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Abstract

Random forests are becoming increasingly popular in many scientific fields because they
can cope with“small n large p”problems, complex interactions and even highly correlated pre-
dictor variables. Their variable importance measures have recently been suggested as screening
tools for, e.g., gene expression studies. However, these variable importance measures show a
bias towards correlated predictor variables. We identify two mechanisms responsible for this
finding: (i) A preference for the selection of correlated predictors in the tree building process
and (ii) an additional advantage for correlated predictor variables induced by the uncondi-
tional permutation scheme that is employed in the computation of the variable importance
measure. Based on these considerations we develop a new, conditional permutation scheme
for the computation of the variable importance measure. The resulting conditional variable
importance is shown to reflect the true impact of each predictor variable more reliably than
the original marginal approach.

Keywords: feature selection, screening, bagging, CART.

1. Introduction

Within the past few years, random forests (Breiman 2001a) have become a popular and widely-used
tool for non-parametric regression in many scientific areas. They show high predictive accuracy
and are applicable even in high-dimensional problems with highly correlated variables, a situation
which often occurs in bioinformatics. Recently, the variable importance measures yielded by
random forests have also been suggested for the selection of relevant predictor variables in the
analysis of microarray data, DNA sequencing and other applications (cf., e.g., Lunetta et al. 2004;
Bureau et al. 2005; Huang et al. 2005; Qi et al. 2006).
Identifying relevant predictor variables, rather than only predicting the response by means of some
“black-box” model, is of interest in many applications. By means of variable importance measures
the candidate predictor variables can be compared with respect to their impact in predicting the
response or even their causal effect (cf., e.g., van der Laan 2006, for assumptions necessary for
interpreting the importance of a variable as a causal effect). In this case a key advantage of random
forest variable importance measures, as compared to univariate screening methods, is that they
cover the impact of each predictor variable individually as well as in multivariate interactions with
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other predictor variables. For example, Lunetta et al. (2004) find that genetic markers relevant
in interactions with other markers or environmental variables can be detected more efficiently by
means of random forests than by means of univariate screening methods like Fisher’s exact test. In
the analysis of amino acid sequence data Segal et al. (2001) also point out the necessity to consider
interactions between sequence positions. Tree-based methods like random forests can help identify
relevant predictor variables even in such high dimensional settings involving complex interactions.
Therefore, the impact of different amino acid properties, some of which have been shown to be
relevant in DNA and protein evolution by Xia and Li (1998), for predicting peptide binding is
investigated in our application example in Section 4. However, we will find in this application
example, as often in practical problems, that many predictor variables are highly correlated.

We will point out throughout this paper that correlations between predictor variables can affect the
original random forest variable importance measures because they can be considered as measures of
marginal importance, even though what is usually of interst is the effect of each variable conditional
on the other covariates. To make this clear, let us shortly review previous suggestions from
the literature for measuring or illustrating variable importance in classification and regression
trees (termed “classification trees” in the following for brevity, while all results apply to both
classification and regression trees) and random forests: Breiman (2001b) displays the change in
the response variable over the range of one predictor variable in “partial dependence plots” (cf.
also Feraud and Clerot 2002, for a related approach). This may remind of the interpretation of
model coefficients in linear models. However, whether the effect of a variable is interpretable as
conditional on all other variables, as in linear models, may not be guaranteed in other models—and
we will point out explicitly below that this is not the case in classification trees or random forests.

The permutation accuracy importance, that is described in more detail in Section 3, follows the
rationale that a random permutation of the values of the predictor variable is supposed to mimic
the absence of the variable from the model. The difference in the prediction accuracy before and
after permuting the predictor variable, i.e. with and without the help of this predictor variable,
is used as an importance measure. The actual permutation accuracy importance measure will
be termed “permutation importance” in the following, while the general concept of the impact of
a predictor variable in predicting the response is termed “variable importance”. The alternative
variable importance measure used in random forests, the Gini importance, is based on the principle
of impurity reduction that is followed in most traditional classification tree algorithms. However,
it has been shown to be biased when predictor variables vary in their number of categories or
scale of measurement (Strobl et al. 2007b), because the underlying Gini gain splitting criterion is
a biased estimator and can be affected by multiple testing effects (Strobl et al. 2007a). Therefore,
we will focus on the permutation importance in the following, that is reliable when subsampling
without replacement—instead of bootstrap sampling—is used in the construction of the forest
(Strobl et al. 2007b).

Based on the permutation importance, schemes for variable selection and for providing statements
of the “significance” of a predictor variable (instead of a merely descriptive ranking of the variables
w.r.t. their importance scores) have been derived: Breiman and Cutler (2007) suggest a simple
significance test that, however, shows poor statistical properties (Strobl and Zeileis 2008). An
approach for variable selection in large scale screening studies is introduced by Diaz-Uriarte and
de Andrés (2006), who suggest a backward elimination strategy. This approach has been shown
to provide a reasonable selection of genes in many situations and is freely available in an R
package (Diaz-Uriarte 2007), that also provides different plots for comparing the performance
on the original data set to those on a data set with randomly permuted values of the response
variable. The latter mimics the overall null hypothesis that none of the predictor variables is
relevant and may serve as a baseline for significance statements. A similar approach is followed by
Rodenburg et al. (2008). However, some recent simulation studies indicate that the performance
of the variable importance measures may not be reliable when predictor variables are correlated:
Even though Archer and Kimes (2008) show in their extensive simulation study that the Gini
importance can identify influential predictor variables out of sets of correlated covariates in many
settings, the preliminary results of the simulation study of Nicodemus and Shugart (2007) indicate
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that the ability of the permutation importance to detect influential predictor variables in sets of
correlated covariates is less reliable than that of alternative machine learning methods and highly
depends on a tuning parameter. These studies, as well as our simulation results, indicate that
random forests show a preference for correlated predictor variables, that is also carried forward to
any significance test or variable selection scheme constructed from the importance measures.

In this work we aim to provide an understanding of the underlying mechanisms responsible for
the observations of Archer and Kimes (2008) and Nicodemus and Shugart (2007). In addition
to this, we want to broaden the scope of considered problems to the comparison of the influence
of correlated and uncorrelated predictor variables. For this type of problem we introduce a new,
conditional permutation importance for random forests, that better reflects the true importance
of predictor variables. Our approach is motivated by the visual means of illustration introduced
by Nason et al. (2004): In their “CARTscans” plots Nason et al. (2004) not only display the
marginal influence of a predictor variable, like the partial dependence plots of Breiman (2001b),
but the influence of continuous predictor variables separately for the levels of two other, categorical
predictor variables, namely a conditional influence plot. In the case of correlated predictor variables
it is important to distinguish between conditional and marginal influence of a variable, because
a variable that may appear influential marginally might actually be independent of the response
when considered conditional on another variable. Thus the approach of Nason et al. (2004) is
an important improvement, but in its current form is only applicable for categorical covariates.
Therefore our aim in this work is to provide a general scheme that can be used both for illustrating
the effect of a variable and for computing its permutation importance conditional on relevant
covariates of any type. While the conditioning scheme of Nason et al. (2004) can be considered
as a full-factorial cross-tabulation based on two categorical predictor variables, our conditioning
scheme is based on a partition of the entire feature space that is determined directly by the fitted
random forest model.

In the following Section 2 we will outline how ensembles of classification trees are constructed and
illustrate in a simulation study why correlated predictor variables tend to be overselected. In Sec-
tion 3 we will review the construction of the original permutation importance before we introduce
a new permutation scheme that we suggest for the construction of a conditional permutation im-
portance measure. The advantage of this measure over the currently-used one is illustrated in the
second part of our simulation study and in the application to peptide-binding data in Section 4.

2. Variable selection in random forests

In random forests and the related method bagging, an ensemble of classification trees is created
by means of drawing several bootstrap samples or subsamples from the original training data and
fitting a single classification tree to each sample. Due to the random variation in the samples
and the instability of the single classification trees, the ensemble will consist of a diverse set of
trees. For prediction, a vote (or average) over the predictions of the single trees is used and has
been shown to highly outperform the single trees: By combining the prediction of a diverse set
of trees, bagging utilizes the fact that classification trees are instable but on average produce the
right prediction. This understanding has been supported by several empirical studies (cf., e.g.,
Breiman 1996, 1998; Bauer and Kohavi 1999; Dietterich 2000) and especially the theoretical results
of Bühlmann and Yu (2002), who could show that the improvement in the prediction accuracy of
ensembles is achieved by means of smoothing the hard cut decision boundaries created by splitting
in single classification trees, which in return reduces the variance of the prediction.

In random forests, another source of diversity is introduced when the set of predictor variables to
select from is randomly restricted in each split, producing even more diverse trees. In addition to
the smoothing of hard decision boundaries, the random selection of splitting variables in random
forests allows predictor variables that were otherwise outplayed by their competitors to enter the
ensemble. Even though these variables may not be optimal with respect to the current split, their
selection may reveal interaction effects with other variables that otherwise would have been missed
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Table 1: Regression coefficients of the data generating process.
Xj X1 X2 X3 X4 X5 X6 X7 X8 · · · X12

βj 5 5 2 0 -5 -5 -2 0 · · · 0

and thus work towards the global optimality of the ensemble.

The classification trees, from which the random forests are built, are built recursively in that the
next splitting variable is selected by means of locally optimizing a criterion (such as the Gini gain
in the traditional CART algorithm of Breiman et al. 1984) within the current node. This current
node is defined by a configuration of predictor values, that is determined by all previous splits
in the same branch of the tree (cf., e.g., Hastie et al. 2001, for illustrations). In this respect the
evaluation of the next splitting variable can be considered conditional on the previously selected
predictor variables, but regardless of any other predictor variable. In particular, the selection of
the first splitting variable involves only the marginal, univariate association between that predictor
variable and the response, regardless of all other predictor variables. However, this search strategy
leads to a variable selection pattern where a predictor variable that is per se only weakly or not
at all associated with the response, but is highly correlated with another influential predictor
variable, may appear equally well suited for splitting as the truly influential predictor variable.
We will illustrate this point in more detail in the following simulation study.

2.1. Simulation design

A simulation study was set up in order to illustrate the treatment of correlated predictor variables
in ensemble methods based on classification trees. Data sets were generated according to a linear
model with twelve predictor variables yi = β1 ·xi,1 + · · ·+β12 ·xi,12 +εi, with εi

i.i.d.∼ N(0, 0.5). The
predictor variables were sampled from a multivariate normal distribution X1, . . . , X12 ∼ N(0,Σ)
where the covariance structure Σ was chosen such that all variables have unit variance σj,j = 1 and
only the first four predictor variables are block-correlated with σj,j′ = 0.9 for j, 6= j′ ≤ 4, while the
rest were independent with σj,j′ = 0. Of the twelve predictor variables only six were influential,
as indicated by their coefficients in Table 1. A covariance structure of this type was already used
for illustrating the effect of correlations by Archer and Kimes (2008). However, while their study
mainly aimed at identifying one influential predictor out of a correlated set, here we also want to
compare the importance scores of predictor variables with equally large coefficients, while some
of the predictor variables are correlated and others are not: X1, . . . , X4 and X5, . . . , X8 share
the same coefficient pattern, while only X1, . . . , X4 are correlated. From the generated data sets,
random forests were built with the cforest function from the party package (Hothorn et al. 2008,
2006) in the R system for statistical computing (R Development Core Team 2008). Different values
for the parameter mtry, that regulates the number of randomly preselected splitting variables, were
considered to be able to investigate the mechanisms responsible for the results of Nicodemus and
Shugart (2007). Default settings were used for all other parameters.

2.2. Illustration of variable selection

We find in the panel on the left hand side of Figure 1 that in the first splits of all trees, where
the variables are considered only marginally with respect to their association to the response,
those variables (X3 and X4) correlated with highly influential predictors are selected equally often
as the highly influential predictor variables (X1 and X2 as well as X5 and X6) for mtry= 1,
where no competitors are available and the correlated predictors can serve as replacements of the
influential ones (the fact that the non-influential predictor variables X8 through X12 are selected
almost equally often is only due to the lax choice of the stop criterion). When mtry increases and
the highly influential variables may be available as predominant competitors in some splits those
variables (X3 and X4) correlated with highly influential predictors are selected less often than the
highly influential correlated ones (X1 and X2) themselves, but more often than even the highly
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Figure 1: Relative selection rates for twelve variables in the first splits (left) and in all splits
(right) of all trees in random forests built with different values for mtry.

influential uncorrelated ones (X5 and X6). When we consider all splits of all trees in the panel on
the right hand side of Figure 1, the correlated predictors loose most of their advantage because
variable selection is now conditional on the previously chosen variables in the same branch of the
tree, that may include the truly influential correlated predictors. However, since variable selection
is not conditional on all (or at least all correlated) variables, there is still a preference for the
correlated variables with low and zero coefficients (X3 and X4 over X7 and X8), with a similar
dependency on mtry.

This selection pattern is due to the locally optimal variable selection scheme used in recursive par-
titioning, that considers only one variable at a time and conditional only on the current branch.
However, since this characteristic of tree-based methods is a crucial means of reducing computa-
tional complexity (and any attempts to produce globally optimal partitions are strictly limited
to low dimensional problems at the moment, cf. van Os and Meulman 2005), it shall remain
untouched here.

3. The permutation importance

The rationale of the original random forest permutation importance is the following: By randomly
permuting the predictor variable Xj , its original association with the response Y is broken. When
the permuted variable Xj , together with the remaining non-permuted predictor variables, is used
to predict the response for the out-of-bag observations, the prediction accuracy (i.e. the number of
observations classified correctly) decreases substantially if the original variable Xj was associated
with the response. Thus, Breiman (2001a) suggests the difference in prediction accuracy before
and after permuting Xj , averaged over all trees, as a measure for variable importance, that we

formalize as follows: Let B
(t)

be the out-of-bag (oob) sample for a tree t, with t ∈ {1, . . . ,ntree}.
Then the variable importance of variable Xj in tree t is

VI (t)(Xj) =

∑
i∈B

(t) I
(
yi = ŷ

(t)
i

)
∣∣∣B(t)

∣∣∣ −

∑
i∈B

(t) I
(
yi = ŷ

(t)
i,πj

)
∣∣∣B(t)

∣∣∣ (1)
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where ŷ
(t)
i = f (t)(xi) is the predicted class for observation i before and ŷ

(t)
i,πj

= f (t)(xi,πj ) is
the predicted class for observation i after permuting its value of variable Xj , i.e. with xi,πj =
(xi,1, . . . , xi,j−1, xπj(i),j , xi,j+1, . . . , xi,p

)
. (Note that VI (t)(Xj) = 0 by definition, if variable Xj

is not in tree t.) The raw variable importance score for each variable is then computed as the

mean importance over all trees: VI (Xj) =
Pntree
t=1 VI (t)(Xj)

ntree

In standard implementations of random forests an additional scaled version of the permutation
importance (often called z-score), that is achieved by dividing the raw importance by its standard
error, is provided. However, since the results of Strobl and Zeileis (2008) indicate that the raw
importance VI (Xj) has better statistical properties, we will only consider the unscaled version
here.

3.1. Background: Types of independence

We know that the original permutation importance overestimates the importance of correlated
predictor variables. Part of this artefact may be due to the preference of correlated predictor
variables in early splits as illustrated in Section 2. However, we also have to take into account the
permutation scheme that is employed in the computation of the permutation importance. In the
following we will first outline what notion of independence corresponds to the current permutation
scheme of the random forest permutation importance. Then we will introduce a more sensible
permutation scheme that better reflects the true impact of predictor variables.
It can help our understanding to consider the permutation scheme in the context of permutation
tests (cf., e.g., Good 2005): Usually a null hypothesis is considered that implies the independence
of particular (sets of) variables. Under this null hypothesis some permutations of the data are
permitted because they preserve the structure determined by the null hypothesis. If, for exam-
ple, the response variable Y is independent from all predictor variables (global null hypothesis)
a permutation of the (observed) values of Y affects neither the marginal distribution of Y nor
the joint distribution of X1, . . . , Xp and Y , because the joint distribution can be factorized as
P (Y, X1, . . . , Xp) = D(Y ) ·P (X1, . . . , Xp) under the null hypothesis. If, however, the null hypoth-
esis is not true, the same permutation will lead to a deviation in the joint distribution or some
reasonable test statistic computed from it. Therefore, a change in the distribution or test statistic
caused by the permutation can serve as an indicator that the data do not follow the independence
structure we would expect under the null hypothesis.
With this framework in mind, we can now take a second look at the random forest permutation
importance and ask: Under which null hypothesis would this permutation scheme be permitted?
If the data are actually generated under this null hypothesis the permutation importance will be
(a random value from a distribution with mean) zero, while any deviation from the null hypothesis
will lead to a change in the prediction accuracy, that is used as a test statistic here, and thus will
be detectable as an increase in the value of the permutation importance.
We find that the original permutation importance, where one predictor variable Xj is permuted
against both the response Y and the remaining (one or more) predictor variables Z = X1, . . . , Xj−1,
Xj+1, . . . , Xp as illustrated in the left panel of Table 2, corresponds to a null hypothesis of inde-
pendence between Xj and both Y and Z:

H0 : Xj ⊥ Y, Z or equivalently Xj ⊥ Y ∧Xj ⊥ Z (2)

Under this null hypothesis the joint distribution can be factorized as

P (Y,Xj , Z) H0= P (Y, Z) · P (Xj). (3)

What is crucial when we want to understand why correlated predictor variables are preferred
by the original random forest permutation importance is that a positive value of the importance
corresponds to a deviation from this null hypothesis–that can be caused by a violation of either
part: the independence of Xj and Y , or the independence of Xj and Z. However, from these two
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Table 2: Permutation scheme for the current and for the conditional permutation importance.

Y Xj Z
y1 xπj(1),j z1
...

...
...

yi xπj(i),j zi
...

...
...

yn xπj(n),j zn

Y Xj Z
y1 xπj|Z=a(1),j z1 = a

y3 xπj|Z=a(3),j z3 = a

y27 xπj|Z=a(27),j z27 = a

y6 xπj|Z=b(6),j z6 = b

y14 xπj|Z=b(14),j z14 = b

y21 xπj|Z=b(21),j z21 = b
...

...
...

aspects only one is of interest when we want to assess the impact of Xj to help predict Y , namely
the question if Xj and Y are independent.
This aim, to measure only the impact of Xj on Y , would be better reflected if we could create
a measure of deviation from the null hypothesis that Xj and Y are independent under a given
correlation structure between Xj and the other predictor variables, that is determined by our data
set. To meet this aim we suggest a conditional permutation scheme, where Xj is permuted only
within groups of observations with Z = z, to preserve the correlation structure between Xj and
the other predictor variables as illustrated in the right panel of Table 2.
This permutation scheme corresponds to the following null hypothesis

H0 : (Xj ⊥ Y ) |Z, (4)

where the conditional distribution can be factorized under the null hypothesis as

P (Y,Xj |Z) H0= P (Y |Z) · P (Xj |Z)

or P (Y |Xj , Z) H0= P (Y |Z), (5)

which is the definition of conditional independence.
In the special case where Xj and Z are independent both permutation schemes will give the same
result, as illustrated by our simulation rsults below. When Xj and Z are correlated, however,
the original permutation scheme will lead to an apparent increase in the importance of correlated
predictor variables, that is due to deviations from the uninteresting null hypothesis of independence
between Xj and Z.

3.2. A new, conditional permutation scheme

Technically, any kind of conditional assessment of the importance of one variable conditional on
another one is straightforward whenever the variables to be conditioned on, Z, are categorical (cf.,
e.g., Nason et al. 2004). However, for our aim to conditionally permute the values of Xj within
groups of Z = z, where Z can contain potentially large sets of covariates of different scales of
measurement, we want to supply a grid that (i) is applicable to variables of different types, (ii) is
as parsimonious as possible, but (iii) is also computationally feasible. Our suggestion is to define
the grid within which the values of Xj are permuted for each tree by means of the partition of the
feature space induced by that tree. The main advantages of this approach are that this partition
was already learned from the data during model fitting, contains splits in categorical, ordered and
continuous predictor variables and can thus serve as an internally available means for discretizing
the feature space.
In principle, any partition derived from a classification tree can be used to define the permutation
grid. Here we used partitions produced by the unbiased conditional inference trees of Hothorn et al.
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(2006), that employ binary splitting as in the standard CART algorithm of Breiman et al. (1984).
This means that, if k is the number of categories of an unordered or ordered categorical variable,
up to k, but potentially less than k, subsets of the data are separated. Continuous variables are
treated in the same way: Every binary split in a variable provides one or more cutpoints, that
can induce a more or less fine graded grid on this variable. By using the grid resulting from the
current tree we are able to condition in a straightforward way not only on categorical, but also
on continuous variables and create a grid that may be more parsimonious than the full factorial
approach of Nason et al. (2004). Only in one aspect we suggest to leave the recursive partition
induced by a tree: Within a tree structure, each cutpoint refers to a split in a variable only within
the current node (i.e. a split in a variable may not bisect the entire sample space but only partial
planes of it). However, for ease of computation, we suggest that the conditional permutation grid
uses all cutpoints as bisectors of the sample space (the same approach is followed by Nason et al.
2004). This leads to a more fine graded grid, and may in some cases result in small cell frequencies
inducing greater variation (even though our simulation results indicate that in practice this is
not a critical issue). From a theoretical point of view, however, conditioning too strictly has no
negative effect, while a lack of conditioning produces artefacts as observed for the unconditional
permutation importance.
In summary the conditional permutation importance is derived as follows:

1. In each tree compute the oob-prediction accuracy before the permutation as in Equation 1:P
i∈B(t) I

“
yi=ŷ

(t)
i

”
˛̨̨
B

(t)
˛̨̨ .

2. For all variables Z to be conditioned on: Extract the cutpoints that split this variable in the
current tree and create a grid by means of bisecting the sample space in each cutpoint.

3. Within this grid permute the values of Xj and compute the oob-prediction accuracy after

permutation:
P
i∈B(t) I

„
yi=ŷ

(t)
i,πj |Z

«
˛̨̨
B

(t)
˛̨̨ , where ŷ(t)

i,πj |Z = f (t)(xi,πj |Z) is the predicted classes for

observation i after permuting its value of variable Xj within the grid defined by the variables
Z.

4. The difference between the prediction accuracy before and after the permutation accuracy
again gives the importance of Xj for one tree (cf. Equation 1). The importance of Xj for
the forest is again computed as an average over all trees.

To determine the variables Z to be conditioned on, the most intuitive choice is to include all
variables whose empirical correlation with the variable of interest Xj exceeds a certain moderate
threshold, as in the following simulation study and application example. The most conservative—
or overcautious—strategy in this spirit would be to include all other variables Z as conditioning
variables, as was indicated by our initial notation. Another option is to let the user select certain
variables to condition on, e.g., if a hypothesis of interest includes certain independencies.

3.3. Simulation results

For the simulation design introduced in Section 2.1, Figure 2 shows the median and interquartile
range (over 500 iterations) of the importance scores of each variable for the different permutation
schemes: the original marginal permutation and the newly suggested conditional permutation
scheme. The set of variables Z to be conditioned on was chosen here to include all variables with
an empirical correlation r ≥ .2.
We find that the pattern of the coefficients induced in the data generating process is not reflected
by the importance values computed with the ordinary permutation scheme. With this scheme
the importance scores of the correlated predictor variables are highly overestimated. This effect
is most pronounced for small values of mtry, because correlated variables have a higher chance to
enter a tree when their correlated competitors are not available.
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Figure 2: Median permutation importance for unconditional (dashed) and conditional (solid) per-
mutation scheme along with inter-quartile range. Note that the ordering of variables is arbitrary.

For the conditional permutation scheme the importance scores better reflect the true pattern: The
correlated variables X1 and X2 with the same coefficient show an almost equal level of importance
as the uncorrelated variables X5 and X6, while the importance of X3 and X4, that are correlated
but have a lower or zero coefficient, decrease. For the variables with small and zero coefficients we
still find a difference between the correlated and uncorrelated variables, such that for the correlated
variables the importance values are still overestimated—however to a much lesser extent than with
the unconditional permutation scheme. This remaining disadvantage of the uncorrelated predictor
variables may be due to the fact that for most values of mtry these variables are selected less often
(cf. Figure 1, second and bottom row) and thus have a lower chance to produce a high importance
value. The degree of the preference of correlated predictor variables also depends on the choice of
mtry and is most pronounced for small values of mtry, as expected from the selection frequencies.
On the other hand, we find in Figure 2 that the variability of the importance increases for large
values of mtry, and the prediction accuracy is expected to be higher for smaller values of mtry.
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Another interesting feature of the conditional permutation scheme is that the variability of the
conditional importance is lower than that of the unconditional importance within each level of
mtry.
With respect to the identifiability of few influential predictors from a set of correlated and other
noise variables (which was the task in Nicodemus and Shugart (2007) and Archer and Kimes
(2008)), we can see from the importance scores for X1, . . . , X3 in comparison to that of X4 that
the conditional importance reflects the same pattern as the unconditional importance, however
with a notably smaller variation that may improve the identifiability. In the comparison of poten-
tially influential correlated and uncorrelated predictor variables on the other hand, the conditional
importance is much better suited as a means of comparison than the original importance.

4. Example: Peptide-binding data

As an application example we consider peptide-binding data that were previously analysed with
recursive partitioning techniques by Segal et al. (2001). The data set includes 105 variables for
a total of n = 310 amino acid sequences. The response to be predicted is a binding property
that can be coded as a binary variable (binding/no binding). The remaining variables available in
this data set correspond to 13 amino acid properties for each of the eight considered amino acid
positions. These 13 properties include, e.g. volume, polarity, bulkiness, flexibility, aromaticity,
and charge, yielding in total 104 continuous predictor variables.
A random forest with 1000 trees and mtry = 104 (which is equal to bagging) was fit to the
data set and the permutation importance was computed either with the unconditional or the
conditional permutation scheme. The resulting importance scores are displayed in Figure 3 (note
that the absolute values of the scores should not be interpreted). The few predictor variables whose
importance scores reach highest or even exceed the plotting area would be selected for further
analysis by any means. However, for some of the variables with the next smaller importance
scores the ranking strongly depends on the permutation scheme. We will focus our illustration on
the ranking of three exemplary predictor variables, “h2y8”, “flex8” and “pol3”, that are highlighted
in Figure 3: We find in the unconditional view in the top panel of Figure 3 that “h2y8” and “flex8”
appear to be of higher importance than “pol3” (ranks “h2y8”: 8, “flex8”: 9, “pol3”: 11). However,
in the conditional view in the bottom panel of Figure 3 their order is reversed and it turns out
that “pol3” is really more important than “h2y8” and “flex8”(ranks “h2y8”: 9, “flex8”: 8, “pol3”: 7).
This change in the ranks of the predictor variables is most pronounced for large mtry as expected,
but similar effects can be observed for smaller values.
When exploring the reason why the importances of “h2y8” and “flex8” are moderated by condi-
tioning, while the importance of “pol3” remains almost constant, we find that “h2y8” and “flex8”
are correlated with influential covariates, while “pol3” is only correlated with non-influential co-
variates. For example, “h2y8” is highly correlated with the polarity at position eight “pol8”, that
is indicated by the ∗ symbol in in Figure 3. The variable “pol8” shows a high importance (that is
however also moderated by conditioning) and was already found to be influential by Segal et al.
(2001), who note that it may approximate an effect of the eighth position in the original sequence
data, while the results of Xia and Li (1998) indicate an effect of the amino acid property polarity
itself.
This shows that importance rankings in data sets that contain complex correlations between
predictor variables can be severely affected by the underlying permutation scheme: When the
conditional permutation is used, the importance scores of correlated predictor are moderated such
that the truly influential predictor variables have a higher chance to be detected.

5. Discussion and outlook

We have investigated the sources of preferences in the variable importance measures of random
forests in favor of correlated predictor variables and suggested a new, conditional permutation
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Figure 3: Unconditional and conditional permutation importance of 104 predictors of peptide-
binding.

scheme for the computation of the variable importance measure. This new, conditional permuta-
tion scheme uses the partition that is automatically provided by the fitted model as a conditioning
grid and reflects the true impact of each predictor variable better than the original, marginal ap-
proach. Even though the conditional permutation scheme cannot entirely eliminate the preference
for correlated predictor variables, it has been shown to provide a more fair means of comparison
that can help identify truly relevant predictor variables.
Our simulation results also illustrate the impact of the choice of the random forest tuning parameter
mtry: While the default value mtry=

√
p is often found to be otimal with respect to prediction

accuracy in empirical studies(cf., e.g., Svetnik et al. 2003), our findings indicate that in the case
of correlated predictor variables different values of mtry should be considered. However, it should
also be noted that any interpretation of random forest variable importance scores can only be
sensible when the number of trees is chosen sufficiently large such that the results produced with
different random seeds do not vary systematically. Only then it is assured that the differences
between, e.g., unconditional and conditional importance are not only due to random variation.

Acknowledgement

We would like to thank Torsten Hothorn for providing essential help with accessing and processing
cforest objects.

References

Archer KJ, Kimes RV (2008). “Empirical characterization of random forest variable importance
measures.” Computational Statistics & Data Analysis, 52(4), 2249–2260.

Bauer E, Kohavi R (1999). “An Empirical Comparison of Voting Classification Algorithms: Bag-
ging, Boosting, and Variants.” Machine Learning, 36(1-2), 105–139.



12 Conditional Variable Importance for Random Forests

Breiman L (1996). “Bagging Predictors.” Machine Learning, 24(2), 123–140.

Breiman L (1998). “Arcing Classifiers.” The Annals of Statistics, 26(3), 801–849.

Breiman L (2001a). “Random Forests.” Machine Learning, 45(1), 5–32.

Breiman L (2001b). “Statistical Modeling: The Two Cultures.” Statistical Science, 16(3), 199–231.

Breiman L, Cutler A (2007). “Random Forests – Classification Manual (website accessed in
12/2007).” http://www.math.usu.edu/~adele/forests/.

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984). Classification and Regression Trees.
Chapman and Hall, New York.
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