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ABSTRACT 

  

 Self-supporting carbon nanotube (CNT) Bucky-Papers have unique structural and surface 

properties which can be utilised in many applications. In this work we characterised pure self-

supporting CNT membranes, where CNTs were held together only by Van der Waals forces, and 

evaluated their potential and performance in direct contact membrane distillation. The membranes 

were found to be highly hydrophobic (contact angle of 113°), highly porous (90%), and to exhibit a 

thermal conductivity of 2.7 kW/m2•h. We demonstrate, as a proof of concept, that self-supporting 

CNT Bucky-Paper membranes can be used for desalination in a direct contact membrane 

distillation setup with 99% salt rejection and a flux rate of ~12 kg/m2*h at a water vapour partial 

pressure difference of 22.7kPa. Ageing of the membranes by delamination, factor limiting their 

performance, is also reported but work is currently done to address this issue by investigating 

composite material structures. 
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1. INTRODUCTION 
  

 Growing concern over our finite and stressed water resources has led to renewed interest 

into Membrane Distillation (MD) as an alternative method for water purification and desalination. 

MD is a thermally driven process based on a vapour pressure gradient across a hydrophobic 

membrane [1,] [2]. The most commonly used configuration is Direct Contact Membrane Distillation 

(DCMD) in which a hydrophobic membrane acts as a barrier between a feed of hot seawater or 

brackish water and a permeate of cold freshwater (Figure 1Figure 1). While liquid cannot cross 

the membrane, water vapour is able to travel through the pores driven by the difference in water 

vapour partial pressure. Previous studies have shown that even small temperature differences 

between the feed and permeate can lead to significant fluxes [3]. 

 

 In contrast to other desalination techniques such as nanofiltration and reverse osmosis, 

DCMD offers a potentially low energy and high rejection route to the desalination of highly dirty or 

salty waters. However, to become competitive with other desalination technologies, the DCMD 

process needs to be improved and with membranes tailored specifically for this application. Two 

main membrane properties are critical for DCMD. Firstly, in order to achieve efficient vapour 

transport from the hot to the cold side, the membrane needs to be highly porous and as thin as 

possible [4-5]. Secondly, the pores need to be large enough to facilitate vapour transport, while 

having sufficiently small dimensions to avoid membrane wetting and formation of a direct liquid 

bridge between the feed and the permeate sides [2-6]. Most previous studies have investigated 

membranes formed from Poly(propylene) (PP), Poly(vinylidene-fluoride) (PVDF) and 

Poly(tetrafluoroethylene) (PTFE) [7]. While these materials are highly hydrophobic, they are also 

expensive and difficult to process. It is consequently important to investigate other alternatives as 

well as techniques for improving the process efficiency by modifying the membrane properties and 

structure.  

 

 One possibility is to explore Carbon Nanotube (CNT) based membranes. CNTs are nano-

scale cylinders of rolled up graphene with inner diameters as small as 0.7 nm (Figure 2Figure 2). 

They have exceptional mechanical, electrical and thermal properties, and it was recently revealed 

that they exhibit fast fluid flow through their interior. This has stimulated intense interest in CNT 

based membranes of various structures [8-11]. In this work we focus on CNT Bucky-Paper (BP) 

membranes, which is a paper-like structure of CNTs processed by vacuum filtration [12]. We then 

apply CNT BP membranes to the novel application of MD. 

  

 For the application of MD, the properties surrounding the nanotubes are of key interest. 

Here we utilise various microscopy, porosimetry, surface and physical property analytical devices 
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to uncover valuable features of the CNT BP membranes and relate this to performance in MD. The 

CNT BP membranes have been characterised using various techniques including scanning 

electron microscopy (SEM), transmission electron microscopy (TEM), Nitrogen nitrogen 

adsorption, contact angle measurements, mechanical tensile tests, and thermal conductivity 

measurements. They were also tested against commercial PTFE membranes.  
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2. THEORY 
 
 Theoretical derivations around MD mass and energy transport are well described [13]. Here 

we present the relevant theory for our study. Two properties, permeance, f, and permeability, k, are 

used to quantify mass transport across a membrane and are defined as:  
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where J (kg/s) is the flux through the membrane, L (m) the membrane thickness, A (m2) the 

membrane area and, in the case of membrane distillation, ΔP (Pa) is the difference in water vapour 

partial pressure across the membrane. The permeance can be determined by taking the gradient 

of a plot of flux against the vapour pressure difference, and dividing by the membrane area. The 

permeability is simply the permeance multiplied by the membrane thickness.  

 

 If the temperatures of the hot and cold streams are known, the water vapour partial 

pressure can be estimated based on Antoine’s equation: 
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where the vapour partial pressure P is in Pa and the temperature T in Kelvin (K). 

 

 For direct contact membrane distillation it is generally accepted that mass transport through 

the membrane can operate in one of three regimes: (i) Knüdsen flow, (ii) molecular flow or (iii) a 

combination of both known as transition flow. The dominating regime is indicated by the Knüdsen 

number (Kn), defined as the ratio of the mean free path (λ) to the pore diameter (d) [14-16]. The 

mean free path is defined as: 
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where R is the Boltzmann constant, T the temperature in Kelvin, d the average particle diameter, 

NA the Avogadro number and P the working pressure. 

 

 For Knüdsen numbers, Kn > 1, the molecule - pore wall collisions dominate leading to 

Knüdsen type flow: For isoporous membranes with circular pores the permeance is given by [7-17]: 
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where R represents the gas constant (J×K-1×mol-1), M the molar mass (g×mole-1), Ta the average 

temperature (K), r the average pore radius, δ the membrane thickness (m), τ, the tortuosity and ε, 

the membrane porosity. 

 

 At the other extreme, for Kn<0.01, molecule-molecule collisions dominate leading to 

molecular flow through the stagnant air film trapped in the membrane. The permeance is then 

given by: 
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where D is the diffusivity of water vapour in air, PT is the total pressure (air and water vapour) 

within the membrane and is assumed to be 101.325 kPa in this work, Pln is the mean log average 

of the air pressure in the membrane defined as: 
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where Pair1 and Pair2 represent the air partial pressure at the hot and cold side of the membrane 

respectively.  

 

 At intermediate Knüdsen numbers 1>Kn>0.01, a combination of both transport mechanisms 

can occur. The total resistivity of the system is then equal to the sum of both Knüdsen and 

Molecular resistivity. This was modelled as resistances in series in previous studies [15], leading to 

the following equation for permeance: 
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 Furthermore, the temperature polarisation coefficient as a function of feed 

temperature is given by the equation: 
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where the subscripts 1 and 2 refer to the hot and the cold side, respectively, Tm
 stands for the 

temperature of the membrane surface and Tb is the temperature in the bulk solution, which is taken 

as the average of the inlet and outlet temperatures.[.1] 
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3. EXPERIMENTAL DETAILS  

3.1 Material and processing 

 The CNTs were grown by chemical vapor deposition. A 1-5 nm thick iron catalyst film was 

deposited onto a silicon substrate bearing a thin Silicon Dioxide layer. A mixture of Helium (95%) - 

Acetylene (5%) was used as the carbon feedstock and heated to between 650 and 750°C. The 

CNTs typically have an outer diameter of ~10-15 nm (Figure 2Figure 2) and length of 150-300 µm 

[18]. 

  

 The CNT BP membranes were processed by vacuum filtration of CNTs dispersed in 99.8% 

pure propan-2-ol [19]. Well dispersed CNT suspensions were obtained by repeated sonication for 

15 minute intervals at a power of 150 W. Vacuum filtration was performed with a 47 mm diameter 

Millipore filtration unit with house line vacuum (dP= -95 kPa). The CNTs were filtered onto a 

Poly(ethersulphone) (PES) 0.2 μm-pore size Millipore membrane and then pealed off to form a 

self-supporting membrane. 

 

PTFE membranes with 0.22 μm pore size were purchased from Millipore and tested for 

comparison. The PTFE membranes were composed of a thin (~ 30 μm) layer of pure stretched 

PTFE on a poly-ethylene grid support. 
 

3.2 Membrane characterisation techniques 

3.2.1 Pore size 

 Three complementary techniques were used to characterise pore size. Firstly a surface 

apparent pore size was determined from SEM images taken with a Philips FEG SEM at 2 kV. Each 

image was taken under the same conditions to reduce errors when comparing pore sizes between 

membranes. At least 3 images per sample were taken and the scans were performed at low 

frequencies (120 mS) to increase the pixel content. The CNTs were sufficiently conductive to not 

require metal coating which also avoided any additional error in the pore size estimation. The 

images were analysed using the software, ISIS and the edge-pores were not taken in 

consideration for the calculations. The minimum, mean and maximum average pore size 

distributions were calculated using Feret’s approach [13-20]. In this method, 3 diameters are 

calculated for each pore, corresponding namely to the minimum, the mean and the maximum pore 

size, which gives information on pore shape distribution. However, this method only presents a 

surface apparent pore size and other tests were required to confirm the pore size distribution.  

 

 The second method relied on particle size exclusion tests to determine the particle size cut 

off. These tests were performed by filtrating Bovine Serum Albumin (BSA) and nano-particles 
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(purchased from Sigma Aldrich) through the Bucky-paper membranes. BSA has an average 

diameter of 5 nm while the nano particle diameters were 50nm (polystyrene-amine modified), 100 

nm (polystyrene-sulphate modified) and 500 nm (polystyrene-sulphate modified). The particle 

diameter distribution was measured using a Zeta Sizer and agreed well with the manufacturer’s 

specifications. The solute concentration was analysed either by UV-vis spectrophotometry or 

Fluorescence spectrophotometry depending on the reactivity absorption characteristics of the 

components. 

 

 Finally, porometer measurements were made on a Capillary Flow Porometer from Porous 

Material Inc, NY USA. In addition to pore size distribution this also provides a bubble point 

measurement for the membranes. 

3.2.2 Membrane porosity  

 The membrane porosity was measured using a 2 mL pycnometer following the procedure 

outlined by Smolders et al. [5]. A minimum of 3 samples was used to calculate the average 

porosity. The experiment involved measuring the mass of sample in two different liquids. The first 

liquid (propan-2-ol) wets the membrane and enters the pores, while the second liquid (deionised 

water) does not wet or fill the pores. Once immersed, the sample was left for 20 mins and then 

sonicated for 2 mins at low power (150 W and 20ºC) to remove any trapped air bubbles. 

Furthermore, prior to changing liquids the sample was dried in a vacuum oven for 20 mins. The 

porosity was then calculated according to: 
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where ε is the porosity, the superscripts a and b correspond respectively to isopropanol and water, 

respectively, ρ is the liquid density, M1 is the mass of the dry sample, M2 is the mass of the bottle 

filled with liquid ,and M3 is the mass of the bottle plus sample filled with liquid.  

3.2.3 Surface area 

 An average BET surface area was determined by N2 adsorption on a Micromeretics Tristar 

3000 [21]. The samples were first degassed for 70 hours and then analysed at 77 K.  

3.2.4 Thickness and cross section 

 An FEI Nova nanolab 200 Dual Beam Focused Ion Beam (FIB) was used to form cross 

sections of the BP membranes. Milling was performed with a 1 nA, 30 kV Ga ion beam, followed by 

0.3 nA cleaning steps.  
 

3.2.5 Thermal conductivity 

 Thermal conductivity tests were preformed on 100 μm thick BP using an Armfield Limited 
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Thermal conductivity meter HT1-A. The samples were placed between two copper cylinders. A 

correlation between the power provided to the circuit and the thermal conductivity can be 

calculated according to: 

contact
th A

δλ ×Π
=  (11) 

 
Where λ is the thermal conductivity (W×m-1×K-1), ∏ the input power (W), δ the thickness (m) and A 

the area of contact (m2) of the sample with the copper cylinders. The power used was 10 W and 

the cooling water temperature was 12ºC. Stable measurements were achieved within 5 mins for 

each sample. 

3.2.6 Tempearature polarisation 

 The temperature at the membrane surface was estimated by placing a thermocouple in 

contact with the membrane surface at the centre of the module and on both sides of the 

membrane. The thermocouples were sandwiching the membrane without damaging it and the tests 

were done at 6 different hot side temperatures ranging from 25ºC to 85ºC. [.2] 

 Furthermore, another experiment where the feed/permeate flux flowrates were changed 

while keeping the other parameters cstant, such as temperatures and conductivities constant, was 

performed. The feed and permeate flux flowrate were kept similar equal for all the DCMD tests. In 

this configuration, the changes in flux across the membrane were recorded as a function of the 

feed fluxflowrate. Tests were performed at hot and cold temperatures of respectively 80ºC and 5ºC 

and with synthetic seawater. 

3.2.7 Mechanical tensile behaviour 

 Tensile mechanical tests of the self-standing BPs were performed on an Instron with a 10 N 

load cell and a 2.5 mm/min rate of extension. The sample strips were 10 mm in length and 2 - 2.5 

mm in width. 

3.2.8 Contact angle 

 A pocket goniometer PG-3 from Fibro Systems was used to determine contact angle. The 

tests were performed in dynamic mode at 20ºC with 4 μL drops of deionised water [22] and over 10 

min. Each type of membrane was tested at least 3 times. 

 

3.2.9 Limit entry pressure (LEP) and bubble point 

 LEP tests were performed in an Amicon cell. The pressure was increased in 5 psi 

increments and the samples maintained at each pressure for 10 mins. Bubble point measurements 

were done with methanol following ASTM F316. The Bubble Point was also characterised with a 

Porometer (cf. 3.2.1).  
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3.3 Direct contact membrane distillation setup 

 A schematic of the test rig is shown in Figure 3. A peristaltic pump (Cole Palmer Masterflex, 

model 7521-25) fitted with two coupled heads (Easyload II, Model 77200-60) was used. The heater 

(CS Lauda C6) and cooler (Thermo Scientific Neslab RTE-7) enabled a wide range of operating 

temperatures. The electrical conductivity and temperature of the hot and cold electrolytes as well 

as the water level transferred to the cold side were monitored over time. Tests were performed in a 

PTFE module in counter current flow, with deionised water, on the cold side, and synthetic 

seawater on the hot one (35 g/L NaCl solutions). The cell was cylindrical, with a diameter and 

height of 25 mm and 2 mm respectively. The flow rate for each head stream was kept at 200 

mL/min unless otherwise stated, [.3]while the temperatures of the water feed streams were kept 

constant. The membrane tested area was a disc of 25.4 mm of diameter[.4]. No major temperature 

drops between the inlet and the outlet of the module were recorded and the temperature was 

considered constant over the membrane.[.5] 

 

The permeate was measured by observing the increase in volume of th cold permeate flow via a 

graduated micro-burette.  The micro-burette was placed in the permeate line etc.  [.6] 

 

4. RESULTS 

4.1 Membrane characterisation  

 The structure of the BP membrane was clearly discerned from SEM images of the surface, 

such as in Figure 4Figure 4 (a) and (b), and of cross-sections milled by Focused Ion Beam (FIB), 

as presented in Figure 4Figure 4.(c). The BP membrane was essentially a mat of randomly 

entangled CNTs. Furthermore the cross-sectional images showed that the CNTs tend to form a 

layered structure with very few CNTs aligned perpendicular to the surface. The surface was 

relatively smooth with a roughness ranging from a few hundred nanometres to a few micrometers, 

as visible in Figure 4Figure 4 (a). Thanks to the well dispersed CNT suspensions, the membrane 

surface and cross section were uniform and free from large CNT-bundles [8]. 

 

 Three techniques were used to characterise the pore size of the BP membranes. SEM 

images yielded to a surface apparent pore size distribution as shown in Figure 5Figure 5. This 

gave an average pore size of ~22 nm with ~95% of the pores falling below 70 nm. This value 

compared well with the particle size exclusion test, where a cut off of >50 nm was determined by 

filtration of latex beads as presented in Figure 6Figure 6. 

  

 One of the most important membrane parameters is its thermal conductivity which directly 



 

 10

impacts the process efficiency. Most of the heat transferred across the membrane should be 

carried with the vapour and heat losses due to conduction through the membrane material should 

be minimised. Using the thermal conductivity meter, the thermal conductivity of the BPs was 

measured to be ~2.7 W×m-2×K-1. This is low in comparison to the high thermal conductivities (~700 

W×m-2×K-1) that have been predicted and reported for individual multi-walled CNTs [23-25]. For 

MD, this smaller conductivity is preferred from a performance point of view. The difference is likely 

due to the high porosity of the membrane structure combined with the BP’s layer structure and the 

relatively poor heat conductivity at interconnects between CNTs. Other experiments are under way 

to fully characterize the thermal behaviour of the BP structures. As a comparison, tested PTFE 

membranes show conductivities ~0.25 W×m-2×K-1, 10 times lower than the BP but half of that of 

other polymeric membranes of similar pore size such as PES or poly(vynilvinylidenei fluorideure) 

[.7](PVDF).  

 

Various other techniques were also used to characterise the membranes and determine 

their suitability for membrane distillation. These results are summarised in Table 1Table 1 and 

where possible are also compared with values for a typical PTFE membrane. Table 1Table 1 

shows that the BP membrane properties are generally comparable to those of the PTFE 

membrane making them a promising candidate for MD. For example, pycnometer tests indicated a 

porosity of 90%, exceeding the 70% measured for PTFE. The BP membrane also exhibited a high 

contact angle of ~113 ° close to that of PTFE (120 °).  
 

4.2 DCMD 

4.2.1 Flux and permeability  

 A number of PTFE and BP membranes were tested in a DCMD setup. The test conditions 

and membrane details are given in Table 2Table 2.  

  

 Figure 7Figure 7 illustrates how the flux varies over time for representative PTFE and BP 

membranes. PTFE membranes are amongst the best available for MD [26] and as expected, the 

flux reaches steady state after an initial settling period of ~15-20 min. The BPs on the other hand 

behaved differently. The flux initially increased over the first 15 min before stabilising. However, 

this stabilisation is often followed by a slow decline until the membrane breaks. The origin of this 

declining flux is still uncertain. It may be related to temperature polarisation as the BP membranes 

have a thermal conductivity 10 times higher than that of PTFE but lower than PVDF. However, 

preliminary experiments seem to indicate that temperature polarisation (equation 9) is not a severe 

effect.  

 For all feed temperatures investigated, similar temperature polarisation coefficients were 

measured for both PTFE and BP membranes and were always greater than 0.9 (Figure 9). This 
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seems to indicate that temperature polarisation is was not a dominant effect.  

 To confirm this result a 110μm thick BP was tested under constant temperatures but with 

changing feed and permeate flow rates (Figure 10). Both feed and permeate flow rates were equal 

and varied between tests from 0.15 to 0.4 kg/min but was kept constant for both feed and 

permeate. The flux across the membrane is clearly increasing with increasing feed/permeate 

fluxflowrate, corresponding to a moregreater turbulence and lower t fluxtemperature polarisation. 

For a doubled doubling of the flow rate, the flux across the membrane is was also practically 

approximately doubling doubled for the BP and tripliedng for the PTFE membranes. This trend was 

reported in previous publications [27-29] where it was shown that increasing the flow rate has a 

positive impact on the total mass transfer, hence increasing the temperature polarisation 

coefficient. In the case of this study, since the ratio of the flux at high flow rate by the flux at low 

flow rate is higher for the PTFE membranes, we can conclude that the temperature polarisation 

had more impact on the process for the BP but that the temperature polarisation is probably not the 

main issue since its value is >0.9 for the range of temperatures tested. However further work is still 

under way to more thoroughly characterise the effects of temperature polarisation and to determine 

its dependency on temperature and membrane structure.[.8] 

 Instead of temperature polarisation, we suspect that the decline in BP membrane flux with 

time is due to physical ageing of the membrane including micro-crack formation, which is 

discussed later in greater detail. The declining flux of the BP membranes may also be linked to a 

progressive compaction of the membrane due to pressure from the hot and cold water streams 

[30-31]. A previous study has shown that the permeate pressure has an impact on the flux and 

membrane behaviour [3].  

 

 The flux for the BP and PTFE membranes after 2 hours of operation is plotted in Figure 

8Figure 8 as a function of the hot feed temperature (top axis) and the global partial pressure 

difference across the membrane (bottom axis). The global partial pressure differences were 

calculated using the temperature in the bulk feed and permeate in the reservoirs and applying 

Antoine’s law (Equation 3). While the reading was made as close as possible to the module, the 

measured temperature may still differ from the true temperature at the membrane surface due to 

temperature polarisation effects and potential heat losses. To distinguish this effect we refer to a 

“global” partial pressure difference. 

 The flux through the PTFE membranes is 5-12 times greater than that for the BP 

membranes (Figure 8Figure 8). As expected the PTFE membranes show a linear dependence on 

the global partial pressure difference. The slope of a linear fit to the data was calculated and 

multiplied by the membrane thickness to give a “global” permeability of ~21.1×10-12 kg/(m•s•Pa). 

However, in the case of the BP membranes, where a stable and steady flux is not always 

observed, it is difficult to accurately determine the dependence on partial pressure difference. A 

linear fit to the data in Figure 8Figure 8 was used to estimate a permeability on the order of 
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0.8×10-12 kg/(m•s•Pa), which is ~25 times lower than the PTFE membranes.   

 

 A number of factors may explain the lower fluxes and permeability measured for the BP 

membranes.  

 First of all, the Knudsen number for the BP and PTFE membranes were calculated to be, 

for the range of pore size and of temperatures between (0.48 ; 0.61), respectively, and places them 

in a Knüdsen/transition flow regime, with a dominant Knüdsen mode. In the Knüdsen transport 

regime, the permeability is directly proportional to the pore radius, making this an important 

parameter. Our measurements indicate that the BP membrane has pores which are an order of 

magnitude smaller than those of the PTFE membrane and this could therefore be an important 

limiting factor in BP performance. This can be addressed in the future by tailoring the pore size 

distribution of the BP membranes. Work previously done by us showed that mixing CNTs of 

different diameter would lead to different structures and average pore size [32] and it was also 

shown that porosity could be tailored by using polymeric templates inside the structure of BPs [33].  

A second possible reason for the difference in flux rate and permeability may be the 

distinctly different structure of the two membranes. While the PTFE membrane has more 

conventional pores, which traverse the entire membrane thickness, the BP pores are defined by an 

interconnected network of CNTs (Figure 4Figure 4). The BP structure is therefore closer to that of 

a non-woven fabric and the concept of a cylindrical pore not an appropriate simplification. This 

interconnected CNT network also results in a very high surface area, ~20 times greater than that 

for PTFE. This could lead to an increased number of molecular-wall collisions and hence a more 

tortuous path for water vapour through the BP membrane reducing permeability. A tortuosity factor 

of 2 was assumed for both membranes in the theoretical calculations [15]. 

 

 The most important outcome of this work is that self-supporting BP membranes were 

successfully operated in a DCMD setup to desalinate synthetic seawater. A flux on the order of 5 -

25 kg/m2•h was measured for “global” vapour pressure differences between 10-40 kPa. This is 

encouraging given that the BP membranes were in no way supported and that no binding agents 

were used in their construction. The CNTs within the BP membrane are held together solely by 

Van der Waals interactions.  

 

4.2.2 Membrane integrity for salt rejection  

 Membrane integrity is an important parameter affecting both membrane lifetime and 

performance. The integrity of the BP membranes was investigated in two ways. Firstly, the 

conductivity of the cold reservoir was monitored with time. If only water vapour crosses the 

membrane, then the electrical conductivity of the cold solution should progressively decrease in 

proportion to the amount of water transferred. PTFE membranes show this exact behaviour, 
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representing close to 100% salt rejection (Figure 11Figure 11). In contrast, most BP membranes 

showed a very slight but progressive increase in conductivity corresponding to desalination 

efficiencies between 88 and 99% as shown in Table 2. Furthermore, after 4 to 7 hours of testing a 

rapid increase in conductivity was typically observed for the BP membranes indicating that liquid 

water was breaching the membrane allowing salt passage from the hot to the cold stream 

 

Secondly, the membranes were characterised after testing in the MD setup by milling 

sections through the BP with a Focused Ion Beam milling followed by SEM imaging. As shown in 

Figure 12Figure 12, micro-cracks were present and seem to represent regions of delamination 

between the CNT layers. These micro-cracks likely develop during MD testing and eventually form 

a direct bridge from the feed to permeate, leading to the rapid increase in permeate conductivity 

mentioned above. This is further supported through EDX analysis which confirmed the presence of 

sodium and chloride within the micro-cracks, while none was detected in regions away from the 

cracks. It is suspected that the ageing of these membranes is accelerated due to the MD setup 

which incorporated two pulsating peristaltic pumps. This causes an oscillation of the membranes, 

and potentially delamination of sheets nanotubes as they are held together solely through Van der 

Waals forces [34-35]. It is likely that the gradual formation of micro-cracks contributes to the loss of 

flux observed during operation for the BP membranes. Various approaches, such as composite 

structures and the addition of polymers are currently being investigated to avoid the formation of 

cracks.  
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5. CONCLUSIONS 
 
 CNT BP membranes were fabricated by vacuum filtration and characterised to determine 

their suitability for MD. They were found to have many properties favourable for MD. For example 

they exhibit a high contact angle (113 degrees), high porosity (90%), and relatively low thermal 

conductivity of 2.7 kW/m2•h. These properties are better than most of polymeric membranes 

conventionally used in MD and compare well with PTFE membranes.  

 

 Most importantly desalination was successfully demonstrated using CNT BP membranes in 

a DCMD setup. The best results gave 99% salt rejection and a flux rate of 12 kg/m2•h at a water 

vapour partial pressure difference of 22.7 kPa. Some issues were encountered during DCMD 

testing such as a decline in flux with time and delamination of BP membranes due to the formation 

of micro cracks. Lifespan of the BP membranes is still inferior to PTFE membranes. However it is 

important to stress that these BP membranes were not supported and were composed solely by 

CNTs. Work is currently underway to optimise the BP membranes with an emphasis on supported 

and composite structures for improved lifetime and permeability. The pore size of BP membrane 

can be tailored and work is currently done to have engineered pore size distribution while keeping 

high porosity membranes. 

 

In summary, carbon nanotube based membranes have many physical and surface 

properties beneficial for MD. This work was a proof of concept that CNT structures are suitable for 

water desalination. Our results to date indicate that BP membranes are a promising alternative to 

current polymeric membranes although further work is needed to fully understand and optimise 

their properties for MD.  
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Figure 1 Schematic showing the concept behind Direct Contact Membrane 

Distillation. 
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Figure 2 TEM image of a multiwalled CNT showing a number of concentric walls. 
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Figure 3 of the Direct Contact Membrane Distillation test rig. 
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Figure 4 SEM images of (A),(B) the BP membrane surface (tilt 52º and 0º 

respectively), (C) a cross section milled using the focused ion beam (tilt 52º). 
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Figure 5 Pore size distribution of the BP membrane as determined by SEM imaging 
of the surface. Minimum, mean and maximum Feret pore diameters were defined as 

the average values over the surface of the studied SEM images. Each pore was 
defined by a combination of 3 vectors 
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Figure 6 Pore size selectivity determined from particle exclusion tests. 
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Figure 7 Representative curves for BP and PTFE membranes showing the variation 
in flux with time. The data was acquired for a cold and hot side flow rate of 300 ml/h, 
and an initial hot-side conductivity of ~ 10 μS•cm-1. The working temperatures used 
in the experiments corresponded to various global vapour pressure differences: at 

22 kPa (Hot: 65ºC; Cold: 5ºC); at 44 kPa (Hot: 77ºC; Cold: 5ºC) 
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Figure 8 Dependence of flux on global vapour pressure difference, ΔP, for the BP 
(black curve, left Y axis) and PTFE (grey curve, right Y axis) membranes. 
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Figure 9 Temperature polarisation as a function of feed temperature. The test 
conditions were kept similar as a classical DCMD test.  
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Figure 10 Flux of pure water across the membranes for changing feed/permeate 
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stand for bucky-paper and PTFE membranes. The average desalination rejection 

rate was ~90% for the BP while the thickness of the tested sample was ~110μm. The 
tests were performed on for at least 1h and with a hot temperature of 80ºC and a 

cold temperature of 5ºC. Both lines are given for the guideline of the eye. 
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Figure 12 SEM images at 5 keV and 7.5 mm w.d. showing a cross-section through a 
BP membrane after testing. The section was milled with a focused ion beam and the 
image was taken at a 52° tilt. The left inset shows EDX curves taken inside and well 
away from the crack. The right inset shows a low magnification view of the cross 

section 
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Table 1 Summary of characterisation results for the BP and PTFE membranes 
 

Property Units BP PTFE 

Pore Size (nm) 

nm 
 

  

SEM Minimum* 20.69 (10.27) - 

SEM Mean* 27.28 (16.7) 220++ 

SEM Maximum* 32.37 (22.5) - 

Porometer Mean 44 548 

Cut-off** 50-100 500+ 

Porosity % 90 70 

BET surface area m2/g 197 21 

Thermal conductivity W/(m2*K) 2.3 0.25 

Density kg/m3 232.5 293.8 

Mechanical tensile 
specific modulus+ GPa*m3/g 5.27 - 

Contact angle º 113.3 120.4 

Bubble point kPa 37.92 99.9++ 

Liquid entry pressure kPa 55.15 344.7 
*Value given in brackets is the standard deviation 

** For 90% rejected particles 
+ Thickness of test was 5 μm (±0.2 μm) 

++Data taken from Millipore specification data sheet 
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Table 2 Membrane properties, test conditions and rejection efficiency 
 
 

Membrane Mass (mg) Thickness 
(µm) Tave (°C) ΔT (°C) ΔP (kPa) 

Rejection 
(%) 

 
 

PTFE 
 

20.9 (8.61) 205 (30)* 

41 29.1 12.7 100 

32 46.8 15.02 100 

39 59.5 28.81 100 

45 65.9 42.29 100 

BP 
4.75 45 27 41.2 10.89 99.99 

6.65 55 45 63.8 40.43 88.46 

7.98 42 36 53.2 22.73 94.08 

* the thickness of the complete structure is ~205 μm while the active layer is ~30 μm thick. 
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