. When a VPT unit raises a request for
allocation its chain signal output is deactivated. After this,
the unit is allowed to communicate with SPB only if its
chain signal input is true, which means that, in a
contention situation, the leftmost VPT with a pending
request is always the only one with the chain signal input
set to true, and therefore the one which can engage
communication with SPB.
Besides the VPTs and SPB the PSCoP architecture
includes two other functional blocks, the Configuration
Control Unit (CCU) and the Schedule Plan Memory
(SPM). The former includes control and status registers
and provides access to the parameter registers in the
VPTs and SPB.
The SPM unit is where SPB builds the plans with the EC
schedules it generates. In the SPM memories an EC
schedule is represented by an N-bit word where each bit
set represents a specific transaction in that EC. The
diagram in figure 3 illustrates the relationship between the
transactions placed in EC time slots, and EC schedules in
the SPM.

4.3. Preliminary Feasibility Assessment

The first prototype of PSCoP will be implemented on a
XC4010XL FPGA. It will have 64 VPTs and a parameter
resolution of 8-bits. The memory banks in SPM will

VPT1 VPT2 VPTN

CCU

SPB

SPM

uC Interface Port

Figure 2 - PSCoP architecture. SPB - Schedule Plan Builder;
VPT - Variable's Production Timer; SPM - Schedule Plan
Memory; CCU - Configuration Control Unit.

A A A A AB B BC CD DF H

ECs

1 011 0 0 0 0

1 1

00000

000000

0000

000000

1

111

1

111

1

X1

X5

X4

X3

X2

HGFEDCBA

Figure 3 - EC schedules in the SPM and the corresponding
bus transactions. An example showing a 5-EC plan table
supporting 8 variables and, above it, the respective timeline
diagram.

PSCoP – A Planning Scheduler Coprocessor; E. Martins, P. Neves, J. Fonseca

 4/4

support 20-EC plans, or, in other words, will be 20 x 64-
bits FIFO memories. The prototype will be tested on a
CAN master node based on a XS40 development kit from
XESS Corporation [11].
At the time of writing the coprocessor is still in the design
entry stage, and so simulation results are not yet
available. Nevertheless, an accurate estimate of
performance was obtained by carrying out a step by step
analysis of the various phases of the coprocessor’s
internal operation, counting the number of clock cycles
required by each.
Each variable allocation takes 6 clock cycles. In the end
of each EC, another 3 clock cycles are needed to transfer
the schedule to the SPM unit and to begin the next
schedule. The time taken by PSCoP to build a complete
plan with W ECs, tsched, can thus be expressed (in clock
cycles) as written below, where Nv(ECi) is the number of
variables allocated in ECi.

To calculate a worst case scheduling time in our
prototype version, we shall assume a maximum number of
allocations in every EC of the plan. For this to occur all
messages must have the smallest possible length, which,
if we consider CAN2.0A format and a 1Mbit/s data rate,
corresponds to a minimum transmission time of 44µs
[12]. If we consider an EC duration of 1ms, then we can
have at most 22 of these minimum length messages per
EC, in every EC. Using the expression above, the
scheduling time in this worst case scenario is computed as
2700 clock cycles. Since the FPGA in the development
board is clocked at 12MHz, this translates to 0.22ms, or
1.1% of the time taken by the CPU to dispatch an entire
plan.

5. Concluding Remarks and Future Work

A coprocessor for traffic scheduling in a field-bus system
was described in this paper. Named PSCoP the
coprocessor works according to the planning scheduler
principle, and builds internally the plan tables in a format
which is particularly adapted to the FTT-CAN protocol.
Its architecture was defined with a main goal in mind: the
design of a simple, working coprocessor which could be
implemented in a medium-sized FPGA, and used as an
initial testbed to obtain insight on the real performance
gains and problems of the architecture. This is expected
to allow the identification of the design changes needed to
explore the whole benefits of the planning scheduler
paradigm.
A first implementation of PSCoP will be available
shortly. As shown with the rough performance estimate
given for this initial version working at a modest clock
rate, PSCoP can easily create a plan table in a small
fraction of an EC in a field-bus running at 1Mbit/s. This
result is quite encouraging in the development of the
coprocessor because it suggests that some of the
performance room may be sacrificed in favour of a few
design improvements and additional functionality.
At this point it is clear that one of these improvements
must concern the arbitration method used to resolve the
contention between several VPTs requesting to allocate
their transactions in the same EC. In fact the current
daisy-chain mechanism, while very simple to implement,

strongly compromises the operational flexibility of the
planning scheduler. Once the variables are allocated to
VPTs it is not possible to change dynamically their
priorities. Also, it is not possible to introduce at run-time
a new variable with a priority in between the ones already
mapped. To get rid of these limitations we are
considering to use a self-selection arbitration system in
the next version of PSCoP. Since this scheme relies on
dynamic priority vectors it will be easy to implement
various scheduling policies like RM, EDF or simply
priorities-based, and even to switch dynamically between
these policies. Another interesting feature to include in
this new design will be the possibility to change the plan
size while the coprocessor is running.

References

[1] L. Almeida; “Flexibility and Timeliness in Fieldbus-Based

Real-Time Systems”, PhD Thesis, University of Aveiro.
Portugal, November 1999.

[2] Bosch, “CAN specification version 2.0 - Tech. Report”,
Bosch GmbH, Stuttgart, Germany, 1991.

[3] P. Leterrier, “The FIP Protocol”, WorldFip Europe, 2-4
Rue de Bône, 92160 Antony – France, 1992.

[4] J. Fonseca, L Almeida; “Using a Planning Scheduler in
the CAN Network”, Proc. ETFA’99 – 7th IEEE Int. Conf. on
Emerging Technologies and Factory Automation, Spain,
October 1999.

[5] L. Almeida, R. Pasadas, J. Fonseca - “Using The Planning
Scheduler to Improve Flexibility in Real-Time Fieldbus
Networks” IFAC, Control Engineering Practice Vol. 7, Nº 1,
pp. 101-108, Janeiro de 1999.

[6] L. Almeida, J. Fonseca, P. Fonseca - “A Flexible Time-
Triggered Communication System Based on the Controller Area
Network” Proc. FeT '99 - Fieldbus Systems and their
Applications Conf., Germany, Sept. 1999.

[7] Valery Sklyarov et. al.; “Development System for FPGA-
Based Digital Circuits”, Proc. FCCM’99: IEEE Symp. Field-
Prog. Custom Computing Machines, USA, April de 1999.

 [8] J. Adomat et. al.; “Real-Time Kernel in Hardware RTU:
A Step Towards Deterministic and High-Performance Real-
Time Systems”; Proc. of Euromicro RTS ’96, L’Aquila, Italy,
1996, pp.164-168.

[9] D. Niehaus et. al.; “The Spring Scheduling Coprocessor:
Design, Use, and Performance”; Proc. of the 14th IEEE Real-
Time Systems Symposium, USA, 1993, pp.106-111.

[10] J. Hildebrandt, F. Golatowski D. Timmermann;
“Scheduling Coprocessor for Enhanced Least-Laxity-First
Scheduling in Hard Real-Time Systems”; Proc. 11th Euromicro
Conf. on Real-Time Systems, England, June, 1999, pp.208-215.

[11] XESS Corporation, URL: http://www.xess.com.
[12] K. Tindell, A. Burns, and A. Wellings; “Calculating

Controller Area Network Message Response Times”; Proc.
IFAC Workshop on Distributed Computer Control Systems,
Toledo, Spain, September 1994.


=

+=
W

i
isched ECNvWt

1
)(.6.3

	A

