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This paper presents an implementation of a recently developed control allocation algo-

rithm CAPIO (a Control Allocation technique to recover from Pilot Induced Oscillations)

for composite adaptive control of an inertially cross coupled unstable aircraft. When actu-

ators are rate-saturated due to either an aggressive pilot command, high gain of the flight

control system or some anomaly in the system, the effective delay in the control loop may

increase due to the phase shifting between the desired and the achieved system states.

This effective time delay may deteriorate the performance or even destabilize the system

in some cases, depending on the severity of rate saturation. CAPIO reduces the effective

time delay by minimizing the phase shift between the commanded and the actual attitude

accelerations. We present simulation results for an unstable aircraft with cross-coupling

controlled with a composite adaptive controller in the presence of rate saturation. The

simulations demonstrate the potential of CAPIO serving as an effective rate saturation

compensator in adverse conditions.

I. Introduction

Actuator rate saturation introduces an effective time delay (see Fig. 1) which, in general, degrades the
system performance. If the rate saturation persists, it may destabilize the system and cause drastic results
such as a Pilot Induced Oscillation (PIO).1 The authors’ earlier work on CAPIO (a Control Allocation
technique to recover from Pilot Induced Oscillations)2,3 addressed this problem by proposing an algorithm
in control allocation framework which enabled phase compensation without the need of actuator ganging.
CAPIO had two modes: Synchronization and tracking. In synchronization mode the goal was minimizing
the derivative of the error between the desired and the actual control inputs, resulting in minimization of the
phase shift. In the tracking mode the error between the desired and the actual control inputs is minimized,
resulting in the convergence of the actual control input to the desired control input. Thanks to this dual
behavior, phase minimization was achieved without any constant bias formation. It was assumed in the
earlier work on CAPIO2 that there exists a PIO detector on board, which enables the switching between
CAPIO modes depending on whether there a PIO is detected or not. In this paper, we demonstrate that
CAPIO can be used as a general phase compensator or a rate saturation anti windup algorithm regardless
of an occurrence of a PIO event. This is achieved by using error minimization and the derivative error
minimization simultaneously using appropriate weighting.

There are a handful of approaches for the input saturation problem in adaptive control.4–8 These ap-
proaches in general includes the modification of the adaptive laws or the adaptive control signal itself to
ensure the stability of the overall system in the presence of actuator saturation. In this paper we approach
the problem from a control allocation standpoint where we employ our phase compensator CAPIO without
altering the original adaptive controller. A control allocation approach has several advantages. First, one
can separate the controller design and the control input distribution which enables reconfiguration without
changing the controller design in the case of a failure or an objective change.9 Second, in the presence of
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redundant actuators, secondary objectives can be achieved together with a primary objective. For example,
in flight control, drag shaping can be achieved together with trajectory following. For an introduction to
control allocation, see Harkegard.9

Rate saturation 
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Figure 1. Input u and output δ of a rate saturated actuator.

To present the capabilities of CAPIO we use an unstable, inertially cross coupled aircraft model which
is controlled by a combined/composite adaptive control architecture.10–13 We use the architecture given in
Stotsky.12

II. System Model

To show the advantages of CAPIO, a flight control example using a simplified14 ADMIRE model15,16 is
used with some modifications to simulate inertial cross coupling.

The linearized aircraft model at Mach 0.22, altitude 3000m is given by

x = [α β p q r]T − xlin,

y = Cx = [p q r]T − ylin,

δ = [δc δre δle δr]
T − δlin,

u = [uc ure ule ur]
T − ulin�

ẋ

δ̇

�
=

�
A Bx

0 −Bδ

��
x

δ

�
+

�
0

Bδ

�
u, (1)

where α, β, p, q and r are the angle of attack, sideslip angle, roll rate, pitch rate and yaw rate, respectively.
δ and u represent the actual and the commanded control surface deflections, respectively. Control surfaces
are canard wings, right and left elevons and the rudder. (.)lin refers to values at the operating points where
the linearization was performed. The actuators have the following position and rate limits

δc ∈ [−55, 25]× π

180
; δre, δle, δr ∈ [−30, 30]× π

180

δ̇c, δ̇re, δ̇le, δ̇r ∈ [−70, 70]× π

180
(2)

and have first order dynamics with a time constant of 0.05 seconds. It is noted that the position limits
given are the same as the ones given by Harkegard14 but the rate limits are assumed to illustrate CAPIO
properties.

To make this model suitable for control allocation implementation, the actuator dynamics are neglected
and the control surfaces are viewed as pure moment generators and their influence on α̇ and β̇ is neglected. It
is noted that the actuators dynamics are present during the simulations, i.e. they are neglected only during
the control allocation algorithm derivation. These assumptions lead to the following approximate model

ẋ = Ax+Buu = Ax+Bvv,

v = Bu, (3)

where

Bu = BvB, Bv =

�
02×3

I3×3

�
,
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A=





−0.5432 0.0137 0 0.9778 0

0 −0.1179 0.2215 0 −0.9661

0 −10.5128 −0.9967 0 0.6176

2.6221 −0.0030 0 −0.5057 0

0 0.7075 −0.0939 0 −0.2127




,

B =




0 −4.2423 4.2423 1.4871

1.6532 −1.2735 −1.2735 0.0024

0 −0.2805 0.2805 −0.8823



 .

The virtual (total) control effort, v, consists of the angular accelerations in roll, pitch and yaw. To simulate
the effects of inertial cross-coupling, we modify the A matrix so that a change in pitch angular velocity
creates a moment in roll and yaw axes:

A=





−0.5432 0.0137 0 0.9778 0

0 −0.1179 0.2215 0 −0.9661

0 −10.5128 −0.9967 1 0.6176

2.6221 −0.0030 0 −0.5057 0

0 0.7075 −0.0939 0.1 −0.2127




(4)

In this flight control example the goal of the inner loop adaptive controller is to regulate the roll, pitch
and yaw angles at given reference values. The overall system configuration is given in Fig. 2.
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Figure 2. Overall MIMO system structure

The inner loop controller is a combined/composite adaptive controller12 controller which uses pd, qd and
rd as references and produces the necessary attitude accelerations, v ∈ �3, to track these references. This
adaptive controller will be explained in more detail in the final manuscript.

The control allocator distributes this total control effort, v, to individual control surfaces via the actuator
commands, u ∈ �4. The control surfaces then produce actual attitude accelerations, Bu, where B is the
control input matrix.

III. Simulation Results

III.A. Adaptive control with conventional control allocation

The conventional control allocation used in this example minimizes the following objective function

J = ||Bu− v||22 + �||u||22 (5)

subject to max(u̇minT + uk−1, umin) ≤ u ≤ min(u̇maxT + uk−1, umax), where T is the sampling interval.
It is noted that norms, instead of square-norms, can be used in the objective function. Note that (5) is in
the form of a typical objective function used in conventional control allocators,17 where the main objective
is to minimize the error between the desired and the actual total control efforts. As � → 0, minimizing (5)
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becomes equivalent to achieving the main objective explained above and picking the solution that gives the
minimum control surface deflection, among different solutions. In this example � = 10−5.

Figure 3 represents the adaptive controller performance when a conventional control allocator used.
System goes into sustained oscillations due to the effective time delay introduction of rate saturating actuators
(see Fig. 4).
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Figure 3. Regulation with adaptive controller + conventional control allocator

III.B. Adaptive control with CAPIO

To minimize the phase shift and thus effective time delay due to rate saturation, CAPIO forces the virtual
(total) control effort v, to be in phase with the actual control effort Bu produced by the actuators. To
achieve this, a derivative error term is added to objective function (5) to obtain the following CAPIO
objective function

J
�
= ||Bu− v||22 + ||Wd(Bu̇− v̇)||22 + �||u||22 (6)

where Wd ∈ R3×3 represents a weighting matrix on the derivative term. The cost function J
�
is minimized

with respect to u, with u̇ = (u− u−)/T , where u− denotes the value of u at the previous sampling instant.
It is noted that with this modified objective function, the control allocator is trying to realize v̇ as well as v.

Figure 5 represents the same adaptive controller performance when CAPIO is used as the control allocator.
Since CAPIO is able to minimize the phase shift between the commanded and achieved total control input
vectors, the system is stable and the controller can successfully force the aircraft attitude angular rates follow
their desired references.

IV. Summary

In this extended-abstract, it was presented by simulations that the recently proposed control allocation
scheme CAPIO is a reasonable candidate to be used as an effective phase compensator for an adaptively
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Figure 4. Requested and actual control inputs with adaptive controller + conventional control allocator

controlled unstable aircraft with inertial cross-coupling in the presence of input saturation. CAPIO achieves
this by its dual-behavior: It minimizes both the errors and the derivatives of the errors between the com-
manded and achieved total control input vectors. By minimizing the derivative errors, it prevents effective
delay introduction and by minimizing the errors themselves, it helps realizing the commanded control in-
puts. More details about the combined/composite adaptive controller and control allocator CAPIO will be
provided in the final manuscript with supporting figures.
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Figure 6. Requested and actual control inputs with adaptive controller + CAPIO
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