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Abstract

The random forest (RF) method is a commonly used tool for classi-
fication with high dimensional data as well as for ranking candidate
predictors based on the so-called random forest variable importance
measures (VIMs). However the classification performance of RF is
known to be suboptimal in case of strongly unbalanced data, i.e. data
where response class sizes differ considerably. Suggestions were made
to obtain better classification performance based either on sampling
procedures or on cost sensitivity analyses. However to our knowl-
edge the performance of the VIMs has not yet been examined in the
case of unbalanced response classes. In this paper we explore the per-
formance of the permutation VIM for unbalanced data settings and
introduce an alternative permutation VIM based on the area under
the curve (AUC) that is expected to be more robust towards class
imbalance. We investigated the performance of the standard permuta-
tion VIM and of our novel AUC-based permutation VIM for different
class imbalance levels using simulated data and real data. The re-
sults suggest that the standard permutation VIM loses its ability to
discriminate between associated predictors and predictors not associ-
ated with the response for increasing class imbalance. It is outper-
formed by our new AUC-based permutation VIM for unbalanced data
settings, while the performance of both VIMs is very similar in the
case of balanced classes. The new AUC-based VIM is implemented
in the R package party for the unbiased RF variant based on condi-
tional inference trees. The codes implementing our study are available
from the companion website: http://www.ibe.med.uni-muenchen.

de/organisation/mitarbeiter/070_drittmittel/janitza/index.html.
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1 Introduction

In bioinformatics and related fields, such as statistical genomics and genetic

epidemiology, data are often high-dimensional, with the number of predictors

exceeding the number of observations. For example, in genetic epidemiology

data sets usually contain hundreds or thousands of candidate markers whose

association with an outcome of interest has to be investigated. From the

statistical point of view, one challenge is the high-dimensionality of the data

which is also known as the “small n large p” problem. A further challenge is

the complex data structure including heterogeneity, correlations and high-

order interactions of unknown nature.

The random forest (RF) approach developed by Leo Breiman in 2001 [4] is

particularly appropriate to handle such complex data [3]. In bioinformat-

ics, RF is a commonly used tool for classification or regression purposes as

well as for ranking candidate predictors through its inbuilt variable impor-

tance measures (VIMs). It has been used in many applications involving

high-dimensional data. As a nonparametric method RF can deal with non-

linearity, interactions, correlated predictors and heterogeneity, which makes

it attractive in genetic epidemiology [5, 7, 20, 23, 28]. However in the context

of classification, i.e. when the response to be predicted is a class member-

ship, classification performance of RF has been shown to be suboptimal in

case of strongly unbalanced data [21, 19, 17], i. e. when class sizes differ

considerably.

In epidemiology, unbalanced data are observed, e.g., in population-based

studies where only a small number of subjects develop a certain disease over

time, while most subjects remain healthy. Unbalanced data are also com-

mon in screening studies, where most of the screened persons are negative,

as well as in subclass analyses, e.g., if one wants to differentiate between

different subtypes of cancer. Usually some subclasses are more common

than other subclasses leading to an imbalance in class sizes. Studies on

rare diseases are a further example of unbalanced data settings in medicine.

Data can be obtained only from few persons having the specific rare disease,

while samples from healthy control persons are much easier to obtain. Of

course unbalanced data are also relevant in various other areas of applica-
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tion beyond the biomedical field, e.g., the prediction of creditworthiness of

a bank’s costumers [14], the detection of fraudulent telephone calls [11] or

the detection of oil spills in satellite radar images [18], just to name a few

examples. Unbalanced data may arise whenever the class memberships are

observed after data collection.

Like many other classification methods RF produces classification rules that

do not accurately predict the minority class if data are unbalanced. The RF

classifier allocates new observations more often to the majority class unless

the difference between the classes is large and classes are well separable.

For extreme class imbalances, e.g. if the minority class includes only 5%

of the observations, it might happen that the RF classifier allocates every

observation to the majority class independently of the predictors, yielding a

minimal error rate of 5%. Although this error rate of 5% is very small, such

a trivial classification is of no practical use.

Some suggestions have been made to yield a useful classification based ei-

ther on sampling procedures [8, 31, 1, 10] or on cost sensitivity analyses

[8]. Sampling procedures create an artificial balance between two or more

classes by oversampling the minority class and/or downsampling the major-

ity class. Cost sensitivity analyses attribute a higher cost to the misclas-

sification of an observation from the minority class to impede the trivial

systematic classification to the larger class. Both aspects have been widely

discussed in the literature with respect to RF’s classification performance

[30, 29, 8, 31, 15, 16]. Recent simulation studies [19] have shown that the

performance of RF classification for unbalanced data depends on (i) the im-

balance ratio, (ii) the class overlap and (iii) the sample size.

The impact of class imbalance on the RF VIM, however, has to our knowl-

edge not yet been examined in the literature. In this article we focus on the

permutation VIM which is known to be almost unbiased and more reliable

than the Gini VIM. The latter has been shown to have a preference for cer-

tain types of predictors [27, 24, 22, 2] and therefore its rankings have to be

treated with caution. We concentrate on the class imbalance problem for

two response classes with respect to the permutation VIM. We investigate

the mechanisms of changes in performance for unbalanced data settings and
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motivate the use of a new permutation VIM which is not based on the error

rate but on the area under the curve (AUC). The AUC can be seen as an

accuracy measure putting the same weight on both classes – in contrast to

the error rate which essentially gives more weight to the majority class. As

such, the AUC is a particularly appropriate prediction accuracy measure

in unbalanced data settings [6]. A permutation VIM in which the error

rate is replaced by the AUC is therefore a promising alternative to the stan-

dard error-rate-based permutation VIM. We performed extensive simulation

studies to explore and compare the behaviour of both permutation VIMs for

different class imbalance levels, effect sizes and sample sizes.

2 Methods

The RF algorithm is a classification and regression method that combines

several individual decision trees to make a final prediction. The final pre-

diction is then the average (for regression) or the majority vote (for clas-

sification) of the predictions of all trees in the forest. Each tree is fitted

to a random sample of observations (with or without replacement) from

the original sample. Observations not used to construct a tree are termed

out-of-bag (OOB) observations for that tree. For each split in each tree a

randomly drawn subset of predictors is assessed as candidates for splitting

and the predictor yielding the best split is finally chosen for the split. In

the original version of RF developed by Leo Breiman [4], the selected split

is the split with the largest decrease in Gini impurity. In a later version

of RF, conditional inference tests are used for selecting the best split in an

unbiased way [12]. For each split in a tree, each candidate predictor from

the randomly drawn subset is globally tested for its association with the

response, yielding a global p-value. The predictor with the smallest p-value

is selected, and within this globally selected predictor the best split is finally

chosen for the split.

Both forest versions implement so called variable importance measures which

can be used to get a ranking of the predictors according to their association

with the response. In the following, we briefly introduce the standard error-

rate based permutation VIM as well as our novel permutation VIM, which

is based on the area under the curve.
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2.1 Random forest variable importance measures

The two standard VIMs for feature selection with RF are the Gini VIM

and the permutation VIM. Roughly speaking the Gini VIM of a predictor of

interest is the sum over the forest of the decreases of Gini impurity generated

by this predictor whenever it was selected for splitting, scaled by the number

of trees. This measure has been shown to prefer certain types of predictors

[27, 24, 22, 2]. The resulting predictor ranking should therefore be treated

with caution. That is why in this paper we focus on the permutation VIM

that gives essentially unbiased error rate rankings of the predictors.

Error-rate-based permutation VIM

From now on, we denote the standard permutation VIM as “error-rate-based

permutation VIM”, since it is based on the OOB error rate, as outlined

below. More precisely, it measures the difference between the OOB error rate

after and before permuting the values of the predictor of interest. The error-

rate-based permutation variable importance (VI) for predictor j is defined

by

V I
(ER)
j =

1

ntree

ntree∑

t=1

(ERtj̃ − ERtj) (1)

where

• ntree denotes the number of trees in the forest,

• ERtj denotes the mean error rate over all OOB observations in tree t

before permuting predictor j,

• ERtj̃ denotes the mean error rate over all OOB observations in tree t

after randomly permuting predictor j.

The idea underlying this VIM is the following: If the predictor is not asso-

ciated with the response, the permutation of its values has no influence on

the classification, and thus also no influence on the error rate. The error

rate of the forest is not substantially affected by the permutation and the

VI of the predictor takes a value close to zero, indicating no association

between the predictor and the response. In contrast, if response and pre-

dictor are associated, the permutation of the predictor values destroys this
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association. “Knocking out” this predictor by permuting its values results

in a worse classification leading to an increased error rate. The difference in

error rates before and after randomly permuting the predictor thus takes a

positive value reflecting the high importance of this predictor.

A novel AUC-based permutation VIM

Our new AUC-based permutation VIM is closely related to the error-rate-

based permutation VIM. They only differ with respect to the prediction

accuracy measure: In a nutshell, the error rate of a tree involved in (1) is

replaced by the area under the curve (AUC) [26]. We define the AUC-based

permutation VI for predictor j as:

V I
(AUC)
j =

1

ntree∗

ntree∗∑

t=1

(AUCtj −AUCtj̃) (2)

where

• ntree∗ denotes the number of trees in the forest whose OOB observa-

tions include observations from both classes,

• AUCtj denotes the area under the curve computed from the OOB

observations in tree t before permuting predictor j,

• AUCtj̃ denotes the area under the curve computed from the OOB

observations in tree t after randomly permuting predictor j.

Instead of computing the error rate for each tree after and before permuting

a predictor, the AUC is computed. The AUC for a tree is based on the so-

called class probabilities, i.e. the estimated probability of each observation

to belong to the class Y = 0 or Y = 1, respectively. The class probabilities

of an observation are determined by the relative amount of training obser-

vations belonging to the corresponding class in the terminal node in which

an observation falls into. If one considers an OOB observation with Y = 0

and an OOB observation with Y = 1, a “good tree” is expected to assign

a larger class probability for class Y = 1 to the observation truly belonging

to class Y = 1 than to the observation belonging to class Y = 0. The AUC

for a tree corresponds to the proportion of pairs for which this is the case.

It can be seen as an estimator of the probability that a randomly chosen
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observation from class Y = 1 receives a higher class probability for class

Y = 1 than a randomly chosen observation from class Y = 0.

Note that with the use of the AUC, the information contained in the class

probabilities returned by a tree are adequately exploited. This is not the

case for the error rate that requires a dichotomization of class probabilities.

From a practical point of view, the AUC is computed by making use of

its equivalence with the Mann-Whitney-U statistic. The Mann-Whitney-U

statistic is solely based on the rankings of two independent samples. AUC

values of 1 correspond to a perfect tree classifier, since a perfect classifier

would attribute each observation from one class a higher probability to be-

long to this class than any observation from the other class. AUC values of

0.5 correspond to a useless tree classifier that randomly allocates class prob-

abilities to the observations. In this case in about half the cases a randomly

drawn observation from one class receives a higher probability of belonging

to that class than a randomly drawn observation from the other class.

The novel AUC-based permutation VIM is implemented in the package

party for the unbiased RF variant based on conditional inference trees.

Note that the discrepancy in performance between the standard permuta-

tion VIM and the AUC-based permutation VIM is transferable to the origi-

nal version of RF since the VI ranking mechanism is completely independent

from the construction of the trees.

2.2 Comparison studies

The behavior of the two introduced permutation VIMs is expected to be

different in the presence of unbalanced data. The AUC is a prediction ac-

curacy measure which puts the same weight on both classes independently

of their sizes [6]. The error rate, in contrast, gives essentially more weight

to the majority class because it does not take class affiliations into account

and regards all misclassifications equally important. In the results section

we try to explain the consequences for the performance of the permutation

VIMs for unbalanced data settings and provide evidence for our supposi-

tion. We performed studies on simulated and on real data to explore and

contrast the performance of both permutation VIMs. Using simulated data

we aim to see whether total sample size and effect size play a role for the

class imbalance problem. We explored this by varying the total number of
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observations and by simulating predictors with different effect sizes. Fur-

thermore we conducted analyses based on real data to provide additional

evidence based on realistic data structures which usually incorporate com-

plex interdependencies.

If the data are unbalanced, the depth of the trees in a RF, that is deter-

mined by tree pruning (for classical RF) or early stopping (for the unbiased

RF variant), is expected to affect the AUC-based VIM and the error-rate-

based VIM in different ways. This results from the fact that with the use

of the AUC-based VIM the information on class probabilities given by a

tree are preserved, while the commonly used error-rate-based VIM requires

a dichotomization of the class probabilities. We later illustrate that if trees

are not pruned or stopped early, preserving the class probabilities is of ad-

vantage for a permutation VIM in unbalanced data settings. We conducted

simulation studies with different stopping criteria to provide evidence that

the AUC-based permutation VIM is unaffected while the error-rate-based

permutation VIM is impaired by tree pruning or early stopping.

Our comparison studies on simulated and on real data were conducted us-

ing the unbiased RF variant based on conditional inference trees. The im-

plementation of this unbiased RF variant is available in the R system for

statistical computing via the package party [13].

2.2.1 Simulated data

The considered simulation design represents a scenario where the predictors

associated with the response variable Y (binary) are to be identified from

a set of continuous predictors. We performed simulations for varying im-

balance levels: 50% corresponding to a completely balanced sample, 40%,

30%, 20%, 10%, 5% and 1% corresponding to different imbalance levels from

slight to very extreme class imbalances. The simulation setting comprises

both predictors not associated with the response and associated predictors

with three different levels of effect sizes. Table 1 presents the data setting

used throughout this simulation. The first five predictors X1, . . . , X5 differ

strongly between classes with mean µ1 = 1 in one class and mean µ2 = 0 in

the other class. The predictors X6, . . . , X10 have a moderate mean difference

between the two classes with µ1 = 0.75 and µ2 = 0. For X11, . . . , X15 there
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is only a small difference between the classes with µ1 = 0.5 and µ2 = 0. We

simulated 50 additional predictors following a standard normal distribution

with no association to the response variable (termed noise predictors).

Predictors Distribution Distribution Effect size
in class 1 in class 2

X1, . . . , X5 N(1.00, 1) N(0, 1) strong effect
X6, . . . , X10 N(0.75, 1) N(0, 1) moderate effect
X11, . . . , X15 N(0.50, 1) N(0, 1) weak effect
X16, . . . , X65 N(0, 1) N(0, 1) no effect

Table 1: Distribution of predictors in class 1 and class 2.

We performed analyses with varying sample sizes and report the results for

total sample sizes of n = 100, n = 500 and n = 1000. For each param-

eter combination, i.e. imbalance level and sample size, we simulated 100

datasets and computed AUC-based and error-rate-based permutation VIs

for each dataset. Note that for a sample size of n = 100 an imbalance of

1% is not meaningful since there is only one observation in the minority class.

Forest and tree parameters were held fixed. The parameter ntree denot-

ing the number of trees in a forest was set to 1000, the parameter for the

number of candidate splits mtry was set to the default value of 5. We used

subsampling instead of bootstrap sampling for constructing the trees, i.e.

setting the parameter replace to FALSE [27]. Conditional inference trees

were grown to maximal possible depth, i.e. setting the parameters minsplit,

minbucket and mincriterion in the cforest function to zero.

In additional analyses we examined the influence of early stopping on the

performance of both VIMs for unbalanced data settings. We explored this by

inspecting different values for early stopping criteria in conditional inference

trees such as minsplit, minbucket and mincriterion. The parameter

minsplit denotes the minimal number of observations a node should contain

in order to be split. The parameter minbucket denotes the minimal number

of observations in a node and mincriterion corresponds to the significance

level threshold for a node in order to be split. The same simulation setting

described above and in Table 1 (i.e. effect sizes, number of predictors and
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data generating process) was used to explore the influence of early stopping.

We simulated 1000 datasets for each parameter setting to get stable results

which allow for the detection of even slight differences in performance.

2.2.2 Real data

We also investigated the performance of the error-rate-based and the AUC-

based permutation VIM on real data including complex dependencies (e.g.

correlations) and predictors of different scales. The dataset is about RNA

editing in land plants [9]. RNA editing is the modification of the RNA

sequence from the corresponding DNA template. It occurs e.g. in plant

mitochondria where some cytidines are converted to uridines before trans-

lation (abbreviated with C-to-U conversion in the following). The dataset

comprises a total of 43 predictors: 41 categorical predictors (40 nucleotides

at positions -20 to 20 relative to the edited site and one predictor describing

the codon position) and two continuous predictors (one for the estimated

folding energy and one predictor describing the difference in estimated fold-

ing energy between pre-edited and edited sequences). It includes 2694 ob-

servations, where exactly one half has an edited site and the other half

has a non-edited site. The data are publicly available from the journal’s

homepage. After excluding observations with missing values, a total of 2613

observations were left, where 1307 had a non-edited site and 1306 obser-

vations had an edited site. We used this balanced dataset to explore the

performance of ER- and AUC-based permutation VIM for varying class im-

balances – but now with realistic dependencies and predictors of different

scales. For this purpose, we artificially created different imbalance levels by

drawing random subsets from the class with edited sites.

Application of the standard permutation VIM to the data using the 2613

observations without missing values gave VIs greater than zero for all 43

predictors for different random seeds (i.e. different starting values for the

random permutation), indicating that all predictors seem to have at least

a small predictive power (data not shown). We generated and added addi-

tional predictors without any effect (termed noise predictors in the follow-

ing) in order to evaluate the performance of error-rate-based and AUC-based

permutation VIMs. Provided that there is a higher association between the

response and any of the original predictors than between the response and
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Figure 1: Mean VIs for the 43 original predictors and 43 noise predictors
from the balanced modified C-to-U conversion dataset are shown. Mean VIs
were obtained by averaging the VIs (by commonly used error-rate-based per-
mutation VIM) over 100 extended versions of the C-to-U conversion dataset.

any of the simulated noise predictors, a well performing VIM would attribute

a higher VI to original predictors than to simulated noise predictors. The

noise predictors were generated by randomly permuting the values of the

original predictors. Each original predictor was permuted once, resulting in

a total of 43 noise predictors. The whole process consisting of (1) creating

43 noise predictors, (2) merging them to the original dataset, (3) randomly

subsampling to create an unbalanced dataset and (4) computing the error-

rate-based and AUC-based permutation VIs, was repeated 100 times for each

imbalance level to get stable results for the VIM performance. To check the

assumption that there is a higher association between the response and any

of the original predictors than between the response and any of the simu-

lated predictors, we computed the mean VI over 100 completely balanced

datasets that had been extended by noise predictors. Figure 1 shows that

all mean VIs of the original predictors are higher than any mean VI of a

simulated noise predictor and hence confirms our first impression.

2.2.3 Performance evaluation criteria

VIMs give a ranking of the predictors according to their association with

the response. To evaluate the quality of the rankings by the permutation

11



VIMs the AUC was used as performance measure. The AUC was computed

to assess the ability of a VIM to differentiate between associated predictors

and predictors not associated with the response. AUC values of 1 mean

that each associated predictor receives a higher VI than any noise predictor,

thus indicating a perfect discrimination. AUC values of 0.5 mean that a

randomly drawn associated predictor receives a higher VI than a randomly

drawn noise predictor in only half of the cases, indicating no discriminative

ability.

For our comparison studies we defined the two classes which are to be differ-

entiated by a VIM in the following way. In the first instance of our studies

on simulated data, all predictors which are associated with the response

formed one class and noise predictors built the other class. In more detailed

subsequent analyses we then explored the ability of the VIMs to discrimi-

nate between predictors with the same effect size and predictors without an

effect. For this analysis one class comprised the noise predictors while the

other class comprised only predictors with the same effect. For the studies

on real data it was not possible to conduct such detailed analyses because

the true ordering of the predictors according to their association with the

response is not known. Hence in the analysis on real data we restricted our

analysis to the discrimination between original predictors forming one class

and simulated noise predictors forming the other class.

3 Results and Discussion

Why may the error-rate-based permutation VIM fail in case

of class imbalance?

The prioritisation of the majority class in unbalanced data settings is well

known in the context of RF classification and can easily be seen from trees

constructed on unbalanced data. Trees trained on unbalanced data more

often predict the majority class, which leads to the minimization of the

overall error rate. But how does this affect the performance of the permu-

tation VIMs? And why is the AUC-based permutation VIM expected to be

more robust towards class imbalance than the commonly used error-rate-

based permutation VIM?
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To answer these questions we consider an extremely unbalanced data setting

and illustrate what happens in a tree when permuting the values of an asso-

ciated predictor. We will first have a look at observations from the majority

class. For this class nearly all observations are correctly classified by a tree

which has been trained on extremely unbalanced data. If we now permute

the values of an associated predictor, this does generally not result in a

classification into the minority class since a classification into the minority

class is an unlikely event – even for an observation from this class. A very

specific data pattern is required for an observation to be classified into the

minority class. It is unlikely that a random permutation of an associated

predictor results in such a specific data pattern just by chance. Thus, for

the majority class we expect hardly any observation to be incorrectly clas-

sified to the minority class after the permutation of an associated predictor.

Thus the error rate does not considerably increase after the permutation of

an associated predictor, finally leading to a rather low contribution to the VI.

Now let us consider the classifications by a tree for observations from the mi-

nority class. For an extreme class imbalance most of the observations from

the minority class are falsely classified to the majority class due to the above

described focus on the majority class. It might be the case that some obser-

vations from the minority class are correctly classified by the tree because

these observations have that specific pattern of predictor values which is re-

quired for an observation to be classified into the minority class. It is likely

that a permutation of the values of an associated predictor might then de-

stroy that specific pattern so that after the permutation, these observations

are not identified anymore to be in the minority class. Thus a misclassifi-

cation due to the elimination of an associated predictor is much more likely

to appear in observations from the minority class than in observations from

the majority class. Note that only a small number of observations from the

minority class are affected since most of the observations from the minority

class are classified into the majority class anyway (before as well as after

the permutation). The change in error rates is thus expected to be rather

small – albeit it is more pronounced than the change in error rates in the

majority class.

Note that the error-rate-based permutation VIM does not take class affilia-
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tions into account. Thus the change in error rates is actually not computed

separately for each class. However if class proportions are equal in all OOB

samples, the actual VI of a predictor can be derived from a weighted aver-

age of class specific differences in error rates. The weights correspond to the

proportion of observations from the respective class in the OOB samples.

Class frequencies are in general not equal in all OOB samples (unless one

explicitly specifies it in the RF algorithm) but it illustrates the fact that

for unbalanced data settings the VI is mainly driven by the change in error

rates derived from observations from the majority class. Since the change in

error rates in the majority class is expected to be much smaller compared to

the change in error rates in the minority class, the computed VIs are rather

low. This results in low VIs even for associated predictors and in a poor

differentiation of associated predictors and predictors not associated with

the response.

Class specific VIs

This theory is supported by computing class specific VIs (corresponding to

mean changes in error rates computed only from observations belonging to

the same class). Computing class specific VIs was done using the R package

randomForest implementing the standard RF algorithm. The importance

function of this package provides permutation VIs computed separately for

each class (besides the VIs by the standard permutation VIM and by the

Gini VIM). The class specific VIs for a total sample size of n = 500 and an

imbalance level of 5% are shown in Figure 2, where predictors X1 to X15

have an effect while the remaining 50 predictors do not have an effect, cor-

responding to the simulation setting previously described in Table 1 in the

context of the comparison study (for simplicity, we use the same setting as

in the comparison study, although the addressed problem is here a different

one). Different sample sizes and imbalance levels give similar results (thus

not shown). They confirm our argumentation that the change in the error

rates computed from OOB observations from the majority class is smaller

than the change in error rates computed from OOB observations from the

minority class. This results in an underestimation of the actual permutation

VI due to a much higher weighting of the majority class in the computa-

tion of the VI (see concordance of VIs in middle and lower panel of Figure

2). The discrepancy between the VIs computed from observations of the
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Figure 2: VIs computed only from OOB observations of the minority class
(top), from OOB observations of the majority class (middle) and from all
OOB observations (bottom). The first 15 predictors are associated with the
response while the remaining predictors are noise predictors. VIs are shown
for a total sample size of n = 500 and an imbalance level of 5%.
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minority class and VIs computed from observations of the majority class

depends on the class imbalance and is more pronounced for more extreme

class imbalances.

This motivates the use of an alternative accuracy measure which better in-

corporates the minority class. While the error rate gives the same weight to

all observations, therefore focusing more on the majority class, the AUC is

a measure which does not prefer one class over the other but instead puts

exactly the same weight on both classes. Therefore the AUC-based permu-

tation VIM is expected to detect changes in tree predictions for observations

from the minority class, which might not be grasped by the error-rate-based

permutation VIM due to a much higher weighting of the majority class. The

VIs for associated predictors obtained by the AUC-based permutation VIM

are thus expected to be comparatively higher than the VIs obtained by the

error-rate-based permutation VIM. This would result in a better differen-

tiation of associated and noise predictors by the AUC-based permutation

VIM. These conjectures are assessed in the comparison study presented in

the next section 1.

3.1 Comparison study with simulated data

The performance of the error-rate-based and AUC-based VIMs as measured

by the AUC is shown in Figure 3 for the three different total sample sizes

with n = 100 (left panel), n = 500 (middle panel) and n = 1000 observations

(right panel) and different class imbalance levels. Filled boxes correspond

to the AUC-based permutation VIM and unfilled boxes correspond to the

error-rate-based permutation VIM. Figure 3 shows that the performance

of both VIMs decreases with an increasing class imbalance for all sample

sizes. Note that the decrease in performance for both VIMs is not solely

attributable to the imbalance ratio per se but also to the reduced number of

observations in the minority class with an increasing class imbalance. This

is induced by the simulation setting since we held the total number of ob-

servations fixed and varied the number of observations in both classes to

create different class imbalances. If there are only few observations in one

1An additional performance comparison between the AUC-based permutation VIM
and the error-rate-based permutation VIM based only on observations from the minority
class is documented in the supplementary material.
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Figure 3: Distribution of AUC-values for 100 simulated datasets for AUC-
based (filled) and error-rate-based (unfilled) permutation VIMs for differ-
ent class imbalances. The AUC is used to assess the ability of a VIM to
discriminate between predictors with an effect and predictors without an
effect. Distributions are shown for total sample sizes of n = 100 (left panel),
n = 500 (middle panel) and n = 1000 (right panel).

class then the tree predictions are less accurate. However the performance

of the AUC-based permutation VIM decreases less dramatically than the

performance of the error-rate-based permutation VIM. The discrepancy in

performances between the VIMs increases with increasing imbalance level

and is maximal for the most extreme class imbalance. While for a sample

size of n = 500 the error-rate-based permutation VIM is no longer able to

discriminate between associated and noise predictors (AUC values randomly

vary around 0.5) for the most extreme class imbalance of 1%, the AUC-based

permutation VIM still is, showing that it can be used to identify associated

predictors even if the minority class comprises only few observations. It can

be ruled out that the better performance of the AUC-based permutation

VIM is due to chance since the distributions of AUC values significantly

differ. Furthermore this difference in performances between both VIMs be-

comes even larger for larger sample sizes.

In a nutshell, in this first simulation the AUC-based permutation VIM per-

formed better in case of class imbalance. The following simulations focus on

the influence of sample size and effect size on the respective performance of

both permutation VIMs in unbalanced data settings.
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Influence of sample size

In Figure 3, the performance of both VIMs improves with an increased total

sample size for a fixed imbalance level since an increase in the sample size

results in more accurate tree predictions. The right panel of Figure 3 shows

that both permutation VIMs are hardly affected by class imbalances up to

10% when the sample size is rather large (n = 1000). If the sample size is

smaller (n = 100), however, the performance of the VIMs is considerably

decreased for a 10% imbalance level. A decrease in performance for a 10%

imbalance level is also observed for a sample size of n = 500, especially for

error-rate-based permutation VIM. In a nutshell, class imbalance seems to

be more problematic for the permutation VIMs if the total sample size is

small.

Influence of effect size

In the following simulation we explored the ability of the permutation VIMs

to identify predictors with different effect sizes in presence of unbalanced

data. The AUC was again used as an evaluation criterion to compare the

ability of the AUC-based and error-rate-based permutation VIMs to discrim-

inate between associated and non-associated predictors. Here the evaluation

was done for each effect size separately meaning that one class comprised

all the noise predictors while the other class comprised only predictors with

the considered effect size (either strong, moderate or weak). Figure 4 shows

the results for the setting with n = 100. The results for other sample sizes

are given in the supplementary material. The left panel of Figure 4 shows

the performance of both permutation VIMs according to their ability to dis-

criminate between predictors with weak effects and predictors without an

effect. The middle panel corresponds to the AUC values for predictors with

a moderate effect versus noise predictors and the right panel corresponds to

the AUC values for predictors with a strong effect versus noise predictors.

Unsurprisingly, for both permutation VIMs predictors having only a weak ef-

fect are less discriminable from noise predictors than predictors with stronger

effects. For imbalances up to 20% both VIMs identify nearly all predictors

with a strong effect. Obviously there are unbalanced data settings where the

standard permutation VIM still perfectly separates between noise predictors

and predictors with pronounced effects. We conclude that class imbalance
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Figure 4: Distribution of AUC-values for 100 simulated datasets for AUC-
based (filled) and error-rate-based (unfilled) permutation VIMs for different
class imbalances. The AUC is used to assess the ability of a VIM to dis-
criminate between noise predictors and predictors with a weak (left panel),
moderate (middle panel) and strong (right panel) effect. Distributions are
shown for a total sample size of n = 100.

is more problematic if predictors with weak effects are to be identified while

it plays a minor role if the classes are well separable.

Influence of early stopping a tree

Early stopping in the presence of unbalanced data is expected to further

aggravate the performance of the standard permutation VIM. In order to

predict a class, observations from that class have to outnumber observations

of the other class in a terminal node. Terminal nodes of early pruned trees,

i.e. trees that were not grown to maximal depth, contain more observations

than terminal nodes of trees which were grown to maximal depth. It is

then more difficult for the minority class to outnumber the majority class

in terminal nodes. The earlier a tree is stopped, the higher the number of

observations in terminal nodes and the more difficult it gets for the minority

class to outnumber the majority class. This directly affects the performance

of the error-rate-based permutation VIM: The number of terminal nodes

which predict the minority class decreases and a classification into the mi-

nority class becomes even rarer. If all terminal nodes in a tree predict the

majority class, the error rate of that tree is fixed and not affected by per-

mutations of the predictors. Thus VIs of all predictors are zero for that tree
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and the VIM loses its discriminative ability. For extreme early stopping it

can even happen that all trees in the forest predict the majority class which

leads to a VI of zero for all predictors.

In contrast, the AUC-based permutation VIM is unaffected by early stop-

ping since it is based on the class probabilities given by a terminal node.

Even if the majority class outnumbers the minority class in all terminal

nodes there can still be a change in AUCs before and after the permutation

of a predictor. We provide evidence for this by the results of our simulation

studies which are presented in the following.

The effect of early stopping was examined by varying the values for three

different parameters controlling the size of a tree. Figures 5, 6 and 7 show

the results for the sample size n = 100 and an imbalance level of 10% con-

trasted to the results for a completely balanced dataset. Figure 5 shows the

performance of both permutation VIMs for varying values of the minimal

number of observations in a node (minbucket). Figure 6 shows the results

for varying values of the minimal number of observations in a node that are

required for a node to be split (minsplit). While the AUC-based permuta-

tion VIM is not at all affected by early stopping with these two parameters

for both the balanced and unbalanced data setting, the error-rate-based per-

mutation VIM is obviously sensitive to early stopping in case of unbalanced

data. If data is unbalanced the performance of the error-rate-based permu-

tation VIM is stable for small values of minsplit and minbucket while it

is clearly decreased for larger values. Since its performance is stable for the

balanced data setting 2, we attribute this reduction in performance for the

unbalanced setting to the above described mechanism resulting from class

imbalance.

In contrast, for different mincriterion values corresponding to different

significance level thresholds for a node in order to be split, no systematic

difference w.r.t. performance reduction for higher values of mincriterion

can be observed for the unbalanced data setting compared to the balanced

data setting (Figure 7). Increased values of mincriterion seem to have

no apparent different effect on the VIM performance for unbalanced data

2No RF is grown for too extreme values of minbucket, resulting in VIs of zero for all
predictors. The corresponding AUC takes value of 0.5.
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Figure 5: Distribution of AUC-values for 1000 simulated datasets for AUC-
based (filled) and error-rate-based (unfilled) permutation VIMs for different
values of minbucket. High values for minbucket correspond to trees stopped
earlier. Distributions are shown for a total sample size of n = 100 in presence
of complete balance (left panel) and an imbalance level of 10% (right panel).

settings compared to balanced data settings and early stopping with this

parameter aggravates the performance for both unbalanced and balanced

data settings as well.

The simulation studies support our hypothesis that early stopping a tree (at

least with minsplit and minbucket) impairs the performance of the com-

monly used error-rate-based permutation VIM for unbalanced data settings

while the AUC-based permutation VIM is obviously robust towards early

stopping.

3.2 Comparison study with real data

Figure 8 shows the distribution of AUC values for 100 modified C-to-U con-

version datasets for varying imbalance levels. For the balanced dataset and

for slight class imbalances up to 40% both VIMs have a perfect discrimi-

native ability since all associated predictors receive a higher VI than any

noise predictor. Overall the performance of both VIMs decreases with an

increasing class imbalance. Note that the decreasing performance for in-

creasing class imbalances might be partly attributable to the reduced total

sample size as the imbalance was created by randomly subsampling obser-
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Figure 6: Distribution of AUC-values for 1000 simulated datasets for AUC-
based (filled) and error-rate-based (unfilled) permutation VIMs for different
values of minsplit. High values for minsplit correspond to trees stopped
earlier. Distributions are shown for a total sample size of n = 100 in presence
of complete balance (left panel) and an imbalance level of 10% (right panel).
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Figure 7: Distribution of AUC-values for 1000 simulated datasets for AUC-
based (filled) and error-rate-based (unfilled) permutation VIMs for different
values of mincriterion. High values for mincriterion correspond to trees
stopped earlier. Distributions are shown for a total sample size of n = 100
in presence of complete balance (left panel) and an imbalance level of 10%
(right panel).
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Figure 8: Distribution of AUC-values for AUC-based (filled) and error-rate-
based (unfilled) permutation VIMs for different class imbalances derived
from 100 modified datasets from C-to-U conversion data. The AUC is used
to assess the ability of a VIM to discriminate between associated predictors
and predictors not associated with the response.

vations from the class with the edited sites. When comparing both VIMs

the AUC-based permutation VIM significantly outperformed the standard

permutation VIM. For an imbalance of 30% the AUC-based permutation

VIM clearly identified more associated predictors than the error-rate-based

permutation VIM. The superiority of the AUC-based permutation VIM over

the standard permutation VIM increased with an increasing class imbalance.

For imbalances between 15% and 5% the discrepancy between the perfor-

mance of AUC-based and standard permutation VIM was maximal.

Overall, this study on real data impressively shows that the AUC-based

permutation VIM also works for complex real data and outperforms the

standard permutation VIM in almost all class imbalance settings.
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4 Conclusions

The problem of unbalanced data has been widely discussed in the literature

for diverse classifiers including random forests. Many approaches have been

developed to improve the predictive ability of RF classifiers for unbalanced

data settings. However less attention has been paid to the behaviour of

random forests’ variable importance measures for unbalanced data. In this

paper we explored the performance of the permutation VIM for different

class imbalances and proposed an alternative permutation VIM which is

based on the AUC.

Our studies on simulated as well as on real data show that the commonly

used error-rate-based permutation VIM loses its ability to discriminate be-

tween associated predictors and predictors not associated with the response

for increasing class imbalances. This is particularly crucial for small sample

sizes and if predictors with weak effects are to be detected. Early stopping

trees even aggravates the performance of the error-rate-based permutation

VIM. The decreasing performance of the standard permutation VIM results

from two sources: the class imbalance on the training data level leading to

trees more often predicting the majority class and the class imbalance at

the OOB data level leading to blurred VIs due to a much higher weighting

of error rate differences in the majority class. A higher weighting of the

majority class in the VI calculation is problematic because the difference in

error rates is shown to be less pronounced in the majority class than in the

minority class. Note that in some cases it might be interesting to assess the

increase in error rate obtained when a certain predictor is removed. In this

case the error-rate-based permutation VIM can be considered. If the goal

is to rank the predictors according to their discrimination power, however,

the AUC-based permutation VIM should be preferred.

The problem of imbalance at the OOB data level is directly addressed with

the use of a novel AUC-based permutation VIM. This VIM puts the same

weight on both classes by measuring the difference in AUCs instead of the

difference in error rates. It is thus able to detect changes in tree predic-

tions when permuting associated predictors which might not be grasped by

the standard permutation VIM. In contrast, the imbalance on training data

level is not addressed by the AUC-based permutation VIM, meaning that the
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structure of a tree remains untouched. On the one hand this is a drawback

since class predictions before and after permuting a predictor are similar

even if the respective predictor is associated with the response, resulting

in a reduced change in the AUCs. On the other hand preserving the tree

structure can be regarded as an advantage since a change in tree structure

might open space for new unexpected behaviours. It is a major advantage of

our novel AUC-based permutation VIM that it is based on exactly the same

principle and differs from the standard permutation VIM only with respect

to the accuracy measurement. It is thus expected to share the advantages of

the standard permutation VIM and its properties and behaviours discovered

in recent years (e.g. its behaviour in presence of correlated predictors [25]

and in presence of predictors with different scales [27] and category sizes in

the predictors [22, 2]).

Our studies on simulated as well as on real data show that the AUC-based

permutation VIM outperforms the commonly used error-rate-based permu-

tation VIM as well as the error-rate-based permutation VIM computed only

using observations from the minority class in case of unbalanced data set-

tings (the comparison to the class specific VIM is shown in the supplemen-

tary material). The difference in performance between our novel AUC-based

permutation VIM and the standard permutation VIM can be substantial,

especially for extremely unbalanced data settings. But even for slight class

imbalances the AUC-based permutation VIM has shown to be superior to

the standard permutation VIM. We conclude from our studies that the AUC-

based permutation VIM should be preferred to the standard permutation

VIM whenever two response classes have different class sizes and the aim is

to identify relevant predictors.

Supplementary material

Additional files referenced in Section 3 are available under http://www.ibe.

med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/

index.html.
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