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Abstract—In this paper, the distribution of the ratio of extreme
eigenvalues of a complex Wishart matrix is studied in order to
calculate the exact decision threshold as a function of the desired
probability of false alarm for the maximum-minimum eigenvalue
(MME) detector. In contrast to the asymptotic analysis reported
in the literature, we consider a finite number of cooperative re-
ceivers and a finite number of samples and derive the exact decision
threshold for the probability of false alarm. The proposed exact for-
mulation is further reduced to the case of two receiver-based coop-
erative spectrum sensing. In addition, an approximate closed-form
formula of the exact threshold is derived in terms of a desired prob-
ability of false alarm for a special case having equal number of
receive antennas and signal samples. Finally, the derived analyt-
ical exact decision thresholds are verified with Monte-Carlo sim-
ulations. We show that the probability of detection performance
using the proposed exact decision thresholds achieves significant
performance gains compared to the performance of the asymptotic
decision threshold.

Index Terms—Complex Wishart matrix, cooperative spectrum
sensing, eigenvalue-based detection.

I. INTRODUCTION

C OGNITIVE radio (CR) is defined as an intelligent wire-
less communication system that provides more efficient

communication by allowing secondary users to utilize the
unused spectrum segments. In order to make this a reality,
spectrum management has to be done efficiently in cognitive
radio networks. The spectrum management is composed of
four major steps as defined in [1]: sensing, decision making,
sharing, and mobility. Among these, the spectrum sensing and
decision making are the most important constituents for the
establishment of cognitive radio networks. CR users should
detect the primary user networks to find the spectrum holes or
the unused spectrum to utilize them effectively for cognitive
access. At the same time, they should prevent interference to
the primary users due to their cognitive access of the channels.
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A number of spectrum sensing algorithms such as the energy
detection [2]–[4], the eigenvalue-based detection [5]–[7], the
covariance-based detection [8], [9], and cyclostationary-based
(or feature-based) detection [10]–[12] are reported in the liter-
ature to detect the primary transmitter. Pros and cons of these
different techniques are discussed in many studies, for example,
see [12]–[14]. One of the most accurate techniques that can
simultaneously achieve both high probability of detection and
low probability of miss alarms without requiring information of
primary user signals and noise power are the eigenvalue-based
detection techniques proposed by Zeng and Liang [15]. There
are three major eigenvalue-based detection techniques studied
in the literature: 1) maximum–minimum eigenvalue (MME)
detection; 2) energy with minimum eigenvalue (EME) de-
tection; 3) maximum eigenvalue detection (MED). In [15], it
has been shown that in the MME type of eigenvalue-based
detection method, the ratio of the maximum eigenvalue to
minimum eigenvalue can be used to detect the signal. MME has
many advantages over the rest of the sensing methods reported
in the literature. This is because, unlike other methods, the
decision on presence of the signal can be done irrespective of
the knowledge of the signal and the noise properties.

In the eigenvalue-based methods, the expression for the deci-
sion threshold has been derived based on random matrix theory
to make a hypothesis testing. In most of the eigenvalue-based
detection schemes proposed so far in the literature, both the
threshold value and the probabilities of detection and false alarm
are calculated based on the asymptotical (limiting) distributions
of eigenvalues that is mathematically tractable and less com-
plex. In [7], it is mentioned that the largest and the smallest
eigenvalues are approximated to deterministic values based on
theorems in [16] and [17], respectively. For large number of
received signal samples, the probability of false alarm of the
MME detection is formulated in terms of Tracy–Widom distri-
bution [18], which is calculated based on limiting distributions
of eigenvalues.

All of the above analysis assume that the number of signal
samples and the number of cooperative receivers approach
infinity. However, in practical situations, these are finite and
considerably small to achieve optimal performances and effi-
cient spectrum usage. Therefore, estimating the exact threshold
expression for finite number of collected samples and cooper-
ative receivers is of great interest. However, finding the exact
distribution of the ratio of extreme eigenvalues of complex
random matrix is difficult. The goal of this paper is to derive the
exact threshold expressions of the MME detection-based spec-
trum sensing. Specifically, the proposed novel exact threshold
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achieves lower probability of false alarm and higher detection
probability in practical scenarios. The exact threshold is de-
rived using a function of the exact distribution of the condition
number of complex Wishart matrix which is expressed in terms
of complex hypergeometric functions or multiple integral forms
[19]. The proposed exact expression works extremely well for
finite number of samples and finite number of cooperative
receivers as opposed to the asymptotical approaches proposed
in the literature. This formulation is further reduced to compact
density expression for the systems using two receiving an-
tennas. The asymptotic threshold formula reported in literature
turns out to be infinite when the equal number of receiving
antennas and samples are used. Therefore, an approximation
of the threshold function is derived as an extremely simple
formula for decision threshold in terms of complexity for
the systems having equal number of receiving antennas and
samples. It should be noted that in [20], the authors also have
studied a similar problem using a different approach, where
the exact eigenvalue ratio probability density function (pdf)
is derived using the expression of the joint distributions of an
arbitrary subset of ordered eigenvalues of complex Wishart
matrices. However, similar to the asymptotic approach which
requires a look-up table for computation of inverse CDF of the
second-order Tracy–Widom distribution, in the approach given
in [20] also, the receiver should be provided with a look-up
table in order to calculate the proposed inverse CDF. The
proposed exact threshold given in this study does not need a
look look-up table.

The rest of the paper is organized as follows. Section II in-
troduces the cooperative signal detection model for spectrum
sensing. In Section III, the proposed exact decision threshold is
derived for MME spectrum sensing technique. A closed-form
approximation for the exact threshold is also presented in this
section. Section IV contains the simulation and analytical results
of the proposed exact formulation of the decision threshold as
well as the probability of detection performances of the same.
Finally, the conclusion is given in Section V. The mathematical
proofs are given in the Appendix.

II. COOPERATIVE SPECTRUM SENSING

Consider a cooperative spectrum sensing problem with
cognitive users and primary users and each user
is equipped with single antenna. During the sensing period,
the cognitive user received signals, , under
the two hypothesizes ( —absence of primary signal and

—presence of primary signal) can be written in a vector
form as

(1)

(2)

where , , , and .
Noted that the noise is independent of the primary user signal

and channel matrix , where each el-
ement denotes the channel coefficient between th primary
transmitter to th cognitive receiver. Here, we assume as circu-
larly symmetric complex Gaussian noise, i.e., .

The statistical covariance matrix of the cognitive user received
signal can be written under the two hypothesizes as follows:

(3)

Moreover, the eigenvalues, ,
of under the is given by , and under the

is given by

(4)

where represent the primary user received signal
powers. It is clear that the ratio of the extreme eigenvalues of
the statistical covariance matrix is a good test statistic to
differentiate the two hypothesizes and , i.e.,

(5)

Test statistic under and under . In prac-
tice, we only have finite duration of sensing time to detect the
primary user signals; hence, we use sample covariance matrix
to formulate the test statistic. It should be noted that the sample
covariance matrix of the received signal is going to be complex
Wishart matrix for the noise only case, i.e.,

(6)

(7)

where , is the complex
central Wishart matrix and its distribution is denoted by

. The condition number of a matrix
is defined as the positive square root of the ratio of the largest

to the smallest eigenvalues of the positive definite Hermitian
matrix . Thus,

(8)

and

where the -norms of the matrix and the vector are

and

respectively. We assume that the eigenvalues of are ordered
in strictly decreasing order,

, since the probability that any eigenvalues of are equal is
zero. The distributions of the test statistic and condition number
are given in the next section; see details in [19].

A. Threshold Determination

In the general model of the spectrum sensing, a threshold
must be determined to compare with a test (also called the de-
cision) statistics of the sensing metric in order to determine the
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presence of a primary user. Depending on the detector, the test
statistic can vary, for example, the decision statistic is the
power of the received signal for energy-based detectors; the
spectral correlation density function of the received signal for
cyclostationarity-based (or feature-based) detection; the ratio of
maximum to minimum eigenvalues of the received signal co-
variance matrix for MME-based detection, etc. Depending on
the decision statistics, the threshold can be formulated from the
formulations of the probability of detection or probability
of false-alarm as follows:

(9)

(10)

where and are the pdf of the test sadistic under the
hypotheses and , respectively. In energy detector, under
both hypotheses, the test statistic is a random variable and can
be approximated by a Gaussian distribution using the central
limit theorem for large value of sample size [21]. Therefore,
it is possible to define the threshold in terms of both and

. However, in the case of MME-based detection method,
it is difficult to derive the density of the decision statistic for
the hypothesis of signal-plus-noise, since the density of ratio
of maximum-to-minimum eigenvalues of the covariance ma-
trix of the received signal is unknown. Therefore, the decision
threshold is calculated based on rather than since den-
sity of ratio of the extreme eigenvalues of the received covari-
ance matrix tractable in noise only case. It should be noted that
in the noise-only case, the density of ratio of maximum-to-min-
imum eigenvalues of a complex Wishart matrix is the required
information to calculate the .

III. MAXIMUM-MINIMUM EIGENVALUE DETECTION

Based on the decision statistic given in (5), the sensing
threshold, , must be estimated for a required probability of false
alarm. To define the threshold in terms of or vice versa, the
density of test statistic is required. The density can be found
either from asymptotically or by using exact number of samples.
In most of the eigenvalue based detection schemes proposed
in the literature, both the threshold value and the probabilities
of detection and false alarm are derived based on asymptotical
(limiting) distributions of eigenvalues that is mathematically
tractable and less complicated as explained next.

A. Asymptotic Threshold

An asymptotic formula of sensing threshold in terms of de-
sired probability of false alarm for MME has been proposed in
[15]. For a complex signal, the sensing threshold in terms of de-
sired probability of false alarm is calculated by using the results
of the theorems, [16] and [17], as follows:

(11)

where denotes the inverse of cumulative distribution
function (cdf) of the Tracy–Widom distribution of order 2

[18]. The threshold expression in (11) is formulated based
on the deterministic asymptotic values of the minimum and
maximum eigenvalues of the covariance matrix . In order
to use this formulation in practice, we need large number of
collaboratively sensing cognitive receivers. In addition to this,
the sample size of the signal has to be significantly large;
thus, this will lead to larger sensing time while calculating
sample covariance matrices so resulting in higher computa-
tional complexity for estimating the thresholds. An alternative
asymptotic threshold formula expression is formulated in [22],
where the threshold needs a look-up table for the computation
of the proposed inverse cdf which outperforms the asymptotic
threshold given [5].

In order to estimate the sensing threshold accurately for prac-
tical scenarios for limited number of samples and finite col-
laborative cognitive receivers, the exact threshold expression is
needed to be formulated. This threshold should achieve a lower

and higher . It should be noted that low probability of
false alarm offers more chances for secondary user to utilize
the spectrum hole. Thus, low and high should be targeted
in order to reliably decide on the two hypotheses. Thus, the main
interest of this paper is to derive exact threshold expression as
explained next.

B. Exact Threshold

In this section, we formulate the sensing threshold in terms
of the desired based on the exact density of the condition
number of complex Wishart matrix. Building on authors pre-
vious result in [19], where the density of condition number is
given in multiple integrations form, here we obtain a simplified
expression by solving these multiple integration. We have the
following theorem.

Theorem 1: (Ratnarajah [19]) Let an complex Gaussian
random matrix be distributed as
with mean and covariance .
Then the complex central Wishart matrix and its distribution
is denoted by . The condi-
tion number of a Wishart matrix is defined as

and the density of
is given by

(12)

where is the joint density of and given by

(13)

where is the complex multivariate gamma function de-
fined as

(14)

and is defined as

(15)



52 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 5, NO. 1, FEBRUARY 2011

with

(16)

(17)

and

(18)

where and is confluent hypergeo-
metric function of the first kind.

Proof: The key step is to solve the multiple integration in
the expression of the joint density of and given in [19]

(19)

where

(20)

and . This is done with the technique proposed in
[23], which gives

(21)

where is an matrix with entries defined by

(22)

the integration can be further simplified as

(23)

To this end, the desired result can be obtained with the help of
the following integration identity:

(24)

The required density of the test statistics and the density
of given in Theorem 1 have one-to-one relation-

ship. Using the density of , we compute the exact value of the
threshold for the target from the following equation:

(25)

As shown from (25), the exact threshold can be calculated from
the density given in (12). So, the can be tuned in order
to find the exact threshold . The exact value of the threshold
can be computed for any finite number of receiver and
the number of samples . The numerical values of the exact
threshold values are found from the numerical calculation of the
integral given in (25), in the following section.

C. Exact Closed Form Expression for

From Theorem 1, we have the following corollary.
Corollary 1: If , then the density of the condition

number can be expressed as

Proof: See Appendix.

D. Approximate Closed Form Expression for Large

We have the following proposition.
Proposition 1: If the number of cooperative receivers

and the number of samples are equal (i.e., ) and both
and are large, then the density of the ratio of maximum to

minimum eigenvalues can be approximated as

(26)

Proof: The pdf of the decision statistic is derived from
the given density of ratio of condition number to number of
samples in [24, p. 71].

This expression is not only extremely simple, it is also very
accurate, especially for large and as shown in the simulation
results. Based on this simple expression, we derive a closed-
form expression for the threshold given the false alarm rate in
the following. First, the cumulative distribution function can be
obtained as

(27)

Then, the false alarm rate is given in closed-form by

(28)
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Fig. 1. Probability of false alarm versus decision threshold for analytically
and empirically estimated exact threshold values and asymptotically estimated
threshold values. Symbols “�” and “�” denote the empirical results.

Hence, we have and

(29)

With the expression given above, the threshold value can be cal-
culated very easily for a desired . Moreover, converges
almost surely to exact threshold value as . This con-
vergence can be observed from the simulation results given in
Fig. 4.

IV. SIMULATION RESULTS

In the simulations, single and multiple transmitter systems
having different number of receivers ( 3, 5, 10, 100) are
used to evaluate the performances of probability of detection
and false-alarms when 8, 10, 50, and 100 number of sam-
ples are used. The results are averaged over minimum tests
using Monte-Carlo simulations written in Matlab. Simulation
results are obtained using BPSK modulated random primary
signal and independent and identically distributed (i.i.d.) noise
samples with Gaussian distributed.

Fig. 1 shows the exact analytical and asymptotic threshold
versus probability of false alarm. We also plotted the empirical
results for each cases and denoted as “ ” and “ ,” respectively.
As shown in this figure, one may infer that the threshold values
of the asymptotic approach given in (11) significantly deviate
from the exact threshold values when and are small. It is
also highlighted that the analytically and empirically estimated
exact threshold values are very close to each other in all of the
cases considered.

Fig. 2 illustrates the performance of probability of detection
for the scenarios considered in Fig. 1. The detection perfor-

mances with the exact thresholds are significantly higher than
that of the asymptotically estimated threshold values. For com-
parison, Fig. 3 shows the exact and asymptotic probability of
detection versus SNR for different number of transmitters. The
results are taken for , and . The corre-
sponding exact and asymptotic threshold values for theses pa-
rameters are 2.93 and 3.51, respectively. The plot reveals the fol-
lowing fact that higher number of transmitter (or primary users)
reduce the detection performance.

Fig. 2. Probability of detection versus SNR at probability of false alarm 0.1
�� � ���� using exact and asymptotic thresholds.

Fig. 3. Exact and asymptotic probability of detection versus SNR at� � ���
for different number of transmitters (or primary users) with� � �� and� � �.

Fig. 4. Probability of detection versus SNR at � � ���.

As it is derived in Proposition 1, decision thresholds of the
systems having can be approximated by using a very
simple formula given in (29). Fig. 4 shows the probability of de-
tection versus SNR for the approximated threshold for different
values of . One may observe that for a given , the
probability of detection increases with SNR. It is clear that the
detection performance with the approximated threshold value
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performs extremely well and performs very close to the perfor-
mance using the exact threshold for higher and . It should
be noted that the approximated formula for the exact threshold
value can be calculated extremely simply compared to that of
the exact threshold value. At the same time, it provides improved
performance compared to that of the asymptotic threshold based
performance.

V. CONCLUSION

In this paper, we derived the exact decision threshold
as a function of the desired probability of false alarm for
MME-based cooperative spectrum sensing in cognitive radio.
This is based on the actual distribution of the ratio of the
extreme eigenvalues of the complex Wishart matrix. The
expression for the decision threshold was simplified for two
receiving antenna or for the case of two user collaborative
sensing. We also derived a simpler closed-form threshold
function using an asymptotic distribution with equal numbers
of receive antennas and signal samples, that is and large

. Simulations using i.i.d. Gaussian noise and BPSK signals
were presented in order to verify the derived threshold values
based on the probability of detection performance. It has been
shown that analytical and empirical results are coincide with
each other. Moreover, the probability of detection performance
using the proposed exact decision thresholds achieve signifi-
cant performance gains compared to the performance using the
asymptotic decision threshold reported in the literature, which
leads to efficient spectrum usage.

APPENDIX

When , the density of the function given in (12) can
be reduced to

(30)

which can be simplified as

(31)

Noticing that the integration can be solved with the help of the
following identity

(32)

we obtain the density expression of as

(33)

To this end, the density of can be derived from (33) as
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