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ABSTRACT

The spectroscopic Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) galaxy sam-
ple represents the final set of galaxies observed using the original SDSS target selection cri-
teria. We analyse the clustering of galaxies within this sample, including both the Luminous
Red Galaxy (LRG) and Main samples, and also include the 2-degree Field Galaxy Redshift
Survey (2dFGRS) data. In total, this sample comprises893 319 galaxies over 9 100 deg2.
Baryon Acoustic Oscillations are observed in power spectrameasured for different slices
in redshift; this allows us to constrain the distance–redshift relation at multiple epochs. We
achieve a distance measure at redshiftz = 0.275, of rs(zd)/DV (0.275) = 0.1390 ± 0.0037
(2.7% accuracy), wherers(zd) is the comoving sound horizon at the baryon drag epoch,
DV (z) ≡ [(1 + z)2D2

Acz/H(z)]1/3, DA(z) is the angular diameter distance andH(z) is
the Hubble parameter. We find an almost independent constraint on the ratio of distances
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DV (0.35)/DV (0.2) = 1.736 ± 0.065, which is consistent at the 1.1σ level with the best fit
ΛCDM model obtained when combining ourz = 0.275 distance constraint with the WMAP
5-year data. The offset is similar to that found in previous analyses of the SDSS DR5 sample,
but the discrepancy is now of lower significance, a change caused by a revised error anal-
ysis and a change in the methodology adopted, as well as the addition of more data. Using
WMAP5 constraints onΩbh

2 andΩch
2, and combining our BAO distance measurements with

those from the Union Supernova sample, places a tight constraint onΩm = 0.286±0.018 and
H0 = 68.2±2.2 kms−1 Mpc−1 that is robust to allowingΩk 6= 0 andw 6= −1. This result is
independent of the behaviour of dark energy at redshifts greater than those probed by the BAO
and supernova measurements. Combining these data sets withthe full WMAP5 likelihood
constraints provides tight constraints on bothΩk = −0.006 ± 0.008 andw = −0.97 ± 0.10
for a constant dark energy equation of state.

Key words: cosmology: observations, distance scale, large-scale structure of Universe

1 INTRODUCTION

“What is the nature of dark energy?” is one of the current key ques-
tions in physical science. Distinguishing between competing the-
ories will only be achieved with precise measurements of thecos-
mic expansion history and the growth of structure within it.Among
current measurement techniques for the cosmic expansion, Baryon
Acoustic Oscillations (BAO) appear to have the lowest levelof sys-
tematic uncertainty (Albrecht et al. 2006).

BAO are a series of peaks and troughs, with a wavelength of
approximately0.06 h Mpc−1 that are present in the power spec-
trum of matter fluctuations after the epoch of recombination, and on
large-scales. They occur because the primordial cosmological per-
turbations excite sound waves in the relativistic plasma ofthe early
universe (Silk 1968; Peebles & Yu 1970; Sunyaev & Zel’dovich
1970; Bond & Efstathiou 1984, 1987; Holtzman 1989). Radiation
pressure drives baryonic material away from the seed perturbations
until the ionised material recombines at redshiftz ≃ 1000. The
momentum of the baryonic material means that the motion con-
tinues for a short time after recombination, until an epoch known
as the baryon-drag epoch. The wavelength of the BAO is related
to the comoving sound horizon at the baryon-drag epoch, which
depends on the physical densities of matterΩmh2 and of baryons
Ωbh

2 in the Universe. WMAP5 constraints onΩbh
2 and Ωmh2

(Komatsu et al. 2009) give thatrs(zd) ≃ 153.5 Mpc (see Section 7
for details).

BAO occur on relatively large scales, which are still pre-
dominantly in the linear regime at present day; it is therefore
expected that BAO should also be seen in the galaxy distribu-
tion (Goldberg & Strauss 1998; Meiksin et al. 1999; Springelet al.
2005; Seo & Eisenstein 2005; White 2005; Eisenstein et al. 2007).
We can therefore use BAO as standard rulers to constrain the expan-
sion of the Universe if the comoving sound horizon at the baryon
drag epoch is known. The apparent size of the BAO measured
from observations then leads to measurements of the Hubble pa-
rameter and the angular diameter distance (Seo & Eisenstein2003;
Bond & Glazebrook 2003; Hu & Haiman 2006; Matsubara 2004).

The acoustic signature has now been convincingly detected at
low redshift (Percival et al. 2001; Cole et al. 2005; Eisenstein et al.
2005; Huetsi 2006) using the 2dF Galaxy Redshift Survey (2dF-
GRS; Colless et al. 2003) and the Sloan Digital Sky Survey (SDSS;
York et al. 2000). The detection has subsequently been refined
using more data and better techniques, and is now producing
competitive constraints on cosmological models. Tegmark et al.
(2006) analysed the Sloan Digital Sky Survey (SDSS) Data Release

4 (DR4; Adelman-McCarthy et al. 2006) Luminous Red Galaxy
(LRG) sample. Percival et al. (2007a,b) presented the powerspec-
trum of the Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5;
Adelman-McCarthy et al. 2007) galaxy sample and consideredthe
shape of the power spectrum and measured the matter density us-
ing the BAO features. Percival et al. (2007c) took this analysis a
stage further by fitting the SDSS data, combined with the 2dFGRS,
with models of the distance–redshift relation. Gaztanaga et al.
(2008) and Sanchez et al. (2009) have also analysed the SDSS DR6
(Adelman-McCarthy et al. 2008) sample, obtaining cosmological
constraints from the radial and spherically averaged BAO signal.
In a recent analysis, Kazin et al. (2009) have calculated thecorrela-
tion function of the SDSS DR7 (Abazajian et al. 2009) LRG sam-
ple, and have shown that their results agree with those presented in
our paper. Two studies have also considered the clustering of the
LRGs at high redshift within the SDSS survey, using photometric
redshifts to estimate galaxy distances (Padmanabhan et al.2007;
Blake et al. 2007).

In this paper, we analyse the clustering of galaxies in the
spectroscopic SDSS DR7 sample, including both LRG and Main
galaxy samples, combined with the 2dFGRS, and measure the
BAO signal in a series of redshift slices. SDSS DR7 marks the
final release of galaxies observed using the standard SDSS tar-
geting algorithm, and the sample we analyse covers a solid an-
gle of 7930 deg2, including a 7190 deg2 contiguous region in the
North Galactic Cap. The Baryon Oscillation Spectroscopic Sur-
vey (BOSS; Schlegel et al. 2009a), part of the SDSS-III project,
will adopt a different targeting algorithm, focusing on galaxies and
quasars at higher redshifts.

The observed amplitude of the large-scale galaxy cluster-
ing depends on both galaxy colour and luminosity (Tegmark etal.
2004; Zehavi et al. 2005; Swanson et al. 2008). Using the SDSS
DR5 sample, Cresswell & Percival (2009) showed that for blue
galaxies, the deviation in the shape of the galaxy power spectrum
from the linear matter power spectrum atk > 0.1 h Mpc−1 is a
strong function of luminosity, while it is almost constant for red
galaxies. It is therefore difficult to extract the underlying matter
power spectrum from a galaxy power spectrum measured for a pop-
ulation of galaxies where the distribution of galaxy colours and lu-
minosities changes with spatial location, such as that provided by a
magnitude-limited catalogue. In contrast, the luminous red galaxy
population, which comprises the high redshift part of the sample
analysed here, has a simpler relation with the matter field, in that
there is a single galaxy population to consider (Reid et al. 2008).
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In a companion paper (Reid et al. 2009), we apply a grouping al-
gorithm to recover the halo power spectrum from the LRGs, then
calibrate the relation of the halo power spectrum to the linear the-
ory power spectrum using simulations. We are then able to extract
cosmological information from the large scale shape of the power
spectrum in addition to the BAO signal, though the constraints are
more tightly embedded in the assumed cosmological framework.

BAO in the galaxy power spectrum are only weakly af-
fected by the effects of non-linear structure formation andscale-
dependent galaxy bias, because they are on such large scales.
The primary consequence is a damping on small scales, which
can be well approximated by a Gaussian smoothing (Bharadwaj
1996; Crocce & Scoccimarro 2006, 2008; Eisenstein et al. 2007;
Matsubara 2008a,b). The observed BAO, defined as the ratio ofthe
observed power spectrumPobs to a smooth fit to this powerPnw,
BAOobs ≡ Pobs/Pnw, are related to the original BAO in the linear
matter power spectrumBAOlin, defined similarly, by

BAOobs = GdampBAOlin + (1 − Gdamp), (1)

where Gdamp = exp(− 1
2
k2D2

damp), and the damping scale,
Ddamp is set to 10h−1 Mpc for redshift-space power spectra
at z ≃ 0.3 (Eisenstein et al. 2007). This damping of the linear
power is a relatively benign effect as it does not affect the po-
sitions of the BAO, although it does reduce the signal available.
Additional, more pernicious effects such as the mixing of modes
in the power spectrum, can generate shifts in the BAO position
(Crocce & Scoccimarro 2008); for biased tracers, these offsets can
be at the percent level (Smith et al. 2007), and are thereforeimpor-
tant as we wish to make percent level distance measurements.

In our analysis, we measure BAO relative to a model that al-
lows for smooth changes in the underlying shape of the power spec-
trum, which alleviates some of this shift. Physical models of BAO
positions in observed redshift-space power spectra relative to a such
a fitted smooth model (Crocce & Scoccimarro 2008; Smith et al.
2008; Sanchez et al. 2009; Padmanabhan & White 2009), and nu-
merical simulations (Angulo et al. 2008; Seo et al. 2008; Kimet al.
2009) suggest we should expect residual shifts at the sub-percent
level. These are below the precision of current experiments: e.g.
in this paper we present a BAO distance scale measurement with
2.7% accuracy. Therefore, we adopt a procedure that allows for
the damping as well as smooth changes in the underlying shapeof
the power spectrum, but no more. The analysis of future surveys,
which will lead to tighter distance–redshift constraints,will clearly
also have to allow for non-linear effects, either by physical model-
ing, simulations, or by using methods which attempt to reconstruct
the initial fluctuation field (Eisenstein et al. 2007; Seo et al. 2008;
Padmanabhan et al 2009).

The SDSS and 2dFGRS data are discussed in Sections 2 and 3.
The basic methodology, presented in Section 4, is similar tothat of
Percival et al. (2007c), although we have revised the calculation of
the window function to increase the computational speed. Wealso
perform an extensive test of the derived errors, running mock cata-
logues through our full analysis pipeline to test the confidence in-
tervals quoted (Section 5). Results are presented in Section 6 and 7,
tested for robustness in Section 8 and placed in a cosmological con-
text in Sections and 9. A comparison with our DR5 analyses is
given in Section 10 and we finish with a discussion in Section 11.

In this paper we use the standard cosmological parameters. For
flat ΛCDM models these are the Hubble constantH0, the densities
of baryonic matterΩb, cold dark matterΩc, all matterΩm, and dark
energyΩΛ. Going beyond this simple class of models, we use the
equation of state of the dark energyw, the curvature energy density

Ωk and total energy densityΩtot. When combining with informa-
tion from the CMB, we also consider some parameters that are not
constrained by the BAO:τ is the optical depth to re-ionization,ns

is the scalar spectral index, andA05 is the amplitude of curvature
perturbations atk = 0.05 Mpc−1.

2 THE DATA

The SDSS-I and SDSS-II projects used a 2.5m telescope
(Gunn et al. 2006), to obtain imaging data in five passbandsu, g, r,
i andz (Fukugita et al. 1996; Gunn et al. 1998). The images were
reduced (Lupton et al. 2001; Stoughton et al. 2002; Pier et al. 2003;
Ivezic et al. 2004) and calibrated (Lupton et al. 1999; Hogg et al.
2001; Smith et al. 2002; Tucker et al. 2006), and galaxies were se-
lected in two ways for follow-up spectroscopy. The main galaxy
sample (Strauss et al. 2002) targeted galaxies brighter than r =
17.77 (approximately90 per square degree, with a weighted me-
dian redshiftz = 0.10). The DR7 sample (Abazajian et al. 2009)
used in our analysis includes669 905 main galaxies (Strauss et al.
2002) with a median redshift ofz = 0.12, selected to a limiting
Galactic extinction-corrected Petrosian magnituder < 17.77, or
r < 17.5 in a small subset of the early data from the survey. The ef-
fect of the inclusion of the early SDSS data is tested in Section 8.2.
In addition, our sample includes80 046 Luminous Red Galaxies
(LRGs; Eisenstein et al. 2001), which form an extension of the
SDSS spectroscopic survey to higher redshifts0.2 < z < 0.5.
Of the main galaxies,30 530 are also classified as LRGs and are
intrinsically luminous withM0.1r < −21.8, whereM0.1r is the
Galactic extinction and K-correctedr-band absolute galaxy magni-
tude. We apply this requirement to all of our LRGs, so our sample
includes110 576 LRGs in total, with a weighted median redshift
of z = 0.31. Although the main galaxy sample contains signifi-
cantly more galaxies than the LRG sample, the LRG sample covers
more volume. Redshift distributions for these samples are shown
in figure 2 of Percival et al. (2007b). In our default analysiswe use
SDSS Petrosian magnitudes calibrated using the “uber-calibration”
method (Padmanabhan et al 2008), although we test against data
calculated using the original calibration methodology (Tucker et al.
2006). Where specified, we have K-corrected the galaxy luminosi-
ties using the methodology outlined by Blanton et al. (2003a,b).
Further details of the cuts applied to the data can be found in
Percival et al. (2007b).

Due to the finite size of the fibers, spectra cannot be obtained
for both objects in a pair closer than 55 arcsec, within a single spec-
troscopic tile. Tiling (Blanton et al. 2003a) deals with this to some
extent by allowing plate overlaps to provide multiple observations
of crowded regions. Even so, not all galaxies in such regionswhich
meet the target selection criteria could be observed. Zehavi et al.
(2002) corrected for this undersampling by assigning the redshift
of the nearest observed galaxy to a galaxy which was not observed
due to crowding, and showed that this provides sufficient correc-
tion for large-scale structure studies. We apply this correction in
the present work, and test it to show that our results are insensitive
to this in Section 8.1.

In order to increase the volume covered at redshiftz < 0.3, we
include143 368 galaxies from the 2dFGRS sample. These galax-
ies, selected to an extinction-corrected magnitude limit of approxi-
matelybJ = 19.45 (Colless et al. 2003) from regions of sky not
covered by the SDSS sample, cover two contiguous regions to-
talling∼1200deg2. They do not include the 2dFGRS random fields,
a set of 99 random 2 degree fields spread over the full south-
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SLICE zmin zmax Ngal Veff n̄

1 0.0 0.5 895 834 0.42 128.1
2 0.0 0.4 874 330 0.38 131.2
3 0.0 0.3 827 760 0.27 138.3
4 0.1 0.5 505 355 0.40 34.5
5 0.1 0.4 483 851 0.36 35.9
6 0.2 0.5 129 045 0.27 1.92
7 0.3 0.5 68 074 0.15 0.67

Table 1. Parameters of the redshift intervals analysed.Veff is given in
units of h−3Gpc3, and was calculated as in Eq. (2) using an effective
power spectrum amplitude of̄P = 104h−3Mpc, appropriate on scales
k ∼ 0.15 hMpc−1 for a population with biasb = 1.7. The average galaxy
number density in each bin̄n is in units of10−4( h−1 Mpc)3.

ern Galactic cap, as these would complicate the window function.
The galaxies cover0 < z < 0.3, with a weighted median at
z = 0.17. The redshift distribution of the sample was analysed
as in Cole et al. (2005) for0 < z < 0.3, and we use the same
synthetic catalogues to model the unclustered expected galaxy dis-
tribution within the reduced sample.

We assume that each galaxy is biased with a linear determin-
istic bias model, and that this bias depends onM0.1r according to
Tegmark et al. (2004) and Zehavi et al. (2005). All galaxies were
weighted using this model so the fluctuation amplitudes match
those ofL∗ galaxies, whereL∗ was calculated separately for the
SDSS and 2dFGRS. We include an extra normalisation factor to
the 2dFGRS galaxy bias model to correct the relative bias ofL∗

galaxies in the different surveys. This was calculated by matching
the normalisation of the 2dFGRS and SDSS bias-corrected power
spectra fork < 0.1 h Mpc−1. In principle, we could have added
information on galaxy bias from the BAO, since the small-scale
damping (see Eq. 1) depends on how strongly nonlinear the un-
derlying dark matter density fluctuations are. As we show in Sec-
tion 8.6, this information is limited for the current data, but future
surveys may be able to exploit changes in this damping as a func-
tion of galaxy properties, such as colour and luminosity.

3 SPLITTING INTO SUB-SAMPLES

In order to probe the distance–redshift relation in detail,ideally we
would analyze BAO measured in many independent redshift slices.
However, if the slices are too narrow in redshift, then thereis in-
sufficient signal and the BAO cannot be recovered with sufficient
accuracy to give a likelihood with close to a Gaussian distribution
(see the discussion in Section 5). If the slices are too wide,or too
many overlapping slices are chosen, the covariance matrix becomes
close to singular, potentially leading to numerical instability. In or-
der to balance these competing requirements, we have chosento
analyse the redshift slices presented in Table 1. The power spec-
tra will be correlated, and these correlations, together with corre-
lations ofP (k) values at differentk within each redshift slice, are
included in the covariance matrices in our analysis. Note that we
include slice 7, for which the effective volume is relatively small,
because of the interesting redshift range covered.

As well as giving the redshift limits of the slices in Table 1,
we also give the number of galaxies in each including both the2dF-
GRS and the SDSS, and the effective volume, calculated from the
integral (Feldman et al. 1994)

Veff =

∫

d3r

[

n̄(r)P̄

1 + n̄(r)P̄

]2

, (2)

wheren̄(r) is the observed comoving number density of the sam-
ple at locationr andP̄ is the expected power spectrum amplitude.
To calculateVeff for our redshift slices, distances were calculated
assuming a fiducial flatΛCDM cosmology withΩm = 0.25. For
the numbers given in Table 1, we fix̄P = 104h−3Mpc3, appro-
priate on scalesk ∼ 0.15 h Mpc−1 for a population with bias
b = 1.7. For comparison, Eisenstein et al. (2005) analyse a sample
with Veff = 0.13 h−3Gpc3, approximately a third of the effective
volume of slice 1.

We fit models to three sets of power spectra:

(i) We fit a single power spectrum for the SDSS LRG sample
covering0.15 < z < 0.5.

(ii) We fit three power spectra for slices 1, 3 and 6 approximately
corresponding to the procedure adopted by Percival et al. (2007c).
Although we now use slices constrained by redshift rather than
galaxy type, the0 < z < 0.3 slice is dominated by SDSS main
galaxies, while the0.2 < z < 0.5 slice is dominated by LRGs.

(iii) We fit six power spectra for slices 2→7, which allows a test
of the distance–redshift relation at greater resolution.

We consider option (i) to tie in with the analysis presented by
Reid et al. (2009), and to demonstrate the effect of collapsing
the clusters in redshift-space where we try to reconstruct the
halo power spectrum. Option (ii) is close to the approach of
Percival et al. (2007c), where the SDSS main galaxies and 2dFGRS
galaxies were analysed separately from the SDSS LRGs. Option
(iii) allows us to see if there is more information availablebeyond
measuring the distance–redshift relation at two redshifts. The slices
do overlap in redshift, but we will properly take into account the
covariance between the results when we fit to cosmological param-
eters.

4 BASIC METHODOLOGY

Power spectra were calculated for each catalogue using the Fourier
method of Feldman et al. (1994), as applied by Percival et al.
(2007b). In this method a weighted galaxy over-density fieldis de-
fined and Fourier transformed, then the spherically averaged power
is measured. We use the luminosity dependent galaxy weightsad-
vocated by Percival et al. (2004), as described in Section 2.To con-
struct the over-density field, we need to quantify the expected spa-
tial distribution of galaxies, in the absence of clustering. The stan-
dard method for this is to use an unclustered random catalogue,
which matches the galaxy selection. To calculate this random cata-
logue, we fitted the redshift distributions of the galaxy samples with
a spline fit (Press et al. 1992), and the angular mask was determined
using a routine based on a HEALPIX (Górski et al. 2005) equal-
area pixelization of the sphere (Percival et al. 2007b). Percival et al.
(2007b) used a random catalogue containing ten times as many
points as galaxies. For the sparse LRGs, this approach induces
significant shot noise, so we now use one hundred times as many
random points as LRGs. We have also increased the resolutionat
which the radial distribution of galaxies is quantified, nowusing a
spline fit (Press et al. 1992) with nodes separated by∆z = 0.0025.
As an alternative to this radial selection, we could have simply
adopted the redshift of a randomly chosen galaxy for each of our
points in the random catalogue. In Section 8.7 we show that these
two possibilities give consistent results.

c© 0000 RAS, MNRAS000, 000–000
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Galaxy redshifts were converted to distances using a fidu-
cial cosmology (flatΛCDM model withΩm = 0.25). For each
distance–redshift model to be tested, we do not recalculatethe
power spectrum, but instead change the interpretation of the power
spectrum computed assuming the fiducialΛCDM galaxy distances.
We do this through a window function, which relates the true and
measured power spectra. This follows the procedure adoptedby
Percival et al. (2007c), but we now use a revised, computationally
less intensive method for calculating the windows, as described in
Appendix A.

A model of the BAO was created by fitting a linear mat-
ter power spectrum, calculated using CAMB (Lewis et al. 2000),
which numerically solves the Boltzman equation describingthe
physical processes in the Universe before the baryon-drag epoch,
with a cubic spline to remove the broad shape of the power, leav-
ing the oscillations. The theoretical BAO were then damped with
a Gaussian model as in Eq. (1), following the simulation results
of Eisenstein et al. (2007). For our default fits, we assume that the
damping scaleDdamp = 10 h−1 Mpc (Eisenstein et al. 2007), but
we also consider fits where this scale is varied (Section 8.6). As
discussed in Section 1, we do not attempt to correct for any shift
induced by non-linear physics, because they are expected tobe at a
level below our statistical error.

The power spectrum measured from the data was fitted by a
model constructed by multiplying this BAO model with a cubic
spline (Press et al. 1992), which enables the power spectrummodel
to match the overall shape of the data power spectrum. Each power
spectrum model was then convolved with a window function that
corrects for both the survey geometry and the differences between
our fiducial cosmological model used to convert redshift to dis-
tances and the cosmological model to be tested (see AppendixA).
The free parameters of the model are the nine nodes of the cubic
spline fixed empirically atk = 0.001, and0.025 6 k 6 0.375
with ∆k = 0.05, and the parametrisation ofDV (z) used to cal-
culate the correct window function. The spline nodes were refitted
for every cosmology (orDV (z)) tested. A power spectrum model
with this spline node separation was tested by fitting many mock
power spectra by Percival et al. (2007a) and was shown to match
these without leaving significant residuals in the measured“shift”
between BAO in the model and data power spectra. This approach
was also considered by Sanchez et al. (2008), who found that it did
not induce a bias in the recovered BAO constraints.

For a redshift survey in a thin shell, the position of the BAO
approximately constrainsdz ≡ rs(zd)/DV (z), wherers(zd) is
the comoving sound horizon at the baryon drag epoch,DV (z) ≡
[(1 + z)2D2

Acz/H(z)]1/3 (Eisenstein et al. 2005; Percival et al.
2007c),DA is the angular diameter distance, andH(z) is the Hub-
ble parameter. We see that, although our power spectrum fitting
procedure measuresDV (z) for a fixed BAO model, we should con-
sider the constraints as measurements ofdz, with rs(zd) calculated
for the flatΛCDM model for which we created the BAO model,
rs(zd) = 111.4 h−1 Mpc = 154.7 Mpc, using equation 6 of
Eisenstein & Hu (1998), and assumingh = 0.72, Ωbh

2 = 0.0223,
andΩm = 0.25. This value ofrs(zd) is only used to index this
model: as described above, the actual BAO model was calculated
from a power spectrum predicted by CAMB. If the constraints pro-
vided in this paper are to be used to constrain a set of models where
rs(zd) for this fiducial model is calculated in a different way (i.e.
not using equation 6 of Eisenstein & Hu 1998), then our constraints
should be adjusted to match.

The comoving distance–redshift relation is modelled as a cu-
bic spline in the parameterDV (z). We consider models forDV (z)

Figure 1. Average power spectra recovered from the Log-Normal cata-
logues (solid lines) compared with the data power spectra (solid circles with
1-σ errors) for the six samples in Table 1. The errors on the data were calcu-
lated from the diagonal elements of the covariance matrix calculated from
these log-normal catalogues. The power spectra have been offset by 0.5dex
for clarity, with the upper power spectrum having the correct normalisation.

with two nodes atz = 0.2 andz = 0.35, or with four nodes at
z = 0.1, z = 0.2, z = 0.3, z = 0.45. Results are presented as
constraints ondz . The error between cubic spline fits toDV (z)
with two nodes atz = 0.2 andz = 0.35, to theΛCDM distance–
redshift relations was shown in figure 1 of Percival et al. (2007c),
and is< 1% for a flat ΛCDM cosmology withΩm = 0.25 at
z > 0.15.

Power spectra are presented for the redshift slices described in
Section 3 in Fig. 1, for70 band powers equally spaced in0.02 <
k < 0.3 h Mpc−1. We see that the power spectra from the different
redshift intervals are remarkably consistent, withP (k) decreasing
almost monotonically to small scales.

In order to calculate the covariances between the data, we have
created 10 000 Log-Normal (LN) density fields (Coles & Jones
1991; Cole et al. 2005) from which we have drawn overlapping cat-
alogues for each of our 7 redshift slices. Catalogues were calculated
on a(512)3 grid with box length4000 h−1 Mpc. Unlike N-body
simulations, these mock catalogues do not model the growth of
structure, but instead return a density field with a log-normal distri-
bution, similar to that seen in the real data. The window functions
for these catalogues were matched to that of the 2dFGRS+SDSS
catalogue with the original calibration. The input power spectrum
was a cubic spline fit matched to the data power spectra (i.e. the
smooth part of our standard model), multiplied by our default
dampedΛCDM BAO model calculated using CAMB (Lewis et al.
2000). The LN power spectra were used to determine a covariance
matrix between slices and for different band powers in each slice,
assuming that the band-powers were drawn from a multi-variate
Gaussian distribution. Average recovered power spectra for each
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redshift interval are compared with the data power spectra in Fig. 1.
Clearly the general shape of the average power spectra of theLN
catalogues is well matched to that recovered from the data. Using
the inverse of this covariance matrix, we estimate the likelihood
of each model assuming that the power spectra band-powers for
0.02 < k < 0.3 h Mpc−1 were drawn from a multi-variate Gaus-
sian distribution.

5 TESTING THE ANALYSIS METHOD WITH MOCK
DATA

5.1 The model fit

We now consider using a subset of our LN catalogues to test
our analysis procedure. For 1000 of the mock catalogues, we fit
spline×BAO models to extract distance constraints from the BAO,
as described in Section 4. A small average shift of 1.3% in theBAO
scale was recovered between the power recovered from the LN cat-
alogues, and the input power spectrum used to create them. Ifwe
correct the 1000 power spectra measured from the LN catalogues
by multiplying each power spectrum by the expected power divided
by the average recovered power spectrum, the average shift drops
below0.3%, well within 1σ.

To test the origin of the observed 1.3% shift, we have also
drawn 1000 power spectrum realisations from a multi-variate Gaus-
sian distribution with covariance and mean matched to thoseof the
data. These mock catalogues were fitted using the procedure de-
scribed in Section 4. No shift in the BAO position was found from
the fits to these catalogues, within the statistical limits of the anal-
ysis (∼ 0.3%). The distribution of recovered distance constraints
was well matched to that recovered from fitting the correctedLN
power spectra. Thus the 1.3% shift described above must be due
to the LN procedure itself. The expected shift is dependent on the
statistic used to measure the BAO position. The Log-Normal corre-
lation functionξLN , and Gaussian correlation functionξG(r) of a
field with the same power spectrum but with Gaussian statistics, are
related by1 + ξLN(r) = exp[ξG(r)]. If we had used the peak in
the correlation function as our standard ruler then, for theLN cata-
logues, we would have expected no BAO shift. However, the same
is not true of our BAO× spline model fitting procedure, which fits
the BAO in the power spectrum over a range of scales.

Numerical simulations offer a better way to model the true
Universe, and recent results from simulations show that we should
expect a less significant shift between the BAO positions in the lin-
ear matter and galaxy power spectra than the 1.3% shift foundfor
the LN catalogues (Seo & Eisenstein 2003; Springel et al. 2005;
Seo & Eisenstein 2007; Angulo et al. 2008). The exact shift re-
quired for the catalogues we analyse is not well constrainedby
these simulation results, and we consequently do not alter our anal-
ysis to include such a shift.

5.2 The likelihood surface

We use the Gaussian and LN power spectra samples to assess the
nature of the likelihood for the BAO scale recovery. We consider
fits to either three or six power spectra as described in Section 3,
parametrisingDV (z) with a cubic spline with two non-zero nodes
at z = 0.2 andz = 0.35. For each of the 1000 fits, we have mea-
sured the difference between the maximum likelihood value and
the likelihood at the parameters of the true cosmological model.

−2 lnL/Ltrue fraction of samples
3 slices 6 slices

standard revised standard revised

<2.3 0.579 0.666 0.551 0.667
<6.0 0.892 0.946 0.862 0.948
<9.3 0.966 0.983 0.955 0.981

Table 2.Fraction of fits to the Log-Normal power spectra in which the ratio
of the likelihood maximum and the likelihood for the true cosmological
model is less than the given limit. For a Gaussian likelihood, these limits
correspond to 68%, 95% and 99% confidence intervals. We show results
where we have corrected the errors as described in the text bymultiplying
the band-power errors by1.14 for three redshift slices, and1.21 for six
redshift slices.

The fraction of samples with−2 lnL/Ltrue < 2.3, 6.0, 9.3, cor-
responding to 68%, 95% and 99% confidence intervals, are given
in Table 2. We find that in order to match the expected numbers
of samples with likelihoods within the standard 1σ Gaussian confi-
dence intervals, we must increase the errors on the power spectrum
band powers by14± 2% if we fit to three power spectra. For fits to
six power spectra, we must increase the errors by21± 2% in order
to match the expected 1σ Gaussian confidence intervals. Although
in this paper we do not consider fitting to a single power spectrum,
we have repeated this analysis for BAO fits to the LRG sample of
Reid et al. (2009), and find that we must increase the errors onthe
power spectrum band powers by10 ± 2% to match the expected
confidence intervals.

Because the same increase in the confidence intervals is re-
quired for both LN and Gaussian mock catalogues, this change
must be caused by the methodology of fitting BAO, rather than the
Gaussian to Log-Normal density field transition. In fact, webelieve
that it is caused by the non-Gaussian nature of the likelihood sur-
face. We should expect the likelihood surface to be non-Gaussian
to some extent in any case because there is a minimum in the likeli-
hood where the observed and model BAO are perfectly out of phase
in k-space: this represents the worst possible match between data
and model. Adjusting the covariance matrix to match the distri-
bution of best-fit distance-scales to the expected 68% confidence
interval does not quite match the 95% or 99% confidence intervals,
although it corrects for most of the difference. This shows that the
confidence intervals cannot perfectly match those for a Gaussian
distribution.

To test this further, we have created a set of 1000 Gaussian
power spectrum realisations with errors that are 10% of those in our
standard sample. For these catalogues, the distribution ofbest-fit
DV (z) matches that expected from the likelihood distribution un-
der Gaussian assumptions. No correction is required, and the likeli-
hood distribution is much closer to that for a multi-variateGaussian
distribution around the likelihood maximum. Thus the requirement
to increase the errors on the data disappears when we fit less noisy
data, as we would expect if it is caused by fitting noisy data, which
is giving a non-Gaussian likelihood surface.

The average likelihood surfaces measured from our 1000 fits
to sets of three power spectra and six power spectra drawn from LN
catalogues are shown in Fig. 2. We also plot the centre of the local
likelihood maxima nearest to the input cosmological parameters for
each model. The fractions of points within each contour are given
in Table 2: the errors on the power spectrum band powers have
been adjusted for each plot as described above so that∼68% of the
points lie within the−2 lnL = 2.3 contour.
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Figure 2. Average likelihood contours recovered from the analysis ofthree
power spectra (top panel) and six power spectra (bottom panel) measured
from 1000 Log-Normal density fields. Contours are plotted for −2 lnL =
2.3, 6.0, 9.2, corresponding to two-parameter confidence of 68%, 95% and
99% for a Gaussian distribution. Contours were calculated after increas-
ing the errors on the power spectrum band-powers as described in the text.
Solid circles mark the locations of the likelihood maxima closest to the
true cosmology. We have plotted the likelihood surface as a function of
DV (z)/Mpc, for fixed rs(zd) = 154.7 Mpc, to show distance errors if
the comoving sound horizon is known perfectly. The values ofDV for our
input cosmology are shown by the vertical and horizontal solid lines.

6 RESULTS

Baryon Acoustic Oscillations are observed in the power spectra
recovered from all redshift slices of the SDSS+2dFGRS sample
described in Section 3, and are shown in Fig. 3, where we plot
the measured power spectra divided by the spline component of
the best-fit model. In our default analysis we fit power spectra
from six redshift slices as described in Section 3, using a spline
for DV (z) with two nodes atz = 0.2 and z = 0.35. We as-
sume a fixed BAO damping scale ofDdamp = 10 h−1 Mpc and
fit to all SDSS and non-overlapping 2dFGRS data. The effect of

Figure 3. BAO recovered from the data for each of the redshifts slices
(solid circles with 1-σ errors). These are compared with BAO in our de-
fault ΛCDM model (solid lines).

these assumptions is considered in Section 8. The resultinglike-
lihood surface is shown in Fig. 4 as a function ofDV (z)/Mpc,
for fixed rs(zd) = 154.7 Mpc, to show distance errors if the co-
moving sound horizon is known perfectly. The constraints should
be considered measurements ofrs(zd)/DV (z) (see Section 4).
Fig. 4 reveals a dominant likelihood maximum close to the pa-
rameters of aΛCDM cosmology withΩm = 0.25, h = 0.72, &
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Figure 4. Likelihood contour plots for fits of twoDV (z) cubic spline
nodes atz = 0.2 and z = 0.35, calculated for our default analysis
using six power spectra, uber-calibration, a fixed BAO damping scale of
Ddamp = 10 h−1 Mpc, and for all SDSS and non-overlapping 2dFGRS
data. Solid contours are plotted for−2 lnL/Ltrue < 2.3, 6.0, 9.3, which
for a multi-variate Gaussian distribution with two degreesof freedom cor-
respond to 68%, 95% and 99% confidence intervals. Likelihoods were ad-
justed to match these Gaussian confidence intervals as described in Sec-
tion 5. We have plotted the likelihood surface as a function of DV (z)/Mpc,
for fixed rs(zd) = 154.7 Mpc, to show distance errors if the comoving
sound horizon is known perfectly. We also show a multi-variate Gaussian
fit to this likelihood surface (dashed contours). The valuesof DV for a flat
ΛCDM cosmology withΩm = 0.25, h = 0.72, & Ωbh2 = 0.0223 are
shown by the vertical and horizontal solid lines.

Ωbh
2 = 0.0223. There are also weaker secondary maxima at lower

DV (0.2), which are considered further in Section 8.8. The signif-
icance of detection of BAO corresponds to∆χ2 = 13.1, which
is approximately3.6σ. As this is relative to an arbitrary smooth
model, this test is more general, and hence the significance can-
not be directly compared with results presented by Eisenstein et al.
(2005).

We have matched the likelihood surface shown in Fig. 4
around the dominant maximum to a multi-variate Gaussian model.
Using this Gaussian fit, we find that the best fit model has

d0.2 = 0.1905 ± 0.0061 (3.2%),

d0.35 = 0.1097 ± 0.0036 (3.3%), (3)

where dz ≡ rs(zd)/DV (z). These results are correlated with
correlation coefficientr = 0.337. For a cosmological distance–
redshift model withd̂z the likelihood can be well approximated by
a multi-variate Gaussian with covariance matrix

C ≡
(

〈∆d0.2∆d0.2〉 〈∆d0.2∆d0.35〉
〈∆d0.35∆d0.2〉 〈∆d0.35∆d0.35〉 ,

)

, (4)

where∆dz ≡ dz − d̂z. C has inverse

C−1 =

(

30124 −17227
−17227 86977

)

. (5)

Without correcting the covariance matrix using the results
from fitting to the LN power spectra as described in Section 5,the
original average errors ond0.2, andd0.35 were0.0051 and0.0029,
16% and 24% lower than those in Eq. (3), respectively. Compare
with the band power errors which were increased by 21%, and we
see that there is not a direct relation between changes in theband
power errors and errors ondz , because of the non-linear nature of
the fit.

We diagonalise the covariance matrix ofd0.2 andd0.35 to get
quantitiesx andy
(

x
y

)

≡
(

1 1.76
−1 1.67

)(

d0.2

d0.35

)

, (6)

which gives

x = 0.3836 ± 0.0102 (7)

y = −0.0073 ± 0.0070. (8)

The distance ratiof ≡ DV (0.35)/DV (0.2) is given by

f =
1.67 − 1.76y/x

1 + y/x
≃ 1.67 − 8.94y, (9)

where the last approximation neglects the small variationsaround
the best-fit value ofx = 0.3836; these would come to0.002 in
f , which is well within the errors. Thus,x is a measurement of
distance for the concordance cosmology andy is the deviation from
the concordance distance ratio:x is measured to about 2.7%.y is
consistent with zero to within about1σ.

To high accuracy, the constraintx can be written as a con-
straint on the distance to some redshift0.2 < z < 0.35. In fact,
rs(zd)/DV (0.275) predictsx = d0.2 + 1.76d0.35 to a peak-to-
peak precision of 0.04% over the range0.05 < Ωm < 1 (assuming
a flat cosmology withw = −1). Thus, we can quote thex mea-
surement as a measurement ofd0.275 and quote they measurement
as a statistically independent measure off .

For the best-fit solution we haved0.275 = 0.362x, giving

d0.275 = 0.1390 ± 0.0037(2.7%). (10)

We also have the statistically independent constraint

f ≡ DV (0.35)/DV (0.2) = 1.736 ± 0.065. (11)

f = 1.67 for our ΛCDM concordance cosmology, while SCDM
with Ωm = 1, ΩΛ = 0 hasf = 1.55, which is only 2.9σ from
this result. Our constraint from the distance ratio only separates the
concordance model fromΩm = 1 at 1.8σ, i.e., it is not a strong
cosmological constraint, compared with the constraint ond0.275.

7 COSMOLOGICAL INTERPRETATION

We now consider how our constraints can be mapped into the
standard basis of cosmological parameters. From equation 6of
Eisenstein & Hu (1998), the sound horizon can be approximated,
around the WMAP5 best-fit location (Komatsu et al. 2009) as

rs(zd) = 153.5

(

Ωbh
2

0.02273

)

−0.134 (

Ωmh2

0.1326

)

−0.255

Mpc. (12)

Settingrs,fid = 153.5 Mpc, and using Eq. (10) we have

DV (0.275) = (1104 ± 30)[rs(zd)/rs,fid(zd)] Mpc

= (1104 ± 30)

(

Ωbh
2

0.02273

)

−0.134 (

Ωmh2

0.1326

)

−0.255

Mpc, (13)
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andf = 1.736 ± 0.065 as our two statistically independent con-
straints.

The constraint onDV (0.275), combined with a measurement
of Ωmh2 from WMAP5 (Hinshaw et al. 2009; Dunkley et al. 2009;
Komatsu et al. 2009), is enough to measureΩm andH0 given in-
formation about the distance scale fromz = 0 to z = 0.275. If the
distance measure were atz = 0, then we would have a standard
ruler defined by the CMB with which we could measureH0, and
combining this withΩmh2 would yieldΩm. In practice, one has to
include the small corrections toDV (0.275) that arise from the low-
redshift cosmology. Noting thatDV (0.275) = 757.4 h−1 Mpc
for a flat Ωm = 0.282 ΛCDM cosmology, we can writeh =√

Ωmh2/
√

Ωm, and solve

Ωm = (0.282 ± 0.015)

(

Ωmh2

0.1326

)0.49

×
(

DV (z = 0.275, Ωm = 0.282)

DV (z = 0.275)

)2

, (14)

where we have dropped the dependence of the sound horizon on
Ωbh

2, which the WMAP5 data already constrains to 0.5%, 5 times
below our statistical error.

We can perturb the ratio of distances around the best-fitΩm =
0.282, to give

DV (z = 0.275)

DV (z = 0.275, Ωm = 0.282)

=
(

Ωm

0.282

)−0.077

[1 − 0.108Ωk − 0.099(1 + w)] . (15)

Using this approximation, we can manipulate Eq. (14) to givecon-
straints on eitherΩm or h

Ωm = (0.282 ± 0.018)

(

Ωmh2

0.1326

)0.58

× [1 + 0.25Ωk + 0.23(1 + w)] , (16)

h = (0.686 ∓ 0.022)

(

Ωmh2

0.1326

)0.21

× [1 − 0.13Ωk − 0.12(1 + w)] . (17)

The additional uncertainty inΩm, ±0.018 in Eq. (16) compared
with ±0.15 in Eq. (14), is produced by the dependence of the dis-
tance ratio onΩm. In Eqns. (16) & (17), the uncertainty in the first
terms are correlated so as to leaveΩmh2 constant. One should ad-
ditionally include the errors fromΩmh2, Ωk, andw, although these
are consistent between the two results.

Looking at the fractional error inΩm, the contribution from
the uncertainty in the SDSS acoustic scale is about 6%, that from
the uncertainty inΩmh2 is about 2%, that fromw is about 3% if
the error onw is 10%, and that from curvature is below 1% unless
the cosmology is rather non-standard. Hence our result is still lim-
ited by the SDSS-II BAO data volume and not by our knowledge
of the other cosmological parameters in Eq. (16). Of course,these
expressions only hold for mild perturbations from the concordance
cosmology; for other cases, one should return to the raw distance
constraints. We note that these expressions have not used the angu-
lar acoustic scale in the CMB, so they are independent of whatis
happening with dark energy atz > 0.35.

Fig. 5 shows the BAO constraints from Eq. (13) onΩm and
ΩΛ for ΛCDM cosmologies (upper panel), and onΩm andw for
flat models where constantw 6= −1 is allowed (lower panel).
We take a Gaussian prior ofΩmh2 = 0.1326 ± 0.0063 and as-

Figure 5. Cosmological constraints onΛCDM cosmologies (upper
panel) and flat CDM models where we alloww to vary (lower
panel), from WMAP5 (blue), Union supernova (green) and our con-
straint on rs/DV (0.275) (solid contours). Contours are plotted for
−2 lnL/Ltrue < 2.3, 6.0, corresponding to 68% and 95% confidence
intervals. The dashed lines show flat models (upper panel) and Λ models
(lower panel).

sume that the error onΩbh
2 is negligible as the WMAP5 data al-

ready constrain it to 0.5% (Komatsu et al. 2009). These constraints
exclude the angular acoustic scale in the CMB, so they are in-
dependent of the dark energy behaviour at the redshifts beyond
our sample. For comparison we plot the full WMAP5 constraints
(Komatsu et al. 2009), which include the constraints on the distance
to last scattering, and constraints from the Union supernova sample
(Kowalski et al. 2008), which constrain angular diameter distance
ratios up toz ∼ 1. Results from full likelihood fits combining these
data are presented in Section 9.
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Figure 6. The log ratio between the BAO recovered from the SDSS LRG
power spectrum and the power spectrum of the halo catalogue derived
from the LRG sample as described by Reid et al. (2009) (solid circles).
For comparison we plot the BAO expected for a flatΛCDM model with
Ωm = 0.25, h = 0.72, & Ωbh2 = 0.0223 (solid line), and the errors on
each measurement (grey shaded region). There are no oscillatory features
induced by the cluster-collapse procedure, and the scatteris well within the
errors.

8 TESTING THE ROBUSTNESS OF THE RESULTS

8.1 The effect of redshift-space distortions

We have fitted our spline× BAO model to the observed SDSS
LRG power spectrum, as calculated by Reid et al. (2009), where
the galaxy power spectrum and derived cosmological constraints
are presented. Using numerical simulations, a scheme is presented
in Reid et al. (2009) to recover the halo power spectrum from the
LRG distribution by only keeping a single LRG within each halo.
We have fitted both the galaxy and the halo power spectra with our
spline× BAO model. The log ratio between the BAO recovered
in the resulting fits is shown in Fig. 6. This shows that the cluster-
collapse correction for these galaxies results in a smooth change
in the power spectrum on the scales fitted, and does not alter the
position or amplitude of the BAO in a significant way.

Because of the different galaxy properties within the SDSS
main galaxy sample, and the 2dFGRS, we do not attempt to correct
for the more complicated distribution of galaxies within the haloes
of that sample, and recover the halo power spectrum. In contrast,
the halo occupation distribution of the SDSS LRGs is simple,in
that there is only a single population of galaxies that are predom-
inantly central rather than satellite galaxies in their hosting haloes
(Reid et al. 2009). But we have seen that for LRGs, the correction
is smooth, and we expect this to be true for the galaxies atz < 0.2
as well.

8.2 Sample selection

We have run our full analysis pipeline using three subsamples of
galaxies. Results from fits toDV (z) with two nodes are shown in
Fig. 7, for different catalogues, givenrs(zd) = 154.7 Mpc. The
best-fit constraints for these models ondz are given in Table 3. Our
default analysis is included in panel (a) for comparison. Here, we
analyse data from the SDSS and the 2dFGRS, including the early
SDSS data, where we cut the sample at the extinction-corrected

d0.2 d0.35

(a) default 0.1905 ± 0.0061 0.1097 ± 0.0036
(b) no early SDSS, 2dFGRS 0.1923 ± 0.0072 0.1102 ± 0.0041
(c) no 2dFGRS 0.1907 ± 0.0062 0.1090 ± 0.0036
(d) no early SDSS 0.1917 ± 0.0069 0.1109 ± 0.0044
(e) fit to threeP (k) 0.1901 ± 0.0066 0.1080 ± 0.0043
(f) original calibration 0.1919 ± 0.0071 0.1094 ± 0.0046
(g) varyingDdamp 0.1918 ± 0.0080 0.1100 ± 0.0048
(h) 〈n(z)〉 sampling galaxies 0.1890 ± 0.0068 0.1102 ± 0.0045

Table 3.Measurements ofdz ≡ rs(zd)/DV (z) atz = 0.2 andz = 0.35
from the different analysis runs described in the captions to Figs. 7 & 8.

magnitude limitr < 17.5. We compare with results obtained (b)
excluding the early SDSS data and the 2dFGRS, (c) using just the
SDSS data, and (d) excluding the early SDSS data but including the
2dFGRS. Including the early SDSS galaxies decreases the errors at
redshiftz = 0.2 andz = 0.35 by approximately 14%. Including
the 2dFGRS galaxies has a smaller effect, decreasing the error at
z = 0.2 by approximately 4%. The parameters of the best-fit so-
lutions do not move significantly with any of the sample changes:
d0.2 moves by a maximum of 0.3σ, while d0.35 moves by a max-
imum of 0.2σ. The inclusion of the 2dFGRS actually moves the
best-fit solution forDV (0.35)/DV (0.2) slightly towards that of a
concordanceΛCDM model.

8.3 The number of redshift slices included

We now consider the robustness of our fit to the number of red-
shift slices analysed. This test was performed on the conservative
data sample, excluding the early SDSS data and the 2dFGRS. In
our default analysis we fit power spectra calculated for six redshift
slices, and the resulting likelihood surface for the late SDSS sam-
ple is shown in panel (b) of Fig. 7. For comparison, panel (e) of
Fig. 8 shows the likelihood surface calculated using power spectra
from only three redshift slices (details of the slices chosen are pre-
sented in Section 3). Because we are only fitting twoDV (z) nodes,
these should be constrained by our reduced fit using three redshift
slices. Panel (e) of Fig. 8 shows that this is true, but comparison
with panel (b) of Fig. 7 shows that the constraints are tighter if we
model power spectra from six redshift slices. Clearly, extra infor-
mation is available from the extra redshift slices, and we therefore
fit to six redshift slices for our default analysis.

It is interesting to test if there is sufficient information to con-
strain the shape ofDV (z) beyond our simple spline model with
2 nodes. Results from fits allowing fourDV (z) nodes are shown
in Fig. 9. There is a clear maximum in the slices through the like-
lihood surface close to theΛCDM model, but the surface is noisy,
and there are secondary maxima present. There is a strong degener-
acy betweenDV (0.3) andDV (0.45), and betweenDV (0.1) and
DV (0.2): the data contain limited information to distinguish the
shape of the distance-redshift relation between these redshifts. Con-
sequently, we do not try to extract this information, instead concen-
trating on fits where there are only two nodes inDV (z).

8.4 The covariance matrix

Because we are analysing overlapping shells in redshift, the power
spectra will be strongly correlated and the estimation of the co-
variance matrix will be in error if we do not have sufficient mock
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Figure 7. As Fig. 4, but now considering results from 4 choices of catalogue: (a) all SDSS and non-overlapping 2dFGRS data, (b) excluding both the early
SDSS data and 2dFGRS, (c) excluding the 2dFGRS, (d) excluding the early SDSS data.

catalogues. In order to test this, we have recalculated our covari-
ance matrix using1/3 as many LN catalogues, and have used this
matrix to recalculate the required corrections to the confidence in-
tervals using independent sets of LN catalogues. We find consistent
results in the factors required to match the confidence intervals to
those expected for a multi-variate Gaussian distribution.We have
also performed a full analysis using this reduced covariance matrix,
and find results consistent with using our default covariance matrix.

8.5 Calibration

The likelihood surface shown in panel (f) of Fig. 8 was calculated
using a SDSS galaxy sample with luminosities calibrated using
the photometric calibration (Tucker et al. 2006), prior to the uber-
calibration analysis (Padmanabhan et al 2008). This affects the cal-
culation of the redshift completeness for any region observed, and
also the luminosity-dependent weights applied to the SDSS galax-

ies. The effect of this calibration change on our results is small,
and there is no significant change between the likelihood surface in
panel (f) of Fig. 8 and that in panel (b) of Fig. 7, where the uber-
calibration data set was used.

8.6 BAO damping scale

Panel (g) of Fig. 8 shows the likelihood surface if we allow the
BAO damping scale to be a free parameter in the fit, placing a sim-
ple Gaussian prior on its valueDdamp = 10 ± 5h−1 Mpc. This
prior on the BAO damping scale is conservative. From simulations,
Reid et al. (2008) foundDdamp = 9.2± 1h−1 Mpc, with no vari-
ation with redshift for0 < z < 0.5 for halo density fields, and
Ddamp = 9.7±1 h−1 Mpc for density fields matched to the LRGs.
The mild cosmological dependence suggested by Eisenstein et al.
(2007) shows that the main cosmological dependence is through
the linear growth rate; current constraints onσ8 are much better
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Figure 8. Likelihood contour plots as in Fig. 4, for the SDSS data, excluding the early data and the 2dFGRS, but now calculated for (e) fit to three power
spectra, (f) old rather than uber-calibration. (g) allowing the BAO damping scale to vary with a simple Gaussian priorDdamp = 10 ± 5 h−1 Mpc, (h)
randomized galaxy redshifts used to give the expected radial galaxy distribution.

than that required to significantly changeDdamp, and we consider
±5h−1 Mpc to be a conservative prior. Allowing the damping
scale to vary degrades the constraint, increasing the size of the pa-
rameter confidence regions. The best-fit solution does not move sig-
nificantly, suggesting that our default assumption of a fixeddamp-
ing scale is sufficiently accurate to current data precision.

8.7 Radial galaxy distribution model

Finally, analysis run (h) shows the constraints if we use a random
catalogue where we randomly choose a galaxy redshift for each an-
gular position chosen. i.e. to model the expected redshift distribu-
tion 〈n(z)〉, we sample from the galaxy redshift distribution. This
test was designed to investigate the dependence of the analysis on
how well we model the radial galaxy distribution. Randomly sam-
pling galaxies to obtain this distribution, perfectly matches the red-

shift distribution of the galaxies and that of the random catalogue
used to define the survey region. In fact, we see no change in our
results if we do this rather than using a smooth fit to the redshift dis-
tribution. This gives us confidence that our results are not sensitive
to this modelling.

8.8 Secondary likelihood maxima

In the likelihood surfaces in Figs. 7 & 8, we see secondary likeli-
hood maxima, which appear to lie on a degeneracy stretching from
DV (0.2) = 700 Mpc, DV (0.35) = 1500 Mpc to DV (0.2) =
600 Mpc, DV (0.35) = 1000 Mpc. These minor peaks in the likeli-
hood, which appear as isolated islands in the likelihood surface are
of lower significance than the strong peak close to the parameters of
a concordanceΛCDM model. Tests have shown that the secondary
peaks result from the interplay of two competing effects, which are
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Figure 9. Contour plots showing slices through the likelihood for four DV (z) cubic spline nodes atz = 0.1, z = 0.2 z = 0.3 andz = 0.45, calculated
for our default analysis using six power spectra, uber-calibration, and a fixed BAO damping scale ofDdamp = 10 h−1 Mpc. Shaded regions are plotted for
−2 lnL/Ltrue < 2.3, 6.0, 9.3, which for a multi-variate Gaussian distribution with two degrees of freedom correspond to 68%, 95% and 99% confidence
intervals. Likelihoods were adjusted to match these Gaussian confidence intervals as described in Section 5. In each panel, the nodes that are not shown were
fixed at the defaultΛCDM (Ωm = 0.25, ΩΛ = 0.75) values. We use shaded regions in this plot to show the likelihood surface, compared with the contours
in Figs. 7 & 8 because the likelihood surface is more complicated with four nodes, and the shading helps to distinguish peaks from troughs.

themselves a result of using the wrong cosmology to analyse the
BAO. These are:

(i) A shift in the BAO position,
(ii) An increase in the width of the window associated with each

band-power, caused by BAO in different redshift shells being out-
of-phase. This can smooth out the BAO signal.

Secondary maxima are produced where the BAO shift and the
smoothing “balance”. If we redo the analysis ignoring the second
effect by assuming that the window function is aδ-function centred
on the peak, these secondary maxima are removed.
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Figure 10. The expected shift recovered from an analysis of the BAO po-
sition in a spherically averaged galaxy power spectrum, if there are radial
and angular distortions induced by assuming an incorrect cosmology when
analysing the data. The thick solid contour shows no residual shift, while the
dotted contours show a 1% shift. For comparison we plot the expected be-
haviour for an isotropic power spectrumH(z) ∝ D2

A, and for an increased
importance of the radial distortionH(z) ∝ DA (dashed lines). The top
panel approximates redshift-space, by weighting the powerin the spherical
average by(1 + βµ2)2, with β = 0.25, matching that expected for the
SDSS LRGs, while the bottom panel does not include this weighting. For
comparison, the thin solid contour in the top panel marks no residual shift
for data withβ = 1, showing that we should expect the radial signal to
increase in importance for such a sample.

8.9 Dependency onDV

A possible concern about our method of analysis is that we as-
sume a fiducialΛCDM model to convert redshifts to comov-
ing coordinate distances and measure the position of the BAOin
the spherically-averaged power spectrum. If the true cosmolog-
ical model has different angular diameter distance-redshift rela-
tion DA(z) and Hubble parameterH(z) than this fiducial model,
this would cause angular and radial distortions in the density field
from which we estimate the power spectrum. By presenting results
in terms ofDV we remove the anisotropic information, and as-

sume that the expected BAO position for all cosmological mod-
els is solely dependent on their predicted value ofDV . This must
break down for models that behave very differently from our fidu-
cial ΛCDM model.

We now test the sensitivity of the assumption that the BAO
position in the spherically averaged power spectrum only depends
onDV for cosmological models that predict significant anisotropic
distortions in the density field away from our fiducial model.To do
this, we compute the shifts of the BAO position expected whenone
measures the spherically-averaged power in either real or redshift
space for such models. To simplify the analysis, we assume that
the BAO in the spherically averagedP (k) will be shifted by the
average of the shifts ink predicted over all angles: ie. our BAO fit
recovers the weighted mean shift in the 3D power. In redshift-space
we also follow the distant observer approximation, and assume that
the angular dependence of the true 3D power spectrum is givenby
(1 + βµ2)2, whereµ is the cosine of the angle to the line-of-sight
andβ = Ω0.55

m /b. The anisotropy in the observed power spectrum
caused by redshift-space distortions will act as a weight when we
spherically average.

For the SDSS LRGs, which provide most of our cosmolog-
ical signal, we take an effective redshift ofz = 0.35, and as-
sume aΛCDM model withΩm(z = 0) = 0.25, giving Ωm(z =
0.35) = 0.45. The LRGs are strongly biased and the model of
Tegmark et al. (2004) gives an effective relative bias for our sam-
ple, which we correct for in the power spectrum calculation,of
〈b/b∗〉 = 1.9. Matching the normalisation of the measured LRG
power spectrum (Reid et al. 2009) gives thatb∗ = 1.34 assum-
ing the LRG clustering is constant in comoving coordinates (e.g.
Percival et al. 2007b), and thatσ8(matter, z = 0) = 0.8, so
σ8(matter, z = 0.35) = 0.68 (Komatsu et al. 2009). This sug-
gests that we should expectβ ∼ 0.25 for the LRG power spec-
trum, and we show contours calculated assumingβ = 0.25 in
Fig. 10, which we compare with the prediction forβ = 1. Note that
our luminosity-dependent weighting means that we are upweight-
ing highly biased galaxies, and that our analysis will therefore have
a smaller effectiveβ than analyses without such weighting, such as
the measurements presented by Cabre & Gaztanaga (2009).

Fig. 10 shows the relation between radial and angular distor-
tions,H/Hfid andDA/DA,fid, which give rise to zero and±1%
shift in the spherical averaged power spectrum. Here,Hfid is the
fiducial value ofH , and similarly forDA. For general cosmolog-
ical models,H/Hfid andDA/DA,fid will depend on redshift, so
that the final effective shift will be an average over a trajectory in
this diagram which is determined by the model to be tested. Fig. 10
also shows the expected line of zero average shift we would expect
if the BAO position only depends onDV (z), which would lead to
behaviour such thatH(z) ∝ D2

A. For comparison, we show the
prediction for a model with increased importance of the radial dis-
tortions, withH(z) ∝ DA. This is included because we would
expect that the redshift-space distortions will increase the impor-
tance of the radial information. However, theH(z) ∝ D2

A line is
a significantly better fit, even in redshift-space. TheH(z) ∝ D2

A

line does not cross the contours marking a 1% average shift for our
redshift-space power spectrum, showing that the assumption that
the recovered BAO position only depends onDV at most produces
a 1% systematic in the best-fit for models with an anisotropy dis-
tortion away from our fiducial model of up to 20% in the radial
direction. Such a 1% systematic shift, which requires a model that
is extremely discrepant fromΛCDM, is significantly below the sta-
tistical precision of our 2.7% accuracy distance measurement. It is
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therefore a reasonable approximation to use our measurements of
DV to constrain a wide variety of cosmological models.

9 COSMOLOGICAL PARAMETER CONSTRAINTS

We now apply our full constraints to a cosmological parameter
analysis. We assume that the likelihood of a model is given by
a multi-variate Gaussian distribution around theDV (z) measure-
ments given by Eq. (3), with the inverse covariance matrix of
Eq. (5). Throughout this section we consider four models: a flat
universe with a cosmological constant (ΛCDM), aΛCDM universe
with curvature (oΛCDM), a flat universe with a dark energy compo-
nent with constant equation of statew (wCDM), and a wCDM uni-
verse with curvature (owCDM). This is the same model set consid-
ered by Reid et al. (2009). We use a modified version ofCOSMOMC

(Lewis & Bridle 2002) to perform the likelihood calculations.

9.1 SN + BAO + CMB prior likelihood fits

We first consider the constraints excluding the angular acoustic
scale in the CMB, in order to consider data that are independent
of the dark energy behaviour at the redshifts beyond our sample.
This is important because it ensures that our results only depend
on the acceleration of the Universe at late times and so do not
depend on so-called early dark energy models (Wetterich 1988;
Ratra & Peebles 1988; Zlatev et al. 1999; Steinhardt et al. 1999),
which have non-negligible dark energy at early times. We take
Gaussian priorsΩch

2 = 0.1099±0.0063 andΩbh
2 = 0.02273±

0.00061 from the CMB; these constraints from the ratio of peak
heights in the WMAP5 data alone do not relax whenΩk andw are
allowed to vary. We also impose weak priors on−0.3 < Ωk < 0.3
and−3 < w < 0. The parameter constraints from the combi-
nation of Union supernova (SN) (Kowalski et al. 2008) and BAO
likelihoods with these priors are presented in Table 4. The best-
fit value of Ωm ranges from 0.286 to 0.290, with the 68% con-
fidence interval,±0.018, while the mean value ofH0 varies be-
tween67.8 kms−1 Mpc−1 and68.6 km s−1 Mpc−1, and the 68%
confidence interval remains±2.2 kms−1 Mpc−1 throughout the
four models. In Section 7 we derived BAO only constraints of
±0.018 on Ωm and±2.2 kms−1 Mpc−1 on H0, for fixedΩmh2.
If we include the 4.8% error onΩmh2 from the WMAP5 measure-
ment, then we should expect these errors to increase to±0.019
on Ωm and ±2.3 km s−1 Mpc−1 on H0. These agree perfectly
with the COSMOMC results if we exclude the supernova data,
so the small difference between the errors in Table 4 and those ex-
pected is caused by the supernova data helping to constrainΩm and
H0 slightly. Similarly, the best-fit values of these parameters agree
for COSMOMC results excluding the supernova data. Comparison
between Table 4 and Section 7 shows that the inclusion of the super-
nova data is moving the best-fit slightly:+0.004 in Ωm and−0.5 in
H0 for theΛCDM model. The COSMOMC analysis therefore val-
idates the simple derivation presented in Section 7. In the space of
models considered here, the BAO constraint onDV (0.275) already
restrictsDV (0.35)/DV (0.2) to a much smaller region than our
constraint in Eq. (11) allows. While the combination of these data
and our priors are unable to constrainΩk, w is constrained at the
±0.11 level. For the owCDM model, the weak prior onΩk leads
to an apparent constraint onw, but these errors depend strongly on
the prior.

The data are compared with the best-fitΛCDM model in
Fig. 11. Three ways of considering the data constraints are shown

Figure 11. The BAO constraints (solid circles with 1σ errors), compared
with the best-fitΛCDM model. The three panels show different methods of
using the data to constrain models.

in different panels. In the bottom panel we plotDV (z)/DV (0.2),
which corresponds to matching the geometry atz = 0.2 and
z = 0.35 so the BAO match at these redshifts, without includ-
ing information about the comoving position of the BAO. In the
middle panel we plotrs(zd)/DV (z), where we now have to model
the comoving sound horizon at the drag epoch. In the top panel
we include a constraint on the sound horizon projected at thelast-
scattering surface as observed in the CMB. Marginalising over the
set of flatΛCDM models constrained only by the WMAP5 data
givesrs(zd)/Sk(zd) = 0.010824±0.000023, whereSk(zd) is the
proper distance to the baryon-drag redshiftzd = 1020.5, as mea-
sured by WMAP5 team (Komatsu et al. 2009). Ignoring the negli-
gible error on this quantity, we combine with the BAO resultsto
measureSk(zd)/DV (z). This effectively removes the dependence
on the comoving sound horizon at the drag epoch, anchoring the
BAO measurements at high redshift: here we have done this at the
baryon-drag epoch so the CMB constraint has matched sound hori-
zon and projection distance.

9.2 CMB + BAO likelihood fits

We now turn to the constraints from our BAO measurement com-
bined with the full WMAP5 likelihood, including the constraint on
rs(zd)/DA at the time of decoupling. While this extra constraint
can break degeneracies betweenΩm, Ωk, andw inherent in our
BAO constraints, the results are now sensitive to our assumption of
a constant dark energy equation of statew atz > 0.35. Results for
the four models are presented in Table 5.
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parameter ΛCDM oΛCDM wCDM owCDM

Ωm 0.288± 0.018 0.286± 0.018 0.290+0.018
−0.019 0.286± 0.018

H0 68.1+2.2
−2.1 68.6± 2.2 67.8± 2.2 68.2± 2.2

Ωk - -0.097± 0.081 - −0.199+0.080
−0.089

w - - -0.97± 0.11 −0.838+0.083
−0.084

ΩΛ 0.712± 0.018 0.811+0.084
−0.085 0.710+0.019

−0.018 0.913+0.092
−0.082

d0.275 0.1381± 0.0034 0.1367± 0.0036 0.1384± 0.0037 0.1386± 0.0037
DV (0.275) 1111± 31 1120± 33 1109± 32 1108+32

−33

f 1.662 ± 0.004 1.675 ± 0.011 1.659 ± 0.011 1.665± 0.011
Age (Gyr) 14.02+0.32

−0.31 14.43± 0.48 13.95± 0.36 14.38± 0.44

Table 4.Marginalized one-dimensional constraints (68%) for BAO+SN for flatΛCDM, ΛCDM with curvature (oΛCDM), flat wCDM (wCDM), and wCDM
with curvature (owCDM). The non-standard cosmological parameters ared0.275 ≡ rs(zd)/DV (0.275) andf ≡ DV (0.35)/DV (0.2). We have assumed
priors ofΩch2 = 0.1099±0.0063 andΩbh2 = 0.02273±0.00061, consistent with WMAP5-only fits to all of the models considered here. We also impose
weak flat priors of−0.3 < Ωk < 0.3 and−3 < w < 0.

parameter ΛCDM oΛCDM wCDM owCDM owCDM+SN owCDM+H0 owCDM+SN+H0

Ωm 0.278± 0.018 0.283± 0.019 0.283± 0.026 0.240+0.044
−0.043 0.290± 0.019 0.240+0.025

−0.024 0.279± 0.016
H0 70.1± 1.5 68.3+2.2

−2.1 69.3± 3.9 75.3± 7.1 67.6± 2.2 74.8± 3.6 69.5± 2.0
Ωk - −0.007+0.006

−0.007 - -0.013± 0.007 -0.006± 0.008 -0.014± 0.007 -0.003± 0.007
w - - -0.97± 0.17 −1.53+0.51

−0.50 -0.97± 0.10 −1.49+0.32
−0.31 -1.00± 0.10

ΩΛ 0.722± 0.018 0.724± 0.019 0.717± 0.026 0.772± 0.048 0.716± 0.019 0.773± 0.029 0.724± 0.018
100Ωbh2 2.267± 0.058 2.269± 0.060 2.275± 0.061 2.254+0.062

−0.061 2.271± 0.061 2.254+0.061
−0.062 2.284± 0.061

τ 0.086± 0.016 0.089± 0.017 0.087± 0.017 0.088± 0.017 0.089± 0.017 0.088± 0.017 0.089+0.017
−0.018

ns 0.961± 0.013 0.963± 0.014 0.963± 0.015 0.958± 0.014 0.963± 0.014 0.957± 0.014 0.964± 0.014
ln(1010A05) 3.074+0.040

−0.039 3.060± 0.042 3.070± 0.041 3.062+0.042
−0.043 3.062+0.041

−0.042 3.062± 0.042 3.072± 0.042

d0.275 0.1411± 0.0030 0.1387± 0.0036 0.1404+0.0036
−0.0035 0.1382± 0.0037 0.1379± 0.0036 0.1387+0.0036

−0.0037 0.1402+0.0033
−0.0034

DV (0.275) 1080± 18 1110+32
−31

1089± 31 1111± 33 1115± 32 1107± 31 1091+27
−28

f 1.6645± 0.0043 1.6643± 0.0045 1.661 ± 0.019 1.72 ± 0.056 1.660 ± 0.011 1.7187+0.0337
−0.0334 1.6645± 0.0107

Age (Gyr) 13.73± 0.12 14.08± 0.33 13.76+0.15
−0.14 14.49± 0.52 14.04± 0.36 14.48± 0.48 13.86+0.34

−0.33

Ωch2 0.1139± 0.0041 0.1090+0.0060
−0.0061 0.1122+0.0068

−0.0069 0.1107+0.0063
−0.0062 0.1096+0.0061

−0.0062 0.1108+0.0060
−0.0061 0.1115± 0.0061

Ωtot - 1.007+0.006
−0.007 - 1.013± 0.007 1.006± 0.008 1.014± 0.007 1.003± 0.007

σ8 0.813± 0.028 0.787± 0.037 0.792+0.081
−0.082 0.907± 0.117 0.780+0.052

−0.053 0.904± 0.074 0.801+0.053
−0.052

Table 5. Marginalized one-dimensional constraints (68%) for WMAP5+BAO for flat ΛCDM, ΛCDM with curvature (oΛCDM), flat wCDM (wCDM),
wCDM with curvature (owCDM), and owCDM including constraints from supernovae. The non-standard cosmological parameters constrained by the BAO
measurements ared0.275 ≡ rs(zd)/DV (0.275) andf ≡ DV (0.35)/DV (0.2).

For theΛCDM model, we findΩm = 0.278 ± 0.018 and
H0 = 70.1±1.5 kms−1 Mpc−1, with errors significantly reduced
compared to the WMAP5 alone analysis (Ωm = 0.258 ± 0.03 and
H0 = 70.5+2.6

−2.7 kms−1 Mpc−1). Similar limits onΩm were ob-
tained by Rozo et al. (2009) who used the maxBCG cluster abun-
dance and weak-lensing mass measurements to similarly break the
tight WMAP5 constraint onΩmh2.

Fig. 12 shows the impact of relaxing the flat,ΛCDM assump-
tion. The WMAP5 results alone tightly constrainΩmh2 in all of
these models (dashed lines), but low redshift information is neces-
sary to constrainΩm andH0 separately. Allowingw 6= −1 relaxes
the constraint onΩm from the BAO measurement, and in addition
allowing Ωk 6= 0 relaxes the constraint even further. The impact
on the constraints onΩm andH0 is shown in the lower right panel.
All of the contours lie along the banana withΩmh2 fixed from the
CMB.

In the oΛCDM model, the combination of scales measured
by the CMB and the BAO tightly constrain the curvature of the
universe:Ωk = −0.007+0.006

−0.007 . The constraints onΩm andH0 in
this model are well described by Eqns. (16) & (17), while in the

wCDM cosmology they degrade becausew is not well-constrained
by the low redshift BAO information alone.

When the parameter space is opened to both curvature and
w, the WMAP5 data are not able to eliminate the degeneracy be-
tween Ωm and w in the BAO constraint. The constraints relax
to Ωm = 0.240+0.044

−0.043 and H0 = 75.3 ± 7.1 kms−1 Mpc−1;
Ωk = −0.013 ± 0.007 is still well-constrained butw is not (see
Fig. 12). Including the constraints from the Union Supernova Sam-
ple breaks the remaining degeneracy, and we recover the tight con-
straints onΩm and H0 given in Eqns. (16) & (17). These con-
straints, and the relative degeneracies induced and brokenby dif-
ferent data sets, are shown in Fig. 13. For each of the four models
considered, the central values forΩm andH0 change only slightly
when the full WMAP5 likelihoods are used (Table 5) instead ofpri-
ors onΩbh

2 andΩch
2 in combination with the Union SN sample

(Table 4).
Table 5 also lists the best fit cosmological age (i.e. time since

the Big Bang) for different cosmologies and data sets. Whilethe
age is very well determined forΛCDM and wCDM, there is a de-
generacy between age and curvature that increases the uncertainties
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Figure 12. WMAP5+BAO constraints onΩmh2, Ωm, andH0 for ΛCDM (solid black contours), oΛCDM (shaded green contours), wCDM (shaded red
contours), and owCDM (shaded blue contours) models. Throughout, the solid contours show WMAP5+LRG ΛCDM constraints. The first three panels show
WMAP5 only constraints (dashed contours) and WMAP5+BAO constraints (colored contours) in theΩmh2- Ωm plane as the model is varied. In the lower
right we show all constraints from WMAP5+BAO for all four models in theΩm−H0 plane, which lie within the tightΩmh2 ≈ 0.133±0.006 WMAP5-only
constraints.

and allows for an older age in oΛCDM and owCDM information.
Adding SN andH0 measurements reduces these uncertainties and
implies a best fit age of13.86+0.34

−0.33 Gyr.

9.3 Comparison with Riess et al. (2009)H0

Riess et al. (2009) recently released a new determination ofthe
Hubble constant using a differential distance ladder:H0 = 74.2 ±
3.6 kms−1 Mpc−1. This value, as well as the valuesH0 ≈
68 kms−1 Mpc−1 determined in Table 4 using BAO, SN, and a
WMAP5 prior onΩch

2 andΩbh
2, are within∼ 1σ of the mean

value determined from WMAP5+BAO in aΛCDM model, 70.1.
In the wCDM model, combining this newH0 with the WMAP5
likelihood constrainsw = −1.12 ± 0.12. In Table 5 we show
MCMC results for the owCDM model for WMAP5+BAO+H0 and
WMAP5+BAO+H0+SN1. In this model, the supernova data are
more effective thanH0 at breaking the long degeneracy in the

1 We account for the small cosmology dependence in theH0 constraint
(seen as a slight degeneracy betweenH0 andw in fig. 14 of Riess et al.
2009) by considering it as a constraint on the inverse luminosity distance at
the effective redshiftz = 0.04 (Riess private comm.)

WMAP5+BAO constraints. Combining WMAP5+BAO+SN+H0,
the mean parameters are quite close toΛCDM: Ωk = −0.003 ±
0.007 andw = −1.00 ± 0.10, andΩm = 0.279 ± 0.016 and
H0 = 69.5 ± 2.0 kms−1 Mpc−1 are also well-constrained.

10 COMPARISON WITH DR5 ANALYSES

In Percival et al. (2007c), we presented BAO measurements calcu-
lated from fitting power spectra calculated for three samples drawn
from the combined SDSS+2dFGRS catalogue, using the SDSS
DR5 data. The full catalogue was split into galaxy populations,
rather than redshift slices, corresponding to the SDSS LRGs, the
2dFGRS+SDSS main galaxies, and the combined sample. From
this, we obtained the distance constraintsrs(zd)/DV (0.2) =
0.1980 ± 0.0058 andrs(zd)/DV (0.35) = 0.1094 ± 0.0033 with
correlation coefficient0.39, which gives a distance ratio measure-
ment ofDV (0.35)/DV (0.2) = 1.812 ± 0.062. The concordance
ΛCDM value isDV (0.35)/DV (0.2) = 1.67, measured using the
SNLS supernova data, which is discrepant with the publishedDR5
BAO results at the 2.4σ level. The analysis of mock catalogues pre-
sented in Section 5 showed that the cubic spline× BAO method
underestimates the true distribution of recovered distances, given
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Figure 13. For the owCDM model we compare the constraints from
WMAP5+BAO (blue contours), WMAP5+SN (green contours), and
WMAP5+BAO+SN (red contours). Dashed and solid contours highlight
the 68% confidence intervals for the WMAP5+BAO and WMAP5+SN
models respectively.

noisy data, which produce a non-Gaussian likelihood surface. We
should therefore increase the errors on the DR5 measurements of
Percival et al. (2007c) by at least a factor of1.14, which is the
correction derived from the fits to three DR7 power spectra. If
we do this, the revised DR5 constraints arers(zd)/DV (0.2) =
0.1981 ± 0.0071 andrs(zd)/DV (0.35) = 0.1094 ± 0.0040 with
correlation coefficient0.38, which gives a distance ratio measure-
ment ofDV (0.35)/DV (0.2) = 1.813 ± 0.073. The discrepancy
between the old DR5 constraints and the SNLSΛCDM value is re-
duced to∼< 2σ. Because the DR5 data were noisier than the DR7
data, we should expect the likelihood surface to be less likea Gaus-
sian prediction, and the correction actually should be slightly larger
than that for the DR7 data.

Of all the changes implemented between this DR7 analysis
and the analysis of the DR5 data, it was the increase in the num-
ber of random points used to quantify the survey geometry that

had the most effect when comparing different catalogues. Wenow
find consistent results, given in Table 3, for all cataloguesand
analysis variations presented in Section 8. When translated into
constraints on the distance ratio, for the full catalogue wefind
DV (0.35)/DV (0.2) = 1.736±0.065. Using only 3 redshift slices
we findDV (0.35)/DV (0.2) = 1.765 ± 0.079. If the 0.5σ differ-
ence is not due to chance, the difference between these measure-
ments could be caused by residual non-Gaussian scatter in the band
powers. A scenario in which this is reduced by including fits to
more redshift bins would then explain the observed trend. Exclud-
ing the 2dFGRS and early SDSS data, the constraint is reducedto
DV (0.35)/DV (0.2) = 1.747 ± 0.070, which is consistent with
the tighter constraint using all of the data.

Sanchez et al. (2009), who analysed the SDSS DR6 sam-
ple, speculated that the discrepancy could be caused by the
Percival et al. (2007c) analysis fixing the BAO damping scale.
However, in our current analysis, if we allow the BAO
damping scaleDdamp to vary, the derived constraints on
DV (0.35)/DV (0.2) does not change significantly from that re-
covered in our default analysis. The mild discrepancy withΛCDM
does not appear to be caused by fixing the damping scale. The
change from photometric calibration to uber-calibration has a rel-
atively minor effect on the distance ratio, which increasesto
DV (0.35)/DV (0.2) = 1.748 ± 0.074. Fig. 6 shows that the ef-
fect on the BAO of redshift-space distortions caused by the thermal
motion of galaxies in clusters is similarly small. Linear redshift-
space distortions propagate the apparent position of galaxies along
their velocity vector in a way that simply makes the field lookmore
evolved than it is; they do not alter the positions of the BAO.

In conclusion, the significance of the discrepancy with flat
ΛCDM models is reduced because of

(i) analysis of the non-Gaussian nature of the likelihood surface,
(ii) analysis of more redshift slices,
(iii) more accurate determination of the galaxy redshift distribu-

tion.

11 DISCUSSION

In this paper we have measured and analysed BAO from the SDSS
DR7 sample, which represents the final data set observed using
the original SDSS spectroscopic target selection algorithm. We
have further developed the analysis method used by Percivalet al.
(2007c) to analyse the DR5 sample, including a faster methodfor
the calculation of the window function (see Appendix A), linking
the cosmological model to be tested with the power spectrum band-
powers measured. This has enabled us to analyse power spectra
calculated for six rather than three redshift slices, whichwould not
have been possible using the old method.

In Section 6 we have shown how the distance–redshift con-
straints atz = 0.2 andz = 0.35 can be decomposed into a single
distance constraint atz = 0.275, and a “gradient” around this pivot
given byDV (0.35)/DV (0.2). This allows us to easily test the con-
sistency of theΛCDM model without having to compare with ad-
ditional data. For the best-fit flatΛCDM model that matches our
constraintd0.275 = 0.1390 ± 0.0037, we find that our distance-
ratio measurement ofDV (0.35)/DV (0.2) = 1.736 ± 0.065 is
consistent at the 1.1σ level.

Now that the SDSS-II sample is complete, the importance of
including the 2dFGRS data is reduced, and the inclusion onlyde-
creases the low redshiftz = 0.2 distance error by 4%. As we
showed in Section 8.2, the inclusion of the 2dFGRS galaxies does
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not lead to the discrepancy with theΛCDM model: including the
2dFGRS brings our constraint slightly more into line with the pre-
dictions ofΛCDM models.

Of the cosmological parameter constraints presented in Ta-
bles 4, & 5, perhaps the most impressive are the constraints on
Ωm andH0. For ΛCDM models, fitting to BAO and Supernovae
with priors onΩmh2 andΩbh

2 givesH0 to 3.2% andΩm to 6.4%.
These constraints are robust to the behaviour of the Universe at
high redshift, as they are based only on the distance–redshift rela-
tion at redshiftz < 0.35: we can allowΩk 6= 0 andw 6= −1 with
minimal effect. This weak dependence onw andΩk was shown in
Eqns. (16) & (17) for the BAO data.

If we allow for the flatness constraint to be relaxed, then
we obtain Ωk = −0.007 ± 0.007 from the combination of
BAO+WMAP5 data. A tight constraint was similarly obtained on
w = −0.97 ± 0.17 if we relax theΛ constraint. If we allow both
the curvature and the dark energy equation of state to vary, we must
include more data to continue to break the degeneracy between the
two parameters. We do so by including results from the Union SN
dataset, giving usΩk = −0.006 ± 0.008 andw = −0.97 ± 0.10,
consistent with a flatΛCDM model. If one allows onlyw 6= −1 OR
Ωk 6= 0, then the combination of CMB, supernova and BAO data
has an internal cross-check: opening two degrees of freedomfrom
flat ΛCDM yields results that are consistent with flatΛCDM. We
have also shown that our constraints are consistent with therecent
re-determination ofH0 by Riess et al. (2009), and that combining
this constraint with WMAP5, BAO, and SN in a model where both
curvature andw vary yields mean parameter values very close to
ΛCDM.

In a companion paper (Reid et al. 2009), we consider the LRG
sample in more detail. The LRGs are distributed in haloes in a
simple way and we are able to extract the halo power spectrum
from the data. In addition to fitting the BAO in this power spec-
trum, we are able to extract limited information about the shape
of the power, which gives complementary constraints. A detailed
comparison between the results from our fit to the BAO in red-
shift slices, performed in a cosmology model-independent way and
including low-redshift galaxies, with the halo power spectrum of
Reid et al. (2009) is presented in that paper, where excellent agree-
ment is demonstrated. The data sets are correlated so they should
not be used together to constrain cosmological models.

Our analysis highlights the importance of BAO as a key
method for investigating cosmic acceleration, and shows that the
method can already provide interesting cosmological constraints.
Ongoing spectroscopic surveys aiming to use BAO to analyse
dark energy include the Baryon Oscillation Spectroscopic Sur-
vay (BOSS; Schlegel et al. 2009a), the Hobby-Eberly Dark Energy
Experiment (HETDEX; Hill et al. 2008) and the WiggleZ survey
(Glazebrook et al. 2007). There are also plans for future surveys
covering significantly larger volumes of the Universe, and therefore
observing the BAO signal with higher precision such as the Square
Kilometer Array (SKA: www.skatelescope.org), and the
Joint Dark Energy Mission (JDEM:jdem.gsfc.nasa.gov)
and European Space Agency Euclid satellite mission concepts,
or the Big Baryon Oscillation Spectroscopic Survay (BigBOSS;
Schlegel et al. 2009b). Photometric surveys such as the Dark
Energy Survey (DES:www.darkenergysurvey.org), the
Panoramic Survey Telescope & Rapid Response System (Pan-
Starrs:pan-starrs.ifa.hawaii.edu) and the Large Syn-
optic Survey Telescope (LSST:www.lsst.org) will find BAO
using photometric redshifts. All of these surveys will measure BAO
at higher redshifts than those analysed in our paper using SDSS-II

data: if dark energy does not have a simple explanation, thencom-
parison between future high redshift results and our current under-
standing of the low-redshift Universe from SDSS-II will provide an
interesting test of these models.
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APPENDIX A: CALCULATION OF THE WINDOW
FUNCTION

In this Appendix, we describe the method used to calculate the
mapping between the power spectra in the “true” cosmology to
be tested, and the measured, or observed, power spectra where
a ΛCDM model was used to convert redshifts to distances. This
window function includes both the effect of the survey geometry
and the mapping between cosmological models. As described by
Percival et al. (2007c), we should expect the observed powerspec-
trum to be a convolution of the true power spectrum with a window
function.

P (k)obs =

∫

dk′W (k, k′)P (k′)true. (A1)

The goal of this section is to introduce a fast method by which
W (k, k′) can be calculated for any model.
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Figure A1. The redshift dependence of galaxy pair-weights for the SDSS
DR7 LRG and main galaxy samples, and from the combination of the
two. These curves were calculated assuming a flatΛCDM cosmology with
Ωm = 0.25, h = 0.72, & Ωbh

2 = 0.0223.

In Percival et al. (2007c), this window function was calculated
using Monte-Carlo realisations of Gaussian density fields,created
assuming the cosmological model to be tested. These fields were
then distorted as if they had been analysed assuming aΛCDM
model, and the power spectrum was calculated and compared with
that input. Using a large number of simple input power spectra,
we were able to construct the window function from this compar-
ison. This procedure required significant computational resources
as many density fields were needed in order to accurately measure
the window function, limiting the number of models that could be
tested. In particular, we were only able to consider cubic spline
models ofDV (z) with two nodes to three power spectra. With a
faster window function calculation, we can include more nodes,
and fit to more power spectra.

For a survey covering a thin shell, the window function relat-
ing true and observed power is an offset delta function

W (k, k′) = δD[k/k′ − ǫ], (A2)

whereǫ = dp(true)/dp(obs) is the ratio of proper distances in the
true and observed cosmologies. Here we are simply stretching the
true survey prior to measuring the power spectrum.

The obvious extension to surveys over a range of redshifts is
to split the sample intoi redshift shells, and to approximate the
window function as

W (k, k′) =
∑

i

δD[k/k′ − ǫi]wi, (A3)

wherewi is the weighted number of galaxy pairs in redshift shelli.
Because we are now considering a broad survey, this pair weight
is a function of pair separation. In this paper, we bin pairs of
galaxies with comoving separation90h−1 Mpc < dΛCDM <
130 h−1 Mpc, where dΛCDM is the comoving distance in the
ΛCDM cosmology used to convert galaxy redshifts to distances.
The bin size was chosen to approximately match the BAO scale.
For the SDSS LRG, main galaxy and combined samples, the galaxy
pair-weights are shown in Fig. A1. We also need to allow for dif-

Figure A2. Galaxy pair-weights for the SDSS DR7 LRG and main galaxy
samples, and from the combination of the two, as a function ofcomoving
distance shifts. These were calculated assuming that a flatΛCDM cosmol-
ogy with Ωm = 0.25, h = 0.72, & Ωbh2 = 0.0223 was used to anal-
yse the data, while the BAO are present in a true cosmologicalmodel with
distance–redshift relation defined by a cubic spline inDV (z) with nodes at
z = 0.2 andz = 0.35, with amplitude as shown in the plot.

ferences in the orientation of galaxy pairs, as the distribution of
ǫi should allow the galaxy pairs to be of all orientations. Includ-
ing radial separations introduces an asymmetric convolution for ǫi,
and we have found that this needs to be included in order to pro-
vide approximately the correct window function shapes. Note that
Eq. (A3) is exact when there is a perfect dilation of scale between
the true and observed cosmologies: such stretching of the windows
can be perfectly represented by this equation.

For each “true” cosmology to be tested, we can calculate the
shift in scale that stretches each pair of galaxies because we do
not measure BAO using this model. We have to allow for the
angular shift caused by a change inDA(z) and the radial shift
caused by the true and observedH(z) being different. An exam-
ple of the weighted distribution of “shifts” expected for a model
cosmology defined by a cubic spline inDV (z) with two nodes
at z = 0.2 and z = 0.35 is shown in Fig. A2. Here the true
cosmology has a distance-redshift relation given by a spline fit to
DV (z), with nodesDV (z = 0.2) = 550 h−1 Mpc, andDV (z =
0.35) = 1080 h−1 Mpc. TheΛCDM values areDV (z = 0.2) =
568 h−1 Mpc, andDV (z = 0.35) = 949 h−1 Mpc, so at redshift
z = 0.2, BAO in the true cosmology are stretched to larger scales
by the analysis method, while those at redshiftz = 0.35 are com-
pressed to smaller scales. For the SDSS main galaxies, with median
redshift close toz ≃ 0.2, dtrue/dobs < 1, while for the LRGs, with
median redshiftz ≃ 0.35, dtrue/dobs > 1.

For each “true” cosmological model, the window function re-
lating the true and observed power spectra was calculated bycon-
volving the standard window function for theΛCDM model, by
the distribution of shifts such as that shown in Fig. A2. For the
models shown in Fig. A2, we have calculated the window function
using the approximate method outlined in this Appendix, andus-
ing the Monte-Carlo method described by Percival et al. (2007c).
A comparison of the windows is presented in Fig. A3. Reasonable
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Figure A3. Window functions for three values ofk, calculated for the SDSS LRG, main galaxy and combined catalogues. Dotted lines represent the windows
for our fiducial ΛCDM cosmology. Solid and dashed lines show the window functions, if the true cosmology were different, but the data were analysed
assuming that the fiducialΛCDM cosmology is correct. The solid lines were calculated using the procedure outlined in this Appendix. Dashed lines were
calculated using the Monte-Carlo procedure of Percival et al. (2007c).

agreement is found between the different methods: it is clear that
the approximate method of splitting into shells recovers the main
features of the window function. The agreement is not perfect, as
expected given the approximate nature of our calculation. Because
we analyse the data using aΛCDM model, the window will be
correct for this model, and will only deviate if we consider signifi-
cantly different distance–redshift relations.
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