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Abstract The permafrost organic carbon (OC) stock is of global significance because 31 

of its large pool size, and the potential positive feedback to climate warming. 32 

However, due to the lack of systematic field observations and appropriate upscaling 33 

methodologies, substantial uncertainties exist in the permafrost OC budget, which 34 

limits our understanding of the fate of frozen carbon in a warming world. In particular, 35 

the lack of comprehensive estimates of OC stocks across alpine permafrost means that 36 

current knowledge on this issue remains incomplete. Here we evaluated the pool size 37 

and spatial variations of permafrost OC stock to 3 metres depth on the Tibetan Plateau 38 

by combining systematic measurements from a substantial number of pedons (i.e., 39 

342 three-metre-deep cores and 177 50-cm-deep pits) with a machine learning 40 

technique (i.e., support vector machine, SVM). We also quantified uncertainties in 41 

permafrost carbon budget by conducting a Monte Carlo simulation. Our results 42 

revealed that the combination of systematic measurements with the SVM model 43 

allowed spatially explicit estimates to be made. The OC density (OC amount per unit 44 

area, OCD) exhibited a decreasing trend from the southeastern to the northwestern 45 

plateau, with the exception that OCD in swamp meadows was substantially higher 46 

than that in surrounding regions. Our results also demonstrated that Tibetan 47 

permafrost stored a large amount of OC in the top 3 metres, with the median OC pool 48 

size being 15.31 Pg C (interquartile range: 13.03-17.77 Pg C). 44% of OC occurred in 49 

deep layers (i.e., 100-300 cm), close to the proportion observed across the northern 50 

circumpolar permafrost region. The large carbon pool size, together with significant 51 

permafrost thawing suggests a risk of carbon emissions and positive climate feedback 52 

across the Tibetan alpine permafrost region.  53 
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Introduction 54 

The permafrost region is widely distributed across high-latitude and high-altitude 55 

regions, covering 24% of the total land area of the Northern Hemisphere (Zhang et al., 56 

1999). Due to accumulation of remnants of plants and animals over thousands of 57 

years, these frozen soils have sequestered substantial quantities of organic matter 58 

(Hugelius et al., 2014). It has been reported that permafrost OC stock accounts for 59 

more than half of the global soil OC stock (Jobbagy & Jackson, 2000; Carvalhais et 60 

al., 2014), equivalent to the sum of OC stored in vegetation and the atmosphere 61 

(Hugelius et al., 2014). Because of cryogenic (freeze-thaw) mixing and repeated 62 

sediment deposition, more than half of the organic carbon (OC) is buried in deep 63 

permafrost sedimentary deposits (Schirrmeister et al., 2002; Grosse et al., 2011; 64 

Hugelius et al., 2014). The tremendous amount of OC, especially those stored at depth 65 

(> 1 m) in permafrost is of global significance because of its potential positive 66 

feedback to climate change with warming and associated permafrost thawing (Koven 67 

et al., 2015a). During the last few decades, permafrost regions have experienced 68 

significant climate warming (Schuur et al., 2015), with widespread occurrence of 69 

permafrost thawing such as active layer deepening and thermal erosion (Grosse et al., 70 

2011). These thawing processes could result in a high emission risk of frozen carbon 71 

stored at greater depths (Strauss et al., 2013). The conversion of a small fraction of 72 

this frozen carbon stock into greenhouse gases and their release into the atmosphere 73 

could trigger significant positive feedback to climate warming (Whiteman et al., 2013; 74 

Koven et al., 2015b). Therefore, reliable evaluation of the permafrost OC stock will 75 

help to quantify the risk and to better predict the direction and strength of the 76 

carbon-climate feedback (Schuur et al., 2015). 77 

 78 
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The permafrost carbon stock has received increasing attention among the global 79 

change research community, with three representative studies available at regional and 80 

circumpolar scales. Regionally, using actual measurements derived from 117 locations 81 

together with previously published data from 22 sites, Ping et al. (2008) presented the 82 

one-metre-deep OC stock estimation of 98.2 Pg C across the North American Arctic 83 

region. Over a broader geographical scale, Tarnocai et al. (2009) used the Northern 84 

Circumpolar Soil Carbon Database (NCSCD), to estimate for the first time, OC stock 85 

to a depth of 3 metres across the northern circumpolar permafrost region to be 1024 86 

Pg C. Recently, Hugelius et al. (2014) updated the estimate to 1035 Pg C by adding 87 

more three-metre-deep pedons and also a detailed uncertainty analysis. These budget 88 

studies have clearly depicted the basic characteristics of permafrost carbon stock; 89 

however, large uncertainties remain because of the following three constraints. First, 90 

despite decades of effort, inadequate and uneven distributions of pedon observations 91 

are the most important limiting factor, especially for the deep soil or deposits. For 92 

instance, the widely-used NCSCD database contains only 46 three-metre-deep pedons 93 

(Tarnocai et al., 2009). The recently updated version of this database (NCSCDv2) 94 

includes 524 and 356 pedons for the 200 and 300 cm depths, respectively (Fig. 1a), 95 

which could be expected to reduce uncertainties in permafrost OC budget (Hugelius et 96 

al., 2014). However, given the vast area and diverse landscapes across permafrost 97 

regions, as well as the clustered patterns of the sampling sites (Mishra et al., 2013), 98 

the scarcity of pedon observations, especially at three-meter depth, remains the largest 99 

source of uncertainty in the permafrost OC budget (Mishra et al., 2013; Hugelius et 100 

al., 2014). 101 

 102 

Second, the lack of effective upscaling approaches introduces substantial uncertainties 103 
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in both magnitude and spatial patterns of the estimated OC stock. Most previous 104 

budget studies were performed by grouping and averaging point observations of OC 105 

density (OCD) into thematic classes according to landscape units (Ping et al., 2008) or 106 

soil mapping units (Tarnocai et al., 2009; Hugelius et al., 2014), and then multiplying 107 

by the areal extent of the thematic classes. Nonetheless, large spatial heterogeneity, 108 

along with scarce pedon observations can lead to significant errors with this kind of 109 

simple averaging (Mishra et al., 2013). With the rapid development of computers and 110 

related technology, machine learning techniques such as artificial neural networks (Li 111 

et al., 2013) and support vector machines (SVM) (Ueyama et al., 2013; Were et al., 112 

2015), have become effective tools to predict spatial patterns of soil physical and 113 

chemical properties. Compared with traditional statistical models, machine learning 114 

techniques are advantageous because they do not depend on the assumption that data 115 

should be drawn from a given probability distribution (Drake et al., 2006). Machine 116 

learning techniques are able to overcome non-linearity and over-fitting problems that 117 

usually occur in multivariate regression models (Were et al., 2015). Despite these 118 

recognized strengths, applications of these techniques in regional carbon budgets are 119 

seldom reported (Tor-Gunnar & Leigh, 2013; Were et al., 2015). 120 

 121 

Third, most previous budget studies were confined to high-latitude regions, with 122 

significant knowledge gaps for high-altitude regions. Although some studies have 123 

been conducted (e.g., Mu et al., 2015), a comprehensive evaluation of the pool size 124 

and spatial patterns of permafrost OC stock across alpine regions remains elusive. In 125 

particular, the permafrost OC stock across alpine regions has not been combined with 126 

the Northern Circumpolar Soil Carbon Database (NCSCD) to evaluate the Northern 127 

Hemisphere permafrost carbon stock (Fig. 1a). Given the extensive distribution of 128 
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permafrost in alpine regions (Zhang et al., 1999), exclusion of this component from 129 

northern hemisphere permafrost carbon syntheses renders our understanding of global 130 

permafrost carbon stock incomplete. 131 

 132 

The Tibetan Plateau is the largest high-altitude permafrost region, accounting for 133 

approximately three quarters of the total area of alpine permafrost in the Northern 134 

Hemisphere (Wang & French, 1995). Similar to other permafrost regions around the 135 

world, significant climate warming (Wang et al., 2008) and consequent permafrost 136 

thawing (Li et al., 2012; Wu et al., 2015) have occurred on the plateau during recent 137 

decades. These characteristics, together with high sensitivity of permafrost OC to 138 

climate warming (Strauss et al., 2013; Schaedel et al., 2014), make the plateau an 139 

ideal platform for permafrost carbon studies. To date, several studies have evaluated 140 

OC stocks at various depths across the plateau. For instance, by combining extensive 141 

field observations with a high-resolution satellite dataset, Yang et al. (2008) evaluated 142 

OC stock in the top one metre across alpine grasslands on the plateau, amounting to 143 

7.36 Pg C. That study provided the scientific basis for understanding the pool size of 144 

the permafrost carbon stock in alpine regions, and has been widely cited by the global 145 

change research community. However, this estimation is confined to the top soil layer 146 

(0-100 cm), leaving deep OC in frozen sediment unquantified. In fact, OC stored in 147 

deep layers (> 100 cm) could account for nearly half of the total OC stock in the top 148 

three metres (Hugelius et al., 2014). To address this issue, a recent study by Mu et al. 149 

(2015) integrated 11 new deep sediment cores with previously published 150 

measurements, and estimated the 25-metre-deep OC stock to be 160 Pg C on the 151 

plateau, with a three-metre-deep stock of 33 Pg C. Nevertheless, the deep OC stock 152 

estimated by Mu et al. (2015) still suffers from considerable uncertainties, since deep 153 
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pedon observations are absent for most parts of the plateau (Fig. 1b). Moreover, the 154 

deep OC stock estimated by Mu et al. (2015) lacks a spatially explicit pattern and a 155 

detailed uncertainty analysis. Therefore, a large-scale systematic field investigation on 156 

permafrost carbon stock, including those within deep layers, is necessary to gain a 157 

spatially explicit estimation of OC stock on the plateau. 158 

 159 

To evaluate the size and spatial patterns of three-metre-deep permafrost OC stocks on 160 

the plateau, we conducted two-year field sampling campaigns and obtained samples 161 

from 342 three-metre-deep sediment cores and 177 50-cm-deep soil pits across 173 162 

sampling sites. By combining a high-resolution satellite dataset with interpolated 163 

meteorological and edaphic datasets, we then extrapolated site-level measurements of 164 

OCD to the regional scale using a support vector machine (SVM) model. We further 165 

evaluated uncertainties in regional carbon budget by conducting Monte-Carlo 166 

simulations. Specifically, our objectives were to: (1) develop a suite of methodologies 167 

to quantify the three-metre-deep OC stock with a detailed uncertainty analysis, and (2) 168 

quantify the pool size and spatial distribution of permafrost carbon stock on the 169 

Tibetan Plateau. 170 

 171 

Materials and Methods 172 

Study area 173 

This study was conducted on the Tibetan Plateau (Fig. 1b), which is a vast elevated 174 

plateau on the Earth, with an average elevation of 4000 m above sea level (Yang et al., 175 

2008). The plateau has the largest extent of permafrost in the low-middle latitudes of 176 

the world, with a permafrost area of ~1.35×10
6
 km

2
, covering 67% of the plateau area 177 

(Mu et al., 2015). The average active layer thickness is 2.4 m with a range of 1.3-3.5 178 
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m along the Qinghai-Tibetan Highway (Pang et al., 2009). Similar to other permafrost 179 

regions around the world, Tibetan permafrost has experienced significant thawing, 180 

such as increased active layer thickness (Wu & Zhang, 2010) and thermal erosion (Fig. 181 

1d). The climate is characterized as cold and dry across the main body of the plateau. 182 

Mean annual temperature (MAT) ranges between -4.9 and 6.1 
o
C, and mean annual 183 

precipitation (MAP) ranges from 84.3 to 593.9 mm, about 90% of which falls within 184 

the growing season from May to September. The permafrost regions are mainly 185 

covered by three grassland types, including the alpine steppe, alpine meadow and 186 

swamp meadow. The dominant species are Stipa purpurea and Carex moorcroftii in 187 

the alpine steppe, Kobresia pygmaea and K. humilis in the alpine meadow, and K. 188 

tibetica in the swamp meadow, respectively (Yang et al., 2015). 189 

 190 

Site-level measurements 191 

During the summers (July and August) of 2013 and 2014, we collected 519 pedons 192 

from 173 sampling sites throughout the geographical extent of alpine grasslands on 193 

the Tibetan Plateau (Fig. 1b). The sampling sites covered broad climatic gradients and 194 

major grassland types across the study area. Of all sampling sites, 91 sites were from 195 

alpine steppe, 75 sites were from alpine meadow, and 7 sites were from swamp 196 

meadow. To better characterize the spatial heterogeneity of OCD in swamp meadow, 197 

we supplemented unpublished data from extra 36 profiles at 12 sampling sites on the 198 

plateau (three replications within each site, collected by Prof. Jingyun Fang’s group). 199 

At each site, we set up five 1 m × 1 m quadrats located at each corner and the centre 200 

of a 10 m × 10 m plot. For each quadrat, aboveground biomass was clipped at the 201 

ground level and pooled. Pedon samples were collected within three quadrats along a 202 

diagonal line of the plot. Specifically, of all the 173 sampling sites, 342 boreholes 203 
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from 114 sites were drilled at depths of 0-10, 10-20, 20-30, 30-50, 50-70, 70-100, 204 

100-150, 150-200, 200-250 and 250-300 cm (Fig. 1c). Due to the pretty high cost of 205 

deep pedon sampling, 177 pits from 59 sites, at depths of 0-10, 10-20, 20-30 and 206 

30-50 cm, were then excavated on the northwestern plateau. Bulk density samples 207 

were obtained for each pit using a standard container with a fixed volume size of 100 208 

cm
3
, while bulk density samples were not available for those deep cores due to 209 

practical constraints. To obtain bulk density for pedon samples derived from 342 210 

boreholes, we additionally sampled 51 natural soil vertical sections at the same depths 211 

as the boreholes from 17 sites using a standard container with 100 cm
3
 in volume. 212 

Bulk density was calculated as the ratio of the oven-dry soil mass to the container 213 

volume. We then developed an empirical relationship between measured bulk density 214 

and the related OC content derived from the 51 natural soil profiles (Fig. S1) to 215 

predict bulk density for deep cores (e.g., Post et al., 1982; Yang et al., 2009).  216 

 217 

In the laboratory, all samples were indoor air-dried, sieved (2 mm mesh), and 218 

handpicked to remove fine roots for subsequent measurements. Soil texture (i.e. clay 219 

content, silt content, and sand content) was measured using a particle size analyser 220 

(Malvern Masterizer 2000, UK) after removal of organic matter and calcium 221 

carbonates. Total carbon (TC) content was measured using an elemental analyser 222 

(Vario EL Ш, Elementar, Germany). Inorganic carbon (IC) content was determined 223 

with a carbonate content analyser (Eijkelkamp 08.53, Netherlands). Organic carbon 224 

(OC) content was then obtained by subtracting IC from TC. OC density (OCD) for a 225 

given depth was calculated using Eq.1: 226 

𝑂𝐶𝐷 =  ∑ 𝑇𝑖

𝑛

𝑖=1

×  𝐵𝐷𝑖 ×  𝑂𝐶𝑖 ×
(1 −  𝐶𝑖)

100
          (1) 
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where OCD, Ti, BDi, OCi, and Ci are OC density (kg C m
-2

), soil thickness (cm), bulk 227 

density (g cm
-3

), OC (g kg
-1

) content, and volume percentage of the fraction > 2 mm 228 

at layer i, respectively (Yang et al., 2008). Notably, volumetric OC content in kg C 229 

m
-3

 was also calculated for easy comparison with other studies (Table S1). 230 

 231 

Model inputs 232 

To obtain climate dataset across the study area, we compared four widely-used 233 

interpolation methods based on r
2
 and root mean square errors (RMSEs). Given that 234 

the Cokriging interpolation displayed the best performance across the four methods 235 

(Fig. S2), we chose this method using altitude as a covariant to retrieve MAT and 236 

MAP from 2010 to 2014 for each sampling site, and also their spatial distributions at a 237 

resolution of 10 km ×10 km. The climate records from 73 weather stations on the 238 

plateau were obtained from the China Meteorological Administration 239 

(http://cdc.nmic.cn/home.do). Likewise, the spatially gridded database of soil texture 240 

was obtained using Kriging interpolations. The interpolation analyses were performed 241 

using the Geostatistical Toolbox of ArcMap 10.0 (Environmental Systems Research 242 

Institute, Inc., Redlands, CA, USA). 243 

 244 

Enhanced vegetation index (EVI) is a remotely-sensed vegetation index, which is 245 

designed to represent vegetation biomass that can be measured from earth-orbiting 246 

satellites, aircraft, or with field instruments (Goward et al., 1985; Huete et al., 2002). 247 

It has been reported that the growing season’s EVI was also closely correlated with 248 

OC density in Tibetan alpine grasslands (Yang et al., 2008). The moderate resolution 249 

imaging spectroradiometer (MODIS) EVI data were obtained from the United States 250 

Geological Survey (USGS) (http://modis.gsfc.nasa.gov/), with a spatial resolution of 251 

http://cdc.nmic.cn/home.do
http://modis.gsfc.nasa.gov/
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250 m × 250 m for every 16-day interval, over the period 2010-2014. We then 252 

developed the monthly composites from the original EVI data using the Maximum 253 

Value Composition (MVC) method proposed by Holben (1986), and further 254 

resampled to 10 km × 10 km resolution. The monthly EVI data were subsequently 255 

averaged over the growing season from May to September to generate seasonal 256 

values. 257 

 258 

Model predictions 259 

Support vector machine (SVM), a machine learning method, uses kernel functions to 260 

construct an optimal hyperplane in a high- or infinite-dimensional space (Burges, 261 

1998; Drake et al., 2006). The new optimal hyperplane, where complex non-linear 262 

patterns can be simply represented, can be used to separate classes (i.e., classification), 263 

or fit data and make predictions (i.e., support vector regression) with minimal 264 

empirical risk and complexity of the modelling function (Nello & John, 2000). In this 265 

study, combined with the MODIS-EVI dataset, climatic and edaphic properties, 266 

support vector regression was conducted to predict permafrost carbon stock on the 267 

Tibetan Plateau. The ‘e1071’ package in the software R was used to perform SVM 268 

analysis (R version 3.1.1, R Development Core Team, 2014), and the source code was 269 

provided in Appendix 1. 270 

 271 

To remove the effects of outliers on the models, we excluded outliers as detected by 272 

Q-Q normal test of the residuals and Cook’s distance of the SVM model and the 273 

subsequent nonlinear model. Two sites were detected and excluded from the final 274 

simulation. Given that SVM model underestimated OCD in the azonal swamp 275 

meadow, we stratified this grassland type out of the model prediction, averaged pedon 276 
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observations of OCD (57 pedons from 19 sites) and multiplied by its area to estimate 277 

OC stock for the swamp meadow. For the alpine steppe and alpine meadow, we first 278 

simulated spatial distributions of OCD in the top 50 cm using a SVM model, and then 279 

extrapolated them to obtain OCD at depths of 0-100, 0-200 and 0-300 cm based on 280 

the relationships between OCD at 50-cm-depth and the corresponding values at other 281 

depths (Fig. 2).  282 

 283 

To construct input variables for the SVM training, a statistical screening was 284 

performed to select potential regressors. Specifically, we first quantified relative 285 

contributions of the regressors using the Lindeman-Merenda-Gold (LMG) method 286 

(Fig. S3). It decomposes r
2
 into non-negative contributions that automatically sum to 287 

the total r
2
, with bootstrap confidence intervals to assess stability of the ranking 288 

(Lindeman et al., 1980). We then detected the collinearity among the input variables. 289 

Both clay and silt content were excluded from the SVM model due to high variance 290 

inflation factors (VIFs≥10) (Were et al., 2015). After screening, the final predictors 291 

entered the SVM model included EVI, sand content, MAT, and MAP. 292 

 293 

During the model training, the grid search method (Kavzoglu & Colkesen, 2009) was 294 

carried out to identify the best parameters (cost = 100, gamma = 0.001). A final SVM 295 

model was then developed using these best parameters. To test the predictive ability of 296 

the model, “leave-one-out” cross-validation was conducted. The high r
2
 and small 297 

RMSE suggest the efficiency and fidelity of the SVM model (Fig. 3a). The SVM 298 

model were further used to predict OCD in the top 50 cm based on the spatially 299 

gridded input datasets covering the whole region of interest, except for the swamp 300 

meadow. 301 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 −  𝑦̂𝑖)2

𝑛

𝑖=1

            (2) 

where RMSE represents the root mean square error, n is sample size, iy  and ˆ
iy302 

display measured and predicted values, respectively. 303 

 304 

To further generate spatial distributions of OCD in deep layers across the alpine 305 

steppe and alpine meadow, we established nonlinear models between OCD in the top 306 

50 cm and OCD at 0-100, 0-200 and 0-300 cm depths. Given the close relationships 307 

between them (r
2
 ranges from 0.68 to 0.94, Fig. 3b-d), these nonlinear models were 308 

then used to extrapolate OCD from surface to deep layers. 309 

 310 

Uncertainty analysis 311 

Monte Carlo methods are a broad class of computational algorithms which rely on 312 

repeated random sampling to obtain numerical results (Rubinstein & Kroese, 2007). 313 

Of them, Monte Carlo simulation relies on the process of explicitly representing 314 

uncertainties by specifying inputs as probability distributions (Chew & Walczyk, 315 

2012). In this study, Monte Carlo simulation was used to quantify potential errors 316 

derived from the following three sources: (i) uncertainties introduced by interpolating 317 

site-level meteorological and edaphic measurements to obtain the spatially gridded 318 

datasets, (ii) the measured errors of the EVI dataset, and (iii) uncertainties in 319 

predicting OCD in the top 50 cm using the SVM model and subsequent extrapolation 320 

to deep layers. 321 

 322 

We first quantified the uncertainties of the input variables, including MAT, MAP, sand 323 

content, and EVI. Specifically, the standard errors of the MAT, MAP and sand content 324 

https://en.wikipedia.org/wiki/Computation


14 
 

were generated during the interpolation process. For the MODIS EVI data, measured 325 

errors would originate from aerosol optical thickness error, aerosol model error, and 326 

reflectance approximation error as well as calibration error (Lin et al., 2011). It has 327 

been reported that 94% of globally retrieved EVI values fall within the theoretical 328 

MODIS one-sigma error bar (± (0.02 + 0.02 × value)), indicating that the error in a 329 

given index value is 0.02 plus 2% of the index value (Vermote & Kotchenova, 2008). 330 

Similar to other studies (Lin et al., 2011; He et al., 2014), we thus used 0.02 + 0.02 × 331 

value as standard error for EVI data. 332 

 333 

We then performed 1000 Monte Carlo simulations of OCD for each pixel. For each 334 

simulation, the input variables were randomly generated based on the normal 335 

distributions using the standard error of MAT, MAP, sand content, and EVI as the 336 

standard deviation (SD), and then subjected to the SVM model (to calculate OCD of 337 

the 0-50 cm layer) and the nonlinear models (to extrapolate 0-50 cm layer to deep 338 

layers). To account for uncertainties introduced by the nonlinear models, we used 339 

values that were randomly generated from a normal distribution of the 95% 340 

confidence interval of regression results for each grid pixel. Finally, we calculated the 341 

inter-quartile (difference between the 75
th
 and 25

th
 percentiles) of the 1000 iterations 342 

of the simulated OCD for each pixel, and the summed quartiles were used to assess 343 

the uncertainty of the OC stock over the alpine steppe and alpine meadow. We also 344 

obtained the relative uncertainty by dividing the inter-quartiles by median values for 345 

each pixel (Fig. S4). It should be noted that, the OC stock uncertainty of the swamp 346 

meadow was addressed using a 1000-iteration bootstrap resampling method at various 347 

depths (0-50, 0-100, 0-200 and 0-300 cm). Inter-quartiles were also calculated to 348 

assess the relative uncertainties of the OCD in the swamp meadow. 349 
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 350 

Results 351 

Vertical distributions of OC stock down the 3-metre profiles 352 

The OCD decreased as soil depth increased in all of the 3-metre profiles, with the 353 

maximum occurring in the top 50 cm (Fig. 4a). The vertical distributions of OCD 354 

differed among three major grassland types on the plateau. Specifically, the OCD of 355 

each soil layer in the swamp meadow was much larger than those in the other two 356 

grassland types (P < 0.05). However, no significant differences were observed 357 

between in the alpine steppe and alpine meadow, except for soil layers of the 0-50 and 358 

50-100 cm. 359 

 360 

Similar to vertical patterns of OCD, the highest proportion of OCD occurred in the 361 

upper 50cm layer, with significant vegetation-specific differences (Fig. 4b). For the 362 

alpine steppe, alpine meadow and swamp meadow, 41%, 50%, and 36% of the total 363 

OCD in the top 300 cm was contained in the uppermost 50 cm, respectively. The 364 

smallest proportion of OCD in top 50 cm layer was found in the swamp meadow, 365 

despite the fact that more OC was stored in the top 50 cm layer (Fig. 4a). This 366 

suggests that the swamp meadow had a higher proportional distribution of OCD in 367 

deep layers than the other two grassland types. The proportion of OCD below 100 cm 368 

depth in the alpine steppe, alpine meadow and swamp meadow was 45%, 34%, and 369 

48%, respectively. 370 

 371 

Spatial variations of OC stock across permafrost regions 372 

The OCD exhibited large spatial variability across permafrost regions on the Tibetan 373 

Plateau, with a decreasing trend from the southeast to the northwest (Fig. 5). Such a 374 
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pattern was contingent on geographic extents of grassland types (Fig. 1b), i.e., 375 

relatively larger OCD tended to be found in the alpine meadow while smaller OCD 376 

occurred in the alpine steppe. Notably, OCD in the swamp meadow at different depths 377 

was significantly higher than that in surrounding regions. 378 

 379 

The average OCD across Tibetan alpine grasslands was estimated at 5.45, 7.44, 10.68, 380 

and 13.39 kg C m
-2

, in the depths of 0-50, 0-100, 0-200 and 0-300 cm, respectively 381 

(Table 1). Accordingly, total OC stock was equal to 6.23, 8.51, 12.22 and 15.31 Pg C 382 

in 0-50, 0-100, 0-200 and 0-300 cm depths, respectively (Table 2). Mean OCD 383 

significantly differed among various grassland types (P < 0.05), with the order of 384 

alpine steppe < alpine meadow < swamp meadow. The OC stock at 0-300 cm depth in 385 

the alpine steppe, alpine meadow and swamp meadow were estimated to be 5.48, 6.53, 386 

3.31 Pg C, of which 47%, 38% and 53% occurred in deep soil layers, respectively 387 

(Table 2). Compared with measurements across the northern circumpolar permafrost 388 

regions, both the alpine steppe and alpine meadow had much lower OCD, but similar 389 

vertical proportional distributions along the profile (Fig. 6). Notably, soils in the 390 

swamp meadow had comparable OCD values and similar proportional distributions 391 

along the profile with those across the northern circumpolar permafrost regions. 392 

 393 

Discussion 394 

Combining inventory data with machine learning technique is an effective 395 

methodology for spatially explicit carbon estimation 396 

This study offered a large-scale comprehensive investigation on deep OC stock across 397 

alpine permafrost on the Tibetan Plateau, and generated 519 pedon observations in 398 

total, including 342 three-metre-deep sediment cores (Appendix 3). Using a SVM 399 
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model, we up-scaled these site-level observations to regional-scale OCD in the top 50 400 

cm. Our results demonstrated that in combination with other satellite-derived, climatic 401 

and edaphic variables, the SVM displayed good performance to predict OCD for the 402 

0-50 cm depth, with high r
2
 and low RMSE, according to the results of the 403 

“leave-one-out” cross-validation (Fig. 3a). The “leave-one-out” cross-validation 404 

results also demonstrated that SVM showed better performance in predicting OCD 405 

than Kriging interpolation and satellite-derived approach that were frequently used in 406 

regional carbon budgets (higher r
2
 and smaller RMSE, Table S2). This can be ascribed 407 

to the several advantages of the SVM approach. First, compared with Kriging 408 

interpolation, SVM incorporates high-resolution satellite datasets and other spatially 409 

gridded climatic and edaphic variables into the model, and thus overcomes biases due 410 

to large spatial heterogeneity and uneven distribution of the sampling sites. Second, 411 

compared with satellite-derived approach, SVM can deal with complex multivariate 412 

models, including both linear and nonlinear relationships (Nello & John, 2000; Drake 413 

et al., 2006), which is a common situation when exploring associations of OCD with 414 

biotic, climatic and edaphic properties (Yang et al., 2008). In addition, as a machine 415 

learning technique, SVM is not constrained by any statistical premise such as 416 

normality and independence, and also overcomes the limitations of parametric and 417 

non-parametric statistical methods, such as spatial autocorrelation (Nello & John, 418 

2000; Drake et al., 2006; Were et al., 2015). Hence, combining systematic 419 

measurements with SVM is an ideal approach for spatially explicit carbon estimation 420 

across permafrost regions. 421 

 422 

Although SVM and subsequent extrapolation models provided good performance in 423 

regional carbon budget, some uncertainties still existed (Fig. S4). The uncertainties 424 
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may be partly derived from the extrapolation of surface to deep OC stock using 425 

nonlinear models, since the relationships between surface and deep OCD could be 426 

compromised by processes in periglacial environments (e.g., cryoturbation, slope 427 

mass movement of material) (Grosse et al., 2011; Harden et al., 2012). Nevertheless, 428 

our nonlinear models successfully quantified the relationships of OC stock among 429 

various layers for both the alpine steppe and alpine meadow (Fig. 3b-d), possibly due 430 

to the unique characteristics of alpine permafrost on the Tibetan Plateau. For instance, 431 

the overall arid climate on the plateau tends to suppress periglacial processes (Wang, 432 

1997), which could then result in limited distributions of periglacial landforms (Yang 433 

et al., 2010). Consequently, vertical extrapolation may not induce large uncertainties 434 

into regional carbon budget. Even so, some uncertainties could still be generated due 435 

to the lack of deep soil cores across the western plateau for practical reasons 436 

(remoteness, road conditions, etc.). Nevertheless, both the eastern and western Tibetan 437 

Plateau share common soil type (cambisols) (Wu et al., 2003; Yang et al., 2015), and 438 

comparable permafrost types (Brown et al., 1998). To further test whether regression 439 

models derived from the eastern half of the plateau is applicable in the western part of 440 

the plateau, we constructed the regression model of OCD between the depths of 0-30 441 

cm and 0-50 cm of the eastern plateau, and validated the model using actual 442 

measurements from the western part of the plateau. The validation results showed 443 

good performance of the model constructed in the eastern part of the plateau (r
2
 = 444 

0.98, RMSE = 0.81; Fig S5), demonstrating the reliability of the regression model in 445 

both parts of the plateau. Consequently, extrapolation of topsoil OC stock to deep 446 

layers is deemed both statistically and physically reliable for the alpine steppe and 447 

alpine meadow. 448 

 449 
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The lack of ice content may also lead to potential uncertainties in our budget, since ice 450 

content is an important parameter for estimating permafrost carbon stock, especially 451 

in ice-rich permafrost regions (e.g., the Yedoma region) (Strauss et al., 2013; Hugelius 452 

et al., 2014). However, ice content might have less impact on our 3-m-deep OC stock 453 

estimation, since alpine permafrost on the Tibetan Plateau is generally characterized 454 

by the thick active layer (generally more than 2.4 m; Pang et al., 2009) and poor ice as 455 

a consequence of the arid climate, high evaporation, and glacial history (Wang et al., 456 

2003; Yang et al., 2010). It has been reported that ice segregation, ground heave and 457 

subsidence, and related periglacial landforms on the plateau are rare compared with 458 

high-latitude permafrost regions (Yang et al., 2010). To further evaluate the potential 459 

effects of ice content on OC estimation across the study area, a correction by 460 

subtracting mean gravimetric ice content (mean = 12.19%, based on measured ice 461 

content derived from 697 boreholes; Zhao et al., 2010) from the bulk density was 462 

conducted in permafrost layers. Our additional analyses indicated, deep permafrost 463 

carbon stock reduced 19.9%, but the total 3-m-deep OC stock only reduced 2.0% after 464 

the correction (Table S3), largely due to the thick active layer (generally more than 2.4 465 

m) on the Tibetan Plateau and small contribution of OCD in permafrost layer to total 466 

OCD at depth of the three metres (Fig. 4b). In addition, given that the arid climate on 467 

the main part of the Tibetan Plateau would suppress the development of underground 468 

ice (Zhou & Guo, 1982), ice wedges would be only confined in very limited areas if 469 

exist. All of these evidences suggest that the effects of segregated ice, wedge ice, and 470 

other ice types on the three-metre OC stock could be relatively small in our case. 471 

 472 

Bootstrapping method has often been used to evaluate the uncertainties in regional 473 

carbon budget (e.g., Strauss et al., 2013; Hugelius et al., 2014). To compare with 474 
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uncertainties analysis approach used in this study, we also evaluated the median OC 475 

stock using bootstrapping methods. Our results revealed that the newly estimated OC 476 

stock was significantly inflated compared with that derived from SVM methods 477 

(Table S4). Such a difference is induced by these two different algorithms. Given the 478 

inherent heterogeneity of the statistical population of interest, the estimated stock size 479 

and its uncertainty using bootstrapping methods are highly dependent on sample size 480 

(Fig. S6). In contrast, the SVM combined with Monte Carlo simulations is able to 481 

incorporate independent input variables (i.e., MAT, MAP, sand content and EVI) over 482 

the entire target area, leading to reduced uncertainty in regions with less sampling 483 

sites. 484 

 485 

Non-negligible carbon stock across alpine permafrost 486 

The OC stock in the top 1 metre across Tibetan alpine grasslands was estimated to be 487 

8.51 Pg C, larger than the previous estimate of 7.36 Pg C (Yang et al., 2008). Such a 488 

difference could result from the following two considerations. First, different 489 

definitions of the swamp meadow are probably the major reason for this difference. 490 

Specifically, this study evaluated OC stock in the swamp meadow independently, 491 

while Yang et al. (2008) treated it as a part of the alpine meadow. The swamp meadow 492 

belongs to azonal vegetation which is mainly located in low-lying and poorly drained 493 

regions (Chinese Academy of Sciences, 2001). Despite occupying a small 494 

proportional area, soils in the swamp meadow are characterized by the highest OC 495 

density among the three major grassland types on the plateau (Fig. 6a, b), since 496 

anaerobic conditions slow down microbial decomposition rates. Consequently, unless 497 

treated separately from alpine meadow, OC stock in the swamp meadow would be 498 

underestimated, which could be responsible for the observed difference in regional 499 
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OC budget between Yang et al. (2008) and this study. Besides, the upscaling approach 500 

used in this study (i.e., SVM) would be expected to provide better prediction than the 501 

linear model used in Yang et al. (2008) (Table S2). 502 

 503 

The total OC stock to the depth of 300 cm across alpine grasslands on the Tibetan 504 

Plateau was estimated to be 15.31 Pg C, less than half of an earlier estimate (33.0 Pg 505 

C) by Mu et al. (2015). Such a difference could be due to several improvements that 506 

we have made in this study, including broad geographic coverage of deep soil cores, 507 

and a more reliable upscaling methodology. Specifically, the larger number and more 508 

extensive distribution of deep sediment cores used in this study (Fig. 1b) could be 509 

more representative, and thus reduce the uncertainties induced by large spatial 510 

heterogeneity. In contrast, the deep OC stock estimated by Mu et al. (2015) was 511 

mainly derived from the extrapolation of actual measurements from only 11 deep 512 

sediment cores in the north-eastern Tibetan Plateau, and 7 out of the 11 cores belong 513 

to the alpine meadow. On the parameter level, their average OC content is about 10 514 

fold greater than ours at depths of 100-300 cm (Table S5). This difference in OC 515 

content overwhelms the larger bulk density at depths of 100-200 cm and 200-300 cm 516 

across our measurements (Table S5). The confined distribution of the 11 deep cores is 517 

thus likely to be the major reason for such a significant difference. In addition, 518 

different algorithms could also introduce differences between the two studies. The 519 

previous estimate by Mu et al. (2015) used a simple averaging approach to obtain 520 

OCD for each vegetation type, while this study adopted a machine learning approach 521 

to upscale site-level measurements to the regional scale. To further test whether 522 

different algorithms would lead to significant difference in OC budget, we 523 

re-evaluated OC stock in the top three metres by simple averaging of OCD from 524 
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various sampling sites within three major grassland types and multiplying by their 525 

corresponding area. Our analyses revealed that OC stock based on simple averaging 526 

approach was substantially larger than that obtained from the machine learning 527 

approach (20.17 vs. 15.31 Pg C), demonstrating that the difference introduced by 528 

different algorithms is non-negligible. 529 

 530 

The average OCD in Tibetan alpine permafrost at both the 0-1 m and 0-3 m depths are 531 

considerably lower than that across the northern circumpolar permafrost region, with 532 

7.44 vs. 26.52 kg C m
-2 

and 13.39 vs. 58.15 kg C m
-2

, respectively (Hugelius et al., 533 

2014). These differences may be associated with different carbon inputs from 534 

aboveground biomass and different carbon outputs from microbial decomposition 535 

between the two permafrost regions. It has been reported that aboveground biomass in 536 

circumpolar arctic tundra (315.75 g m
-2

; Epstein et al., 2012) is significantly larger 537 

than that in Tibetan alpine grasslands (68.80 g m
-2

; Yang et al., 2009), which is likely 538 

to the major reason for such a significant difference of OCD. Moreover, different 539 

microbial decomposition due to different temperature, soil drainage and levels of 540 

oxygenation, as well as active layer thickness is supposed to be another important 541 

reason responsible for the difference of OCD between the two permafrost regions. It 542 

has been reported that circumpolar regions (-6.94 
o
C, data obtained from 543 

GHCN_CAMS Gridded 2 m Temperature generated by Fan & van den Dool, 2008) 544 

have lower MAT compared to the Tibetan Plateau (1.77 
o
C, data obtained from the 545 

spatial interpolation using meteorological measurements across the plateau). It has 546 

also been documented that wetlands, peatlands and lakes are widely distributed in 547 

high-latitude regions where poor drainage and anaerobic conditions frequently persist 548 

(Walker et al., 2005), while soils across most of the Tibetan Plateau have reasonably 549 
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good drainage and aeration (Gao et al., 1985). Further, it has been reported that the 550 

active layer in high-latitude regions (mean = 0.71 m reported by the Circumpolar 551 

Active Layer monitoring program; Brown et al., 2000) is much thinner than that on 552 

the Tibetan Plateau (mean = 2.41 m reported by Pang et al., 2009). Consequently, 553 

lower temperature, poor drainage and anaerobic conditions, long lasting cryoturbation 554 

and repeated sediment deposition could inhibit microbial activities and lead to more 555 

OC accumulation across the northern circumpolar permafrost region (Ping et al., 2008; 556 

Natali et al., 2015). 557 

 558 

Despite the lower OCD on the Tibetan Plateau than that in the northern circumpolar 559 

permafrost region, this region is of critical importance for the regional carbon cycle, 560 

given the high proportion of OC stored in deep soil layers (Fig. 6c) and significant 561 

warming-induced permafrost changes (Wu & Zhang, 2008). Deep OC stock (>1 m) 562 

accounts for 44% of the total three-metre OC stock on the Tibetan Plateau, close to 563 

that reported across the northern circumpolar permafrost region (54%, Hugelius et al., 564 

2014; Fig. 6c). The large proportion of deep OC stock highlights that this fraction 565 

should not be ignored in regional carbon budgets. Without considering the deep OC 566 

component, our knowledge of the size of permafrost OC stock, and its feedback to 567 

climate warming, may be incomplete. Evidence from field observations (Schuur et al., 568 

2009; Nowinski et al., 2010; Strauss et al., 2015), laboratory incubation (Schaedel et 569 

al., 2014), and regional modelling (Koven et al., 2013; Koven et al., 2015b;  570 

Schneider von Deimling et al., 2015) has consistently demonstrated that deep OC 571 

stock is susceptible to climate warming. Given the high proportion and vulnerability 572 

of OC in deep soil and sediment layers, deep OC dynamics could potentially influence 573 

ongoing climate change (Koven et al., 2015b; Schuur et al., 2015). The conversion of 574 
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reactivated frozen carbon into carbon dioxide (or methane) and release to the 575 

atmosphere could trigger positive carbon-climate feedback. 576 

 577 

Implications for understanding permafrost carbon-climate feedback in Tibetan 578 

alpine regions 579 

Our findings have three important implications for understanding permafrost 580 

carbon-climate feedback in Tibetan alpine regions. First, this study generates a new 581 

valuable database, which contributes 342 three-metre-deep sediment cores across 582 

alpine permafrost on the Tibetan Plateau. The combination of our database with 583 

NCSCD could be expected to provide a more comprehensive assessment of 584 

permafrost carbon stock at the global scale. This database can also be used for 585 

benchmarking and parameterization of Earth system models to produce credible 586 

projections on the fate of permafrost carbon under warming environment (Walker et 587 

al., 2014; Schuur et al., 2015). Second, this study develops a comprehensive 588 

methodology which could be used in future for spatially explicit estimation and 589 

quantitative uncertainty analysis. Our results demonstrate that the combination of 590 

systematic measurements derived from deep sediment cores with machine learning 591 

techniques such as a SVM model, is an effective method to evaluate permafrost 592 

carbon stock, and could be applied to other regions around the world. Third, this study 593 

demonstrates that Tibetan permafrost stores a large amount of carbon, which is 594 

usually omitted from global permafrost carbon budgets. If 10% of this carbon pool in 595 

the top 3 metres is decomposed by soil microbes, 1.53 (1.30-1.78) Pg C would be 596 

released into the atmosphere. This process may counteract the enhanced vegetation 597 

carbon sink and consequently trigger positive feedback to climate warming. To gain 598 

further insights on this feedback loop, future studies should focus on deep carbon 599 



25 
 

dynamics across alpine permafrost on the Tibetan Plateau by conducting joint studies 600 

including manipulative experiments, laboratory incubation, and model predictions. 601 
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Supporting information captions 799 

Table S1 Summary of estimated median volumetric organic carbon (OC) content 800 

(with interquartile range) in alpine grasslands on the Tibetan Plateau. 801 

 802 

Table S2 Comparison of cross validation results among various upscaling methods to 803 

predict organic carbon density (OCD) at the 0-50 cm depth. 804 

 805 

Table S3 Summary of estimated median organic carbon (OC) stock (with interquartile 806 

range) in alpine grasslands on the Tibetan Plateau after correcting ice 807 

content using field measurements from Zhao et al. (2010). 808 

 809 

Table S4 Summary of estimated median organic carbon (OC) stock (with interquartile 810 

range) using 1000-iteration bootstrap resampling in alpine grasslands on the 811 

Tibetan Plateau. 812 

 813 

Table S5 Comparison of the organic carbon (OC) stock estimated by Mu et al. (2015) 814 

and this study. 815 

 816 

Fig. S1 Relationship between bulk density and organic carbon (OC) content across 51 817 

natural profiles. 818 

 819 

Fig. S2 Comparison of different interpolation methods based on cross validation 820 

results. RMSE represents root mean square error. (a, e) show results from 821 

inverse distance weighting (IDW) interpolation; (b, f) represent results from 822 

thin plate spline function interpolation; (c, g) illustrate results from Kriging 823 
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interpolation; and (d, h) display results from Cokriging interpolation with 824 

altitude as a covariate. 825 

 826 

Fig. S3 Relative importance of predictor variables, reflected by percentage of r
2
, for 827 

organic carbon density (OCD) in the top 50 cm. Relative importance metrics 828 

were normalized to sum 100% using Lindeman-Merenda-Gold (LMG) 829 

method (Lindeman et al., 1980). EVI, Sand, Silt, Clay, MAP and MAT 830 

represents, enhanced vegetation index, sand content, silt content, clay content, 831 

mean annual precipitation and mean annual temperature, respectively. 832 

 833 

Fig. S4 Relative uncertainties of permafrost carbon budget at different depths across 834 

the study area, calculated as the ratio between the interquartile range 835 

(difference between the 75
th

 and 25
th

 percentiles) of the 1000 estimates and 836 

the median. 837 

 838 

Fig. S5 Validation of the regression model of OCD between the depths of 0-30 cm 839 

and 0-50 cm (Log OCD0-50 cm = 0.9806 Log OCD0-30 cm + 0.2911) constructed 840 

in the eastern Tibetan Plateau, using actual measurements in the western part 841 

of the plateau. Note that the OCD was log-transformed to meet the normal 842 

distribution premise before model construction. 843 

 844 

Fig. S6 Effect of sample size on the confidence interval (CI) of 3-m-deep organic 845 

carbon (OC) stock using bootstrap resampling based on pedon observations 846 

from 114 sites. 847 

 848 
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Appendix 1 Source code for the SVM and uncertainty analyses in R software. 849 

 850 

Appendix 2 Spatial organic carbon density (OCD) at different depths at a resolution 851 

of 10 km × 10 km in alpine grasslands on the Tibetan Plateau. 852 

 853 

Appendix 3 Pedon observations from 173 sites in alpine grasslands on the Tibetan 854 

Plateau.855 
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Table 1 Summary of estimated median OC density (with interquartile range) in alpine grasslands on the Tibetan Plateau. 856 

Grassland type 

OC density (kg C m
-2

) 

0-50 cm 0-100 cm 0-200 cm 0-300 cm 

Alpine steppe (AS) 3.19 (2.58-3.95) 4.49 (3.66-5.51) 6.55 (5.42-7.89) 8.56 (7.19-10.12) 

Alpine meadow (AM) 6.67 (5.71-7.76) 8.99 (7.75-10.40) 11.95 (10.43-13.69) 14.41 (12.70-16.33) 

Swamp meadow (SM) 23.05 (21.47-24.73) 30.79 (28.41-33.19) 51.34 (43.53-60.12) 65.00 (52.60-76.36) 

Total 5.45 (4.66-6.38) 7.44 (6.38-8.68) 10.68 (9.10-12.51) 13.39 (11.39-15.53) 

  857 
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Table 2 Summary of estimated median OC stock (with interquartile range) in alpine grasslands on the Tibetan Plateau. 858 

Grassland type 

Area 

 

(10
3
 km

2
) 

OC stock (Pg C) 

0-50 cm 0-100 cm 0-200 cm 0-300 cm 

Alpine steppe (AS) 640.0 2.04 (1.65-2.53) 2.88 (2.34-3.53) 4.19 (3.47-5.05) 5.48 (4.60-6.48) 

Alpine meadow (AM) 453.1 3.02 (2.59-3.52) 4.07 (3.51-4.71) 5.41 (4.73-6.20) 6.53 (5.75-7.40) 

Swamp meadow (SM) 50.9 1.17 (1.09-1.26) 1.57 (1.45-1.69) 2.61 (2.22-3.06) 3.31 (2.68-3.89) 

Total 1144.0 6.23 (5.33-7.30) 8.51 (7.30-9.93) 12.22 (10.41-14.31) 15.31 (13.03-17.77) 

  859 
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Figure captions 860 

Fig. 1 Existing pedon observations in the Northern Hemisphere permafrost region 861 

ranging from 100 to 300 cm depth (a), sampling sites and vegetation map 862 

across alpine grasslands on the Tibetan Plateau (b), the machine used to 863 

sample deep sediment cores (c), and ground collapse and erosion features in 864 

the swamp meadow on the Tibetan Plateau (d). The permafrost map is 865 

obtained from the National Snow & Ice Data Center (Brown et al., 1998), 866 

point pedon data are derived from the Bolin Centre Database (Hugelius et al., 867 

2013), and the vegetation map is generated from China’s Vegetation Atlas with 868 

a scale of 1: 1 000 000 (Chinese Academy of Sciences, 2001). AS, AM and 869 

SM represent alpine steppe, alpine meadow and swamp meadow, respectively. 870 

 871 

Fig. 2 Methodology used for quantifying permafrost OC stock and associated 872 

uncertainty analysis. The dotted boxes in black, blue, and orange indicate 873 

site-level observations of the model input variables, the SVM model 874 

parameterization process, and the module iterated 1000 times, respectively. 875 

The nonlinear models between site-level OCD among various layers were 876 

used to extrapolate regional OCD in the top 50 cm to deeper layers OCD. 877 

 878 

Fig. 3 “Leave-one-out” cross-validation for the SVM model used for predictions of 879 

OCD at the 50 cm depth (a), scatter plots and extrapolation functions of OCD 880 

in the top 50 cm and OCD at depths of 0-100 cm (b), 0-200 cm (c), and 0-300 881 

cm (d). Note that the OCD (b-d) was log-transformed to meet the normal 882 

distribution premise of the regression models. 883 

 884 
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Fig. 4 Vertical distributions of OCD (a) and relative proportions (b) at 50-cm intervals 885 

(mean + SD) in alpine grasslands on the Tibetan Plateau. The relative 886 

proportion is represented by the proportional contribution of each layer to total 887 

OCD at depth of the three metres. AS, AM and SM represent alpine steppe, 888 

alpine meadow and swamp meadow, respectively. Mean values with different 889 

letters (e.g., a, b, c) indicate significant differences among grassland types at 890 

each depth interval. Mean values with the same letters (e.g., a, ab) indicate no 891 

significant differences among these grassland types (Kruskal-Wallis test, P < 892 

0.05). 893 

 894 

Fig. 5 Estimated OCD for different depths at a resolution of 10 km × 10 km across 895 

alpine grasslands on the Tibetan Plateau. (a) 0-50 cm, (b) 0-100 cm, (c) 0-200 896 

cm, and (d) 0-300 cm. All related data are available in Appendix 2. 897 

 898 

Fig. 6 Comparisons of OCD in the 0-100 cm (a), 0-300 cm depths (b), and vertical 899 

proportional distributions of OC stock (c) among different grassland types on 900 

the Tibetan Plateau, and the counterparts in the northern circumpolar 901 

permafrost region (CP). AS, AM and SM represent alpine steppe, alpine 902 

meadow and swamp meadow, respectively. The whiskers illustrate the data 903 

range, and the box ends indicate the 25
th
 and the 75

th
 quartile (interquartile 904 

range). The horizontal lines inside each box show the median, and the notches 905 

represent the 95% confidence intervals. The related OC data across the 906 

northern circumpolar permafrost region are derived from Hugelius et al. 907 

(2014).  908 
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Fig. 1 909 
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Fig. 2 911 
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Fig. 3 913 
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Fig. 4 915 
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Fig. 5 917 
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Fig. 6 919 
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Supporting Information 921 

Fig. S1 Relationship between bulk sensitivity and SOC content from 51 natural 922 

profiles, which was used to estimate missing bulk density of 300-cm-depth 923 

soil cores. 924 

 925 

Fig. S2 Relative importance of predictor variables, reflected by percentage of r
2
, for 926 

SOCD in the top 50 cm. Relative importance metrics were normalized to sum 927 

100% using Lindeman-Merenda-Gold (LMG) method (Lindeman et al., 928 

1980). 929 

 930 

Fig. S3 Relative uncertainties of permafrost C budget at different soil depths across 931 

the study area, calculated as the ratio between the interquartile range 932 

(difference between the 75
th

 and 25
th

 percentiles) of the 1000 estimates 933 

and the mean. 934 

 935 

Fig. S4 Spatial uncertainties of the input variables for support vector machine (SVM) 936 

modelling, including measurement error (ME) of EVI (a), as calculated as 937 

0.02 + 0.02 × value (He et al., 2014), and the standard errors (SE) 938 

generated by Kriging analysis for sand content (b), MAT (c) and MAP 939 

(d). 940 
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Fig. S1 942 
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Fig.S2 944 
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Fig. S3 946 
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Fig. S4 948 
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