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Abstract Spatial information captured from optical remote 

sensor on board unmanned aerial vehicles (UAVs) has great 

potential in automatic surveillance of electrical 

infrastructure. For an automatic vision based power line 

inspection system, detecting power lines from cluttered 

background is one of the most important and challenging 

tasks. In this paper, a novel method is proposed specifically 

for power line detection from aerial images. A pulse couple 

neural filter is developed to remove the background noise 

and generate edge map prior to Hough transform being 

employed to detect straight lines. An improved Hough 

transform is used by performing knowledge-based line 

clustering in Hough space to refine the detection results. The 

experiment on real image data captured from a UAV 

platform demonstrates that the proposed approach is 

effective for automatic power line detection. 

Keywords Machine vision·Power line inspection 

system·Unmanned Aerial Vehicles (UAVs) ·Hough 

Transform·Pulse coupled neural filter·knowledge-based 

system 

1 Introduction 

Surveillance and maintenance of electrical infrastructure is a 

critical issue for the reliability of electricity transmission. 

Inspection and management of vegetation around power 

lines is a significant cost component of maintenance of the 

electrical infrastructure. For example, Ergon Energy, one of 

the top electricity companies in Australia, currently spends 

$80 million a year inspecting and managing vegetation that 

encroaches on power line assets. Ineffective surveillance 

could lead to loss of reliability of electricity transmission and 

produce serious hazards (e.g. the power outages happened in 

Canada and USA in 2003) [1, 2]. Currently, most electricity 

companies use calendar-based ground patrol [3]. However, 

calendar-based inspection by linesman is labor-intensive, 

time consuming and expensive. It also results in some zones 

being inspected more frequently than needed and others not 

often enough.  

Satellites and aerial vehicles can pass over more 

regularly and automatically than the ground patrol. 

Therefore, remote sensing data captured from satellite and 

airborne sensors has great potential in assisting power line 

corridor monitoring. Two critical limitations for using 

current satellite sensors are the unfavorable revisit time and 

lack of choices in optimum spatial and spectral resolutions 

[4]. Airborne platform is an alternative but the traditional 

piloted airborne platforms are limited by their high 

operational costs. Remote sensors mounted on Unmanned 

Aerial Vehicles (UAVs) have the potential to fill this gap, by 

providing a cheap and flexible way to gather spatial data 

from power line corridors which can meet the requirements 



of spatial, spectral, and temporal resolutions. Overhead 

power line inspection in remote and rural areas is an ideal 

application for UAVs because of less population density and 

large distribution of power line network. UAVs can fly 

relatively close to the power line, providing a cheap and 

flexible way to gather spatial data in power line corridor. In 

order to achieve automatic power line surveillance and 

inspection using UAVs, power line extraction is required 

because (1) it is useful for guiding the UAVs flying along the 

line and automatically collecting data in power line corridor; 

(2) risk assessment of power lines and the adjacent trees is 

meaningful only when power lines can be recognized. 

There has been very limited investigation involved in 

developing algorithms for automatic extraction of power 

lines from aerial images because power lines in traditional 

aerial images are too small to be detected due to the flight 

height and resolution of the camera. Although straight line 

detection is a common and well studied research area in 

machine vision, most of the existing algorithms take bottom-

up approaches which just use the intensity of single pixels. 

However, the qualitative performance of these algorithms 

varies widely across application domains as our notion of 

what constitutes a line can vary from one application area to 

another. Due to the wide variation of line types encountered 

in the UAV images that are not of interest, we require a more 

top-down approach that takes advantage of our 

understanding of line in this application area. 

In this research, we combine the bottom-up and top down 

approaches and propose a knowledge-based technique 

specifically for power line detection in aerial images. The 

proposed method is tested on real image data captured from 

a UAV platform in Queensland rural areas.  

The remainder of the paper is structured as follows. 

Section 2 briefly introduces related work in power line 

extraction. In section 3, our proposed approaches are 

described in detail.  Section 4 present and discuss the 

experimental results and section 5 concludes our work. 

2 Related works 

Most energy companies use Geographic Information 

Systems (GIS) to record locations of their assets (e.g. power 

poles), from which power line information can be inferred. 

However, in general the accuracy of such information is only 

suitable as a general guide. For an automatic power line 

inspection system using machine vision, the major problem 

focuses on how to effectively extract power lines from 

complicated image backgrounds. 

Automatic power line detection from aerial imagery is a 

rather challenging task, especially when the background is 

cluttered. There has been very limited investigation involved 

in developing algorithms for the automatic power line 

extraction due to the low resolution of traditional aerial 

images. Some work on the visual control of an Unmanned 

Aerial Vehicle (UAV) for power line inspection has been 

simulated using a laboratory test rig [5]. They proposed an 

automatic power line detection method based on Hough 

transform, but the approach was just a simulation of straight 

line detection and not evaluated in real image data. More 

recently, the Radon transform was used to extract line 

segments of the power lines, followed by a grouping method 

to link each segment, and a Kalman filter was finally applied 

to connect the segments into an entire line [6]. Although 

some properties of power lines in the aerial image were 

discussed, the algorithms in [6] just focus on straight line 

detection, image edges and other mistakable linear features 

which are similar to power lines were not considered.     



3 The proposed method 

The Hough transform is an effective tool for detecting 

straight lines in images, thus it is a natural choice for the task 

of automatic power line detection. In real applications of 

straight line detection, an edge detector is often used to 

remove irrelevant data and reduce the computational cost 

prior to the Hough transform being employed. However, the 

application of classic edge detectors to the aerial images has 

demonstrated that they are sensitive to image noises, due to 

complex and irregular ground coverage. In this paper, we 

take advantage of the characteristics of power lines in aerial 

image and propose a filter based on a simplified pulse 

coupled neural network (PCNN) model. This filter can 

simultaneously remove the background noise of power lines 

as well as generate edge maps. After that, an improved 

Hough transform is used by performing knowledge-based 

line clustering in Hough space to refine the detection results. 

3.1 Characteristics of power lines 

Based on our observation, power lines in aerial image have 

the following characteristics: 

 (1) A power line has uniform brightness and the color 

looks different from upward and downward view. Viewing 

from the ground power line is usually dark, whereas viewing 

from the sky power line is brighter than the background 

simply because it is made of specific metal and has larger 

light reflection. 

 (2) A power line approximates a straight line although 

power line sag often exists. Due to the limited coverage area 

of a single image, the widths of power lines in the image 

tend to be similar. In addition, the lengths of power lines in 

one image are similar and power line is usually the longest 

line as it crosses the entire image. 

(3) Power lines are approximately parallel to each other. 

Due to the forward angle of imaging sensor and deviation 

from centre, power lines in the image are not completely 

parallel. However, the intersection of two power lines 

usually occurs far out of range of the image due to the 

limited size of images, and the intersecting angle of two lines 

is usually very small. A simplified illustration is shown in 

Figure 1. 

 
(a)      (b) 

 Figure 1 Power lines from different perspectives: (a) from the above view 

(b) from the forward view and offset centre 

3.2 Design of pulse coupled neural filter 

Given that power lines are made of special metal, they have 

different solar reflectance compared to other background 

materials (e.g. grass, soil, and bitumen). This knowledge can 

be used for preliminary detection of power lines from aerial 

images. Using a filter to remove the irrelevant information 

will be helpful to reduce the false detection rate as well as 

the computational cost of line detection algorithm. Threshold 

filtering may be a practical solution. However, it is not 

robust because filtering by a threshold is sensitive to image 

noise and different thresholds may be required due to 

changing light conditions of the captured images. In this 

paper, a pulse coupled neural filter (PCNF) is developed for 

preliminary detection of power lines as well as edge maps 

generation. 

Pulse-Coupled Neural Network (PCNN) is a relatively 

new biologically inspired approach based on the 

understanding of visual cortical models of small mammals 

[7]. Unlike other neural works, the processing is automatic 

and there is no training involved in PCNN. The time 



signatures generated from PCNN has the ability to extract 

edge information, texture information, and to segment the 

image. This type is very useful for image recognition 

engines.  

3.1.1 Standard PCNN model  

Most PCNNs are based on the Eckhorn model [8]. When 

applied to image processing, PCNN is a single layered, two-

dimensional, laterally connected neural network of pulse 

coupled neurons. Each neuron corresponds to one pixel in an 

input image, receiving its corresponding pixel’s color 

information (e.g. intensity) as an external stimulus. The 

neuron also connects with its neighboring neurons, receiving 

local stimuli from them. Thus, every neuron can be 

represented as a specific structure as shown in Figure 2.  

 

Figure 2 The structure of PCNN neuron [9] 

The input part imports external and local inputs to the 

neuron by the feeding and linking part respectively. In the 

linking part, external and local stimuli are combined in an 

internal activation system, which accumulates the stimuli 

until it exceeds a dynamic threshold, and then the pulse 

generator produces a pulse output. Through iterative 

computation, PCNN neurons produce temporal series of 

pulse outputs. Similarities in the input pixels cause the 

associated neurons to pulse synchronously, thus indicating 

similar structures or textures. These temporal series of pulse 

outputs contain information of input images and can be 

utilized for various image processing applications, such as 

image segmentation, edge detection, feature generation, 

noise reduction, etc. [10]. 

This standard PCNN model is usually described by the 

following 5 coupled equations: 
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Where, t  is the iteration step, ijF is the feeding input, ijL  

is the linking input, ijS is the intensity of pixel ( , )i j ,  

W and  M are the weight matrices, * is the convolution 

operator, Y  is the output of neurons; U is the internal 

activity, β  is the linking strength; Θ are the dynamic 

thresholds; Fα , Lα  and αΘ are the feeding, linking and 

threshold delay coefficients respectively; FV , LV and 

TV are the feeding, linking and threshold magnitude scales 

respectively. The dynamic thresholds of all neurons are zero 

at 1t < . 

3.1.2 A filter Based on Simplified PCNN 

One of key problems of using PCNN is selecting the network 

parameters. The relationships of network parameters and its 

performance in image analysis is still not clear [7]. There are 

so many parameters in standard PCNN model that it is hard 

to select appropriate parameters for various image analysis 

tasks. In addition, classic PCNN model involves high 

computation cost because temporal dependence between 

iterations is explicitly used in the feeding, linking and 



threshold updating components. In this paper, a simplified 

model is developed inheriting the characteristics of classic 

PCNN model and is described by equation 6-10:  
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The symbols in equations (6-10) represent the same 

meanings as in the standard PCNN model by equations (1-5).  

We simplified the feeding input to be just external 

stimuli from image data and stimuli from neighboring 

neurons are not considered. This simplified model still keeps 

the characteristics of classic PCNN in that temporal 

dependence is implicitly included as the neuron outputs in 

the linking part come from the previous iteration. In this 

paper, original RGB images are transformed to HIS color 

space and the intensity component I is used as the feeding 

input. Moreover, the intensity component is uniformly 

quantized to 64 levels in order to reduce the intensity 

variation in image regions. This is helpful for filtering 

regions with similar intensities.  

 
Figure 3 Linking weight matrix LW  

The linking input has also been simplified in that only 8 

(i.e. 33×  window) neighbors are adopted in the linking 

weight matrix LW . Each element in LW  is the reciprocal of 

Euclidean distance between this element and the centre of 

the window (Figure 3). In this case, neighboring neurons 

with the closer distance have greater impact on the central 

neuron. For the calculation of neuron internal statusU , a 

new linear modulation of feeding and linking input is used to 

avoid zero-valued pixel’s influence to the internal status of 

its neighboring pixels. The linking strength β in this research 

is set to be 0.2. The pulsed output of neuron Y  is binary, 

and if the neuron pulsed 1=Y , otherwise 0=Y . Initially Y  

is set to be a zero-valued matrix. Whether a neuron can pulse 

or not depends on the comparison of its internal statusU with 

the dynamic thresholdΘ . The thresholdΘ  is initialized to 

be larger than the maximum value of external stimulus and 

gradually decays. The dynamic threshold Θ  is changing 

during the iteration operation to control neuron pulse. If the 

neuron has been pulsed, a large threshold is given to this 

neuron by implying a magnitude scale TV  to make sure it 

will not pulse in a while. Otherwise the threshold of this 

neuron will be decayed by subtracting a step value step .  

Given that power lines have higher light reflectance and 

are usually brighter than the background, they can be 

roughly detected from the temporal series of PCNN pulsed 

outputs. In the early stage of the iteration, neurons 

correspond to power lines pulsed because they have larger 

external stimulus than most of the background area. Figure 4 

shows an aerial image contain power lines and 7 temporal 

pulse outputs in different iterations of PCNN. As is shown in 

Figure 4, in the first iteration of PCNN, no neuron pulses 

because of the high initial threshold. With the progress of 

PCNN iteration, neurons corresponding to power lines pulse 

earlier than other objects in the image. From the temporal 

outputs of PCNN, different objects of interest can be 

extracted because PCNN tends to group pixels with similar 

intensities and structures and also considers spatial 

relationships among neurons. The temporal information 

generated by PCNN is also useful for image segmentation 



and image noise location, which is an advantage over other filters.    
 

    
      (a) original image                      (b) n=1           (c) n=2        (d) n=3 

    
    (e) n=4     (f) n=5           (g) n=6       (h) n=7 

Figure 4 Original image and 7 pulsed outputs of PCNN 

In this paper, we use the following rules to locate noisy 

pixels and remove them based on literature [11]: if 

pixel ( , )i j pulsed and most of its neighboring neurons have 

not pulsed, which indicates that the intensity of this pixel is 

too large and can be considered as a noisy pixel. Usually this 

type of noise pulse the earliest during PCNN iteration. For 

dark noise, the same rule can be applied on the inversed 

image. Once noisy pixels are located, a median filter is 

applied to change the intensities of these noisy pixels.  

Moreover, edges of the binary pulse outputs can also be 

detected by using the same PCNN model. The width of edge 

can be determined by controlling the transmitting distance of 

neuron pulses. In this paper, the following algorithm is used 

to detect edges in the binary filtered image: 

Algorithm 1 Detect edges in binary image using PCNN 

Input: binary image Bin  

Output: one-pixel width edge set Edge  

1:  initialize the pulse output Y to be the binary image and 

save it to 0Y : 0Y Y Bin= =   

2:  calculate the linking input L  using equation (7) with 

3*3 linking weight matrix 

3:  calculate the neuron internal statusU using equation (8) 

4:  calculate the output the each neuron using equation (9), 

with a threshold larger than the minimum value ofU : 

min( ) 0.01UΘ = + ; ( )Y step U= −Θ  

5:  the edge of image Bin can be obtained by logical 

operation exclusive disjunction (XOR) on 0Y and Y : 

    0Edge Y Y= ⊕  

In summary, our proposed pulse coupled neural filter 

(PCNF) can be described by figure 5. The simplified PCNN 

is used to generate temporal pulse outputs which contain 

important information for discriminating image noise, target 

object (power line) and image background. However, there is 

no automatic method to determine which output contain 



power lines and which just contain image noise. According 

to our experiments, in most cases the output of the third 

PCNN iteration is a safe choice because pixels 

corresponding to power lines pulsed and most of the 

background pixels have not pulsed. After that, 

morphological filter is applied to the binary pulse image for 

post-processing purpose which will make the detected object 

more continuous. Finally the same PCNN model is used to 

generate the edge image according to algorithm 1. 

 
Figure 5 The structure of pulse coupled neural filter 

    
(a) original image                 (b) Canny filter on (a)                 (c) Sobel filter on (a)                 (d) PCNF on (a) 

    
     (e) noised image                   (f) Canny filter (e)                   (g) Sobel filter on (e)                 (h) PCNF on (e) 

Figure 6 Comparison of Canny filter, Sobel filter and PCNF 

 

Figure 6 compares the results using Canny filter, Sobel 

filter and our proposed pulse couple neural filter (PCNF) on 

synthetic images with and without noise. The aim of the 

simulation is try to detect the three light lines in images and 

generate the edge map. As is shown in the figure, Canny and 

Sobel filter try to detect any edge in image and are very 

sensitive to image noises. While the proposed pulse coupled 

neural filter (PCNF) is more flexible because it can be used 

to detect the interested edges rather than detect all edges in 

the image. Moreover, PCNF is more robust when image is 

contaminated with pepper and salt noise (see the second row 

of Figure 6). 

3.2 Knowledge-based line clustering in 
Hough space  

Hough transform is used to detect parameterized shapes (e.g. 

lines, circles) through mapping each point to a new 



parameter space in which the location and orientation of 

certain shapes could be identified [12]. When applied to 

detect straight lines in an image, the Hough Transform 

usually parameterizes a line in the Cartesian coordinate to a 

point in the Polar coordinate (Figure 7) based on the point-

line duality using the equation: 

ρθθ =+ )sin()cos( yx                 (11) 

Alternatively, this parameterization maps collinear points 

into a set of intersecting sinusoidal curves in the parameter 

space. The lines in the Cartesian coordinate can be estimated 

by detecting points of intersections of these curves (i.e., 

peaks) in the Polar coordinate [13]. These peaks in the 

parameter space can be obtained using a voting mechanism. 

Hough Transform has been proven to be effective method for 

line detection. However, it does have some limitations such 

as high computational cost and mistakable detection of 

spurious lines. In order to solve these problems, Fernandes 

and Oliveira proposed an improved Hough transform by 

introducing a new voting scheme to avoid the brute-force 

approach of one pixel voting for all potential lines [14]. 

Instead, the approach operates on clusters of approximately 

collinear pixels by using an oriented elliptical-Gaussian 

kernel that models the uncertainty associated with the best-

fitting line with respect to the corresponding cluster. Figure 7 

(a) and (b) show their voting procedures and the 3D 

visualization of voting maps respectively. The letters A-H 

indicate the clustered segments that voted to each peaks. In 

this paper, we extended this improved Hough transform for 

power line detection purpose. 

         
(a)                                              (b) 

         
(c)                                               (d) 

Figure 7 Voting procedures and the 3D visualization of voting maps

Hough transform is an effective tool to detect straight 

lines, but does not intelligently identify power lines. Any 

linear objects will be detected, such as edge of roads and 

rivers, fences, etc. Although using PCNF can significantly 

Votes

θ ρ 

Votes

θ ρ 



decrease the influence of other linear edges, problem still 

exist especially when the linear object has similar color with 

power lines. In order to discriminate power lines from other 

linear objects, we use a k-means algorithm to cluster all 

detected lines to identify the lines of interest. 

The objective of data acquisition in our project is to 

achieve a low flying altitude where a typical 12mm 

transmission lines will be represented by at lease two pixels. 

Therefore, each power line is detected as at least two Hough 

lines in the edge image. Power lines are almost parallel with 

very similar angles, and a power line is usually the longest 

line as it crosses the entire image, while other detected lines 

do not have this regular property. Based on this idea, a 

cluster schema is employed in the Hough transform voting 

procedure to group the parallel lines and output the cluster 

with largest summation of votes as candidate powerlines (as 

shown in Algorithm 2). Figure 7 (c) and (d) illustrate this 

clustering schema and show the 3D visualization of voting 

maps. Parallel lines are grouped together and the cluster with 

largest summation of votes indicates that the dominate lines 

of the image are in this cluster.  

Algorithm 2 Knowledge-based line clustering in the Hough 

space 

Input: detected Hough line set ( , , ) ( 1, 2,..., )iLs votes i nρ θ = , 

where n is the number of detected lines, ρ and θ are the 

coordinates of pixels in Hough parameter space, votes is the 

accumulate number of votes of each detected Hough line.   

Output: candidate power lines CPLs  

1:  calculate the line groups ( 1, 2,..., )jC j k= using K-

means on θ  values of ( 1,2,... )iLs i n= , where k is the 

number of line clusters (in this paper we choose 4k = ). 

2:  calculate the summation of votes in each cluster 

1

( )
k

j i
j

SumVotes Ls votes
=

= ∑  

 3:  find the cluster mC with largest value of SumVotes , 

where max( )( 1,2,... )m jSumVotes SumVotes j k= =  

4:  output the lines in cluster mC as candidate power lines 

mCPLs C=  

4 Experiment and discussion 

The experiment is performed on real image data captured 

from two Unmanned Aerial Vehicle (UAV) platforms: V-

TOL Aerospace BAT-3, and ARCAA UAV platform Eleanor 

(Figure 8).  

  
(a) (b) 

Figure 8 UAV platforms: (a) BAT-3; (b) Eleanor 

In the experiment, we compare Hough line detection 

results on edge maps generated from Canny and our 

proposed pulse coupled neural filter (PCNF). The results 

before and after using knowledge-based line clustering in 

Hough space are also compared. As is shown in Figure 9 (a), 

there are many linear features in the original image: power 

lines, edges of road, shadows, etc. These linear features are 

detected by Hough transform (see Figure 9 (c), shown in red 

lines). Although some of these lines can be eliminated by 

applying knowledge based post-processing, lines such as 

road edges are not removed because they are parallel to 

power lines (see Figure 9(d), shown in green lines). A better 

choice is trying to avoid the misleading information before 

detecting power lines. In this paper, we use the proposed 

PCNF for preliminary detection of power lines and edge 

maps generation. It can be seen from Figure 9 (e) that most 

irrelevant points are filtered, though a few noises still exist. 



This is because PCNF has the characteristic of grouping 

pixels according to the space or gray similarity. It reduces 

the local gray differences of images and makes up local tiny 

discontinuous points in image regions. Power lines are made 

of special metal and have uniform brightness on images 

while the background is different on textures and intensities. 

Neurons stimulated by power lines generate different 

spectral stimuli from that of the background, and then they 

pulse non-synchronously. Thus, power lines are 

discriminated from the background. According to our 

experiment, pulse output of PCNF at the third iteration is a 

safe choice because pixels corresponding to power lines 

pulsed and most of the background pixels have not pulsed at 

that time. However, automatic selecting of temporal pulse 

outputs is required in the future work. From Figure 9 (g) and 

(h), we can see that after using PCNF, power lines are 

correctly detected no matter using knowledge based post-

processing or not. It should be mentioned that this approach 

is not perfect. Metallic fence line is also detected (see the left 

line in Figure 9), because it has very similar characteristics 

with power lines. In Australia, it is not uncommon that the 

fence lines are existed in power line corridor and in many 

cases they are parallel to power lines. Future work is to 

discriminate these very mistakable linear features (e.g. 

paralleled fence lines) from power lines. Prospective 

improvement is to discriminate them by incorporating more 

knowledge. For example, the width of power lines and the 

spatial relationship with power poles. 

    
   (a) original image                  (b) Canny edge map              (c) Hough line detection on (b)   (d) knowledge-based post-processing on (c) 

    
  (e) PCNF filtered image                (f) PCNF edge map             (g) Hough line detection on (e)   (h) knowledge-based post-processing on (f) 

Figure 9 Comparison of power line detection results

Figure 10 shows more results of the experiment. The first 

row is the original images. Row 2 and Row 3 are Hough line 

detection results on Canny edge image and PCNF edge 

image without using knowledge-base post-processing. Row 

4 and row 5 are the results after using knowledge based line 

clustering. From the experiment, it is clear that the proposed 



pulse coupled neural filter (PCNF) is very useful as a pre-

processing tool. Most noises are filtered and power lines are 

prominent in the images. After using PCNF, fewer irrelevant 

lines exist. Applying knowledge-based post-processing by 

clustering lines in the Hough space also increases the 

accuracy of power line detection. Combination of these 

techniques can significantly increase the accuracy of power 

line detection in the complex environment. 

5. Conclusion 

In this paper, a novel method is proposed specifically for 

power line detection from aerial images. First, a pulse couple 

neural filter is developed to remove the background noise 

and generating edge map prior to Hough transform being 

employed to detect straight lines. After that a knowledge 

based line clustering is performed in the Hough space to 

refine the detection results. The experiment on real image 

data captured from our UAV platforms demonstrates that the 

proposed approach can significantly increase the accuracy of 

power line detection in complex environment. 

  
Acknowledgement: This research is sponsored by CRC-SI project 6.07: 

spatial information business improvement at Ergon Energy. 
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                                 Figure 10 Experimental results on real image data captured from UAV Platforms
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