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ABSTRACT 

 
Analysis for mycotoxin in foods is a very important practice to ensure food quality and safety 

and to eliminate and control the risk of consuming contaminated foods.  Hence, being able to 

analyse and detect mycotoxins in foods and drinks is a priority to comply with the legislative 

limits set by food authorities worldwide. Most analysis of these toxins is still conducted using 

conventional methods, however, biosensor methods are being developed to date as screening 

tools to be applied for field analysis.  Biosensors, as tools have proofed to be able to provide 

rapid, sensitive, robust and cost effective quantitative methods for on-site testing. Developing 

biosensor devices for different mycotoxins are attracting much research interest in recent 

years with a range of devices are being developed and reported in the scientific literature.  

However, with the advent of nanotechnology and its impact on developing ultrasensitive 

devices, mycotoxins analysis is benefiting also from the advances taking place in applying 

nanomaterials in sensors development. This paper reviews the developments of biosensors 

and their applications for mycotoxins analysis and development of micro/nanoarray 

transducer and nanoparticles and their use in the development of new rapid devices.  
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Introduction 

 

Current concerns regarding food safety and quality requires a multidisciplinary approach 

based on a new generation of innovative and advanced technologies such as 

sensors/biosensors and tools to be used along the food chain for contaminants monitoring. 

Mycotoxins are one of the contaminants that require detection in foods and feeds to maintain 

good foods quality and to reduce their negative impact on human health. To control 

mycotoxins from contaminating food products there is a need for monitoring and control at 

different critical steps of the food chain to ensure food safety. These include monitoring of 

raw materials and food supply, monitoring during food processing, monitoring of final 

products and also during storage. To be able to carry these types of testing require a 

multidisciplinary know-how and the use of advanced technology to develop systems with 

clear innovative solutions to specific safety, quality and analytical requirements. The use of 

an integrated intelligence approach which will allow full interconnection and communication 

of multisensing systems is also advantages for food tractability.  The use of nanotechnology 

inspired systems will be powerful in delivering and fulfilling these requirements. 

 

To date there are emerging and innovative technologies being developed for mycotoxins 

analysis, and these can range from invasive, minimally invasive to non-invasive technologies. 

Biosensors and affinity sensor devices have been shown to have the ability to provide rapid, 

cost effective, specific and reliable quantitative and qualitative analysis (Tothill, 2001). The 

increase in the number of mycotoxins requiring monitoring and control and also the pressure 

to comply with legislations, considerable interest in developing multiarray sensors based on 

micro and  nano systems as diagnostics and risk assessment tools have become an attractive 

option. Applying this advanced sensing technology in testing food samples will also 

overcome the problems of having to send the samples for laboratory analysis as in the case in 

analysis using the traditional techniques. Such screening methods can save valuable time and 

resources especially in fresh foods and food processing (Tothill, 2003a). To date the 

developments in nanomaterials and biosensor fabrications technology is moving rapidly with 

new and novel nanobiorecognition materials being developed which can be applied as the 

sensing receptors for mycotoxins analysis. Advances in transducer technology at the 

micro/nanoscale has resulted in more emerging devices for multiplex analysis and nano-

tracking systems which are feasible to fulfil the rapid monitoring and control need of the food 

chain. Micro and nano systems developed for logistic food surveillance by means of 
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implementation of multisensing systems is also revolutionising food tracking. New and 

emerging advances in lab-on-a-chip devices, microarray and nanotechnology are also having 

a high impact on developing biosensors with new capabilities which can be applied for to 

mycotoxins analysis. To insure optimum quality is delivered to the consumer rapid 

assessment using cost-effective measurements is required in the food industry. However, the 

technology is still developing and it may be a while before real commercial products are 

widespread on the market. An overview of the emerging bio-sensing technologies available 

to date and nanotechnology based materials and transducers which are being developed and 

can be applied for mycotoxins analysis will be covered in this manuscript.  

 

Advantages of using nanomaterials in biosensors 

  

Nanotechnology has the potential to improve food quality and safety significantly through the 

use of advanced micro and nanosensors and tracking systems. Nanotechnology is research at 

the interface between chemistry, biology, material science, physics and engineering where 

ultra precision engineering can be combined with nanostructured materials and molecular 

manipulation to produce novel devices. The national nanotechnology Initiative (NNI) defines 

nanotechnology as “Research and technology development at the atomic, molecular or 

macromolecular scale leading to the controlled creation and use of structures, devices and 

systems with a length scale of 1-100 nanometers (nM) (McNeil, 2005). Interest in 

nanotechnology relies on the new properties that materials exhibit when reduced to the 

nanometer scale compares to the bulk materials.  Lab-on -a-chip devices are examples of 

micro/nanotechnology systems approaches which can be used for the analysis of food 

contaminants such as mycotoxins for on- site analysis. These devices can be cost effective 

and highly beneficial for the food industry in ensuring high safety and quality of the food and 

also for risk assessment and management. The use of nanomaterials and structures such as 

semiconductors and conducting polymer nanowires, and nanoparticles (carbon nanotubes, 

silica nanoparticles, dendrimers, noble metals nanoparticles, gold nanoshells, 

superparamagnetic nanoparticles quantum dots, polymeric nanoparticles) for biosensor 

applications is expanding rapidly. Figure 1, show examples of some nanoparticles used for 

sensors applications. To date many comprehensive review articles have been published in this 

area (Katz and Willner, 2004; Katz et al., 2004; Willner et al., 2007; Kerman et al., 2008; 

Tothill, 2009).   
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The application of nanotechnology in biosensors can range from the transducer device, the 

recognition ligand, the label and the running systems (e.g instruments). Their application in 

sensor development has been due to the excellent advantages offered by these materials in 

miniaturisation of the devices, signal enhancements which result in high precision and 

accuracy and also amplification of signal by the use of nanoparticles as labels. These can 

increase sensitivity of the final devices and also allow the fabrication of multiplex sensor 

systems such as high density protein arrays (Jain, 2004). The high surface to volume ratio 

offered by nanomaterials makes these devices very sensitive and can allow a single molecule 

detection which is very attractive in contaminant monitoring such as toxins. Small size 

advantages also include; higher speeds, electrons have smaller distance to travel; lower 

power, lower voltages are needed to achieve the same field in the semiconductor; higher 

component densities and chip functionality such as multi analysis capability. The use of 

nanowire transducers can also offer greater sensitivity in affinity sensors development 

(Woolley et al., 2000; Wang et al., 2005).  The use of luminescent nanocrystals (Quantum 

dots) as molecular labels to replace fluorophores has created new applications for 

nanomaterials in labelling and visualisation. These nanocrystals can be attached to antibodies 

and other molecules to detect different analytes at the same time (multiplex sensing). 

Quantum dots show distinct advantages over other markers due to their spectroscopic 

properties and narrow emission peaks and therefore their use in multiplexed analysis is 

increasing.  Their high emission quantum yield result in improved signal / noise ratio and 

therefore decrease false readings (negative and positive).  To date the use of quantum dots in 

sensing application have been  expanding across a diverse range of analysis (Goldman et al., 

2004;  Medintz et al., 2005;  Jorge et al., 2007). However, the stability of quantum dots needs 

improving, reduce aggregation in use conditions and also reduce cost as they are expensive to 

date.  

 

Metal nanoparticles have been applied in biosensors as marker tags to replace enzymes as the 

label. Striping voltammetry as an electrochemical technique can be applied to detect the 

metal nanoparticles directly making the assay simple to perform. Gold and silver 

nanoparticles can be used in these methods including different inorganic nanocrystals (e.g. 

ZnS, PbS, CdS) for analytes detection. The unique physical and chemical properties of 

nanoparticles such as colloidal gold can provide excellent application in a wide range of 

biosensing techniques (Rosi and Mirkin, 2005).   Several products are available on the market 

such as Oxanica (UK) Quantum dots and MultiPlxBeads™ from Crystalplex Corp., USA. 
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Nanoparticles can also be exploited in conductivity based sensors where they can induce a 

change in the signal upon the attachment of the nanoparticles- antibody tagged with the 

captured antigen on the sensor surface.  The application of gold nanoparticles for mycotoxin 

analysis has been recently reported. Xiulan and co-workers have developed an 

immunochromatographic method for AFB1 detection using a combination of an antibody 

with a nanogold conjugate probe (Xiulan et al., 2005). Liu at al. (2006) used gold 

nanoparticles as tags in an assay design for aflatoxin B1 analysis.  Both of the above papers 

reported good sensitivity for pure toxins. Gold nanoparticles are easy to functionalise and 

used for antibody immobilisation and then applied in the Enzyme Linked Immunosorbent 

assay (ELISA) test on the surface of the electrode.  We have applied gold nanoparticles for 

mycotoxin analysis to enhance the enzyme signal achieved on the surface of the 

electrochemical transducer (unpublished data).   

 

The development of micro/nanosensor devices for toxins analysis is increasing due to their 

extremely attractive characteristics for this application. Their novel electron transport 

properties make them highly sensitive for low level detection (Wang, 2005, Logrieco et al., 

2005). The multiplex analysis capability is also very attractive for multi biomarker analysis.  

These devices are also benefiting from the advances taking place in the development of what 

is referred to “nanotools” which include; advanced fabrication techniques; analysis and  

metrology instruments; software for nanotechnology research and development; the use  of 

lithography, chemical vapor deposition  (CVD), 3-D printing, and nanofluidics. 

 

 

Biosensors as diagnostics tools  

 

A biosensor is defined as a bioanalytical device incorporating a molecular recognition 

element associated or integrated with a physicochemical transducer (Tothill & Turner, 2003). 

To date there are five types of transducers used in biosensor devices and these include; 

electrochemical, optical, mass sensitive, calorimetric and magnetic transducers. The official 

IUPAC definition states ‘A biosensor is a self-contained integrated device, which is capable 

of providing specific quantitative or semi-quantitative analytical information using a 

biological recognition element (biochemical receptor) which is retained in direct spatial 

contact with a transduction element’(Thévenot et al., 1999). Figure 2, show the concept of 

constructing a biosensor device where a biorecognition material is selected and then 
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immobilised on the chosen sensor platform surface. The assay is then developed and 

optimised and this is then combined with the instrument which will produce the digital signal. 

The use of these devices allow the capability of analysing food and feed samples on-site such 

as on the farm or at the food factory (Tothill, 2001). That is because biosensors have the 

advantages over traditional methods of being, simple, rapid, cost effective and portable 

devices that are sensitive and specific for the target analyte e.g the mycotoxin. These devices 

can also be designed to be disposable for single use, reusable for several analyses or for 

continuous monitoring. A range of biosensors have now been developed and reported in the 

literature for mycotoxins analysis some of which have the capability of multi array 

mycotoxins diagnosis (multiplexing capabilities). Sample preparation can usually be 

incorporated as part of the sensor procedure system. Some of the extraction and clean-up 

procedures may be similar to the procedures used for HPLC or GC analysis especially if the 

samples are of solid foods nature. Some sensors have been developed to be applied directly 

for liquid samples without the need for extraction of the sample. To date sensors can be 

designed to handle the sample through the inclusion of a   microfluidic system or membrane 

separation system as part of their design for extracted food samples handling.   

 

Molecular Recognition element 

In order to recognise specifically the mycotoxin of interest, the optimal recognition materials 

(sensing receptor) need to be integrated on the surface of the sensor. This is especially 

important for small molecular weight toxins with diverse structural similarities as the 

sensitivity and specificity of the sensing molecules will play an important role in the success 

of the sensor device. The range of the different types of sensing receptors that can be used as 

sensing layers in biosensors has been reviewed recently (Zourob, 2010). Similarly a range of 

molecular recognition receptors have been developed for mycotoxins recognition and 

detection.  The most widely used is the antibody molecule, which provides the specificity and 

sensitivity required for low level of toxins detection. More recently synthetic (artificial) 

molecular recognition elements have been designed and fabricated as affinity materials and 

applied for analyte detection and analysis. This type of materials can include nanomaterials 

and membrane structures and can comprise molecular imprinted polymers (MIPs), aptamers, 

phage display peptides, binding proteins and synthetic peptides as well as some metal oxides 

materials (Tothill et al., 2001, Shaikh et al., 2005, Collett et al., 2005, Tothill, 2010a). A 

recent review on the development of novel materials for mycotoxin analysis has been 

reported by Maragos (2009).  
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Antibodies (monoclonal and polyclonal) or antibody fragments have been used in the 

development of immunosensors targeting mycotoxins analysis. Polyclonal antibodies can be 

raised against mycotoxins as long as the molecular mass and the structure of the mycotoxin is 

able to induce specific and high affinity antibody production. The use of monoclonal 

antibodies however, results in more specific tests. Drawback is that monoclonal antibodies 

are more difficult to maintain and can be more expensive than polyclonal antibodies. A range 

of antibodies are now commercially available for most mycotoxins. Many ELISA tests, 

dipsticks and assays have been developed and are commercially available for a range of 

mycotoxins using antibodies (Goryacheva and De Saeger, 2011). Antibody fragments and 

molecular-engineered antibodies have been developed for biosensor applications (Zourob, 

2010).  The use of direct and combinatorial mutagenesis has been applied to enhance the 

affinity and selectivity of recombinant antibodies.  However, due to lack of stability of the 

antibody molecule, this can make it unsuitable for long term biosensor device storage and can 

hinder the wider application and also the commercialisation in some instances. Replacing 

natural biomolecules with artificial receptors or biomimics has therefore become an attractive 

area of research in recent years (Tothill, 2003). Due to our vast know-how to date in how 

natural molecules such as the DNA and the protein molecules are created and fold in their 

three dimensional structure, we have been recently able to design new biomimics to solve the 

problems faced from applying nature molecules in the sensors and diagnostics. The 

advantages of using these new and novel molecules and nanomaterials is that they are robust, 

more stable and cheap to produce in some cases since they can be made using wet chemistry 

and can be modified easily to aid immobilisation on the sensor surface and also to add labels 

as the marker for detection. They also obviate the use of animals in the production of affinity 

receptors as is the case of polyclonal antibody production. 

 

The use of phage display technology to screen libraries for specific receptor molecules is 

being rapidly applied in the diagnostics arena.  This is to identify specific peptide sequences 

with affinity towards target analytes (Oyama et al., 2003, McGuire et al., 2004 a,b, Chang et 

al., 2005, Shukla and Krag, 2005). However, a large number of the literature in this area is 

focusing mainly on medical application purposes. There are many literature were peptides 

have been specifically synthesised to target specific molecules such as estradiol (Giraudi et 

al., 2003), estrogens (Tozzi et al., 2002) and aflatoxins (Tozzi et al., 2003). Recent work at 

Cranfield University used a computational approach for the design of peptide receptors for 



9 

 

aflatoxin M1 and ochratoxin A respectively (Tothill, 2010a). By using molecular modelling 

software, peptide receptors were designed and then synthesised for these target toxins.  

Affinities of the peptides were confirmed using SPR sensor platforms. Peptides can be 

chemically synthesised in large quantities once the optimal sequence with the required 

affinity has been identified. Peptides as receptors for biosensors application have been 

reviewed recently (Tothill, 2010a).  

 

Molecular-imprinted polymers (MIP) have been developed and synthesised also as sensing 

receptors. The process use organic polymers to specifically imprint target molecule to 

produce synthetic materials that can be used for affinity recognition of that target molecule 

after removing the target compound from the polymer (Mosbach, 1994, Mosbach and 

Ramstrom, 1996). Molecular-imprinting polymerisation has been the focus of intense 

research interest in recent years and been developed for the preparation of selective 

separation materials and as sensing layers in sensor devices (Batra & Shea, 2003; Piletsky et 

al., 2006). MIPs are usually produced by forming highly cross-linked organic polymer around 

the molecule of interest (analyte target/ template) therefore any impurities will produce less 

specific affinity media (Tozzi et al., 2003).  For mycotoxins applications MIPs have mainly 

been used as clean up media for sample extraction and pre-treatment and also as sensing 

receptors (Weiss, 2003; Yu and Lai, 2005; Urraca et al., 2006). At Cranfield University a 

diverse research has taken place to develop MIPs using molecular modelling software for 

mycotoxin analysis. As an example Turner et al., (2004) developed a MIP for ochratoxin A 

extraction and analysis using a quartz crystal microbalance (QCM) sensor which showed a 

detection limit in the range of 50 -100 µg l
-1

 range.  A range of other MIPs have also been 

developed towards ochratoxin A and used for sample extraction and clean-up from red wine 

(Jodlbauer et al., 2002; Maier et al., 2004). Further, MIPs developed towards fumonisin B 

(De Smet et al., 2009) and T-2 toxin (De Smet et al., 2010) showed to be an alternatives for 

clean-up and pre-concentration of these toxins in food matrices.  The construction of peptide 

receptors based on the molecular imprinting approach has also been carried out (Giraudi et al, 

1999, 2003) where amino acids are used as the functional monomers for the polymerisation 

process around the template. The use of molecular modelling has been applied for the 

selection of the highest affinity monomers to be used in the construction of MIPs (Chianella, 

et al., 2002; 2003). The major disadvantage is that MIPs require a template (pure form of the 

analyte) to produce the synthetic polymer which can in cases be a significant cost.  The use of 

template analogues is a cheaper option, but this may reduce the specificity of the MIPs 
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produced.  Also their applications as sensing layers in sensor devices have been limited due 

to their low specificity and sensitivity when compared to the antibody molecule.  

 

Aptamers (derived from the latin aptus, meaning ‘to fit’) are synthetic oligonucleotide 

ligands (DNA or RNA). These can be selected from combinatorial libraries of synthetic 

nucleic acids that have specific affinity for a target molecule. Using synthetic evolution of 

ligands (SELEX) process, aptamers can be selected from random pools and then chemically 

produced (Ulrich et al., 2001, Cerchia et al., 2002). These can be selected against drugs, 

proteins, toxins and other analytes and used as receptors in diagnostics and sensor devices 

(Brody and Gold, 2000; Mascini et al., 2001; O’Sullivan, 2002, Clark and Remcho, 2002). 

Interest in the use of aptamers increased in recent years especially for use in the area of 

diagnosis as sensing molecules (Luzi et al., 2003, Tombelli et al., 2005). An aptamer specific 

for ochratoxin A has been reported recently by Cruz-Aguado and Penner (2008a, b). The 

authors used fluorescence polarization immunoassay where the tracer molecule was 

fluorescently labelled oligonucleotides and the assay was reported to achieve good detection 

limits.  The same aptamer was also implemented in an SPE column for samples extraction, 

before analysis. Detection of aptamer-protein interactions using label free electrochemical 

detection system based on impedance spectroscopic transduction has been reported 

(Rodriguez et al., 2005).  

 

The use of bilayer lipid membrane as the sensing layer for mycotoxin detection has been 

reported by Andreous & Nikolelis (1998), Siontorou et al., (2000) and  Gilbert and Vargas 

(2003).  In principle many ion channel proteins have binding sites for toxins and drugs and 

therefore have the ability to be used as the sensing materials in sensor devices. The 

interaction of the toxin with the bilayer induces the opening of the channels in the lipid layer 

allowing ionic eluent to pass through. Measurement of ionic conductance changes or 

impedance through the ion channels can be used to detect the level of the toxins.  The method 

has a rapid analysis time (response time of 15 seconds) and the lipid membranes can be 

reused for many times. A limit of detection of 0.016 μg L
-1

 was reported for aflatoxin M1 

(Gilbert and Vargas, 2002; Siontorou et al., 2000).  A review on how the sensing system 

works is reported by Sugawara et al., 2002 and Phung et al, 2011. The bilayers  suffer from 

low stability and are more difficult to implement in sensor devices when compared to other 

receptors.  
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Transducers 

 

A transducer is the device that converts the recognition signal events into a digital signal 

which can be electrochemical (amperometry, potentiometry, conductimetry/impedimetry), 

optical (colorimetry, fluorescence, luminescence, interferometry, spectroscopy of optical 

waveguides and surface plasmon resonance), calorimetric (thermistor), mass sensitive 

(piezoelectric/acoustic wave) or magnetic (Tothill and Turner, 2003). Electrochemical 

transducers are the most widely used in sensor technology, however, recently optical and 

piezoelectric sensors have gained popularity and their use in biosensor development is 

expanding rapidly. The main reason for this is that most electrochemical systems still requires 

the use of a label molecule such as enzyme where a substrate mixture needs to be added for 

the assay results to be monitored, this with the exception of conductimetry/impedimetry 

transducers.  In an optical transducer such as SPR and waveguides systems the binding event 

between the receptor used on the sensor surface and the analyte can be detected directly.  In a 

piezoelectric/acoustic system the change in mass due to the binding between the analyte and 

the receptor on the sensor can also be monitored directly. A range of sensors have been 

developed for mycotoxins analysis an example of which is listed in Table 1 (Tothill, 2011). 

Recent developments also reported by Zhilei et al., 2011 and Maragos, 2011.  

 

Electrochemical biosensors have been developed for mycotoxins analysis as portable, simple, 

easy to use, cost effective, and highly sensitive devices and when combined with a small 

handheld instrument produce a very attractive assay system.   The sensors can then be used 

for on-site mycotoxins analysis that can be conducted by non expert personals. Many of these 

sensors are based on amperometric transducers and a screen-printed disposable electrode. 

This type of biosensor is similar to the glucose biosensor which has been used widely 

throughout the world for glucose testing in the home, bringing diagnosis to on- site analysis. 

Two types of electrochemical sensor principles have been reported in the literature for 

mycotoxins analysis and these include either based on enzyme inhibition as a total sample 

toxicity assay (Moressi et al., 1999) or based on affinity sensors where a specific receptor is 

used to detect the target toxin.  Affinity based sensors however, offer great selectivity and 

sensitivity for mycotoxins analysis and most are based on the use of an ELISA assay 

conducted on the electrode surface. The sensors comprise three electrodes configuration with 

working, reference and a counter (auxiliary) electrode with the antibody (or the toxin) is 
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labelled with an enzyme (horseradish peroxidase or alkaline phosphatise)  that is able to 

produce an electro-active signal when catalysing the substrate mixture and detected  the 

sensor surface.  Currently, immunosensors based on electrochemical transducer are widely 

reported in the literature for mycotoxin analysis.  Most of these sensors are able to achieve 

very good sensitivity and specificity for the target mycotoxin (Micheli et al., 2005; Piermarini 

et al., 2006; Parker & Tothill, 2009).  The use of gold as the working electrode has been 

expanding in recent years since it is more stable against oxidation and easy to functionalise 

for covalent immobilisation giving better assay reproducibility and also less prone for non-

specific binding when compared to carbon electrodes (Abdul Kadir & Tothill, 2010; Heurich 

et al., 2011). Change in the electrochemical properties (conductivity or capacitance) on the 

sensor surface due to the antibody antigen interaction can also be used as the detection 

principle. These devices are very attractive as label free techniques, but they can be less 

sensitive for small molecules such as mycotoxins. Hence, the use of nanomaterials as tags 

will improve the sensitivity of these devices.  

 

Some of the first biosensors developed for mycotoxins analysis used optical transducers. 

Maragos & Thompson (1999) developed a fibre-optics device for the detection of aflatoxin 

B1 based on evanescent waves. An optical sensor for aflatoxins based on fluorescence 

polarization was also reported by Nasir & Jolley (2002). The use of optical transducers in 

biosensors development have been reviewed recently (Ligler and Taitt, 2008; Borisov and 

Wolfbeis (2008). Other optical biosensor platforms that exploit grating coupler, waveguides, 

resonant mirror and surface plasmon have been widely used for analyte diagnosis and 

bimolecular interaction events studies. The BiaCore
TM

 biosensor instrument (GE Health Care, 

USA) is the most widely used SPR based optical transducer system as a biosensor platform. 

Other companies have also produced SPR based sensors such as Texas Instruments 

(SPREETA range), Nippon Laser, IBIS Technologies B.V (IBIS-iSPR), and most recently 

Sierra sensors GmbH (Hamburg, Germany). The use of SPR for mycotoxins detection has 

been reported for several types of toxins (Mullett et al., 1998; Daly et al., 2000; Gaag et al., 

2003; Tudos et al., 2003). However, optical biosensors have the disadvantage of being more 

expensive than other biosensor technologies and also are more suitable in most cases for lab 

based analysis when compared to electrochemical sensors (Tothill, and Turner, 2003).  

 

Piezoelectric/ acoustic sensors such as quartz crystal microbalance (QCM) and surface 

acoustic devices (SAW) are also classified as being label-free technology. Piezoelectric 
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sensors comprise of a quartz crystal coated with gold electrode and used as a microbalance 

sensitive for a change in the mass on the sensor surface (Cooper and Singleton, 2007). QCM 

devices have been used for a wide range of applications in the medical field (Uludag and 

Tothill, 2010). However, OCM immunosensors are potentially more suitable for detection of 

large molecular weight compounds since the sensing principle is mass deposition dependent. 

Due to the low molecular mass of mycotoxins it is difficult to produce a sensitive sensor 

based on direct capture, but the use of competitive assay format with an amplification system 

such as the use of nanoparticles may achieve an acceptable detection limit. Hauck et al., 

1998, reported on the development of an ochratoxin A based QCM sensor that gave a linear 

range of 2 -100 µg L
-1

. Other researchers such as Tsai and Hsieh (2007), reported the 

development of a QCM sensor for ochractoxin A which exhibited a detection limit of 16.1 ng 

ml
-1

 in buffer. Jin et al., (2009), developed a QCM based sensor for aflatoxin B1 detection 

using a biocatalysed deposition amplification system and achieving a detection of 0.01-10.0 

µg L
-1

.  More advanced QCM devices are now available on the market as an example is the 

QCMA 1 Sensor instrument (Sierra Sensors GmbH, Hamburg, Germany) which is a fully 

automated instrument.  This is being used at Cranfield University (England, UK) to develop a 

range of affinity based sensors for a range of analysts.  

 

Cantilever based sensors have also been introduced for analytes detection recently. Affinity 

interaction between the antibody on the surface of the cantilever and the analyte is detected 

through the amount of bending of the sensor due to mass change which is detected as a 

change in the resonant frequency (Baller et al., 2000, Hansen and Thundat, 2005).  

Microfabricated cantilever has been produced as a promising technology for bio-sensing 

application (Waggoner and Craighead, 2007) and can operate either in static mode or 

dynamic mode and has been used for pathogens detection (Nugaeva et al., 2007).  For 

mysotoxins analysis, so far no work has been reported in the literature.   

 

 

Micro /Nano electrodes Arrays  

 

The development of micro/nanosensor devices for toxins analysis is increasing due to their 

extremely attractive characteristics for this application. In principle these devices are 

miniature transducers fabricated using conventional thin and thick film technology.  Their 

novel electron transport properties make them highly sensitive for low levels detection 
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(Wang, 2005, Logrieco et al., 2005). The multiplex analysis capability is also very attractive 

for multi biomarker analysis. Micro/nanoelectrodes can be classified as small electrodes in 

which at least one dimension is in the µm or nm range respectively. These can also be 

fabricated using different materials such as platinum, gold, iridium and carbon on silicon 

wafers. Microelectrode arrays (MEA) have been fabricated to produce miniaturized 

electrochemical sensors (Berduque et al., 2007; Huang et al., 2009). Different shapes and 

sizes of these electrodes have been fabricated using standard deposition, etching, lithography 

and photolithography techniques, including microdisk electrodes (Aguiar et al., 2007), 

microband electrodes (Ordeig et al., 2008), interdigitated electrodes and three dimensional 

MEA (Xu et al., 2008) (Figure 3).  The devices can be based on macro type of transducers 

such as receptor spots on glass slide or can be easily fabricated using screen-printing 

technology with multi working electrode array. In order to develop practical devices for 

commercial developments problems of binding between heterogeneous antigens and 

antibodies used in the sensor assays and also the high background signals need to be 

eliminated and controlled. Multi toxins detection (e.g Mycotoxins) in foods can be conducted 

using single micro/ nanoelectrode array chip with high sensitivity and rapid analysis time. 

The use of micro/nanoarrays for analysis applications in foods can produce highly sensitive 

sensors.    

 

Multi mycotoxins detection has also been reported in the literature using different sensor 

platforms combined with multi ELISA assays. Therefore, multi toxins can be detected on a 

single microelectrode array chip with multi-array working electrode, where different antibody 

is immobilised to detect a specific mycotoxin. Micro/nanoelectrodes arrays have unique 

properties which include; small capacitive charging current and faster diffusion of electro 

active species which will result in an improved response time and greater sensitivity 

(Berduque et al., 2007).  The use of lab-on–a-chip is expanding in all areas of analysis due to 

the advantages of using small samples to analyse several markers/ toxins, i.e offer high 

throughput analysis (Tothill, 2010b). These types of devices will be attractive for mycotoxin 

analysis since several toxins may exist in the same food or feed sample.  Examples are the 

electrochemical assay developed by Piermarini et al., (2007) using a 96 well screen printed 

microplate to detect aflatoxin B1 in corn samples.  Detection was carried out using alkaline 

phosphatase as the label enzyme with the array used to detect the toxins in several samples 

simultaneously. Other examples of multi mycotoxins analysis sensors include those reported 

by Ngundi et al., (2005 & 2006) using a fluorescence labelled antibody with a sensor arrays 
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to detect ochratoxin A and deoxynivalenol.  Also Gaag et al (2003) developed an SPR 

biosensor array to monitor aflatoxin B1, and deoxynivalenol. However, no real samples were 

analysed using this sensor.  Ligler et al., (2003) reported on the use of biosensor consisting of 

a patterned array of capture antibody immobilised on planar waveguide.  A fluorescent assay 

is then performed and the spots are captured using a CCD camera.  Several authors reported 

the use of competitive immunofluorescent assays on a biosensor array for the simultaneous 

detection of several mycotoxins such as aflatoxin B1, fumonisin, ochratoxin A and 

deoxynivalenol (Ligler et al., 2003; Sapford et al., 2006).  Recently, Bayer Technology 

Services  GmbH), have developed a mycotoxin biochip platform based on planar waveguide 

technology, which is able to analyse multiple mycotoxins based on fluorescently labelled 

antibodies and consist of a reader and a lab-on a-chip cartridge.   

 

We have developed an electrochemical microarray with 35 arrays and which was used for the 

detection of aflatoxin M1 (Parker et al., 2009) (Figure 4). Each array consisted of 35 

microsquare electrodes with 20 μm × 20 μm dimensions and edge-to-edge spacing of 200 μm 

(an electrode width to spacing ratio of 10). These dimensions and spacings were chosen to 

avoid overlapping diffusion layers between neighboring electrodes in the array. The whole 

microarray was used to immobilise the antibody for aflatoxin M1 analysis with very sensitive 

detection limit achieved (8 ng L
-1 

in milk) using amperometry as the detection system.  This 

has now been also used for aflatoxin B1 and fumonisins detection (unpublished data).  The 

use of microarrays for mycotoxin analysis is still progressing and as shown above it can 

produce very highly sensitive sensors for mycotoxin analysis.   

 

 

Challenges facing technology development  

 

The application of nanotechnology in the development of nanodevices for sensing faces many 

challenges as it is still developing and therefore many issues and problems may still need to 

be resolved in order to produce successful commercial products that can compete with 

traditional methods of mycotoxins analysis. Also the complexity of molecular structures of 

the toxins and the wide range of concentrations need to be detected, coupled with the 

complexity of the food matrices are some of the bio-analytical challenges facing the 

application of nanodevices for food analysis.  The stability of some nanomaterials such as 

quantum dots still needs improving, reduce aggregation in use conditions and also reduce 
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their cost. Problems associated with sample treatment, delivery to the nanosensor devices still 

require extensive investigation to develop a better microfludic systems and informatics tools 

for signal output.  Currently a lot of work is being carried out with huge investments from 

industry and governments to develop nanosensors and nanosystems targeting improved 

detection (sensitivity and selectivity), multiplexing analysis (analysing several analytes at the 

same time), rapid  (short analysis time), on-site in field analysis (portable devices), and cost 

effective (low cost compared to lab based analysis).  

 

Concerns regarding the use of nanotechnology in this particular application are limited due to 

low exposure of the food since it is reduced to the wider issue of toxicity risks for humans 

and the environment after the disposable of these devices and materials. We should however, 

take the signs associated with the toxicity of nanoparticles very seriously and ensure and 

control there safe disposal, especially the potential risks posed by engineered nanoparticles, 

until further studies proof otherwise.  

 

 

Conclusions  

 

 
There is a worldwide interest in the field of biosensors and their developments for health, 

food and environmental analysis. Hence, innovation in this area is taking place at all levels of 

the technology including the sensing receptor, the transducer and the accompanying 

electronics and analysis software and microfluidics. As we progress from single analyte 

testing to multianalyte analysis, miniaturisation and novel materials such as nanoparticles and 

micro/nano based transducers are playing a major part in producing highly sensitive and cost 

effective devices.  A range of sensors are being developed for mycotoxins based on the above 

technologies which can be applied in the farm or the factory and operated by unskilled 

personnel. Current trends to produce chip-based micro/nanoarrays for multi mycotoxins 

analysis are challenging but possible and it will have significant impact on risk assessment 

testing. The use of nanoparticles such as gold, silver, metal oxides and quantum dots assay 

developments will enhance the capability of the biosensor technology for mycotoxins 

analysis. Early and sensitive detection will aid in eliminating these toxins from entering the 

food chain and preventing ill health and protecting life. Therefore these rapid technologies 

need to be developed further using appropriate funding to move the technology from research 

to commercial products.  
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Table 1:   Examples of biosensors developed for mycotoxins analysis (Tothill, 2011). 

 

Mycotoxin Matrix Biosensor 

principle  

Limit of 

Detection  

Reference 

 
Aflatoxin B1 

 

 

 

 

Buffer 
Buffer 
Maize, sorgum, 

nuts 
Nuts, oat 
Buffer 
Buffer 

 
Barley 
buffer 
Rice 
Human serum, 

grape 
Corn 
 
Buffer 

Optical 
 

 

 

 

 

 

 
Electrochemical 
 

 

 

 

 

QCM 

3 µg L
-1 

1 µg L
-1 

5 µg kg
-1 

 
0.2 µg kg

-1 

0.5 µg L
-1 

0.5 µg L
-1 

 
0.03 µg kg

-1 

0.15 µg L
-1 

0.06 µg L
-1 

0.05 µg L
-1 

 
0.03 µg L

-1 

 
0.01µg L

-1 

Daly et al.(2000) 
Carlson ( 2000) 
Nasir & Jolley (2002) 
 
Gaag et al. (2003) 
Adanyi et al., (2007) 
Sapsford et al., (2006) 
 
Ammida et al. (2004) 
Pemberton et al. (2006) 
Tan et al., (2009) 
Sun et al., (2008) 
 
Piermarini et al., (2007) 
 

Jin et al., (2009) 
 Aflatoxin M1 Liver 

 
Milk 
Milk 
Milk 
Milk 

Optical 
 
Electrochemical 
 

 

  

1 µg kg
-1 

 

0.02 µg L
-1 

0.05 µg L
-1 

0.039 µg L
-1 

0.008 µg L
-1 

 

 Chiavaro et al. (2005) 
 
Badea et al.(2004) 
Micheli at al. (2005) 
Parker & Tothill (2009) 
Parker et al., (2009) 

 Fumonisin 
     B1 

Corn 
Corn 
 

Buffer 
 Buffer 
Corn 
 

Optical 
 

 

 

 
Electrochemical 
 

50 µg kg
-1 

10 µg L
-1 

 

50 µg L
-1 

0.5 µg L
-1 

5 µg L
-1 

 

Mullett et al., (1998) 
Thompson & Maragos 

(1996) 
Gaag et al., (2003) 
Sapsford et al., (2006) 
Abdul  Kadir & Tothill 

(2010)  

Ochratoxin A Cereals 
 
Coffee 
Wine 
Wheat 
Wine  
 
Buffer 
Wine 
 

 

Optical 
 

 

 
Electrochemical 
 

 

 

 

QCM 

3.8 to 100 µg 

kg
-1 

7 µg kg
-1 

38 µg kg
-1 

 0.06 µg  L
-1 

0.7 µg  L
-1 

 
10 µg  L

-1 

0.01 µg  L
-1 

 

16.1 µg  L
-1 

Ngundi et al., (2005) 
 

 

 
Alarcon et al.,  (2006)  
Prieto- Simon et al., 

(2007) 
Khan & Dhayal (2008) 
Heurich et al., (2011) 
 
Tsai and Hsieh (2007) 

Deoxynivalenol Wheat  
Wheat  
Buffer  
Oats 
 

Optical 2.5 µg L
-1 

2.5 µg L
-1 

0.2 µg L
-1 

50 µg kg
-1 

 

Schnerr et al., (2002) 
Tudos et al., (2003) 
Ngundi et al., (2006) 
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Figure 1: Examples of nanoparticles used in sensors developments. 
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Figure 2: Biosensor construction. 
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Figure 3: Different types of micro and nanoelectrodes arrays. A) Microdisk electrode, B) 

Microband electrode, C) Interdigiated microelectrode array and D) Three dimensional 

microelectrode array (Huang et al., 2009). 
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Figure 4: A three-electrode chips with a working electrode area (35 electrodes in the array), a 

counter electrode and a reference electrode area (Parker et al., 2009).                                                                                              
 

                                                                                                                              

 

 
 

             


