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ABSTRACT:  A large number of different Pseudo-R  measures  for  some common  limited2

dependent  variable  models  are   surveyed.  Measures include those based solely on the
maximized  likelihoods with and without the restriction that slope coefficients are zero, those
which  require  further  calculations  based  on  parameter estimates of the coefficients and
variances  and  those  that  are based solely on whether the qualitative predictions of  the  model
are correct or not.  The theme of the survey is that  while  there is no obvious criterion for
choosing which  Pseudo-R  to  use, if the estimation is in the context of an underlying latent2

dependent variable model, a case can be made for basing the choice  on  the  strength  of  the
numerical relationship to the OLS-R  in the latent dependent variable. As such an OLS-R  can2  2

be known in a Monte Carlo simulation, we summarize Monte Carlo results  for some important
latent  dependent variable models  (binary  probit, ordinal probit and Tobit) and find that a
Pseudo-R   measure due to McKelvey and Zavoina scores consistently well under our criterion.2

We also very briefly discuss Pseudo-R  measures for count data, for duration models and for2

prediction-realization tables.
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1.  Introduction

This  survey  reviews  some  of  the  many  R -type  measures  (or  Pseudo-R 's)  that2 2

have  been  proposed  for  estimated   limited  dependent variable models.  (A limited dependent

variable model is  a model where the observed dependent variable is constrained, such  as in the

binary probit model where it must be either zero or  one,  or in the Tobit model, where it is

constrained  to  exceed  zero.)   The surveys of limited dependent variable models by Amemiya

(1981)  and Dhrymes (1986), as well as the standard reference  by  Maddala  (1983), all briefly

discuss goodness of fit and mention one or two  possible Pseudo-R 's, but none give a motivation2

as  to  why  such  measures might be calculated.  (Some of the measures were initially introduced

with little or no justification and in some cases are hard to motivate now.)  In the next section, we

discuss  a  number of possible motivations and show how each leads to a  class  of Pseudo-R 's.2

While none  of  these  is  beyond  challenge,  we  emphasize one, the McKelvey-Zavoina R , that2

in  some  situations  seems most conducive to comparability across  different  types  of  empirical

models.

As an example of  this  kind  of  comparability,  consider  a  situation where the researcher

is estimating a model  with  annual  individual income as the dependent variable  and  some

number  of  independent variables.  The data, which are by individual, may  be  provided in three

ways:  (i) the complete data (ii)  the  complete  data except that  the  dependent  variable  data

is  censored  at  $50,000 (so that one knows which individuals are earning more than  $50,000

but not how much more) or (iii) the complete  data  except  that the dependent variable is only

reported by category, such  as  where a zero corresponds to "less than or equal to $50,000" and

a  one corresponds to "more than  $50,000"  in  the  binary  category  case.  Mode  (ii)  or  (iii)

might  perhaps  be  adopted  due  to  confidentiality concerns.  It might be desirable if  the  R2

from  OLS on sample (i) were as close as possible  to  the  Pseudo-R   from a Tobit type2
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regression if the data  were  provided  as  sample  (ii) or the Pseudo-R   from a binary probit2

regression if the  data  were provided as sample (iii).  This same kind of comparability might  be

used more generally to make rough comparisons across  empirical  models, where in some cases

the  dependent  variable  is  observed  continuously and in others it is limited.

We shall discuss other types of justifications  in  the  next  section, and while it  is  not

the  purpose  of  this  survey  to  convince the reader that our favoured justification, or any other,

is the "right"  one,  we  do  note  that  the  above  approach  is  consistent with the way

practitioners use R   in the  OLS  context.   Our view is that most  empirical  researchers  are2

explicitly  or  implicitly making rough comparisons of "goodness  of  fit"  across  similar empirical

models with similar samples, where the  research  experience in the area is far more important than

any  statistical  criteria.  For example, a researcher  estimating  macroeconometric  OLS

regressions using data from different countries might expect  R 's  in the .8 or .9 range.  If one of2

the country regressions  has  an  R  of .4, this is a sign that special attention is required; there  may2

even  be  an  error.   However  in  a  different   situation,  practitioners using microdata on labour

supply may expect R 's  of  around .1.  A regression with an R  of .02 might  require  further2 2

scrutiny while an R  of  .4  would  be  suspiciously  large.   Our  favoured approach is simply to2

choose a Pseudo-R  in  the  limited  dependent variable context that will be as comparable as2

possible  with the accumulated experience from R  in OLS regression.      Emphasis on2

comparability also  leads  to  another  important  theme of this survey:  using the same data  and

the  same  model,  there  can  be  large  numerical  differences  between   different  measures, even

in large samples.  For example,  we  shall  discuss  entirely typical cases with 1000 observations

where one Pseudo-R , the McFadden R , will be about .25 while another, the McKelvey  Zavoina2 2

R , will be about .5.2

Unfortunately some confusion has arisen as to whether this R  should be calculated2
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conditionally or unconditionally upon the realized discrete outcomes.  For example, the manual

of the popular computer package LIMDEP (Greene, 1995) only proposes one Pseudo-R , the2

McKelvey-Zavoina measure, but calculates it conditionally upon the discrete outcomes.  We argue

that this leads to a seriously biased measure and the unconditional fitted values should be used

instead, a modification that is easily made.

Section 2 of this survey extends the introduction and discusses possible motivations for

the use of a Pseudo-R  and how each reason leads to a particular class of Pseudo-R 's.  Section2 2

3 shows how each type of Pseudo-R  applies to the binary dependent variable case and discusses2

the various Pseudo-R 's and their performance according to various critera.  Section 4 considers2

cases where the discrete dependent variable may take more than two values. In Section 5 we

discuss the case where the dependent variable is continuous but limited, such as the Tobit model.

Section 6 discusses Pseudo-R  measures based only on the prediction/realization table. Section2

7 summarizes and concludes.

2. Motivation and Criteria for Pseudo-R 's 2

R  measures cannot be used for diagnostic tests of the  basic  assumptions  of  the  model,2

either  in  continuous  or   limited  dependent variable contexts.  (Pagan and Vella (1989),  Smith

and  Peters (1990) and the papers in the special issue of  the  Journal  of Econometrics edited by

Blundell  and  summarized  in  Blundell  (1987) all discuss diagnostics that  apply  to  limited

dependent  variable models.)  Nonetheless one is tempted to conclude that  R   measures must2

have some use in econometrics, if only because  they  are so widely reported in the OLS case and

almost as frequently so in  the  limited  dependent  variable  case.  There is a certain irony in that

Pseudo-R  measures are seldom justified and commonly reported yet limited dependent variable2
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diagnostics have well-known importance but are seldom reported, the latter a "sorry state of

affairs" as Pagan and Vella note (1989, p. 530).

In   the  Introduction, we sketched a brief overall motivation for  choosing  Pseudo-R2

measures  that  would  maximize  comparability   across  similar empirical models,  some  with

continuous  and  some  with  limited dependent  variables.   To  consider  the  basis  of  that

comparability, consider the  three  properties  given  by  Dhrymes  (1986) for R  in the OLS case2

that he  feels  could  be  desirably  extended to a Pseudo-R :2

i. it stands in a one-to-one relation to the F-statistic for testing the hypothesis that

the coefficients of the bona fide explanatory variables are zero;   

ii. it is a measure of the reduction of the variability of the dependent variable through

the bona fide explanatory variables; 

iii. it is the square of the simple correlation coefficient between predicted and actual

values of the dependent variable within the sample.

(Kvålseth (1985) gives a more complete set of interpretations attributable to OLS-R  under the2

assumption the model contains an intercept.)  As  Dhrymes (1986) notes,  no  single  Pseudo-R2

has   all   three  properties.   However,  while  the  three  properties  are  highly  related, each can

be used as a motivation for a class of Pseudo-R  measures.2

Property (i), corresponding to what Magee (1990) calls the  "significance  of  fit approach"

is based on the OLS relationship:

(1)  R   = (k-1)F/((k-1)F + N - k)2

where k is the  number  of  explanatory  variables  including  the  intercept, F is the F-statistic of
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the null  hypothesis  that  the  non-intercept  variables  are  zero  and  N  is  the   number   of

observations.  There are similar relationships involving,  instead  of F, the likelihood ratio or other

chi-square statistics  of  the  same null hypothesis.  Magee points out  that  a  large  class  of

R -type  measures  can  be  created  by  simply  exporting   these  relationships to any estimation2

context so that an R  measure  can  be created for a binary probit, for example, by simply2

calculating  the appropriate F-statistic and using  formula  (1).   This  means  there is an R2

measure available  any  time  there  are  estimated  coefficients and  an  estimated

variance-covariance  matrix.   In  addition,  the  McFadden  R ,  probably  the  most  commonly2

used  Pseudo-R , can be related to this framework and it has a  separate  (Kullback-Leibler)2

information  theoretic  justification  due  to  Hauser (1977), an approach  recently  considered

by  Cameron  and  Windmeijer (1993b) in their generalization of the McFadden measure  to cover

a wider variety of situations.   We  shall  discuss  this  further next section.

The significance-of-fit approach has the great  advantage  of  being able to provide an R2

in  almost  any  situation,  including  other contexts that have nothing  to  do  with  limited

dependent  variables.  The main problem with using property (i) boils down to  a  single   question

which we  cannot answer  satisfactorily:  if such a one-to-one relationship is the basis of  the use

of R , why not just use the F-statistic itself or its prob  value?2

Unlike property (i), properties (ii) and (iii) from Dhrymes (1986) do not seem to  lead to

R -type measures for very general contexts, but both  seem  to lead to useful approaches in  some2

limited  dependent  variable  contexts.  Limited dependent variables  are  normally  modelled  as

functions of underlying continuous variables that are not observed  (as in the example in the

Introduction, where in the binary probit  case  the  continuous  variable  income  is  reduced  to

a  (0,1)  variable). Property (iii) corresponds most closely to what we shall  call  the  "correlation

approach".   This  yields  the  class  of  measures that use  correlation  coefficients  between  the
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actual  outcomes  of  the   discrete   dependent   variables   and   their  "predictions", which will

be  estimated  probabilities  from  the  underlying  continous  dependent  variable  model.  

(Section   6  discusses the case where predictions  must  be  zero/one  and are not  probabilities.)

Hence these measures may be  appropriate  if  the  implicit loss function is in the difference

between  the  outcome  and the estimated probability that that outcome will  occur,  with  the R2

measure the  estimated  predictive gain  from  using  the  explanatory  variables.

A measure based on  (iii)  and  the  correlation  of  actual  values and their predicted

probabilities could not be expected  to  be comparable to an R  for the OLS case (where the2

implicit loss is  in the difference between an  outcome  measured  on  a  continuous  scale and its

prediction on that same scale).   However  the  loss  function could be in the unexplained

variability of the underlying  continuous dependent variable and hence, adapting property (ii), a

Pseudo-R  could be a measure of the reduction of  the  variability  of the latent dependent variable2

through the bona fide explanatory  variables.  While the disadvantage of this  "explained

variation"  approach is that  the  Pseudo-R   measure  becomes  rooted  in  an  unobservable,  it2

may nonetheless be of value to have an estimate  of  goodness-of-fit for the latent  continous

variable.   (Indeed  in  cases such as in the Introduction example with the categorical data, the

continuous but unobserved variable  income is the target of the analysis.)  A clear advantage is

the kind of comparability  of  R  measures  across  models  estimated  by   different   techniques2

 as   described   in   the  Introduction.

The criterion that the Pseudo-R  be as close as  possible  to  what OLS-R  would be on2 2

the underlying latent variable  model  has  been our favoured criterion (Veall and Zimmermann,

1990a, 1990b)  but  has  also been used as  a  criterion  by  Hagle  and  Mitchell  (1992),  Laitila

(1993) and Windmeijer (1995) in  their  studies  of  particular Pseudo-R 's.  A danger is that  the2

unobserved  latent  variable in  the  limited  dependent  variable  case  may  not  be  comparable
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with the continuous dependent variable.  To revisit our  Introduction example a final time, in the

binary probit  case  the  latent  variable  underlying  the  (0,1)  variable  might not be income but

instead any  monotonic transformation of income that led to a model  linear  in  the explanatory

variables with a normal disturbance.   Nonetheless  if these  assumptions  hold  where  they  can

be  tested  in  the  "comparable"  continuous  dependent  variable  cases,  it  may  be  reasonable

to assume that  they  hold  in  the  limited  dependent  variable cases as well.

Before we turn to actual measures in the next section, two of  the more mundane criteria

should be mentioned.  One is that an  R   measure is typically  bounded between zero and one and2

this is  common  to almost all the  measures we study.   (None  may  exceed  one;  we  shall

indicate the few which some may under some circumstances be  less  than  zero.)  The second is

that R  should tend to increase  (or  at  least  not  decrease) as more explanatory variables are2

added, a  property  of  all the measures we shall discuss.  

3. Pseudo-R ´s for the Case of a Binary Dependent Variable2 

Suppose the dependent variable holds only two values: e.g. either 0 or 1, as commonly assumed

in the binary logit or binary probit model. A typical approach postulates an underlying continuous

variable Y  :i
*

(2) Y  = x � � + U  , i = 1, 2,..., Ni i i
*

where x � is a row vector of the values of the explanatory variables at observation i, including ai

one for an intercept term, � is a vector of parameters and U  is a random error term, typicallyi

assumed to be independently and identically distributed. We assume that Y  is not observed buti
*
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instead we observe

(3) Y  = 1 if Y  > 0 and Y  = 0 otherwisei i i
*

As is well known, (2) and (3) imply a log-likelihood function

(4)

where H is the cumulative distribution for U. If H is standard normal, the model is called a binary

probit. If H is logistic, the model is called a binary logit.  For future reference we define

(5)

and

(6)

where Y  = x �� evaluated at the maximum likelihood estimates based on (4).ˆ
i i
* ˆ

Amemiya (1981) surveys such models and proposes some goodness-of-fit measures in R2

form. We have added a few to his list and grouped them according to Dhrymes`s (1986)

interpretations (i) - (iii). While it is possible to estimate such models by OLS in some cases as an

approximation to probit or logit regression, Cox and Wermuth (1992) point out that in any case

where this is feasible, R  is restricted from above and unlikely to be useful. Hence we focus on2

probit and logit methods.



10

Dhrymes's interpretation (i) suggests generating a Pseudo-R  using a one-to-one2

relationship to the F-statistic (or some similar statistic) for testing the hypothesis that the

coefficients of the explanatory variables, besides the intercept, are zero.  Magee (1990) suggests

using formula (1) as a possible rule for generating a Pseudo-R  in a wide variety of circumstances.2

As he points out, it is also possible (and more common) in this context to use the corresponding

likelihood ratio statistic:

(7) LRT = 2(�  - � ),M 0

where �  is the log-likelihood value of the model and �  is the log-likelihood value if the non-M 0

intercept coefficients are restricted to zero.  It is also helpful to define

(8) LRT  = 2(�  - � )*
MAX 0

where �  is the maximum possible likelihood (i.e. a perfect fit) and in this case is 0.  SomeMAX

possible Pseudo-R  measures based on F and LRT are contained in Table 1.2

Turning to the  table,  it  should  be  clear  that  all  the  measures lie between zero and 1.

All the likelihood based measures cannot fall as right hand side variables are added to the model;

the others may fall but the probability of this happening vanishes as N increases.   Considering

the Significance-of-fit Class first, Magee's R  has already been  discussed, while as Magee2
MA

points out, Aldrich  and  Nelson's  R  can be seen as being based on the OLS relationship2
AN

between R   and  the Wald statistic (which equals N multiplied by the ratio of  the  explained to2

unexplained sums of squares, given the model contains  a constant), except that the likelihood

ratio  statistic  is  used  instead of the Wald statistic.  Veall and Zimmermann (1990a, 1992a) point
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out that R   has an upper bound  far  less  than one.  For example the maximum value of this2
AN

measure is  .581,  occuring when the observed dependent variable is zero and  one  in  exactly

equal proportions.  If the proportion of zeroes is  either  .1 or .9, the bound shrinks to .394. 

Veall  and  Zimmermann  propose R , the Aldrich Nelson measure normalized, which has2
ANN

upper bound one whenever the observed dependent variable is discrete.
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Table 1

Pseudo-R   Measures in the Binary Dependent Variable Case2

Measure Reference

___________________________________________________________________________

Significance of Fit Class

Magee (1990)

R  = LRT/(LRT + N) Aldrich and Nelson (1984)2
AN

Veall and Zimmermann (1990a, 1992a)

McFadden (1973, p. 121)

R  = 1 - exp(- LRT/N) Maddala (1983, p. 39)2
M

Cragg and Uhler (1970)

___________________________________________________________________________

Explained Variation Class

McKelvey and Zavoina (1975)

___________________________________________________________________________



R 2
C �

�cov(Y,H)�2

var(Y) · var(H)
�

var(H)
var(Y)

R 2
L�1�

�
N

i�1
(Yi�Hi)

2

�
N

i�1
(Yi�Ȳ)2
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Table 1 Cont'd
___________________________________________________________________________

Correlation Class

Neter and Maynes (1970),  Morrison (1972),

Goldberger (1973) and Efron (1978)

Lave (1970)

___________________________________________________________________________
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The McFadden R  is probably the most popular Pseudo-R  and for example is the only2 2
MF

Pseudo-R  provided by the computer package STATA (1995).  The various  expressions for it2

in Table 1 show how it is the achieved  gain  in  the  log-likelihood due  to  the  explanatory

variables  relative  to  the  maximum possible achievable gain, where the third equality follows as

�  = 0 in logit or probit models.  It is sometimes reported in these contexts as the "likelihoodMAX

ratio index".  Hauser  (1977)  discusses  this  measure in  a  Kullback-Leibler  divergence

information-theoretic  context.  Merkle and Zimmermann (1992) and Cameron and Windmeijer

(1993b) emphasize that the first two expressions for this Pseudo-R  in the Table can be used in2

other situations where �     may not necessarily  be  zero  or  one.  These authors also point outMAX

that this measure can be seen as being based on the  "deviance  decomposition"  in  the  same way

that R  in OLS can be based on the variance decomposition  of the total sum of squares into the2

explained and unexplained sum  of squares.    (The deviance decomposition  decomposes  �  -MAX

� , total achievable likelihood gain starting from  the  constant-only  model into the explained0

portion,  �  - � ,  and the  unexplained  portion, �  - � .)M 0 MAX M

As Magee (1990) makes clear, the Maddala R  is  based  on  the  OLS  formula for R2 2
M

in terms of  LRT,  assuming  a  normal  likelihood.   However it has an upper bound less than one;

the last measure on the first panel of Table 1, the Cragg  and  Uhler  R ,  is the Maddala2
CU

measure normalized so that its upper bound  is  one in any discrete dependent variable case such

as this one.

Turning to the second panel of Table 1, there is a single measure  in  what  we  call  the

Explained  Variation Class.  In the McKelvey and Zavoina R , the  numerator  (which is also2
MZ

the first term of the denominator) is an estimate of  what  the  explained  sum  of  squares  would

be  based  on   the  conditional  expectation  of  the  latent  variable.   N�̂  is  an  estimate of the2

unexplained  variation  so  the  measure  can  be  interpreted as an estimate of the explained sum
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of squares divided  by an estimate of the sum of the explained and unexplained sum  of  squares.

Note that in discrete dependent variable models, �̂  is  not estimated but is set by normalization,2

for example to  one  in  the binary probit case and � /6 in the binary logit case.2

In calculating R , it is important that we use Y* = x �� and not condition on the realized2
MZ i i

ˆ ˆ

value of Y  which would mean using Y  = x �� + � , where �  is the inverse Mill's ratio.  Thei i/Y i i i
ˆ ˆ ˆ

manual for the computer package LIMDEP (Greene, 1995) proposes the latter approach.  It can

be shown that this results in a serious upward bias in R .  For example, we have shown2
MZ

theoretically (and confirmed by simulation) that if � = 0, the LIMDEP version of R  will beˆ 2
MZ

almost .4 when the true R  = 0.  The bias is smaller for nonzero �but remains serious.  The2
MZ

ˆ

correct R  is easily calculated in LIMDEP:  simply omit "+ LAMBDA" in the CREATE2
MZ

statement on p. 421 (and the "Hold" in the PROBIT statement is unnecessary).

Now consider the third panel of Table 1.  For the first measure  in  the  Correlation  Class,

the correlation coefficient R ,  the  equality is established (following Goldberger, 1973) by noting2
C 

that  if  we treat (Y , H ) as joint  random draws (with H  the value of the cumulative distributioni i i

function for observation i), E(Y) = E(H)  and  E(YH)  =  E(H ).  Hence cov(Y,H) = E(YH) -2

E(Y)E(H)  =  E(H )  -  (E(H))   =  var(H).  The second measure, Lave's R , is based on a2 2 2
L 

decomposition  using  similar rules.  Both are implemented using the sample Y  and  the  estimatedi

values of H  from the model.  While these  two  measures  can be different, empirically thei

differences  are  tiny  even  in  very small samples.  Experiments in Veall  and  Zimmermann

(1990a)  exhibit such small numerical differences for sample sizes  of  200  and 1000, that one line

on a graph does for both measures  (as  it  will in this paper as well).

Veall and Zimmermann (1990. 1992a, 1994a),  Hagle and Mitchell (1992) and Windmeijer

(1995) all investigate the properties of various Pseudo-R 's using Monte Carlo experiments.   All2

three conduct  simulations  to  determine  how  closely  most   of   the Pseudo-R  's correspond2
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to the OLS-R  on  the  underlying  latent variable model.  We reproduce the results of one of the2

Veall  and Zimmermann experiments here.   The latent variable model consists of an intercept and

one standard normal explanatory variable, with the true intercept coefficient set at zero and the

slope coefficient set at 21 different values to move the underlying R  through the range from zero2

to one. Simulated Y 's are converted to simulated observations Y  using (3). At each of the 21i i
*

settings 100 experiments were conducted,   with binary probit models estimated on each data set.

Figure 1 graphs the average OLS or "Reference" R  against the average or "Predicted" Pseudo-2

R , for the 1000 observations case.  The graph gives some idea as to how to compare different2

measures: for example it can be seen that an OLS-R  of .5 on the latent variable model2

corresponds to an Aldrich-Nelson or McFadden R  each of about .25 and a normalized Aldrich-2

Nelson or McKelvey-Zavoina R  each of about .5. The McKelvey-Zavoina line is very close to2

the 45  line, indicating that it estimates the underlying OLS-R  without bias, as one might expect0 2

from its formulation which is designed to estimate the latent variable R . Of the other measures,2

the likelihood-based normalized Aldrich-Nelson R  does best under this criterion and then in2

increasing order of downward bias, the Cragg-Uhler R  and, in a tie, R  and R . The downward2 2 2
L C

bias of the Aldrich-Nelson R  and the McFadden R  is greater still. Veall and Zimmermann2 2

(1990a) also include scatter diagrams and cubic polynomial regressions of the OLS-R  as a2

function of the various Pseudo-R 's which show that the degree of variability in all these measures2

is very close and that with the right polynomial transformation, all could be used to estimate the

underlying OLS-R  very accurately. Although R  still provided the most accurate estimate, its2 2
MZ

real advantage under this criterion is simply the convenience that its relationship with the latent

variable OLS-R  is so close to the 45  line. 2 0

The research of Hagle  and  Mitchell  (1992)  and  Windmeijer (1995) is entirely consistent

with these findings and  adds the following insights:
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(a) While Veall and Zimmermann (1990a) find that  the  choice  of  sample size of either 200 or

1000  makes  little  difference,  Hagle  and  Mitchell (1992) find that with a sample size  of

only  100,  the  sample variance of R  is somewhat larger than that of R .2 2
MZ ANN

(b) Windmeijer (1995) finds that R  and R  are  the  only  measures relatively insensitive to2 2
MZ MF

changes in the value of the intercept of the underlying latent model, which can change  the

proportion  of zeros and ones observed in Y.

(c) Windmeijer (1995) also  finds  that  R  scores  best (although not very well) using  the2
MZ

criterion of closeness to the squared correlation  of  the  actual and predicted probabilities.

(We  have  our  objections  to  this  criterion.  See Veall and Zimmermann (1995).  It is true

that if  the  squared  correlation  of  the  actual and predicted probabilities is one, this could

indicate the  correct model had been chosen; on the other hand this  correlation  could be one

even for models that fit very poorly as it  makes  no  allowance  for  unexplained  variation

that  may  be  left.   For  example, the correlation could be one even if the  model  omits  a

normally distributed variable that is orthogonal to the others.)

(d) Hagle   and   Mitchell (1992) also  consider   the   case of  misspecification, where the method

of estimation  does  not  match  the probability distribution of the errors.  If the  binary  logit

method is applied instead of the binary probit even though  the  true  disturbance  is  normal,

there is almost no consequence in terms of the performance of  the Pseudo-R 's.  However2

if either probit or logit analysis  is done when the true error is skewed or bimodal, the effects

on  the  R   measures are large, with the results  favouring  the  choice  of  R .2 2
MF

(e) Windmeijer (1995) also emphasizes misspecification in the choice of right hand side variables

(and hence the issue  of  selection  of  those  variables).  He sets:

(9) Y  = � + x  + x  + x  + x  + x - �i 1i 2i 3i 4i 5i i
*
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with various ways of generating the different x´s and also a nonincluded variable x . All the6

measures are calculated for the simple regression for Y  with an intercept and x , calculated againi 1

with x  added to the regression, again with x  added and so on up to x . The plot of the various2 3 6

measures as variables are added shows that R  is closest to the underlying OLS-R  and hence2 2
MZ

might be the most useful in model selection. 

4. Pseudo-R 's with Discrete Dependent Variables with More Than Two Outcomes2

Sometime models with discrete dependent variables have more than two outcomes.  These models

include ordinal probit and ordinal logit, where the outcomes are ordered (e.g. no employment,

part-time employment, full-time employment) and multinomial probit and logit models, where

there is no such ordering (e.g. choice of heating by gas, oil or electricity).  For the unordered

approaches, only the significance-of-fit measures apply and there is no research on which Pseudo-

R  is best.  Maddala (1983) describes the overall multinomial probit/logit model and with respect2

to Pseudo-R , the approach of Magee will work and, as noted, Hauser (1977) and Cameron and2

Windmeijer (1993b) emphasize the information theoretic support for R .)  For the ordered2
MF

approaches, R  is available but the correlation approach is not usually applied.2
MZ

Veall and Zimmermann (1992a) conduct a Monte Carlo experiment for the example of an

ordinal probit along the lines of the binary probit Monte Carlo analysis described in the previous

section. Ordinal probit and logit are as in (2) except instead of (3), Y  = 1 if � < Y  < � , whereik k-1 i k
*

k = 1, ... , K and Y  = 0 otherwise.  K is the number of categories (2 in the binary case) and theik

�'s are usually unobserved and must be estimated by the researcher, subject to a normalization.

The log-likelihood function can be found in Maddala (1983), for example.  With respect to

Pseudo-R  measures, the principal conclusions are the same as for the binary probit case,2
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specifically that the McKelvey and Zavoina measure is closest to the latent variable OLS with the

normalized Aldrich-Nelson R  second and the Cragg-Uhler R  third. Moreover as the number of2 2

categories is increased to three and to four, the downward bias of most measures lessens except

for the McFadden R  which becomes worse from the perspective of this criterion. This seems2

unusual, as adding outcome categories seems to be making the data a closer approximation to

continuous data and perhaps we would expect that a Pseudo-R  would converge to the2

continuous data R . 2

Integer variables such as number of children, are sometimes modelled using a count data

approach.  (See Winkelmann and Zimmermann, 1995 for a survey.)  Again only the significance

of fit measures are applicable.  Merkle and Zimmermann (1992) and Cameron and Windmeijer

(1993a,b) suggest the measure R  based on the deviance, as described in the previous section.2
DV

For ordinal logit and probit and multinomial logit and probit, R  = R . For Poisson models,2 2
DV MF

Cameron and Windmeijer (1993b) show that the LRT/LRT* version of R  as in Table 12
MF

becomes:

(10)

where . They also calculate deviance-based measures for the negative binomial case

and other generalized linear models based on the Bernoulli, Gamma and inverse Gaussian. Merkle

and Zimmermann (1992) and Cameron and Windmeijer (1993a) also propose

(11)
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5. Pseudo-R 's in the Tobit Case2

Sometimes the dependent variable is continuous over some range but limited either from above

or below or both.  The standard model is as in (2), except that instead of (3), Y  = Y  if Y  > 0i i i
* *

and U is virtually always assumed to have the normal distribution.  In his survey of such "Tobit

models" (after Tobin, 1958), Amemiya (1984) made no mention of goodness-of-fit measures, in

contrast to his earlier 1981 survey of qualitative response models. However, in such cases the

likelihood based Aldrich-Nelson and Maddala R 's  are still valid, as are others based on the2

Magee significance of fit principle. However the McFadden measure is invalid because it relies

on the log-likelihood having a maximum of zero, which is not the case when the limited dependent

variable is even partially continuous. The normalizations of the Aldrich-Nelson or Maddala

measures are also no longer valid. Greene (1981) shows that simply using OLS on the entire data

set, censored and uncensored, leads to a downward bias in the R .2

While McKelvey and Zavoina (1975) did not consider the Tobit case, their Pseudo-R2

measure is nonetheless valid.  (See Veall and Zimmermann, 1990b, 1994) Laitila (1993) provides

a formal proof (and also extends the measure to the case where there is only data on non-limit

observations, commonly known as truncated regression).  However as Laitila (1993) and Veall

and Zimmermann (1990b, 1994b) point out, in the Tobit case there  is an estimate of �  and no2

need to set this value by normalization. One of the few measures suggested in the literature

specifically for this case is from Dhrymes (1986, p.1603):

(12)
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where and , with � the cumulative standard normal

distribution function and � the standard normal density function.

The symbol ">0" means that the correlation is only taken over the positive observations;

is the expectation of Y  conditional on (i) x  and (ii) Y  > 0, evaluated at the Tobit maximumi i i

likelihood estimates � and . Veall and Zimmermann (1994b) also calculateˆ

(13)

where there has been no adjustment in Y  for the sample selectivity, as well as a number of otheri
*

measures which are weighted averages of the others (designed to capture the idea that the Tobit

likelihood function can be partitioned into an "OLS part" and a "Probit part").

Veall and Zimmermann (1994b) also provide a Monte Carlo analysis of some Tobit R 's.2

Here the use of the "closeness to OLS-R " criterion seems particularly useful as it is common to2

compare OLS and Tobit results in empirical contexts. With samples of 50 and 200 and with

degrees of censoring set at 25%, 50% and 75%, the simple McKelvey-Zavoina measure scores

by far the best, with the closest challengers some minor modifications based on the McKelvey-

Zavoina principle.  One of the weighted average measures proposed by Veall and Zimmermann

performs acceptably in most cases, and a Magee significance of fit R  based on (1) does relatively2

well when there are only 50 observations and low censoring. Measures that only use part of the

sample, such as R  or R , do not do well.D CONT
2 2

Laitila (1992) also does some Monte Carlo work in the Tobit context, investigating the

performance of R . He points out that the measure can be estimated entirely with estimates of2
MZ
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�, � and the variance-covariance matrix of the x's and also can be calculated using estimates from

other methods besides Maximum Likelihood. He uses estimates from Powell's (1986) method. He

also shows that R  is strongly related to the latent variable OLS-R , and  shows that both2 2
MZ

change similarly as a regressor is added.

Another case with a continuous but limited dependent variable is censored survival data.

For Cox's proportional hazard model, Kent and O'Quigley (1988) propose a McKelvey-Zavoina

type measure:

(35) R  = A/(A+1)2
KO

where A is the sum of squared fitted values.  Its properties have not been studied in simulation

analysis.

6. R  Measures from Prediction / Realization Tables.2

A completely different style of Pseudo-R  is based on predictions and realizations. The prediction-2

realization table has entries of the form p , the fraction of times the realization was outcome Iij 

when the model predicted outcome j.  We define p  as the fraction of times alternative j is
�j 

predicted, p  as the fraction of times alternative  i occurs, p  is the fraction of times the mosti� mj 

common outcome occurs given that outcome j was predicted (that is p  = max (p )) and p  ismj  i ij m� 

the most common outcome (that is p  = max (p )).   There are a number of ways to convert them�  i i �

information into R -type measures.  Table 2 gives the measures for the binary case although most2

of the measures can be generalized straightforwardly.

All the measures have an upper bound of one. Some may take negative values but only

if the predictive power of the model is worse than random.  The "fraction of correct predictions"
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C is so commonly used that we have given no reference.  This measure can be extremely

misleading. For example, C could be .94 for a model of predicting refrigerator ownership, which

seems like good performance until one is told that 98% of households own refrigerators and hence

a C of .98 is attained by predicting all households own refrigerators.

McFadden, Puig and Kirschner's � will be positive for a model with any predictive power;

� can be 0 (if p  = 0,25 for all i,j) and if the predictions are worse than random, � can even be asij

small as -1. The maximum value of � is 1-p  -p ;  hence �  is a normalized measure.   	 is the2 2
�1 �2 n

determinant of the actual 2x2 matrix divided by the determinant of the "perfect fit" 2x2 matrix.
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Table 2

R  Measures for Binary Prediction/Realization Tables.2

___________________________________________________________________________

Measure Reference (common name in quotation

marks if applicable)

___________________________________________________________________________

C = p  +p no reference, "fraction of correct11 22·

predictions"

� = p  +p  - p  - p , McFadden, Puig and Kirschner (1977)11 22 � 1 � 2
2 2

�  = �/(1- p  - p ). Veall and Zimmermann (1992b)n �1 �2
2 2

	 = (p p  - p p ) / �(p  + p )(p  + p )� Veall and Zimmermann (1992b)11 22 12 21 11 12 21 22

� = (p p  - p p ) / (p  p p p ) Bishop, Fienberg and Holland (1975),2 2 
11 22 12 21 1� 2� �1 �2

("Pearson's �"; square root is

"Tschuprov's T")

� = (p  + p  - p ) / (1-p ), Goodman and Kruskal (1954)m1 m2 m� m�

slight modification of Goodman and

Kruskal (1954)

Bishop, Fienberg and Holland (1975)

Q = (p p  -p p )/(p p  + p p ) Bishop, Fienberg and Holland (1975) 11 22 12 21 11 22 12 21

("Yule's Q")

Y = �(p p )  - (p p ) � / �(p p )  + (p p ) � Bishop, Fienberg and Holland (1975) 11 22 12 21 11 22 12 21
0.5 0.5 0.5 0.5

("Yule's Y")


 = (p  + p  - p p  - p p ) / (1 - p p  - p p ) Bishop, Fienberg and Holland (1975) 11 22 1� �1 2� �2 1� �1 2� �2

___________________________________________________________________________
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If prediction is random, 	 = 0, but 	 = 0 also as soon as a diagonal element equals zero regardless

of how well the model fits. Again it is possible for 	 to be as small as -1. 

Bishop, Fienberg and Holland (1975) is a standard reference and considers  "measures of

association" for contingency tables.  Nominal measures of association between predictions and

realizations can be based on variants of the goodness-of-fit �  (GFX ) measuring2 2

nonindependence. For instance, Pearson's �  is GFX  divided by the sample size.  We will2 2

investigate the square root of Pearson's  � , which in this case is equivalent to Tschuprov's T. T2

is in the range [0,1] and T=0 for independence of predictions and realizations. Note that T=1 if

p  = p  = 0 or p  = p  = 0. Therefore, the measure scores a prediction process that is never12 21 11 22

correct to be as good as one that is always correct. If the predictive power of the qualitative

choice model under consideration is at least as good as random, this is not an issue.

Other measures of nominal association employ the proportional-reduction-in-error logic.

The approach as applied here is to measure the percentage reduction in the probability of error

achieved by the model predictions as opposed to blind guesses. We discuss a  measure suggested

originally by Goodman and Kruskal (1954), and we also make an obvious modification and

suggest ��.  Both measures are  in the [0,1] range.  To motivate � and  ��, realize that without

knowledge of the model, the best guess is to choose the category with the largest marginal

probability of realizations (p ).  �� is therefore the fraction of correct predictions minus them�

fraction of correct predictions by the naive rule that always predicts the most common outcome

all divided by a denominator equal to one minus the number of correct predictions by the naive

rule. This can be calculated simply in one's head in most instances so that if we know that 60 per

cent of the population own houses and a model has a prediction success rate of 90 per cent then

�� = (.9 - .6) / (1 - .6) = .75. �� differs from � in that � "gives credit" for incorrect predictions if

p  > p . This is a little like finding value in one of the current author's sports predictions: all onemj  j j 
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has to do is hear the prediction and bet on the other team. We prefer �� in this regard (because

we think econometric models should not be given credit for being wrong) but note that a

consequence is that �� can be negative (if the model is worse than random) but � cannot.  The

measure � also has a proportion of explained variance interpretation, which is described in Bishop

et al. (1975, pp. 389-391).

Popular measures of association for ordinal data are Yule's Q and Y (see Bishop, Fienberg

and Holland (1975), pp. 378-379)).   Both measures vary in the [-1, 1] range, but indicate a poor

model if they take negative values. Note that Q and Y can be 1 even if all observations are not on

the main diagonal in the unlikely event that one of the off-diagonal elements is zero.

Measures of agreement [see Bishop, Fienberg and Holland (1975, pp. 397-998) for

references] are additional alternatives.  
 is a well-known measure of this type.

Veall and Zimmermann (1992b) again conduct a very limited Monte Carlo experiment

using the same kind of latent variable models used in the experiments previously described, with

the outcome classed as a binary variable (0 or 1) and the prediction classed as a 0 or 1 depending

on which had the larger estimated probability. Six measures were very close, with �  (ourn

normalization of the McFadden, Puig and Kirschner measure) the best by a little, and 	, 
, 
, Y

and � virtually indistinguishable. �� was not included in the initial study but for this survey we

have reperformed the experiments and find it finishes second overall. All these seven measures

tend to underpredict OLS-R  slightly when less than .5, then overpredict slightly when greater2

than .5. However, overall the performance is very good, although the error in predicting an

underlying OLS-R  is obviously much larger when only prediction/ realization information is2

available than when complete output from say a probit estimation is available. The other measures

(�, Q, � and C) do not perform well.  A clearer choice might emerge in a more extensive set of

experiments.
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7. Summary and Conclusions

We have surveyed a large literature suggesting many alternative Pseudo-R  measures for a variety2

of cases where the dependent variable is limited in some way. These include the cases of both

binary and nonbinary discrete dependent variables, continuous dependent variables with limit

observations (most commonly modelled in the Tobit framework) and the case of discrete

dependent variables when the only available information is the comparison of predictions and

realizations.

Our survey indicates that different Pseudo-R 's may have very different values on the same2

model and data. Therefore if researchers are comparing Pseudo-R  values from the same2

estimation technique on different models and data sets, it is obviously important to ensure it is the

same Pseudo-R . It is also important that such comparisons be informed by the modelling context,2

just as researchers expect OLS-R  to be larger with aggregate time series data in levels than with2

cross section data.

In some cases, comparisons may be made between R  values on different models and data2

sets where the estimation techniques are not the same, say OLS-R  with a continuous dependent2

variable compared to a Pseudo-R  from a binary probit model or a Tobit model. While such2

comparisons should be treated cautiously, comparability may be possible if all the limited

dependent variable models can be cast in a latent variable framework such as in Tobit, binary and

ordinal probit and logit but not in multinomial probit on logit.  So while in the general case we can

suggest that if an R  measure is desired one can be obtained as a monotonic function of test2

statistics for "significance",  in cases based on ordered response models we argue that the most

useful Pseudo-R is one that is most comparable to OLS-R  on the underlying latent variable2 2 
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model.

We have reviewed a number of Monte Carlo experiments from our own earlier research

and by others and find that of many candidate R 's, the McKelvey and Zavoina R  scores best2 2
MZ

under the comparability criterion and hence may allow the best possible comparability across

OLS, binary and ordinal probit and logit models and Tobit models.  However there is some

evidence that in binary probit and logit, R  is more sensitive to misspecification in the error term2
MZ

than the more common McFadden R .  Also models of the multinomial probit or multinomial2
MF

logit type do not lend themselves to comparison with OLS and for these cases only R  and a2
MF

class of measures summarized by Magee (1990) seem worthwhile, although little is known as to

which alternative is best.   In the case of simple prediction-realization comparisons, limited

simulation analysis suggests that a number of measures are very close but a normalization we

propose of a measure due to McFadden, Puig and Kirschner performs a bit better than the others

under our criterion.  While it is straight forward to calculate, it is even easier to compute an

obvious modification of Goodman and Kruskal’s � which also performs well under our criterion.
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Figure 1:

Reference OLS R  and Predicted Pseudo-R 's:2 2

An Overview for the Binary Probit Case


