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The Sample Complexity of Pattern Classification
with Neural Networks: The Size of the Weights is
More Important than the Size of the Network

Peter L. Bartlett,Member, IEEE

Abstract—Sample complexity results from computational learn- VC dimension is a combinatorial complexity measure that is
ing theory, when applied to neural network learning for pat- typically at least as large as the number of adjustable network
temf C'ass'f'catl'qon prObk')emS'fsug.g.eSt that f°r|g°°dhgelr(‘jera"za“°” parameters.) These results do not provide a satisfactory expla-
performance the number of training examples should grow at . . :
least linearly with the number of adjustable parameters in the nation of the ?_""mP'e Size rqulrements of neural networks_for
network. Results in this paper show that if a large neural Pattern classification applications, for several reasons. First,
network is used for a pattern classification problem and the neural networks often perform successfully with training sets
learning algorithm finds a network with small weights that has  that are considerably smaller than the number of network
small squared error on the training patterns, then the general- 53 meters (see, for example, [29]). Second, the VC dimension
ization performance depends on the size of the weights rather fthe cl i ’ i ’ ted b t\N Ki itive t
than the number of weights. For example, consider a two- ofthe class o functions computed by a network Is sensitive 1o
layer feedforward network of sigmoid units, in which the sum Small perturbations of the computation unit transfer functions
of the magnitudes of the weights associated with each unit is (to the extent that an arbitrarily small change can make the
bounded by A and the input dimension is n. We show that \/C dimension infinite, see [39]). That this could affect the

the misclassification probability is no more than a certain eror  yanarajization performance seems unnatural, and has not been
estimate (that is related to squared error on the training set) plus

A% /(log n)/m (ignoring log A and log m factors), wherem is observed in practice. . . . .
the number of training patterns. This may explain the general- In fact, the sample size bounds in terms of VC dimension

ization performance of neural networks, particularly when the are tight in the sense that, for every learning algorithm that
number of training examples is considerably smaller than the selects hypotheses from some class, there is a probability
number of weights. It also supports heuristics (such as weight gistripution and a target function for which, if training data

decay and early stopping) that attempt to keep the weights small . . L
during training. The proof techniques appear to be useful for the is chosen independently from the distribution and labeled

analysis of other pattern classifiers: when the input domain is a &ccording to the target function, the function chosen by the
totally bounded metric space, we use the same approach to givelearning algorithm will misclassify a random example with

upper bounds on misclassification probability for classifiers with probability at least proportional to the VC dimension of the
decision boundaries that are far from the training examples. class divided by the number of training examples. However,

Index Terms— Computational learning theory, neural net- for many neural networks, results in this paper show that
works, pattern recognition, scale-sensitive dimensions, weight these probability distributions and target functions are such
decay. that learning algorithms, like back propagation, that are used

in applications are unlikely to find a network that accurately
|. INTRODUCTION classifies the training data. That is, these algorithms avoid
. choosing a network that overfits the data in these cases because
EURAL networks are commonly used as learning SY$, ) !
tems to solve pattern classification problems. For thesheey are not poweriul enqugh to firahy good solution.
' The VC theory deals with classes pf1, 1}-valued func-

problems, ‘it is important to establish how many trainin ons. The algorithms it studies need only find a hypothesis
examples ensure that the performance of a network on the

o . Lo . rom the class that minimizes the number of mistakes on
training data provides an accurate indication of its performange -
o : e training examples. In contrast, neural networks have real-
on subsequent data. Results from statistical learning theory (Vor

example, [8], [10], [19], and [40]) give sample size bound alued outputs. When they are used for classification problems,

that are linear in the Vapnik—Chervonenkis (VC) dimensiog_ 9" of the _network output Is mterpreted_ gs_t_he clas
. . ification of an input example. Instead of minimizing the

of the class of functions used by the learning system. (The . e . ;
number of misclassifications of the training examples directly,

learning algorithms typically attempt to minimize a smooth
. . . cost function, the total squared error of the (real-valued)
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it approximately maximizes the proportion of the trainingcale-sensitive dimension, which shows that the upper bound
examples that are “distinctly correct” in this way. in Section Il is tight to within a log factor for a large family

When a learning algorithm maximizes the proportion aff function classes.
distinctly correct training examples, the misclassification prob- Section IV gives bounds on the fat-shattering dimension for
ability depends not on the VC dimension of the functioa variety of function classes, which imply misclassification
class, but on a scale-sensitive version of this dimensipnobability estimates for these classes. In particular, Section
known as the fat-shattering dimension. The first main resuif-A shows that in low-dimensional Euclidean domains, any
of this paper shows that if an algorithm finds a functioslassification procedure that finds a decision boundary that
that performs well on the training data (in the sense thet well separated from the examples will have good gen-
most examples are correctly classified with some margimralization performance, irrespective of the hypothesis class
then with high confidence the misclassification probabilitysed by the procedure. Section IV-B studies the fat-shattering
is bounded in terms of the fat-shattering dimension and tdéenension for neural networks, and Section V comments on
number of examples. The second main result gives upgke implications of this result for neural network learning
bounds on the fat-shattering dimension for neural networks afgorithm design. Section VI describes some recent related
terms of the network depth and the magnitudes of the netwaslork and open problems.
parameters (and independent of the number of parameters).
Together, these results imply the following sample complexity ||, BounDs ON MISCLASSIFICATION PROBABILITY
bounds for two-layer sigmoid networks. (Computation units
in a sigmoid network calculate an affine combination of their
inputs, composed with a fixed, bounded, Lipschitz function.) A
more precise statement of these results appears in Theorem 28. -1, a<0

Consider a two-layer sigmoid network with an arbitrary sgn () :{ 1, a>0.
number of hidden units, in which the sum of the magnitudes ] ] ]
of the weights in the output unit is bounded by and SuPPoseX is a set (the input space}, is a real-valued
the input space idR%. If the training examples are gener_func’uon defined onX, andP |s§1proba_blllty distribution orX__
ated independently according to some probability distributioff, {—1, 1}. (Throughout, we ignore issues of measurability,
and the number of training examples increases roughly apRd assume _t_hat_all sets cop_S|dered are measurable.) Define
A2d/¢ (ignoring log factors), then with high probability everyth€ misclassification probability of a hypothesis as the
network function that classifies a fraction at ledst- o Probability that a randongz, y) pair is mislabeled,
of_ the tr_a_lnm_g set corr_e_ctly and with a fixed margin has erp(h) = P{sgn (h(z)) # y}.
misclassification probability no more than+ e.

Consider a two-layer sigmoid network as above, for whichihe training data is a sequence of elements Xf x
each hidden unit also has the sum of the magnitudes of {ts1, 1} that are generated independently according to the
weights bounded byi, and the network input patterns lie inprobability distribution P. For a training data sequence

We begin with some definitions.
Define the threshold functioggn: R — {-1, 1} as

[-B, B]%. Then a similar result applies, provided the number = ((z1, 41), - - -, (Zm, ym)) Of lengthm and a real number
of training examples increases roughly a§B?log d/e? ~ > 0, define the error estimate
(again ignoring log factors). 1

These results show that, for problems encountered in prac- el (h) = = |{é: yih(z:) < v}

tice for which neural networks are well-suited (that is, for m

which gradient descent algorithms are likely to find goodihis estimate counts the proportion of examples that are not
parameter values), the magnitude of the parameters maycggrectly classified with a margin of. _
more important than the number of parameters. Indeed, thd-€t H be a class of real-valued functions definednFor

number of parameters, and hence the VC dimension, of batt> 0, & sequencezy, - -, z,,) of m points from X is said
function classes described above is unbounded. to bev-shattered by if there is anr = (ry, -+, ) € R™
The result gives theoretical support for the use of “weigiguch that, for allb = (b1, ---, b,,) € {1, 1} there is an

decay” and “early stopping” (see, for example, [21]), twé € H satisfying(h(z;) —ri)b; > ~. Define the fat-shattering
heuristic techniques that encourage gradient descent alftnension ofH as the function
rithms to produce networks with small weights. faty () = max{m: H v-shatters some € X™}.

. The fat-shattering dimension was introduced by Kearns and
A. Outline of the Paper Schapire [26].

The next section gives estimates of the misclassificationThe following theorem gives a generalization error bound
probability in terms of the proportion of “distinctly correct”when the hypothesis makes no mistakes on the training exam-
examples and the fat-shattering dimension. Section Il givetes and its value is bounded away from zero. The result is
some extensions to this result. Results in that section shessentially the main result in [38], where it was observed that
that it is not necessary to specify in advance the margin bysimilar but slightly weaker result follows trivially from the
which the examples are distinctly correct. It also gives a lowarain result in [2]. The proof of this theorem is very similar to
bound on the misclassification probability in terms of a relatetie proof in [2], which closely followed the proofs of Vapnik
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and Chervonenkis [41] and Pollard [35]. In this theorem and fanction is not in the class of real-valued functions used by
what follows, we assume théf is a set,H is a class of real- the estimator.
valued functions defined oi, P is a probability distribution ~ The error estimatér? is related to Glick's smoothed error

onX x{-1,1},0< 6§ <1/2,and0 < v < 1. estimate (see, for example, [12, Ch. 31]), which also takes into
Theorem 1 [38]: Supposez = ((z1, ¥1), -+, (m, ¥m)) account the value of the real-valued predictigiz:). The key
is chosen byn independent draws fron?. Then with proba- feature of Glick’s estimate is that it varies smoothly witfx),
bility at leastl — &, everyh in H with é&7(h) = 0 has and hence in many cases provides a low variance (although
9 biased) estimate of the error.
erp(h) < —(d log,(34em/d) log,(578m) + log,(4/6)) The proof of Theorem 2 is in two parts. The first lemma
mn uses ar¥,, approximation argument, as well as the standard
whered = faty(v/16). permutation technigue to give sample complexity bounds in

The next theorem is one of the two main technical resuligrms of¢,,, covering numbers of a certain function class re-
of the paper. It gives generalization error bounds when thged to the hypothesis class. We then calculate these covering
hypothesis classifies a significant proportion of the trainingymbpers.
examples correctly, and its value is bounded away from zeropefinition 3: Suppose thats, p) is a pseudometric space.
for these points. In this case, it may be possible to getpyr 4 C S, a set?” C S is ane-cover of A with respect top
better generalization error bound by excluding examples @¥or all ¢ in A there is at in T with o(t, a) < e. We define
which the hypothesis takes a value close to zero, even if thg@t@A ¢, p) as the size of the smallestcover of A.

examples are correctly classified. _ For a clasg” of functions defined on a séf and a sequence
Theorem 2:Supposez = ((¢1, %1), *+*, (Tms Ym)) 1S 2 = (2, ..+, 2,,) € X™, define the pseudometrity_ () by

chosen byn independent draws fro8. Then with probability

at leastl — 6, everyh in H has dy(2)(f, g) = max |f(z;) — g(zi)].

oY
erp(h) <éi(h) Denotemaxzexm N(A, €, di_(z)) By Noo(4, €, m).

2 For v > 0, definen,: IR — IR as the piecewise-linear
= (d In(34em/d) log, (578 In(4/6 v , v P
* \/m( n(3dem/d)log,(578m) + In(4/8)) squashing function

whered = faty(v/16). v, ifa>ny
The idea of using the magnitudes of the values.@f;) to mla) =< —y, if a<—y
give a more precise estimate of the generalization performance o, otherwise.

was first proposed in [40], and was further developed in [11]

and [18]. There it was used only for the case of linear functidrPr & classi of functions mapping from a set to IR, define
classes. Rather than giving bounds on the generalization

error, the results in [40] were restricted to bounds on the m(H) = {myoh:h € H}.
misclassification probability for a fixed test sample, presented
in advance. The problem was further investigated in [37(1“-
That paper gave a proof that Vapnik's result for the linear
case could be extended to give bounds on misclassification z=((x1, y1)s - (Toms Um))

probability. Theorem 1 generalizes this result to more arbitrary

function classes. In [37] and [38] we also gave a more abstragtchosen bym independent draws fror®. Then with prob-
result that provides generalization error bounds in terms ability at leastl — é, everyh in H has

any hypothesis performance estimator (“luckiness function”)

that satisfies two properties (roughly, it must be consistent, N 2 2N oo(my(H), /2, 2m)

and large values of the function must be unusual). Someerp(h) <é(h) Jr\/E hl( 0 )
applications are described in [38].

Horvath and Lugosi [23], [33] have also obtained bounds The proof uses techniques that go back to Pollard [35] and
on misclassification probability in terms of properties of revVapnik and Chervonenkis [41], but using dr, cover as in
gression functions. These bounds improve on the VC bourl@$ rather than the/; covers used by Pollard.
by using information about the behavior of the true regression Proof. Clearly,
function (conditional expectation af given x). Specifically,
they show that the error of a skeleton-based estimator depends erp(h) < P{|my(R(z)) — vy| = v}
on certain covering numbers (with respect to an unusual pseu- : .
dometric) of the class of possible regression functions, ratr%ffso' yih(wi) < ifand only if m(h(z:)) # i, S0 we have
than the VC dimension of the corresponding class of Bayes Pr(3h € H, erp(h) > &7(R) +¢)
classifiers. They also give bounds on these covering humbers

Lemma 4: Supposey > 0, 0 < 6 < 1/2, P is a probability
stribution onX x {-1, 1}, and

in terms of a scale-sensitive dimension (which is closely < Pr <Elh € H, P{|ry(h(z)) — vy| = v}
related to the fat-shattering dimension of a squashed version of

the function class—see Definition 3 below). However, these > 1 [{iz 7y (h(zi)) # yui}| + 6)_
results do not extend to the case when the true regression m
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We now relate this probability to a probability involving aHoeffding’s inequality [22] implies that this is no more than

second sample 2Noo(my(H), 7/2, 2m) exp (—e?m/2). Setting this to§ and
S e L. solving for ¢ gives the desired result. O
2= (1 00) s (s ) The following result of Aloret al.[1] is useful to get bounds

chosen independently according . Standard techniques©n these covering numbers.

(see, for example, [41]) show that the probability above is Theorem 5 [1]: Consider a clasg” of functions that map
no more than from {1, ---, n} to {1, ---, b} with fat (1) < d. Then

1, - . d
2Pr <E|h € H, EHL |7y (A(&:)) — v3i| = 7} logy Noo(F, 2, n) < 1+ log, (nb?) log, <Z <7Z> bi>

1 1=0
> — |{q: h(z; i 2 1 .
> i ) Al /) @)
(where the probability is over the double samgle %)), dN
providede?m > 2 In 4, and we shall see later that our choice n > 1+ log, <Z <> b%).
of ¢ always satisfies this inequality. Next, we introduce a im0 \!

random permutation that swaps elementszond 2. Let This result, together with a quantization argument, gives

U be the uniform distribution on the set of permutatlon%(:unds ONN.(F, v, m). We use this approach to prove

o on {1, e 2m} that swap some gorrgsponding elemen corem 2.

f{rLor? Jtrh; ]Tl)rs;sgdle??uioréi nhoa}[g((;hi[) |$'a'('1),w o*(('; —i_))mfz)]; i Proof of Theorem 2:Define the quantization function
in7Z2m. Wé denote the permute%l élemént;zgf;nd Z as Qo: R — IR as

(27, 27) = (z, )7, and define the permuted vectars, 77, Q@) = [( = a/2)/a]

etc., in the obvious way. Then sin¢e, ) is chosen according
to a product probability measure, the probability above is nDlefine the class” = Q/s(m,(H)) of quantized functions.
affected by such a permutation, so (1) is no more than  Since

2 sup U{a: dh € H, % [{é: |y (R(ET)) — 77 | =~} Qy/8(a) = Qy/3(b)| < |a —b] +~/16
(2:2)
1 we have
2 o i (D) 2 )+ /2. @)
fatp(v/8) < fatﬂ-w (H)(’y/16).

For a given(z, %), let T be a minimaly/2-cover with respect _ .
to dy_(..z) of the setm (H). That is, for all b in H, L&t Mw(F, a, m) denote the maximum over alf € X

there is ag in T such that fori = 1,2, ---, 2m we have of the size of the largest subset 6f for which all pairs of
|7 (h(x:)) — g(x;)| < /2. For thath andyg, it is clear that elements arer-separated with respect th _ (.. It is easy to

see that
{is g (M(E9)) =737 | = v} S{as |9(37) — v57 | > v/2}
Moo(my(H), 7/2, 2m) < Moo(F, /2, 2m)

and
i |g(=?) —vu?| 2 v/2} S i my(R(2])) # o }- and it is well known that
Hence, (2) is no more than Noo(my(H), /2, 2m) < Moo(my(H), 7/2, 2m)
2 sup U39 € 7, 14 lota) =) 2 2/2) and
2 2 0 bl = | 2 /2 + /2 Mool /2, 2m) S Noollfs v 4, 2m)
< 2 sup |T] sup U{U: L Vi \g(@9) — 4571 = 7/2}] ooe 7D, fenee
T A eeT m T Noo(y(H), /2, 2m) < Noo(F, 7/4, 2m).
> % i 1g(@f) —vuf | > v/2}H + 6/2} Applying Theorem 5 withn = 2m andb = 17 gives
< 2Noo(my(H), v/2, 2m) logy Noo(my(H), /2, 2m)
e < % z”: = b > /2> < 1+ d log,(34em/d) log,(578m)
ai, bi i=1

provided thatn > d log,(34em/d)+1, which can be assumed
wherea;, b; € {0, 1} satisfya; = 1 iff |g(#:) — 5| > /2 since the result is trivial otherwise. Substituting into Lemma
andb; = 1iff |g(z;) — ywl > /2, and the probability is 4, and observing thdtt,_ ()(7/16) < fatx(7/16) gives the
over theg; chosen independently and uniformly ¢a-1, 1}. desired result. O
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lll. DISCUSSION In Theorems 1 and 2, the quantity(the margin by which

Theorems 1 and 2 show that the accuracy of the err{}ypothesis values are sepf_;lrateq fl@ris specifigd in advanpe.
estimated? depends on the fat-shattering dimension rathdf{!S S€ems unnatural, since it is a quantity that will be
than the VC dimension. This can lead to large improvemerﬂgserved after the examples are seen. It is easy to give a similar
over the VC bounds; the next section contains examples rgpult in which the statement is made uniform over all values
function classes that have infinite VC dimension but smdlf this quantity. This follows from the following proposition.
fat-shattering dimension, and we shall see later in this sectiorf 'OPOSition 8: Let (X, 7, P) be a probability space, and
that for many function classes the fat-shattering dimens:ionlﬁ‘I
a!ways_no more than a constant fe_lctor bigger than the VC {E(aq, aa, 8): 0 < a1, g, § < 1}
dimension. This decrease in estimation error comes at the cost o _ -
of a possible increase in approximation error. Specifically, f&€ a set of events satisfying the following conditions:
a function classH it is possible to construct distribution8 1) forall0<a<1land0<é <1, P(E(a, o, 6)) <6
for which someh has smallerp(h) but with high probability 2) forall0 < e <1 and0 <é <1
every h in H hasér](h) large. However, in many practical

situations this is not relevant. For example, learning algorithms U E(aa, a, ba(1 - a))
for neural networks typically minimize squared error, and for «€(0,1]
the distributions described above evéryhas large squared is measurable: and

error (with high probability). So the distributions for whichthe 3) forall0 < vy < a < ax <1land0 < é; <6< 1
use of the error estimat@&(-) incurs a large approximation

error are those for which the learning algorithm fails in any E(an, az, 61) C E(a, o, 6).
case. _ o ___Then for0 < a, § < 1

We can obtain a more general result that implies variants of
Theorems 1 and 2. The following result can be proved using
the techniques from the proof of Lemma 4, together with the Pl |J Elaa, a,6a(l-a) | <6
proof of the corresponding result in [40] (or the simpler proof ag(0,1]
in [3]). Proof:

Theorem 6: Supposey > 0,0 < é < 1/2, P is a
probability distribution onX x {—1, 1}, and

{ J P U E(aa, a, ba(l — a))
z=((z1, 1), -, (@m, Ym)) a€(0,1]
is chosen bym independent draws fror®. Then _ P<G (E(aa, a, §a(l — a)): a € (ai*! ai]})
©=0

Pr(EIh € H: erp(h) = & (1) > e)
erp(h)

< P<G Bt o't sa'(1 - a))>
< AN (7 (H), 7v/2, 2m) exp (—€*m /4).

=0

Corollary 7: Under the conditions of Theorem 6, and for <Y P(E(@, o', 8a'(1 - a)))
al o < 0, i=0

<6(l-a) > a' =6 O
i) Pr(3h e H:erp(h) > e and & (h) =0) i=0

< AN (o (H), /2, 2m) exp (—em/4). This gives the following corollary of Theorems 1 and 2.

i) Pr(3he H:erp(h)> &(h)+¢) Corollary 9: Supposez = ((x1, 41); **+, (Zm, Um)) S

< ANoo(my(H), 7/2, 2m) exp (—m/4). chosen bym independent draws fron#.
i) Pr(3he H:erp(h) > (1+a)@l(h)+e) 1) W!th probab.ility at leastl — 8, everyh in H and every
o2em ~ in (0,1] with &7(h) = 0 have
< ANo(my(H), 7/2, 2m) exp <—m> 2
erp(h)< - (d logy(34em/d) log, (578 m)+Hog,(8/(79)))

Proof: The proofs of i) and ii) are immediate. To see whered = faty(v/32).
iii), suppose thatrp(h) — ér(h) < e y/erp(h), and consider  2) With probability at leasi — &, everyh in H and every

separately the cases in whiekéi](h) > ¢+/erp(h) and ~ in (0,1] have
oy .
aét)(h) < ey/erp(h). In either case, we conclude that err(h)
erp(h) < (1+ a)él (k) + (1 +1/a)%. O

2
<(§I"Z(h)+\/— (d In(34em/d) log,(578m)+1n(8/(v6)))
Parts i) and ii) of this corollary give results essentially iden- m
tical to Theorems 1 and 2, but with slightly worse constants.  whered = faty(y/32).
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Proof: For the first inequality, defin&(v;, v2, 6) asthe  Theorem 11:Suppose thaX is a set,Z = X x {—1,1},
set ofz € Z™ for which someh in H hasér)*(h) =0and H is a class of real-valued functions defined &nm > 8, L
is a mapping fromZ™ to H, 0 < v < 1, and0 < é < 1/100.
erp(h) > 3(d log,(34em/d)log,(578m) + log,(4/6)) Then there is a probability distributio®® on Z such that
m 1) some functior: in H satisfieserp(h) = 0 and|h(z)| >
~ almost surely; but
2) with probability at least overz € Z™ chosen according
to P

whered = fatg(v1/32). The result follows from the proposi-
tion with e =1/2. The second inequality is derived similafy.
Desirable behavior of the fat-shattering dimensiin
is clearly not necessary for good generalization performance LiatVg(y) —1 71n(1/6)
bounds. It is only the behavior of elements of the hypothesis erp(L(z)) 2 maX( 39m ' ’m ) 3
classH in some neighborhood of the origin that is important.

As the proof shows, the generalization error bound can berpe proof makes use of the following lower bound for PAC

expressed as a function &t ). While it is possible 0 |earming that is a special case of the main result in [13].
construct function classes for which this complexity measure| emma 12 [13]; If X = {1,2,--+,d}, Z = Xx{-1, 1},

is considerably smaller thaft; (see, for example, [23]), the ,,, > 8 ¢ « § < 1/100, and L is a mapping fromz™ to
distinction is apparently not useful for applications. the class{—1, 1} of all {—1, 1}-valued functions defined

It is possible to obtain generalization error bounds likgn x| then there is a distributio®® on Z for which some
those of Theorems 1 and 2 in terms of other versions of the. v _, {-1,1} haserp(h) = 0 but with probability at

fat-shattering dimension. least §
Definition 10: For a classH of real-valued functions de-
fined onX and~ > 0, a sequencézy, - -+, T,,) Of m points d—1 71n(1/6)
from X is said to be uniformlyy-shattered by if there is an erp(L(z)) 2 max 329m. ] M ’ (4)
r € IR such that, for alb = (b1, - -+, by,) € {—1, 1} there
is anh € H satisfying(h(z;) — r)b; > ~. Define Proof of Theorem 11:ChooseP so that its marginal dis-

tribution on X, Px, has support on a uniformly-level-
fatV g (y) =max{m: H uniformly y-shatters some € X"™}. shattered sef{, C X of cardinalityd = LfatVy(v). Then
defineHy C H as the set ofi in H for which |h(x)| > ~ for
We say that a sequence is uniformlylevel-shattered by  all z in X. Notice that” can be chosen so that the conditional
if it is uniformly ~-shattered and = 0 will suffice. We denote distribution is concentrated asgn (A(x)) for someh in Hy.
the corresponding dimensidnfatV g. Clearly, for any suchP the corresponding: satisfies the
We use the notatiofiatV, as in [7], since this is a scale-condition of the theorem. Without loss of generality, we can
sensitive version of a dimension introduced by Vapnik iassume thal maps toHy. Fix z € Z™. If L does not satisfy
[40]. The dimensiorL{atV has been used in approximation(3), then the corresponding mapping fraff to {—1, 1}
theory [31]. These complexity measures are closely relatéthes not satisfy (4). The result follows from the lemmal]
Clearly, LiatV g(v) < fatVy () < faty (). If for every real The standard PAC learning results (see [10] and [40])
numbera and every function: in H we haveh +a € H show that, if the learning algorithm and error estimates are
(that is, the classH has an adjustable output offset), thegonstrained to make use of the sample only through the
LfatVg(y) = fatVg(y). It is also possible to show (by function ér.: H — [0, 1] that maps from hypotheses to the
quantizing and then applying the pigeonhole principle—tHgroportion of training examples that they misclassify, there

proof is identical to that of [9, Theorem 5]) that is no distribution-independent error bound any better than
O (VCdim (H)/m). Theorem 11 shows that if the learning
fatx (m)(7/16) < crfatVe (my(c2y) algorithm also makes use of the sample through the functions

ér], the bound can be better—as good @sfat;(v)/m),
for constants:; and¢,. It follows that for a classd with an ignoring log terms. (In the next section, we study function

adjustable output offset classes for whichfaty(v) is finite when VCdim (H) is
infinite.) Theorem 11 shows that there is no better distribution-
fatr. (a1 (7/16) < 1 LfatV g (com) independent error bound if we only have access to the sample

through these functions that the sample inducegfon

so the bounds of Theorems 1 and 2 can also be expressed in
terms of LfatVyy. Notice thatLfatV g (v) < VCdim(H) for all

~, so for classes with an adjustable output offset the bounds

of Theorems 1 and 2 are always within log factors of the ,
corresponding results from the VC theory. For these class8s, HiPSchitz Classes

Theorem 11 below shows that the upper bounds are nearlyThis section considers classes of functions that are defined
optimal. (However, expressing the upper bounds in terms @fi a metric space and do not vary quickly. It turns out that

LfatV g introduces extra constant factors, and does not appéar “small” metric spaces, such as low-dimensional euclidean

to be useful for applications.) space, these function classes have staal;.

IV. BOUNDS ON fat g
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Theorem 13:Let X be a totally bounded metric space wittmetwork learning algorithms [28]. In this casE,is a bounded
metric p. Suppose tha# is a class of real-valued functionssubset of[R? and the nature of the problem means there is
defined onX so that everyh in H satisfies the Lipschitz a large margin solution. So the result above shows that any

condition classifier that gives a margin of at least some fixed value
will have its error decreasing as a constant owerThis is
[h(z) = h(y)| < Lp(z, y). true even if the classifier chooses these functions from a class
Then fat i (v) < N(X, v/L, p). with infinite VC dimension.

Proof: Any two points in ay-shattered set must 2 /L
apart. It is well known (see, for example, [27]) that everp- Neural Networks

2+v/L-separated set in a totally bounded metric spakep) Neural networks are typically used as real-valued function

has cardinality no more thaW (X, ~v/L, p). LI classes, and are trained by minimizing squared error on the
It is possible to use this result to give generalization errdraining examples,

bounds for any binary-valued function class defined on a m

sufficiently small metric space, in terms of the number of Z(yi — h(z))%

points that are misclassified or close to the decision boundary. i=1

For a metric space.X, P)_ and a functiong: X — {—1,1}, The following observation shows that this procedure can work
definedist (g, =) as the distance from to the boundary of. g approximately maximize the minimum value gf(z;).

. = N o ' Proposition 15: For a functionh that maps from a set’ to
dist (g, ) = inf{ple, #'): 2" € X, g(w) # 9(a)}. IR and a sequence of examples, y1), -+, (T, Y ) from
Corollary 14: Suppose thatX is a totally bounded X x {-1, 1}, if
metric space with metripp and v > 0, and defined = 1
N(X, v/16, p). ~ > (i) —yi)? < e
1) With probability at least — § over z € Z™ chosen ac- i=1
cording toP, every measurablge—1, 1}-valued function then
defined onX with g(x;) = v, anddist (g, z;) > )
Al i has gla:) = v (9, i) 2 %H'L: yih(z;) < a}] < /(1= a)2.

2 The remainder of this section derives bounds on the fat-
< —(d logy(34em/d) log, (578 log,(4/6)). . . . .
err(g) < m( 0g2(3dem/d) log, (578m) + log,(4/9)) shattering dimension for classes of functions computed by
2) With probability at least — § over z € Z™ chosen ac- neural networks. Bounds on the pseudodimension of various
cording toP, every measurablg—1, 1}-valued function neural network classes have been established (see, for ex-

¢ defined onX satisfies ample, [8], [19], [25], and [34]), but these are all at least
) linear in the number of parameters. (The pseudodimension is
erp(g) < EH[L: dist (g, ;) <~ of g(z;) # yi}| equal tolim,_,o faty (), and hence gives an upper bound

on fatr(y).) Gurvits and Koiran [17] have obtained an upper
2 e bound on the fat-shattering dimension for two-layer networks
+ \/E(d In(34em;/d)log,(578m) + In(4/8)). with bounded output weights and hidden units chosen from
a class of binary-valued functions with finite VC dimension.
They obtain the following result for the case of linear threshold
H, = {z— sgu(g(x))dist (g, ) : g € G} hidden units.

) ) Proposition 16 [17]: Let F' be the class of functiong :
Wh(_ereG is the set _of mea_surablé—l, 1}-valued functions ., , sen (w - z) defined onlR™ for n > 1. Let H be the class
defined onX. For i in H.,, if sgn (h(z)) # sgu (h(z')) then o ywo-jayer threshold networks with an arbitrary number of
|h(x) = h(z")| < p(x, 2'). Also, if sgn (h(x)) = sgn(h(z)), hidden units chosen fron# and a boundA on the output

Proof: Fix ~. Set

the triangle inequality fop implies that weights
Ih(z) = h(a")| < pz, 2').
H={> aifi NeN, fi e F,Y |u|<Ap.
So H, satisfies a Lipschitz condition, with constabt= 1. im1 im1

Theorem 13 implies thakt . (v) < N(X, v, p). Theorems 1pqp,
1 and 2 give the result. A2n?

So if the metric space is small, in the sense &t ~, p) fatg(y) = O < 7; log(n/fy)>,
is small, any classification scheme producing a decision bound- v
ary that is far from the training examples and correctly The following result is the second key technical result in
classifies them (or the majority of them) will generalizehis paper. It gives a bound on the fat-shattering dimension
well. In particular, if X = [0, 1]*, N(X, v, p) ~ ~~". If for networks with real-valued hidden units (including sigmoid
the dimensionn is small, this can give good generalizatiometworks). In the special case of linear threshold functions, it
error bounds. For example, the “two spirals” problem wagives a better bound (for large values of~) than Proposi-
a popular test of the generalization performance of neut&n 16.
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Theorem 17:Let F be a nonempty class of functions that  Proof: Using the same quantization argument as in the
map from X to [-M/2, M/2]. For A > 0, define the class proof of Theorem 2, Theorem 5 shows that > 1 +
H of two-layer networks with hidden units chosen frdimas d log,(4demM/(dv)) implies thatlog, N.o(F, v, m) is no
more than the expression on the right-hand side of (5). Since
de, (f, 9) £ di(f, g), this implies the same bound for
NQ (F7 s m)

N N
H= {Z wifi: N €N, fi € F, Y |w| < A}.

i=1 i=1 Now, sinceln(zy) < zy for all z, y > 0, it suffices if
Supposey > 0 is such thatd = fatp(v/(324)) > 1. Then m>1+ 4 <—4emMy+ln(1/y)>
- In2 dy )

2 A2
fat () < w log?(M Ad/~) Settingy = v ln 2/(8eM) and solving forn gives the desired
v result. O
We will make use of the following result on approximation

for some universa_\l consta_rat i in Hilbert spaces, which has been attributed to Maurey (see
The proof requires the introduction of two more pseud(h] and [24])

metrics and covering numbers.
Definition 18: For real-valued functions defined on a S&t

Lemma 21: Suppose is a Hilbert space and” C G has
I/l <bforall fin F. Leth be an element from the convex

define the pseudometridy, (. for z = (z1, -+, zm) € X™  glosire of F. Then for allk > 1 and alle > b2 — ||1||2, there
by are functions{fi, ---, fr} € F such that
1 m 1 & 2
de, () ([ 9) = — | f(zi) — g(@i)l. - I <&,
@) m ; h k ; il s k

Similarly, definedy, ) by

m

m
=1

1/2
dey () (f, 9) = <i Z (f(zi) = 9($i))2> .

If Fis a set of functions defined o, denote

max N(F), v, dy,(z))

zeXm™

The following result uses this approximation lemma to relate
£5 covering numbers of the classésand H. This technique
is due to Leeet al. [30].

Lemma 22: For the classe¢” and H of Theorem 17,

logy, No(H, v, m) < %2;4210@;2 (2./\/2 (F, %, m) + 1).

Proof: Let Fo=FU—-FU{0}, where—F={—f: fcF}
andO is the identically zero function. Then the claKsis the
convex hull of £y, scaled byA. Fix x € X™. With the norm

m 1/2
121l = <(1/m) > h2($i)> :

The idea of the proof of Theorem 17 is to first derive a
=1
proof of [6, Theorem 2]) to give a bound on the fat-shatterin@inctions f, - - -, fi in Iy for which
fined on a sei with fatp(4v) > d, thenlog, N (F, v, d) >
the bound of Theorem 5 on th&, cover of the clasg” of such thatdy, .(f:, fi) < v/(24), then the triangle inequality
k

a bound on the, covering number of the network clags. A 2 AM v

déz(a;) h7 E Z 5
Theorem 17. It follows that we can construct-acover ofH from a~y/(24)-
m > 2+ 2d log,(32M /), then ~ > MA the lemma is trivially true. Hence

by Ni(F, v, m), and similarly forAs(F, v, m).
general upper bound on ah covering number of the class
H, and then apply the following result (which is implicit in the_Lemma 21 shows that, for any in H and anyk there are
dimension. N

Lemma 19 [6]: If F'is a class of0, 1]-valued functions de- A AM

) de(oy | Ry = i £ —F=.
lo(x) k ; / 2\/E

d/32. )

To derive an upper bound aoN1(H, v, m), we start with If, instead of f; € F,, we choosef; in a~/(2A)-cover of Fy,
hidden unit functions. This implies a bound on #hecovering implies that
number. Then we use a result on approximatiorsirto give
This implies an upper bound on tife covering humber, and < 2Vk +
comparing this with the lower bound of Lemma 19 gives

Lemma 20: Suppose that” is a class of|—M/2, M/2]- cover of Fy, by selecting all subsets of the cover of size
valued functions defined on a sat. If d = fatp(vy/4) and k= [M?A?/4%]. Somek < 2M*A?/~* will suffice, since if
logy Na(F, 7, m) < 1+d lo <4emM) lo <9mM2> No(H, 5, m) < (2N(F, 7/(24), m) + )24 O

82 V2T 82\ "y 82\ 72 We can now combine this result with Lemmas 19 and 20
(5) to prove the theorem.
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Proof of Theorem 17:From Lemmas 19, 20, and 22, if  Corollary 24: Let o: IR — [-M/2, M/2] be a nonde-

creasing function. Define the clads of functions onIR™
m = fatg(4y) > 2+ 2d log, (64M A/~) as

with d = fatp(v/(84)), then F={z—o(w- -z+wo): weR", w € R}

64 M2 A2 S8emM A 36mM2A2 and define
m< ———|3+dlogy| —— | logy| ———— } |-
~

72 72 N N
(6) H:{Z aifi:NelN,fieF,Z|ai|§A}
=1 =1
Since we may assume that < MA, if m > 2 then
2 + 2d log, (64M A/~) is no more than the expression o’ 4 2 1. Then fory < MA

the right of (6). So eithefn = fatg(4y) < 1, or cM2A2n MA
fatp(y) < 5— log < )
64M2 A? 5 {(36mM?2A? v
g S (g (B |
Y Y for some universal constaimt

Proof: Given the conditions ow, F' hasdimp(F) <

Now, for all z, y > 0, In(y/zy) < /Ty, SO n+ 1 (see, for example, [19]). Applying Lemmas 19, 22, and

5 9 23, and solving fofat ;r(v) gives the result. O
In® @ < (2vay +1n(1/y)) Similar bounds can be obtained if the first layer function
<dz(y+ /¥ In(1/y)) +1n?(1/y), class is replaced by the class of functions computed by a
multilayer network with a bounded number of parameters, and
providedy < 1 andz > 1. It follows that, forb, ¢ > 1 computation units with either a threshold transfer function, a
) ) piecewise-polynomial transfer function, or the standard sig-
bIn*(cx) < /2 + 0 In" (1/y) moid, o(@) = (1—¢~*)/(1+¢~*). Bounds fordimp(F') are
_ known in these cases (see [8], [16], and [25], respectively).
provided that Composing these functions with a smooth squashing func-
tion does not greatly affect these bounds. For the remain-
dbe(y + vy In(1/y)) < 1/2. der of this section, we fix a squashing function R —

[-M/2, M/2], and assume that it satisfies the following

: o . :
It is easy to see thay < (16bc)~* will suffice. That is, Lipschitz condition: for somd. > 0 and allzy, 2o € R

bln? (cz) < z/2+16b 1112(1656). o(z1) — o(z2)| < L|zy — 73],
Applying this to inequality (6) withz = m, and replacingy  For a classF of real-valued functions, let(F)={c o f: f €
by v/4 gives the result. L F). The proof of the following result is trivial.

We can apply these techniques to give bounds on the fatproposition 25: For a classt” of real-valued functions and
shattering dimension of many function classes. In this conteygy al| v >0

it is useful to consider the pseudodimension of a function class.l) faty(ry(7) < fatp(v/L); and
Recall that the pseudodimension of a classan be defined as 2) Ny(o(F), 7, m) < N,(F, v/L, m) for all m € N and

dimp(F) = lim fatp(y) P < {.1’ 2, 00} ) .
7—0 Using this result, we can apply the techniques described
_ ) above to obtain bounds on the fat-shattering dimension for
and that this provides an upper bound fang(v) for all +, deeper networks.
since fatr is a nonincreasing function. We can use such Al et F be a nonempty class ¢ /2, M/2]-valued func-
bound for a clas#’, together with Theorem 17, to give bound?ions defined on a sek. Let Hy — ’F and for/ > 1
on the fat-shattering dimension of the class of bounded Iinqg{ ’ -
combinations of functions fron#’. However, we can obtain

better bounds using the following result, due to Haussler and N —1 N
Long [20]. Hi=So| Y wifi|:NeN, fie| ] H;, > |wil<A
Lemma 23 [20]: Let F' be a class of functions that take i=1 j=0 i=1

values in[-M/2, M /2] with d = dimp(F) finite. For any

m > d and anyy > 0 with ¢ defined as above.

Lemma 26:For anym, £ > 1, and0 < v < 2M AL, we

have
log Noo(F, v, m) < d log <%)
v
. . . . . 10g2 NQ(Hév Vs m) <
A simple example of the application of these techniques is to

the class of two-layer neural networks. “log, (3“0 No(F, v/(2AL)", m)).

2L
<2MAL> (2AL)6-D



534 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 2, MARCH 1998

Proof: The result is clearly true foH, = F. Suppose and define
that it is true forH,. Then by Lemma 22 and Proposition 25 N N
logy No(Het1, 7, m) H= {;a”ﬁ NeN fiek, ; ol < A}
2MAL\? : - -
< < 5 ) logy <2 > Na(Hi, v/(2AL), m) + 1) for A > 1. Then with probability at least — § over a
=0 . training samplez € Z™ chosen according t@’, every
2 2 .
h in H has
< <2M AL ) <1og2(3(£+1))+ <2MAL ) (2AL) D) !
7 7 erp(h) < é7(h)
x logy(3X! No(F, v/(2AL) T, m)) c (An . (A 9 )
+ m\ 7 log > log® m + log(1/6)
M AL 2(+D
< < ~ ) (QAL)Z(HI) for some universal constant

2) Leto: R — [—1, 1] satisfy|o(x1)—o(x2)| < L|z1—x2|
for all z1, z2 € R. Let X = {z € R™: ||z]|x < B}.
Let Hy be the class of functions o defined by

x log, (314 + 1)V No(F, v/(2AL), m)). O

The following corollary gives a bound on the fat-shattering
dimension for multilayer sigmoid networks with a bourd

on the/; norm of the parameters in each computational unit. Ho=A(ws, oy om) w1 s isn}
Corollary 27: Let and for? > 1, let
X ={z e R" [|z]| < B}. N -1 N
Let ' be the class of functions o defined by He= 0(; wifi) :NelN’fiejLZJO 5 ; il <4
F={(z1, -, zp)—x:1<i<n}

for A > 1. Then for any fixed deptd > 1, with
H, probability at leastl — 6 over a training sample € Z™

For this class, define as above the cla H,, .- i .
sk Hy chosen according t@, everyh in H, has

of functions computed by a sigmoid network with-- -, ¢

layers. Then for¢ > 2 erp(h) < &7 (h)

4B? [ MY B2( AL)(t+1)
faty, (v) < —- [ — (2AL)HD < BHALTED log n log? m + log(1/6)
7\ m 7

x log, (3571 — 1)1 (2n + 1))

for some constant that depends only oA.

and in particular Notice that these networks have infinite VC dimension. This
9 12 6 result provides a plausible explanation for the generalization
cM*B*(AL) NP et
faty,(7) < ———— log n performance of neural networks: if, in applications, there
v are networks with many small weights but small squared
for some universal constaat error on the training examples, then the VC dimension (and

It is also easy to derive analogous results for radial bad]ence number of parameters) is irrelevant to the generalization

function networks. In fact, these techniques give boun@§'formance. Instead, the magnitude of the weights in the
on the fat-shattering dimension for any function class thAgtwork is more important. ,
contains compositions of elements of a class with finite fat- 1N€S€ results are not sensitive to the form of the squashing

shattering dimension with a bounded number of compositioffg1ction . Part 1) of Theorem 28 requires only that it be
of bounded-weight linear combinations or scalar Lipschi2ohdecreasing and have bounded range, and Part 2) (for deeper
nets) requires that it satisfies a Lipschitz condition. This is in

functions. ; : - >
contrast to the VC-dimension results, which are sensitive to
small changes in the functios.
V. DISCUSSION Applying Corollary 9 gives a similar result in which we
Together, Theorem 2 and Corollaries 24 and 27 give tls@n choosey after seeing the data, in order to optimize the
following result. bound onerp(%). Choosing a small value of corresponds

Theorem 28:SupposeP’ is a probability distribution on to examining the behavior of the network on a fine scale, and
Z=X{-11},with X = R",0< vy <1,and0 < § < 1/2. leads to a large complexity penalty. A larger valueyogives
1) Lets: IR — [—1, 1] be a nondecreasing function. Define smaller complexity penalty, perhaps with some increase in

the classF of functions onIR" as the error estimatét](h). . .
We can also use Proposition 8 to give the following result,

F={zr—olw-z4+w): weR", w € R} in which we can choose both and A (the bound on the
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parameter magnitudes) after seeing the data. Define the class VI. FURTHER WORK

of two-layer networks with output weights bounded yas No serious effort has been made to optimize the constants

N N in the results in this paper. Recent work [36] using a more
Hy= Z a;fit N €N, f; € F, Z loi| < A direct proof technique gives a log factor improvement on the
i=1 i=1 estimation rate in Theorem 28. Further improvements might
where F' is the class of hidden unit functions defined i€ possible.
Theorem 28, Part 1). It would also be worthwhile to determine how well the

Corollary 29: SupposeP is a probability distribution on generalization performance estimates provided by Theorem
Z =X x{-1,1}y and0 < § < 1/2. With probability at 28 coincide with the actual performance of neural networks
leastl — & over z € Z™ chosen according td, for every in pattern classification problems. A preliminary investigation
0<~v<1 A>1 andh € H,y in [32] for an artificial pattern classification problem reveals

oy that the relationship between misclassification probability and
erp(h) < éri(h) the parameter magnitudes is qualitatively very similar to the
c [ A2n A ) A estimates given here. It would be interesting to determine if
' 2 log 5 log™ m + log oy (7)  this is also true in real pattern classification problems.
_ Related techniques have recently been used [36] to explain
for some universal constamt ~ the generalization performance of boosting algorithms [14],

The corollary follows from Theorem 28, Part 1), on applying1 5], which use composite hypotheses that are convex combi-
Proposition 8 twice, withv representing /A and~y. A similar  nations of hypotheses produced by weak learning algorithms.
corollary of Theorem 28, Part 2) follows in the same way.

This complexity regularization result suggests the use of
an algorithm that chooses d@nfrom J ,-; H.4 to minimize _
the right-hand side of (7), in order to give the best bound The author wishes to thank A. Barron, J. Baxter, M. Gole_a,
on misclassification probability. This is qualitatively similaM- Jordan, A. Kowalczyk, W. S. Lee, P. Long, G. Lugosi,
to popular heuristics (such as “weight decay” and ueagk. Mason, R. S_chap|re, J. Shawe-Taylor, and R. SIawgro for
stopping’—see, for example, [21]) that attempt to find neur nelpful dlscus_smns and comments. The autho_r also wishes to
network functions that have small error and small weightd1ank the reviewers for many helpful suggestions.

In the weight-decay heuristic, a penalty term involving the
magnitudes of the network weights is added to the cost
function, so that the learning algorithm aims to trade squared] N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler, “Scale-
error for Weight magnitudes_ The early-stopping heuristic  sensitive dimensions, uniform convergence, and learnabilityAssoc.

; ; ; Comput. Mach.1997, to be published.
restricts a gradl?nt d,escent algf)”thm to _take Only a sma E] M. Anthony and P. Bartlett, “Function learning from interpolation,” In
number of steps in weight space in a direction that reduces the computational Learning Theory: EUROCOLT’95995.
training sample error. For a fixed step size and small initial3] M Antfg?ny Td [T-MShﬁWE-IT%OF, “Azgisuzltlgf I/;lggik with applica-

. . . . tions,” Discr. Appl. Math, vol. 47, pp. 217, .

We'ght values, this ensun_:*'s_ that the magn'tUdes of the We'ghﬁﬁ A. R. Barron, “Universal approximation bounds for superposition of a
cannot be large after training. sigmoidal function,”IEEE Trans. Inform. Theoryol. 39, pp. 930-945,
inimizi 1993,

Qne apprqa_ch to the prpblem of mln.|m|2|.ng squared erroh P. L. Bartlett, “For valid generalization, the size of the weights is more
Wh"e malntalnln_g small weights is described in [30]. The algo- ~ important than the size of the networkyleural Inform. Process. Syst.
rithm analyzed in that paper solves the problem for two-layer vol. 9, pp. 134-140, 1997. _
networks with linear threshold hidden units. If these units havé] P- L. Bartlett, S. R. Kulkarni, and S. E. Posner, “Covering numbers for

. . . . real-valued function classeslEEE Trans. Inform. Theoryol. 43, pp.
fan-in bounded by a constant, the algorithm runs in polynomial = 1721-1724, Sept. 1997. o _ _
time. It follows that, if there is a network with small total [7] P. L. Bartlett and P. M. Long, “Prediction, learning, uniform conver-
squared error on the training examples, this algorithm will ?oe%‘;e'pigﬂsiceﬂe'sens'“"e dimensiors,Comput. and Syst. Sc1998,
quickly find a network with small misclassification probability. [8] E. Baum and D. Haussler, “What size net gives valid generalization?”

Results in this paper also have implications for regression Neural Computationvol. 1, no. 1, pp. 151-160, 1989.

. . . . . 9] S. Ben-David, N. Cesa-Bianchi, D. Haussler, and P. M. Long, “Charac-
using neural networks. The_algomhm described in [30] fm(_j terizations of learnability for classes ¢f), - - -, n}-valued functions,”

a two-layer network that estimates a real-valued quantity with J. Comput. Syst. Sgivol. 50, no. 1, pp. 74-86, 1995.

near-minimal squared error. For that algorithm, the estimatitf] A Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, “Learn-
. ability and the Vapnik—Chervonenkis dimensior)” Assoc. Comput.

error (the difference between the expected squared error of \ach, vol. 36, no. 4, pp. 929-965, 1989.

the network and the error of the optimal network) is boundddl] B. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal

; ; : ; margin classifiers,” ilProc. 5th Annu. ACM Workshop on Computational
above by a quantity that increases with the size of the Learning Theory 1992, pp. 144-152.

parameters, but is independent of the number of parametets} L. Devroye, L. Gyifi, and G. LugosiA Probabilistic Theory of Pattern
The bound on the fat-shattering dimension (and coverig%] Recognition. New York: Springer-Verlag, 1996.

. . . . - . A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant, “A general
numbers) given in Corollary 27 |mmed|ately |mply simila lower bound on the number of examples needed for learniimorm.

results (but with a slower rate of convergence) for regression Computat. vol. 82, pp. 247-261, 1989.
using deeper networks. Again, the bounds on estimation erf&fl Y- Freund and R. E. Schapire, “A decision-theoretic generalization

. of online learning and an application to boosting,” @omputational
depend on the parameter magnitudes but not on the number | ¢aiming Theory: Second Europ. Conf., EUROCOLT'@®95, pp.

of parameters. 23-37.

ACKNOWLEDGMENT

REFERENCES



536

(18]

[16]

[17]

(18]

[29]

[20]
[21]
[22]

(23]

[24]

[25]

[26]

[27]

(28]

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 2, MARCH 1998

, “Experiments with a new boosting algorithm,” iMachine
Learning: Proc. 13th Int. Conf.1996. [29]
P. W. Goldberg and M. R. Jerrum, “Bounding the Vapnik—Chervonenkis
dimension of concept classes parametrized by real numbktach.
Learning vol. 18, no. 2/3, pp. 131-148, 1995.

L. Gurvits and P. Koiran, “Approximation and learning of convex[30]
superpositions,” inComputational Learning Theory: EUROCOLT’95
1995.

I. Guyon, B. Boser, and V. Vapnik, “Automatic capacity tuning of very[31]
large VC-dimension classifiers,” iNIPS 5. Los Altos, CA: Morgan
Kaufmann, 1993, pp. 147-155. [32]
D. Haussler, “Decision theoretic generalizations of the PAC model for
neural net and other learning applicationsform. Computat.vol. 100,

no. 1, pp. 78-150, 1992.

D. Haussler and P. M. Long, “A generalization of Sauer's lemnda,” [33]
Comb. Theory, Ser.,Av0l. 71, no. 2, pp. 219-240, 1995.

J. Hertz, A. Krogh, and R. G. Palmelntroduction to the Theory of
Neural Computation. Reading, MA: Addison-Wesley, 1991. [34]
W. Hoeffding, “Probability inequalities for sums of bounded random
variables,”Amer. Statist. Assoc.,ol. 58, pp. 13-30, 1963.

M. Horvath and G. Lugosi, “A data-dependent skeleton estimate and2b]
scale-sensitive dimension for classification,” Tech. Rep., Pompeu Fabra
Univ., Dec. 1996. [36]
L. K. Jones, “A simple lemma on greedy approximation in Hilbert
space and convergence rates for projection pursuit regression and neural
network training,”Ann. Statist.vol. 20, no. 1, pp. 608-613, 1992. [37]
M. Karpinski and A. Macintyre, “Quadratic VC-dimension bounds
for sigmoidal networks,” inProc. 27th Annu. Symp. on the Theory of
Computing 1995.

M. J. Kearns and R. E. Schapire, “Efficient distribution-free learning oi38]
probabilistic concepts,” ifProc. 31st Symp. on Foundations of Computer
Science. Los Alamitos, CA: IEEE Computer Soc. Press, 1990, ppl39]
382-391.

A. N. Kolmogorov and V. M. Tihomirov, é-entropy ance-capacity of
sets in function spacesfmer. Math. Soc. Translations (2)ol. 17, pp.
277-364, 1961.

K. J. Lang and M. Witbrock, “Learning to tell two spirals apart, Rroc.
1988 Connectionist Models Summer Schodlos Altos, CA: Morgan

[40]

[41]

Kaufmann, 1988.

S. Lawrence, C. L. Giles, and A. C. Tsoi, “What size neural network
gives optimal generalization? Convergence properties of backpropaga-
tion,” Tech. Rep. UMIACS-TR-96-22 and CS-TR-3617, Institute for
Advanced Computer Studies, Univ. of Maryland, Apr. 1996.

W. S. Lee, P. L. Bartlett, and R. C. Williamson, “Efficient agnostic
learning of neural networks with bounded fan-itfEEE Trans. Inform.
Theory vol. 42, pp. 2118-2132, Nov. 1996.

G. G. Lorentz Approximation of Functions. New York: Holt, Rinehart
and Winston, 1966.

G. Loy and P. L. Bartlett, “Generalization and the size of the weights: An
experimental study,” ifProc. 8th Australian Conf. on Neural Networks
M. Dale, A. Kowalczyk, R. Slaviero, and J Szymanski, Eds., Telstra
Res. Labs., 1997, pp. 60-64.

G. Lugosi and M. Pirétr, “A data-dependent skeleton estimate for
learning,” inProc. 9th Annu. Conf. on Computational Learning Theory,
New York: ACM Press, 1996, pp. 51-56.

W. Maass, “Vapnik—Chervonenkis dimension of neural nets,The
Handbook of Brain Theory and Neural Networkd. A. Arbib, Ed.
Cambridge, MA: MIT Press, 1995, pp. 1000-1003.

D. Pollard,Convergence of Stochastic ProcesseNew York: Springer,
1984.

R. E. Schapire, Y. Freund, P. L. Bartlett, and W. S. Lee, “Boosting the
margin: A new explanation for the effectiveness of voting methods,” in
Machine Learning: Proc. 14th Int. Confl1997.

J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony, “A
framework for structural risk minimisation,” iProc. 9th Annu. Conf.
on Computational Learning Theory.New York: ACM Press, 1996, pp.
68-76.

, “Structural risk minimization over data-dependent hierarchies,
September 1996,” Tech. Rep.

E. D. Sontag, “Feedforward nets for interpolation and classificatidn,”
Comput. Syst. Scivol. 45, pp. 20-48, 1992.

V. N. Vapnik, Estimation of Dependences Based on Empirical Data.
New York: Springer-Verlag, 1982.

V. N. Vapnik and A. Y. Chervonenkis, “On the uniform convergence
of relative frequencies of events to their probabilitieEtieory Probab.

Its Applicat, vol. 16, no. 2, pp. 264-280, 1971.




