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Abstract

Variable selection has been suggested for Random Forests to improve their efficiency of data prediction and
interpretation. However, its basic element, i.e. variable importance measures, can not be computed straight-
forward when there is missing data. Therefore an extensive simulation study has been conducted to explore
possible solutions, i.e. multiple imputation, complete case analysis and a newly suggested importance measure
for several missing data generating processes. The ability to distinguish relevant from non-relevant variables
has been investigated for these procedures in combination with two popular variable selection methods. Find-
ings and recommendations: Complete case analysis should not be applied as it lead to inaccurate variable
selection and models with the worst prediction accuracy. Multiple imputation is a good means to select vari-
ables that would be of relevance in fully observed data. It produced the best prediction accuracy. By contrast,
the application of the new importance measure causes a selection of variables that reflects the actual data
situation, i.e. that takes the occurrence of missing values into account. It’s error was only negligible worse
compared to imputation.

Keywords: random forests, variable selection, missing data, multiple imputation, surrogates, complete case

analysis

1 Introduction

Random forests (Breiman, 2001) are appreciated in
many research fields for notable properties like the abil-
ity to implicitly deal with missing values and high di-
mensional data. Moreover, they are able to uncover
complex interactions and to identify informative vari-
ables (see Cutler et al., 2007; Lunetta et al., 2004,
for works highlighting these properties). The latter
is achieved by means of variable importance measures
which are often used as a basis for variable selection
(see Altmann et al., 2010; Archer and Kimes, 2008;
Diaz-Uriarte and Alvarez de Andrés, 2006; Genuer
et al., 2010; Jiang et al., 2004; Tang et al., 2009; Yang
and Gu, 2009; Rodenburg et al., 2008; Sandri and Zuc-
colotto, 2006; Svetnik et al., 2004, for corresponding
approaches). Though it might be a well suited means
to distinguish relevant from non-relevant variables its
benefit for prediction is still ambiguous. Thus Yang
and Gu (2009); Zhou et al. (2010) claim that the pre-
dictive power of a forest may improve through variable
selection. By contrast, Altmann et al. (2010); Diaz-
Uriarte and Alvarez de Andrés (2006); Svetnik et al.
(2004) show that it can also be harmful.

A major issue which is in main focus of this work is
how to perform variable selection when there is missing
data. Existing approaches base on importance mea-
sures that can not be computed straightforward in such
a case. Therefore possible solutions are investigated in
this work: Complete case analysis is a fast and easy
way to deal with missing values though it is known
to lead to biased inference when the data is not miss-
ing completely at random (Schafer and Graham, 2002;
Horton and Kleinman, 2007). An alternative approach
is given by multiple imputation by chained equations
(MICE; van Buuren et al., 2006; White et al., 2011). Tt
enables the simultaneous imputation of multiple vari-
ables without the need to specify a joint distribution of
the data (see Schafer, 1997, for joint modeling). Fur-
thermore, its superiority to add hoc methods like com-
plete case and single imputation has been shown by
many publications (Janssen et al., 2009, 2010). A third
solution is given by a new importance measure intro-
duced by (Hapfelmeier et al., 2012). It closely resem-
bles the well known permutation accuracy importance
measure and shares most of its appreciated properties.
However, due to an essential adaption, it is able to han-
dle missing values without the need to omit or replace



them before analysis.

In this work, two popular variable selection meth-
ods, each representing the conceptual classes of
performance-based and test-based approaches (cf. sec-
tion 4 for a detailed definition), are used in combina-~
tion with the approaches to handle missing values. An
extensive simulation study that involves various miss-
ing data generating processes is meant to explore their
ability to discriminate relevant from non-relevant vari-
ables (cf. Hapfelmeier et al., 2012a, for similar studies
about the computation of importance measures, upon
which variable selection bases, in such situations). In
addition the predictive accuracy of resulting models is
investigated for a simulated test dataset, too. Both,
regression and classification problems are explored.

2 Missing Data

2.1 Missing Data Generating Processes

In early works about statistical inference with missing
values Rubin (1976, 1987) specify three processes that
cause missingness:

e Missing completely at random (MCAR):
P(R[Xcomp) = P(R)

e Missing at random (MAR):
P(R|Xcomp) = P(R|Xobs)

e Missing not at random (MNAR):
P(R|Xcomp) = P(R|Xob3aXmis)

The binary random variable R indicates whether a
value is missing. Its probability distribution is given
by P(R). Xcomp denotes the complete variable set that
consists of observed values X5 and missing ones X ys:
Xcomp = {Xobs; Xmis }- Therefore in a MCAR scheme
the probability to observe a missing value is indepen-
dent of the observed and unobserved data. By contrast
for MAR this probability is dependent on the observed
data. Finally in MNAR the probability depends on un-
observed variables or the missing values themselves.
Most of the methods used in this study are known to
be sensitive to the missing data generating processes.
Thus, complete case analysis can lead to biased in-
ference when the data is MAR or MNAR (Schafer
and Graham, 2002; Horton and Kleinman, 2007). Be-
yond that, even MCAR may induce a systematic bias
in Random Forests based on biased split selections
(Strobl et al., 2007). MICE is especially qualified for
MAR settings. Janssen et al. (2010) also state that it
should be preferred to ad hoc methods like complete
case analysis even in MNAR  situations. Likewise, He
et al. (2009) and White et al. (2011) point out that
MICE my well handle MNAR schemes as the imputa-
tion model becomes more general and includes more
variables to make MAR plausible. For these reasons
one MCAR, four MAR and one MNAR scheme are
investigated in the following simulation study.

2.2 Multivariate Imputation by

Chained Equations

Multiple imputation (MI) (Rubin, 1987, 1996) is an
attempt to solve the problem that single imputation
leads to underestimation of variance (Harel and Zhou,
2007). However, in case of more than one variable
with missing values the approach needs to be able
to simultaneously impute multiple variables. There-
fore, MICE, also known as imputation by fully condi-
tional specification (FCS; van Buuren et al., 2006; van
Buuren, 2007; van Buuren and Groothuis-Oudshoorn,
2010; White et al., 2011), cycles through incomplete
variables to iteratively update imputed values until
convergence. It also enables a flexible specification of
predictive models without the need to specify a joint
distribution of the data. A repetition of the process
based on differing random seeds and initial values pro-
duces multiple imputed data sets.

3 Methods

3.1 Random Forests

Recursive partitioning is best described by the example
of the CART algorithm (Breiman et al., 1984). Corre-
sponding trees are made up by sequential binary splits
of the data that are supposed to produce subsets which
are as homogeneous as possible in terms of the out-
come. Breiman (1996) further enhanced the method
by “bagging” (bootstrap aggregation) and Random
Forests (Breiman, 2001; Breiman and Cutler, 2008).
For that purpose several trees are fit to bootstrapped
or subsampled data (bagging) and splits are performed
in random selections of variables (Random Forests).
This way a more diverse set of tree models contributes
to the joint prediction which leads to an improved per-
formance compared to single trees.

Predictions are found by averaged values or majority
votes of each single tree in a Random Forest. Likewise,
the so called ‘out of bag’ (OOB) samples, i.e. observa-
tions not used to fit the respective trees, can be used for
an unbiased estimate of a Random Forests error, viz.
the OOB-error. However, when there are missing val-
ues surrogate splits need to be employed. They mimic
the initial split of data as they try to archive the same
partitioning of complete observations. When several
surrogate splits are computed they can be ranked ac-
cording to their similarity to the initial split. Observa-
tions that contain more than a single missing value are
processed along this ranking until a decision is found.

The CART and the C4.5 algorithms (Quinlan, 1993),
and consequently all Random Forest algorithms based
on the same construction principles, are prone to bi-
ased variable selection (cf. Breiman et al., 1984; Strobl
et al., 2007; White and Liu, 1994; Kim and Loh, 2001;
Dobra and Gehrke, 2001; Hothorn et al., 2006). An al-
ternative approach presented by Hothorn et al. (2006)



follows the same rationale as Breiman’s original ap-
proach yet guarantees unbiased variable selection and
variable importance measures when combined with
subsampling (as opposed to bootstrap sampling; cf.
Strobl et al., 2007). Therefore, it will be used in the
following analyses.

3.2 A new variable importance mea-
sure for missing data

The permutation accuracy importance measure is a
popular means to assess a variables relevance in Ran-
dom Forests. It is computed by the difference of a trees
prediction accuracy before and after random permuta-
tion of a predictor variable. If the latter is related
to the response and further predictors the accuracy
is supposed to drop and the variable is termed to be
of relevance. However, the expression ‘relevance’ is
ambiguous. In terms of the original, unconditional
importance measure it incorporates informative vari-
ables and variables that are (cor-)related to informa-
tive ones. By contrast, a conditional version that more
closely resembles the behavior of partial correlation or
regression coefficients was introduced by Strobl et al.
(2008). Both kinds of measures can be of specific value
depending on the research question (Nicodemus et al.,
2010; Altmann et al., 2010). In this work the uncondi-
tional version is preferred for its sensitivity to relations
between variables that are supposed to be uncovered.

A general limitation is that the permutation impor-
tance measure can not be computed straightforward
when there are missing values. It is unclear how to
appropriately handle surrogate splits that contribute
to the computation of the accuracy in the permutation
scheme. A solution to this problem was introduced ear-
lier by a new importance measure (Hapfelmeier et al.,
2012). It is closely related to existing methodology,
and therefore retains appreciated properties, yet dif-
fers in one substantial aspect: The null hypothesis of
no relation to the response and other predictors is sim-
ulated as observations are randomly send to the daugh-
ter nodes when a parent node k is split in a variable
X that is of interest. In doing so, the respective prob-
ability, e.g. to be sent the left way, is given by the rel-
ative frequency py of observations that initially went
the same direction. The algorithm to compute the new
importance measure is now given by:

1. Compute the OOB accuracy of a tree.

2. Randomly assign each observation with py to the
child nodes if the parent node k is split in X.

3. Recompute the OOB accuracy of the tree (follow-
ing step 2).

4. Compute the difference between the original and
recomputed OOB accuracy.

5. Repeat step 1 to 4 for each tree and use the aver-
age difference over all trees as the overall impor-
tance score.

This procedure circumvents the necessity to directly
process missing values and solves any problems asso-
ciated with permutation. It is used in the following
simulation studies.

4 Variable selection

Many general ideas about variable selection (see Guyon
and Elisseeff, 2003, for an extensive listing) can be re-
discovered for Random Forests. Thus, an evaluation of
predictive performance is frequently used to determine
a best performing model from a set of Random Forests
(Diaz-Uriarte and Alvarez de Andrés, 2006; Genuer
et al., 2010; Jiang et al., 2004; Svetnik et al., 2004).
Therefore, the latter are usually constructed along a se-
quence of predictor variables that is determined by im-
portance measures. Besides apparent analogies there
are also many diversities considering the method(s)
used to assess prediction accuracy, the application of
sampling methods, the kind of importance measure,
the (re-)calculation of variable importances, the se-
quence of predictor variables, just to name some of
them (Hapfelmeier and Ulm, 2013, give a detailed dis-
cussion of approaches). As all of these methods incor-
porate sampling methods in some way they are classi-
fied as ‘performance-based approaches’ in the follow-
ing.

A very popular representative of this class is given
by the approach of Diaz-Uriarte and Alvarez de Andrés
(2006). In an initial step it computes the importance
measures of variables based on the entire data. In sub-
sequent steps the least important variables are sequen-
tially rejected and the OOB-errors of corresponding
Random Forests are recorded. The final model is cho-
sen to be the one with an error within a range of u
standard errors to the best performing one. Setting
u = 1 equals the ‘one-standard-error’ rule (‘1 s.e.” rule)
known from works about classification trees (Breiman
et al., 1984; Hastie et al., 2009). This approach will be
used for variable selection in the following analyses.

A second class of variable selection methods is ‘test-
based’ as it employs a permutation test framework to
estimate the significance of variable importances (see
Efron and Tibshirani, 1994; Good, 2005, 2000, for fur-
ther insight in principles). The basic concept is to
recompute a Random Forest and its importance mea-
sures after a predictor variable was permuted. This
procedure is repeated several times to assess the em-
pirical distribution of importance measures under the
null-hypothesis of independence between the predic-
tor variable and the response (and the remaining vari-
able space; see Hapfelmeier and Ulm, 2013, for corre-
sponding discussions. Just like the permutation im-
portance measure this procedure supports the identifi-



cation of variables that are (cor-)related to informative
variables.). The likelihood of the original importance
measures within these empirical distributions can be
used to compute p-values. Finally, variables with a
p-value beyond a certain threshold, e.g. < 0.05 are
selected.

Some approaches like those of Altmann et al. (2010);
Rodenburg et al. (2008); Tang et al. (2009); Wang
et al. (2010) suggest a simultaneous permutation of
entire groups of variables. However, the significance
of single importance measures can not be validly de-
termined this way. A solution which is just as fun-
damental as it might sound simple is to permute
a single variable when it comes to the assessment
of its significance; this is the second approach used
for variable selection in the following analyses. The
proper application of such methods has been pre-
sented and compared against established variable se-
lection methods earlier (Hapfelmeier and Ulm, 2013).
A major advantage of test-based approaches is that
they can be used to control for the test-wise error
rate (TWER = probability of a null-hypothesis to
be falsely rejected). Nevertheless, the application
of correction methods like the Bonferroni-Adjustment
or the Benjamini-Hochberg procedure (Benjamini and
Hochberg, 1995) can be used to control for the family-
wise error rate (FWER) and the false discovery rate
(FDR), respectively.

As there are many new and innovative proposals the
preceding classification does not claim to cover all of
the ongoing developments: For example Sandri and
Zuccolotto (2006) suggest the computation of impor-
tance measures on a four-dimensional scale. Yang and
Gu (2009) and Schwarz et al. (2007) try to handle
the high-dimensional data of genome wide association
studies (GWAS) as Random Forests are fit to changing
subsets of SNPs from which global importances are de-
termined. However, this work focuses on the examina-
tion of two representatives of the ‘performance-based’
and ‘test-based’ classes, i.e. the approaches of Diaz-
Uriarte and Alvarez de Andrés (2006) and Hapfelmeier
and Ulm (2013).

5 Simulation study

An extensive simulation study was set up to explore
which of complete case analysis, multiple imputation
by MICE and the new importance measure is most ca-
pable to support variable selection. This quality is
compared between two approaches meant to distin-
guish relevant from non-relevant variables; the latter
are defined to be non-informative and not correlated
to any informative variables. Two additional inves-
tigations will focus the predictive accuracy of Ran-
dom Forests in a simulated test dataset and the ability
of selection methods to control the TWER. Factors
like the amount of missing values, correlation schemes,
variable strength and different missing data generat-

ing processes are of major interest as they potentially
influence variable selection. A detailed explanation of
the setup is given in the following.

o Influence of predictor variables

The simulated data contained both, a classifica-
tion and a regression problem. Therefore, a cat-
egorical (binary) and a continuous response were
created in dependence of six variables with coefhi-
cients f3:

B=(1,1,0,1,1,0)".

Repeated values for g make it possible to com-
pare selection frequencies of variables which are,
by construction, equally important but show dif-
ferent correlations and contain different amounts
of missing values. In addition, the non-influential
variables with S = 0 help to investigate possible
undesired effects, serve as a baseline and are used
to check for the ability to control the TWER.

e Data generating models

A continuous response was modeled by means of
a linear model:

y=x'f+ e with e ~ N(0,1).

The binary response was drawn from a Bernoulli
distribution B(1l,7) where m was assessed by
means of a logistic model

ex' B

The variable set X itself contained 100 observa-
tions drawn from a multivariate normal distribu-
tion with mean vector fi = 0 and covariance ma-
trix X:

o Correlation

1 03 03 0 0 O

0.3 1 03 0 0 O

5 0.3 0.3 1 0 00
0o 0 01 00

0 0 0010

0o 0 00 01

As the variances of each variable are chosen to
be 1, the covariance equals the correlation in this
special case. The structure of ¥ reveals that there
are two blocks of three correlated and three un-
correlated variables.

e Missing values

Several missing data generating processes that
follow MCAR, MAR and MNAR schemes were
employed. For each, a given fraction m €
{0.0,0.1,0.2,0.3} of values is set missing for vari-
ables X5 and X5. Therefore, the average fraction



Table 1: List of the variables containing missing values
and variables determining the probability of missing
values.

contains missing values determines missing values

(MCAR, MAR & MNAR) (MAR) (MNAR)
XQ Xl X2
X5 X4 X5

of observations that contain at least one missing
value is 1— (1 — %omissing ) “iobles = 1—(1-0.3)% =
51% in case of m = 0.3. This is an amount not un-
likely to be observed in real life data which makes
m span a wide range of possible scenarios.

In MAR the probability for missing values can be
explained by observed information; e.g. by vari-
ables contained in the data. In MNAR, however,
it is unknown; e.g. as it may depend on the unob-
served values themselves. Accordingly, the prob-
ability of a missing value in variables X5 and X5
was determined by X; and X4 in MAR and by
their own values in MNAR. Table 1 illustrates the
corresponding relations.

The schemes for producing missing values are:

— MCAR: Values are randomly replaced by
missing values.

— MAR(rank): The probability of a value to
be replaced by a missing value rises with the
rank the same observation has in the deter-
mining variable.

— MAR(median): The probability of a value to
be replaced by a missing value is nine times
higher for observations whose value in the de-
termining variable is located above the cor-
responding median.

— MAR(upper): Those observations with the
highest values of the determining variable are
replaced by missing values.

— MAR(margins): Those observations with the
highest and lowest values of the determining
variable are replaced by missing values.

— MNAR(upper): The highest values of a vari-
able are set missing.

An independent test dataset of 5000 observations was
constructed the same way, though it did not contain
missing values, for an evaluation of predictive accu-
racy. The latter was assessed by the mean squared
error (MSE) which equals the misclassification error
rate (MER) in classification problems.

In summary, there were 2 variable selection meth-
ods and 2 response types investigated for 6 processes
to generate and 3 procedures to handle 4 different frac-
tions of missing values. This sums up to as much as
288 simulation settings. Each of them was repeated
1000 times.

5.1 Implementation

The R system for statistical computing (R Develop-
ment Core Team, 2011) was used to perform the sim-
ulation study. The package party (Hothorn et al.,
2008) provides unbiased Random Forests based on con-
ditional inference by the function cforest (). Its set-
tings were chosen to fit ntree = 100 trees for each
forest. Split nodes were determined from miry =
3 randomly selected variables. Depending on the
amount of variables left after each selection step the
number of surrogate splits was chosen to be maxi-
mally mazxsurrogate = 3. There were no restric-
tions on the significance of a split (mincriterion =
0) and trees were grown until terminal nodes con-
tained less than minsplit = 20 observations. Child
nodes had to contain at least minbucket = 7 ob-
servations. MICE is given by the function mice()
of the package mice (van Buuren and Groothuis-
Oudshoorn, 2010). It was used to produce five im-
puted datasets. A normal linear model was applied to
impute continuous variables, a logistic regression for
binary variables and a polytomous regression for vari-
ables with more than two categories; defaultMethod =
c¢("norm”, "logreg”, "polyreg”). Each variable was
part of the imputation models. The fraction of im-
puted data is approximately 1 — (1 — m)3, m €
{0.0,0.1,0.2,0.3}.

Variable selection methods were implemented fol-
lowing the descriptions of section 4. For the
performance-based approach the rejection steps were
limited to one variable a time. In addition, it was em-
powered to select no variables at all. Therefore the pre-
diction of a null-model, given by the majority vote of
classes (for binary outcomes) or the mean outcome (for
continuous outcomes) in the training data, was used to
compare its MSE against models fit to competing vari-
able sets. The test-based approach made use of 100
permutation runs. According p-values were assessed
for one-sided tests as only values on the right margin
of the empirical distribution of importance measures
(i.e. high values) provide evidence against the null-
hypothesis of a non-relevant variable. The significance
level was set to 5%.

6 Results

The following discussion presents results for the clas-
sification problem. Similar findings for the regression
problem are given by Figure 5 in the appendix.
Variable selection frequencies displayed in Figure 1
stress that the test-based approach performs superior
to the performance-based approach. The former se-
lects relevant variables, including variable 3 which is
non informative, yet correlated to informative vari-
ables, more often, independent of the amount of miss-
ing values. With reference to the non-relevant vari-
able 6, both approaches control for the TWER. As
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Figure 1: Variable selection frequencies observed for
the new importance measure. The horizontal dashed
line illustrates a TWER of 5% (m = % of missing
values in X5 and X5).

expected, the selection frequencies of variables 2 and 5
drop as they contain a rising amount of missing values.
Meanwhile variable 1 and 4 are chosen more frequently
by the performance-based approach. This can be seen
as the attempt to replace variables with missing in-
formation by other predictors (see Hapfelmeier et al.,
2012, for corresponding investigations). The same ef-
fect can not be observed for the test-based approach
which shows higher and rather stable selection frequen-
cies for these fully observed variables. There are minor
differences between variables 1 and 4, though they are
of the same strength. This is due to the fact that un-
conditional permutation importance measures, which
underly the applied selection methods, rate the rele-
vance of correlated variables higher than for uncorre-
lated ones (Strobl et al., 2008). In conclusion, there
are no apparent differences between the missing data
generating processes. The application of the new im-
portance measure for variable selection can be recom-
mended whenever the objective is to describe the data
situation at hand; i.e. under consideration of the rele-
vance a variable can take with all its missing values.
In the complete case analysis, illustrated by Figure
2, the performance-based approach is again outper-
formed by the test-based approach; while both control
for the TWER. However, there are some general find-
ings that question the quality of complete case analysis.
Thus, selection frequencies of the informative variables
1 and 4 drop with a rising fraction of missing values
in variables 2 and 5. One might argue that this is
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Figure 2: Variable selection frequencies observed for
the complete case analysis. The horizontal dashed line
illustrates a TWER of 5% (m = % of missing values
in X2 and X5)

caused by the general loss of information induced by
complete case analysis. However, in some cases (e.g.
MAR(margins)) this effect is carried to extremes as
variables 1 and 4 are even less frequently selected than
variables 2 and 5; while the latter are the ones that ac-
tually lost part of their information. There is no ratio-
nal justification for this undesirable property which is
present for any missing data generating process. Con-
sequently, complete case analysis is not recommended
for application as selection methods might not be ca-
pable to detect variables of true relevance.

Results for the application of multiple imputation
are given by Figure 3. Again, they reflect the superi-
ority of the test-based approach to the performance-
based approach; while both of them control the
TWER. Furthermore, imputation leads to rather sta-
ble selection frequencies of variables, independent of
the amount of missing values. However, a slight de-
crease can still be observed for variables 2 and 5 as
they loose information. This holds for each missing
data generating process except for MNAR(upper). It
is interesting to note that results for the latter resemble
those of Figure 1. Thus, the occurrence of missing val-
ues and the associated loss of information seems to di-
rectly affect selection frequencies when missing values
can not be appropriately imputed. Nevertheless, mul-
tiple imputation appears to be a well suited means to
select variables according to the relevance they would
have if the data was fully observed.

Prediction errors observed for the independent test
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Figure 3: Variable selection frequencies observed for
the imputed data. The horizontal dashed line illus-
trates a TWER of 5% (m = % of missing values in X5
and X5)

sample are displayed by Figure 4. They confirm
the superiority of the test-based approach to the
performance-based approach in terms of predictive ac-
curacy. This holds independent of the approach to
handle missing values, the amount of missing values
and the process to generate missing values. The lowest
MSE, which is almost stable for any fraction of miss-
ing values, was found for models fit to imputed data.
Variable selection that bases on the new importance
measure produced models that performed only slightly
worse. For this procedure the error increased with
an increasing number of missing values. This prop-
erty intensifies for the complete case analysis which
clearly produced the worst results for increased frac-
tions of missing values. Similar findings about the pre-
dictive accuracy of Random Forests when there is miss-
ing data have been published by Rieger et al. (2010);
Hapfelmeier et al. (2012b).

7 Conclusion

Variable selection with Random Forests is guided by
importance measures which are used to rate a vari-
ables relevance for prediction. There are several ap-
proaches like a new kind of importance measure, com-
plete case analysis and multiple imputation that en-
ables its application when the data contains missing
values. An extensive simulation study has been con-
ducted to investigate the ability of such approaches to
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Figure 4: MSE observed for the independent test sam-
ple. Outliers are not displayed for clarity (m = % of
missing values in X5 and X3).



discriminate relevant from non-relevant variables un-
der several missing data generating processes. Com-
plete case analysis appeared to provide inaccurate vari-
able selection as the occurrence of missing values inap-
propriately penalized the selection of informative and
fully observed variables. Accordingly, it lead to models
that showed the worst prediction accuracies. Selection
methods that based on the application of a new impor-
tance measure were much more able to reflect the data
situation at hand. Thus, fully observed variables were
selected constantly and considerably more often than
those with missing values. The prediction accuracy
of corresponding Random Forests was much higher
than for complete case analysis. Multiple imputation
also showed constant selection frequencies, that could
be called most accurate if the objective was to rate
the relevance a variable would have in fully observed
data. For any simulation setting and any approach to
handle missing values the test-based variable selection
method performed superior to the performance-based
approach.

There is a clear recommendation for the application
of approaches: One should not use complete case anal-
ysis because of inaccurate selection properties. Ap-
proaches that base on the new kind of importance mea-
sure should be used if one is interested in a selection of
variables that reflects their relevance under considera-
tion of the given information. By contrast, imputation
methods are best used for the selection of variables
that would be of relevance in the hypothetical scenario
of fully observed data.
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A Supplementary Material

Results for the regression problem are presented in Fig-
ure 5. They underline the findings for the classifica-
tion problem. However, it has to be pointed out that
the performance-based variable selection approach has
originally been suggested for classification problems. If
the 1 s.e. rule was adapted according to a suggestion
of Breiman et al. (1984) it could be used for regression
problems, too. Yet, in order to stick close to the orig-
inal definition the 0 s.e. rule was executed here. As a
consequence, differences between variable selection ap-
proaches were less pronounced. For the performance-
based approach this came at the cost of an increased
TWER.
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B R-Code

# load required packages
library ("party"); attach(asNamespace("party")); library(mvtnorm); library(mice)

# Function to perform test based variable selection
test.based <- function(Y, X, nperm = 100, ntree = 100, alpha = 0.05) {
# Y: response, X: predictors, nperm: number of permutations,
# ntree: number of trees to be fit, alpha: significance level
mtry <- ceiling(sqrt(ncol(X))) # mtry defaults to the square root of predictors

dat <- cbind(Y, X); names(dat) <- c("response", paste("V", 1:ncol(X), sep = ""))

# build an initial forest and record its variable importances

forest <- cforest(response ~ ., data = dat, controls = cforest_unbiased(mtry = mtry, ntree = ntree,
maxsurrogate = min(3, ncol(X) - 1)))

obs.varimp <- varimp(forest)
selection <- names (obs.varimp)
# create a matrix that will contain the variable importances after permutation
perm.mat <- matrix(NA, ncol = length(selection), nrow = nperm, dimnames = list(l:nperm, selection))
# each variable is permuted, a new tree is build and the variable importance is recorded
for (j in selection) {
perm.dat <- dat
for (i in 1:nperm) {
perm.dat[, j]l <- sample(perm.dat[, jl)
perm.forest <- cforest(response ~ ., data = perm.dat, controls = cforest_unbiased(mtry = mtry,
ntree = ntree, maxsurrogate = min(3, ncol(X) - 1)))
perm.mat[i, j] <- varimp(perm.forest)[j]
1
# compute p-values
p.vals <- sapply(selection, function(x) sum(perm.mat[, x] >= obs.varimp[x]) / nperm)
# variables with a significant p-value are selected for the final forest
if (any(p.vals < alpha)) {
selection <- names(p.vals) [which(p.vals < alpha)]
mtry <- ceiling(sqrt(length(selection)))

forest <- cforest(as.formula(paste("response", paste(selection, collapse = " + "), sep =" ~ ")),
data = dat, controls = cforest_unbiased(mtry = mtry, ntree = ntree,
maxsurrogate = min(3, length(selection) - 1)))
}

if (lany(p.vals < alpha)) {selection <- c(); forest <- c(O}
# the out of bag error is computed

oob.error <- ifelse(length(selection) != 0, mean((as.numeric(as.character(Y)) -
as.numeric (as.character (predict(forest, 00B = T))))"2),
mean ((as.numeric(as.character(Y)) - ifelse(all(Y %in% 0:1),
round (mean (as.numeric (as.character(Y)))), mean(Y)))"2))
return(list("selection" = selection, "forest" = forest, "oob.error" = oob.error))

}

# Function to perform performance based variable selection
performance <- function(Y, X, ntree = 100) {
# Y: response, X: predictors, ntree: number of trees to be fit
mtry <- ceiling(sqrt(ncol(X))) # mtry defaults to the square root of predictors

dat <- cbind(Y, X); names(dat) <- c("response", paste("V", 1:ncol(X), sep = ""))

# build an initial forest and record its variable importances

forest <- cforest(response ~ ., data = dat, controls = cforest_unbiased(mtry = mtry, ntree = ntree,
maxsurrogate = min(3, ncol(X) - 1)))

selections <- list() # list that contains the names of variables at each size of the forest

selections [[ncol(X)]] <- names(sort(varimp(forest), decreasing = T))

errors <- c() # vector of errors at different sizes of the forest
for (i in ncol(X):1) { # backward elimination of predictors
mtry <- ceiling(sqrt(i))

forest <- cforest(as.formula(paste("response", paste(selections[[i]], collapse = " + "), sep = " ~ ")),
data = dat, controls = cforest_unbiased(mtry = mtry, ntree = ntree,
maxsurrogate = min(3, i - 1)))
errors[i] <- mean((as.numeric(as.character(Y)) - as.numeric(as.character(predict(forest, 00B = T))))"2)
if (i > 1) selections[[i - 1]] <- selections[[i]][-i]
}
errors <- c(mean((as.numeric(as.character(Y)) - ifelse(all(Y %in% 0:1),

round (mean (as.numeric (as.character(Y)))), mean(Y)))"2), errors)
# optimum tree size according to the 1 s.e. or 0 s.e. rule
optimum.number <- which(errors <= min(errors) + 1 * ifelse(all(Y %in% 0:1),

sqrt (min(errors) * (1 - min(errors)) / nrow(X)), 0)) [1]

if (optimum.number == 1) {forest <- c(); selection <- c()}

if (optimum.number 1 1

selection <- selections[[optimum.number - 1]]

forest <- cforest(as.formula(paste("response", paste(selection, collapse = " + "), sep = " ~ ")),
data = dat, controls = cforest_unbiased(mtry = mtry, ntree = ntree,
maxsurrogate = min(3, length(selection) - 1)))

}

oob.error <- errors[optimum.number] # the out of bag error is computed

return(list("selection" = selection, "forest" = forest, "oob.error" = oob.error))

}

# function to create the data

create.dat <- function(coefs = c¢(1,1,0,1,1,0), n = 100, sigma = NULL, regression = F, error = 0.5) {
if (is.null(sigma)) sigma <- diag(length(coefs))
if (length(coefs) != nrow(sigma)) stop("dimension of coefs and sigma are not allowed to differ")
dat <- rmvnorm(n, sigma = sigma)
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x.beta <- dat %*% coefs

dat <- as.data.frame(dat)

if (regression == T) dat$response <- x.beta + rnorm(n, O, error)

else dat$response <- as.factor(rbinom(n, 1, exp(x.beta) / (1 + exp(x.beta))))
return (dat)

}

# function used for the simulation analysis
myfunc <- function(dat.test, sigma) {
# dat.test: test data frame, sigma: covariance matrix used to build the training data
dat.train <- create.dat(sigma = sigma) # training data
# lists that will contain the variable selections and corresponding errors
TB <- PB <- lapply(1:6, function(x) array(0, dim = c(6, 4, 3),

dimnames = list(paste("V", 1:6, sep = ""), 0:3, c("sur", "cc", "imp"))))
TB.error <- PB.error <- lapply(1:6, function(x) matrix(0, nrow = 3, ncol = 4,
dimnames = list(c("sur", "cc", "imp"), 0:3)))

y.test <- as.numeric(dat.test$response)
for (m in 1:4) { # 4 fractions of missing values
dat.mis <- lapply(1:6, function(x) dat.train) # 6 missing data generating processes

if (m != 1)
for (k in c("V2", "vV5")) {
ind <- switch(k, "V2" = "Vi", "Y5" = "y4")

# induce missing values MCAR, MAR(rank), MAR(median), MAR(upper), MAR(margins), MNAR(upper)
ind.2 <- list(sample(1:100, (m-1)#*.1%100),
sample (1:100, (m-1)*.1%100, prob = rank(dat.mis[[2]][,ind]) / 5050),
sample (1:100, (m-1)*.1%x100, prob = ifelse(dat.mis[[3]][,ind] >=
median(dat.mis[[3]]1[,ind]), .9, .1)),
dat.mis[[4]]1[,ind] >= sort(dat.mis[[4]][,ind], decreasing = T)[(m-1)*.1%100],
dat.mis [[6]]1[,ind] >= sort(dat.mis[[5]][,ind], decreasing = T)[(m-1)*.1%100/2] |
dat.mis[[5]]1[,ind] <= sort(dat.mis[[5]11[ ,ind]l) [(m-1)*.1%x100/2],
dat .mis[[6]][,k] >= sort(dat.mis[[6]][,k], decreasing = T)[(m-1)*.1%100])
for (1 in 1:6) {is.na(dat.mis[[1]][, k])[ind.2[[1]]] <- TRUE}
13
for (j in 1:6) { # perform variable selection for 6 missing data generating processes
Tb <- test.based( dat.mis[[jl]l$response, dat.mis[[jI1I[, 1:6]1)
Pb <- performance(dat.mis[[j]l]$response, dat.mis[[jII[, 1:6])
y.mis <- dat.mis[[jl]$response
if ('is.null(Tb$selection)) {
TB[[jlIl[Tb$selection, m, 1] <- 1
TB.error [[j11[1, m] <- mean((y.test - as.numeric(predict(Tb$forest, newdata = dat.test)))"2)}
else TB.error[[j]]1[1, m] <- mean((y.test - round(mean(as.numeric(y.mis))))"2)
if (!is.null(Pb$selection)) {
PB[[j]l][Pb$selection, m, 1] <- 1
PB.error[[j11[1, m] <- mean((y.test - as.numeric(predict(Pb$forest, newdata = dat.test)))"2)}
else PB.error[[jl]1[1, m] <- mean((y.test - round(mean(as.numeric(y.mis))))"2)
if (m > 1) {
# perform variable selection with a complete case analysis
y.mis <- na.omit(dat.mis[[j]])$response
x.mis <- na.omit(dat.mis[[j]])[, 1:6]
Tb <- test.based(y.mis, x.mis)
Pb <- performance(y.mis, x.mis)
if ('is.null(Tb$selection)) {
TB[[jlI[Tb$selection, m, 2] <- 1
TB.error [[j11[2, m] <- mean((y.test - as.numeric(predict(Tb$forest, newdata = dat.test)))"2)}
else TB.error[[j1]1[2, m] <- mean((y.test - round(mean(as.numeric(dat.mis[[jl]$response))))"2)
if (!is.null(Pb$selection)) {
PB[[j]l][Pb$selection, m, 2] <- 1
PB.error [[j1]1[2, m] <- mean((y.test - as.numeric(predict(Pb$forest, newdata = dat.test)))"2)}
else PB.error[[jl]1[2, m] <- mean((y.test - round(mean(as.numeric(dat.mis[[jl]$response))))"2)
# perform variable selection with multiple imputation
imp.dat <- mice(dat.mis[[j]], printFlag = F, defaultMethod = c("norm", "logreg", "polyreg"))

Tb <- lapply(1:5, function(x) test.based(complete(imp.dat, x)$response, complete(imp.dat, x)[, 1:6]))
Pb <- lapply(1:5, function(x) performance(complete(imp.dat, x)$response, complete(imp.dat, x)[,1:6]))
TBI[[j11[, m, 3] <- rowSums(sapply(Tb, function(x) table(x$selection) [paste("V", 1:6, sep = "")1),
na.rm = T) / 5
TB.error [[j]]1[3, m] <- mean(sapply(Tb, function(x) {
if (!is.null(x$selection)) {
mean ((y.test - as.numeric(predict(x$forest, newdata = dat.test)))" 2)}
else {mean((y.test - round(mean(as.numeric(dat.mis[[jl]l$response)))) "2)3}))
PBI[j]1I[, m, 3] <- rowSums(sapply(Pb, function(x) table(x$selection) [paste("V", 1:6, sep = "")1),
na.rm = T) / 5
PB.error [[j]][3, m] <- mean(sapply(Pb, function(x) {
if ('is.null(x$selection)) {
mean ((y.test - as.numeric(predict(x$forest, newdata = dat.test)))"2)}
else {mean((y.test - round(mean(as.numeric(dat.mis[[jl]l$response)))) "2)}}))
33}
for (j in 1:6) { # processes do not differ when there are no missing values
TBL[j11C, 1, 1 <- TBLC[111[, 1, 11; TB.error [[jl1I[, 11 <- TB.error [[1]1]1[1, 1]
PB[[j11[, 1, 1 <- PB[[1]1]1[, 1, 1]; PB.error[[jl]1[, 1] <- PB.error[[1]][1, 1]
}
return(list (Test.Based = TB, Test.Based.error = TB.error, Perf.Based = PB, Perf.Based.error = PB.error))

}

set.seed (1234) # set a random seed for reproducibility of results

sig <- diag(6); sigl[1:3, 1:3] <- 0.3; diag(sig) <- 1 # create covariance matrix

mydat.test <- create.dat(n = 5000, sigma = sig, regression = F) # create the test data

result <- lapply(1:1000, function(x) myfunc(dat.test = mydat.test, sigma = sig)) # run the simulation
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