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ABSTRACT 
 

 In this paper a new anisotropic beam finite element for composite wind turbine blades is 

developed and implemented into the aeroelastic nonlinear multibody code, HAWC2, intended to 

be used to investigate if use of anisotropic material layups in wind turbine blades can be tailored 

for improved performance such as reduction of loads and/or increased power capture. The 

element stiffness and mass matrices are first derived based on pre-calculated anisotropic beam 

properties, and the beam element is subsequently put into a floating frame of reference to enable 

full rigid body displacement and rotation of the beam. This derivation provides the mass and 

stiffness properties and the fictitious forces needed for implementation into HAWC2. The 

implementation is subsequently validated by running three validation cases which all show good 

agreement with results obtained by other authors. Further, a parametric study is conducted in 

order to investigate if the given anisotropic effect of the composite blade, bend-twist coupling 

effect, is able to be examined by the developed beam element in a multibody system or not. Two 

different coupled examples of bend-twist coupling for the blade of a 5MW fictitious wind turbine 

are considered. The two cases differ in the amount of bend-twist coupling introduced into the 

blade so that they produce 0.3deg and 1deg twist at the blade tip (towards feather), respectively, 

for a 1m flapwise tip deflection towards the tower. It is examined if the current structural model 

is able to capture the anisotropic effects in a multibody system. 
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1. INTRODUCTION 

 

 Wind turbine blades are getting larger and more flexible. It introduces higher nonlinear 

behavior of wind turbines. While nonlinear effects is a relatively new focus area in the wind 

turbine society, there have been many investigations in the helicopter society for decades.
1,2

 

Friedmann et al.
3
 and Hodges et al.

4
 developed a nonlinear beam model including elastic flap-
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edge dynamics of a rotating beam. The analytical nonlinear beam equation of motion, coupling 

bending and torsion, becomes very long and complicated. Therefore, ordering schemes are 

introduced.
5-9

 However, the derivation of the equation of motion with an ordering scheme is not 

consistent. It is very dependent on who conducts the analyses and which nonlinear effects 

produced by higher order terms are neglected. Therefore, an exact beam theory which does not 

rely on an ordering scheme was introduced by Hodges.
10

 The kinematics of this theory are exact. 

Simo
11

, Simo et al.
12

, and Hodges
13

 introduced a mixed formulation which is in first order form. 

The mentioned advanced beam theories focus on improving the kinematic representation of the 

beam motion. However, it is still assumed that beams are from homogeneous, isotropic 

materials, and linearly elastic. This does not fit with a composite beam model which must 

consider anisotropic material effects and warping effects. Bauchau expanded Euler-Bernoulli 

beam theory including a transverse shear and a warping displacement.
14

 He extended the beam 

theory to orthotropic materials.
15,16

 A finite element method was introduced to analyze arbitrary 

cross-section geometries including open sections by Kosmatka.
17,18

 A two dimensional finite 

element method which is able to compute generalized warping functions and cross-sectional 

properties for straight and untwiswted beams with arbitrary cross-sectional geometries was 

developed by Giavotto et al.
19

 And then Borri et al.
20

 extended the beam model to curved and 

twisted beams. Hodges and his colleagues
21-27

 introduced a finite element based cross-section 

analysis method using the variational asymptotic method
28

 to reduce a general three-dimensional 

nonlinear anisotropic elasticity problem into a two-dimensional linear cross-sectional analysis 

and a one-dimensional nonlinear beam analysis. Three-dimensional warping functions are 

asymptotically computed by two-dimensional cross-section analysis. The constitutive model for 

the one-dimensional nonlinear beam analysis is obtained as well. This approach is able to 

compute any initially twisted and curved, inhomogeneous, anisotropic beam with arbitrary cross-

sectional geometries. 

 Wind turbine blades must be designed to resist the fatigue loads from normal operation and 

the extreme loads cases caused by extreme conditions. Sudden wind gusts are often too quick for 

the active pitch control system to react on and may shorten the fatigue life substantially. This 

problem may be overcome by an aeroelastic tailoring of the blades. By using the anisotropic 

properties of composite materials, bend-twist and other couplings can be built into the blades. 

The bend-twist coupling causes the feathering blade to twist under the bending load and can be 

designed in a manner where the angle of attack decreases with increasing bending load. 

 Kooijman
29

 concluded in a report on aeroelastic tailoring that ‘the use of aeroelastic tailoring 

of the Fiber Reinforced Plastics to control limited torsional deformation is a promising way to 

improve rotor blade design’. He found that building a bend-twist coupling into the blade gives 

the potential for a few per cent of energy yield improvement for constant-speed pitch-controlled 

turbines and improves starting torque by 10 per cent. For a constant-speed pitch-controlled rotor, 

it is found that the largest power production is obtained with the inboard span twisting to feather 

and the outboard 60 per cent of the span twisting towards stall. 

 Middleton et al.
30

 and Infield et al.
31

 designed, analyzed, fabricated and tested an axial-twist 

coupled blade developed to control the rotor in a runaway scenario. Their composite blade was 

fabricated using a helical lay-up with layers of glass and carbon fibers. Measured twist coupling 

agreed well with the predictions. 

At Technical University of Denmark (DTU) an 8m section from a 23m blade from Vestas 

Wind Systems A/S has been tested for both static and dynamic manner. The original blade 

section was tested and then modified with four layers of UD1200 (unidirectional glass fiber, 
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1200g/m
2
) which were laminated on the pressure and suction side of the blade with an angle of 

25 degrees to the blade axis to create a measurable flapwise bend-twist coupling. The initial test 

results and comparison with numerical analyses show that the original blade section has very 

small couplings but that these can be introduced easily by adding angled unidirectional 

layers.
32,33

 In Luczak et al.
34

 the bend-twist coupling was also investigated by means of 

experimental and numerical modal analysis. The research focused on the presence of the bend-

twist coupling in the mode shapes of the blade section and the influence of an additional mass 

and stiffness introduced by the extra layers. In both the static and dynamic test campaigns, the 

comparison of original and modified blade properties clearly show the presence of the bend-twist 

coupling. However, it was found to be quite challenging to get a reliable prediction of the bend-

twist coupling from the modal analyses. The measured bend-twist coupling from the static tests 

agree very well with numerical predictions.  

 Research at the National Renewable Energy Laboratory (NREL) in USA have focused on the 

application of blades with bend-twist coupling on constant-speed turbines. Results indicate that 

energy capture can be increased significantly if the bend-twist coupled blades are made to twist 

towards stall while increasing the rotor diameter to maintain the maximum power at its design 

value.
35

 However, subsequent simulations with the rotor in turbulent winds showed substantial 

increases in fatigue damage. Moreover, for a range of wind speeds in the stall regime stall flutter 

was observed.
36 

However, when the blades twist towards feather it was found that fatigue 

damage is reduced by approximately a factor of two and stall flutter is not observed.
37

  

 In Lobitz & Veers
38

 load reduction with bend-twist coupled blades were studied employing 

modern control strategies. All this work takes only the bend-twist coupling into account and is 

based on a simplified plane Bernoulli-Euler type of approach. Important steps towards using 

blade couplings for load reductions have therefore been taken by Lobitz, Veers and their 

colleagues
35-39

 but the full potential of passive control of wind turbine blades is still to be 

explored. 

 The mentioned investigations focused on understanding blade dynamic effect by considering 

composite tailoring effects. However, a wind turbine has multiple components such as rotor, hub, 

shaft, generator, gearbox, nacelle, tower, etc. All parts in a turbine interact with each other. 

Therefore, in order to investigate the overall turbine dynamic responses resulting from a blade 

structural coupling effect, an entire turbine including rotor, shaft, nacelle, tower, etc., must be 

considered with an integrated model - not only the blade. In other words, aeroelastic 

computations with an entire turbine configuration are necessary. 

 HAWC2 is the in-house aeroelastic nonlinear multibody code intended for calculating wind 

turbine response in time domain developed by DTU Wind Energy.
40,41

 In the present version of 

HAWC2 the structural model of the wind turbine is modeled by Timoshenko beam elements 

which only include the classical Timoshenko beam properties, i.e. bending stiffness, shear 

stiffness, etc. A single classical, linear Timoshenko or Bernoulli-Euler beam model cannot 

capture the nonlinear behavior of a large wind turbine blade primarily due to the violation of the 

small rotation assumption of the beam cross-sections which is inherent in such linear models. 

However, structures in HAWC2 can be divided into several substructures due to the multibody 

formulation adapted.
42

 Each substructure has its own coordinate system and when the coordinate 

system is moved in space internal inertia loads are calculated. Therefore, structural nonlinear 

effects such as large rotations and translations are able to be captured although the formulation is 

linear inside each substructure.
43

 The multibody approach provides another benefit as the whole 

turbine configuration is modeled by an assembly of bodies connected with constraint equations 
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such as a rigid coupling, a bearing coupling, a prescribed fixed bearing angle, etc. This makes it 

possible to simulate an entire turbine system response. However, the current beam elements 

cannot be used to investigate the aforementioned coupling effects of anisotropic composite 

materials because the beam elements currently used assume isotropic material. The purpose of 

this paper is to develop a new anisotropic beam finite element in multibody system and 

implement it into the structural part of HAWC2. 

 

2. METHODS 

 

In this section the steps to include the new anisotropic beam element into HAWC2 are 

described. The derivation of element stiffness and mass matrices are derived in section 2.1. This 

derivation indirectly provides the shape functions of the element which are used in section 2.2 to 

derive kinematic formulation of the element in a multibody floating frame of reference. Finally, 

in section 2.3, the complete mass matrix for the anisotropic element in a floating frame of 

reference is given along with the fictitious forces. The coordinate system used in this study is 

illustrated in Figure 1.   

 

 

Figure 1. A sketch of the coordinate system in HAWC2 

2.1. An anisotropic beam finite element  

The elastic energy and the kinetic energy of a beam are considered for deriving a stiffness and 

a mass matrix of a beam, respectively. The stiffness matrix is derived by assuming that the beam 

states (deflections and rotations) can be described by polynomials of arbitrarily high order. This 

approach introduces a high number of degrees of freedom for the states and that high number is 

subsequently condensed by minimizing the elastic energy of the entire beam with constraints of 

prescribed states at the beam ends. This approach indirectly results in shape functions which are 

equal to the static deflection state for a beam with prescribed end conditions. 

Equation (1) shows the elastic energy of the beam.  

  
0

2 '
L

TU S dz    (1) 

where   is the beam strain vector, and S is the cross-sectional stiffness matrix defined by a 

diagonal matrix into the current HAWC2. If the reference coordinate system of the beam is 
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located and aligned with the main bending axes and coinciding with the elastic center and the 

shear center, S becomes a diagonal matrix, 

 

0 0 0 0 0

0 0 0 0 0
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 (2) 

The classical beam properties are located in the diagonal. For the general anisotropic case, 

however, the S matrix becomes a full symmetric matrix in which the off-diagonal terms express 

the couplings introduced by the material layup. It is beyond the scope of this paper to go into the 

details of how the S matrix is calculated – it is just assumed that S has already been computed by 

cross-section analysis tools such as BECAS
44

 or VABS
23-27

. 

 In equation (1) the generalized strains of the Timoshenko beam, ε, are expressed as 

 
  ' ' ' ' ' '

' ' ' ' ' ' ' '

{ , , , , , }

       { , , , , , }

T

x y z x y z

x y y x z x y zu u u

      

    



        
 (3) 

 The displacements and rotations can be expressed by an interpolating polynomial in terms of 

generalized degrees of freedom as follows 

 ' ' ' ' ' '

6 16 6

( ') { , , , , , } ( ')
i

i

T

x y z x y z

NN

q z u u u N z   


   (4) 

where N is the polynomial matrix in which,      
2 1

, ' , ' , ' iN
N I z I z I z I

     
 where I 

is a 6 by 6 identity matrix,   is the generalized degrees of freedom, and Ni is the highest power 

in the polynomial + 1. 

 From the equations (3) and (4) the generalized strain can be expanded in terms of a strain-

displacement matrix and generalized degrees of freedom as follows 

 ( ')B z   (5) 

where B is the strain-displacement matrix which includes a polynomial matrix and its derivative 

terms as follows 

 0 1( ') ( ') ( ')B z B N z B N z   (6) 

 In equation (6) B0 and B1 can be illustrated as follows 
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   
   

 (7) 

 By substituting equation (5) into equation (1), the elastic energy of the beam can be illustrated 

as follows 

  
0

2 '
L

T T

D

U B SB dz    (8) 

 In order to find   in equation (8) we first substitute part of   ( 1 ) by the nodal degrees of 

freedom (d), and then find the remainder of   ( 2 ) by minimizing the elastic energy with 

respect to 2 . By applying boundary conditions at each end of the beam the nodal degrees of 

freedom are obtained as follows 

 



12 1 6 112 6

1 1

1 2

2 2

(0)
  

( )

i
i

d

NN

d N

d N
N N

d N L







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

    
      

    

 (9) 

where N1 and N2 become 

 

 

1 2 12 3

12 12 12 6 12

0 0 0 0
  ,        

i

i

N

N

I
N N

I LI L I L I L I


  

   
    
   

 (10) 

where L is the length of the considered beam element. 

  

 From equations (9) and (10)   and 1  can be rewritten as  

 

1 2

12 (6 12)12 12

1 2 1 1 2 2

6 1 12 1 (6 12) 1 12 1 (6 12) 16 12 6 (6 12)
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0

i

i
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i i i

N
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I

A A
I

 
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 

        
    

  
  

     
     

 (11) 

  1

1 1 2 2N d N    (12) 

By implementing equation (12) into equation (11)   can be expressed as follows 
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 

   

1
2

1 1

1 1 2 1 1 2 2

6 1

1 2 2

12 16 12 6 6 12 6 12 1

      

i

i i i i

N
Y Y

N N N N

A N d A A N N

Y d Y

   



 



    

  

 
 (13) 

 To compute the remainder of  , the total elastic energy minimization approach in terms of 

2 , 
2

0
dU

d
 , is considered. From equations (8) and (13), the total elastic energy of the beam is 

obtained as follows 

    1 2 2 1 2 2

1

2
T

T T T TU d Y Y D Y d Y



     (14) 

 Resulting from the total energy minimization, the 2 vector is obtained as follows 

    

     

2

2 1 2 2 2

1

2

12 16 12 126 12 6 12

0

  
i

i i

T T

P Q

NN N

dU

d

Y DY d Y DY

Q P d





 

   



  

 

 (15) 

 By substituting equation (15) into equation (13), the   vector as a function of the nodal 

degrees of freedom is represented as follows 

 

 1 1

1 2 1 2

6 12

  

iN

Y d Y Q Pd Y Y Q P d

N d

  



   

  (16) 

 Finally, the elastic energy of the beam is obtained in terms of nodal degrees of freedom by 

substituting equation (16) into equation (8) as follows 

 

 
0

1
'

2

1
   

2

L
T T T

T

U d N B SB dz N d

d Kd

 
 
  




 (17) 

where K matrix,  
0

' ,
L

T TK N B SB dz N 
 
   is the element stiffness matrix. 

The method to compute the element mass matrix is similar to the definition of the stiffness 

matrix. The element mass matrix is obtained from the kinetic energy as follows 
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1

2

T

V
T r rdV   (18) 

where , ,r and V  are the mass density, velocity of the material point inside the beam element, 

and volume of body, respectively.  The velocity of the material point inside the beam element at 

the sectional coordinate  ' ', ', 0
T

r x y can be expressed as follows 

 'r u r    (19) 

where  ' ' ', ,
T

x y zu u u u  and  ' ' ', , .
T

x y z     Therefore, equation (19) can be explained 

as follows 

     'r I r I q      (20) 

where   I     means the skew symmetric matrix associated with the vector   .   

By applying the same shape function as the stiffness matrix, equation (20) can be illustrated 

as follows 

     ' ( ')r I r I N z       (21) 

By substituting equation (21) into equation (18) the kinetic energy of the beam can be 

extended as follows 

 
 
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   
               



 

 



 (22) 

where A is the cross-sectional area and E matrix, 
 

    ' ,
'

T
A

I
E I r I dA

r I

 

      
   

  is the 

cross-sectional mass matrix. 

 From the equation (16)   can be obtained by differentiating   with respect to time as 

follows 

 N d   (23) 

 Inserting equation (23) into equation (22) the kinetic energy in terms of nodal degrees of 
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freedom for the velocity can be obtained as follows 

 

 
0

1
( ') ( ') '

2

1
   

2

L
T T T

T

T d N N z EN z dz N d

d Md

 
 
  




 (24) 

where M matrix,  
0

( ') ( ') ' ,
L

T TM N N z EN z dz N 
 
   is the element mass matrix. 

2.2. Multibody formulation 

The HAWC2 is a multibody based nonlinear aeroelastic in-house code.
40,41

  The formulation 

used is the one called Floating Frame of Reference.
42

 In this formulation the kinematics of the 

flexible body is described in a coordinate system which is translated and rotated relative to an 

inertial system. Figure 2 shows a sketch of the flexible body coordinates. 

 

 

Figure 2. A sketch of a flexible body coordinate system in HAWC2 

 The position of a point in the flexible body (O
i
) is explained as follows 

 
i i i i

p pr R A u   (25) 

where the superscript i represents ith flexible body, R
i
 is the vector from the origin of the inertial 

frame to the origin of the floating frame, A
i
 is the rotation transformation matrix which 

transforms a vector from the floating frame to the inertial frame, and 
i

pu  is the position of the 

point in the floating frame coordinates. In general, the overbar of a vector in this paper represents 

that the coordinates refer to the floating frame of reference. The vector i

pu  is the sum of the 

location of the material point, P
i
, when the flexible body is undeformed and when the flexible 

body is deformed, i.e. 

 0 0f f

i i i i i i

pu u u u S q     (26) 
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where 0

iu  is the location of the material point of the undeformed flexible body and f

iu  is the 

deflection of the material point of the deformed flexible body. The deflection f

iu  is described by 

the shape function, iS , and the degrees of freedom of the flexible body, f

iq . The size of iS  

matrix is a 3 by considered number of degrees of freedom and the size of f

iq  vector is a number 

of considered degrees of freedom. 

The velocity of a point in the flexible body is able to be derived by differentiating equation 

(25) with respect to time as follows 

 f

i i i i i i i i i i i i

p p p pr R A u A u R A u A S q       (27) 

where 0 0iu  .  

The central term on the right hand side of equation (27) can be rewritten in order to express 

all terms in the equation as velocity terms as follows 

  i i i i

p i pA u A u     (28) 

where i  is the angular velocity vector.  

By substituting equation (28) into equation (27) the velocity of a point can be illustrated in a 

matrix form as follows 

       

f

i

i i i i i i i i

p p

i

R

r I A u I A S H q

q



 
 

          
 
 

 (29) 

where iq  is the total generalized velocity vector of the ith body. 

The acceleration of a point in the flexible body is determined by differentiating equation (29) 

with respect to time as follows 

 
          2

f

i i i i i

p

i

i i i i i i i i i i i

p p p

i

r H q H q

R

I A u I A S A u u

q

   

 

 
 

              
 
 

 (30) 

where iR  is the absolute acceleration of the origin of the body frame,  i i i

pu    is the 

centrifugal acceleration, 
i i

pu   is the angular acceleration, 2 i i

pu   is the Coriolis acceleration, 

and 
i

pu  is the acceleration of the considered point due to the body deformation.  

 

 
 



 

 
11 

2.3. Application to the new beam element 

The beam element is described in an element coordinate system, ( ',  ',  ')x y z  which is fixed 

relative to the floating frame coordinate system. The element coordinate system is coinciding 

with the center line of the beam element. Therefore, the z-axis, 'z , is coinciding with the center 

line and the x- and y-axes, 'x  and 'y , are rotated so that they are orientated in the major axis 

directions of the beam element system. 

The initial location of the beam element is described by the two vectors, 
1r  and 

12r defined in 

the floating reference coordinates, where 
1r  describes the location of the node 1 (on which the 

origin of the element coordinate system is placed) from the origin of the floating reference 

coordinates, and 
12r  is the vector from node 1 to node 2 located at the (0,0,L) in the element 

coordinate system. The transformation from the element coordinate system to the floating frame 

coordinate system is described by the orthonormal transformation matrix, EST  which is a 3 by 3 

matrix. Using the description above, 0

iu  is expressed as 

  0 1 2 3 1 12

'
ˆ, ,

T
i i i i

ES xy

z
u x x x r r T r

L
     (31) 

where the vector x̂yr  is defined as 

  ˆ ', ', 0
T

xyr x y  (32) 

The shape function matrix iS is defined as 

 4

i T

ES T Z ES
S T N N T  (33) 

where 

 4

0 0 0

0 0 0

0 0 0

0 0 0

ES

ES

ES
ES

ES

T

T
T

T

T

 
 
 
 
 
 

 (34) 

The role of the 4

T

ES
T  matrix is to transform the nodal degrees of freedom from the floating 

frame coordinates to the element coordinate system. The ZN  matrix, which is a 6 by 12 

dimensional matrix, is a function of 'z  only and provides the deflections and the rotations of the 

center line, i.e. 
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 4

'

'

'

'

'

'

x

y

E
z T i

Z fE ES
x

y

z

u

u

u u
N T q

 





 
 
 
    

    
  

 
 
  

 (35) 

where  
ZN  can be explained by 

6 6

( ')

iN

N z



 and 

6 12iN

N



 from equations (4) and (16). Therefore, 

equation (35) is illustrated as follows 

  4 4

6 66 12 6 12

( ')

i i

T i T i

Z f fES ES

N N

N T q N z N T q

 

  (36) 

The rotation of the cross section results in further deflection of points located away from the 

center line. This displacement is handled by the 3 by 6 dimensional matrix TN  given by 

 

1 0 0 0 0 '

ˆ0 1 0   0 0 '  

0 0 1 ' ' 0

T xy

y

N x I r I

y x

  
           
  

 (37) 

Matrix multiplication of TN  in front of equation (36) results in the deflection of the point 

( ',  ',  ')x y z  in element coordinates and what is left in order to have the description of iS  in 

equation (33) is to transform this vector into the floating frame coordinate system by pre-

multiplication of EST . 

Inertia forces can be derived from the virtual work principle as follows 

 
i

i i i i

V
W r r dV     (38) 

where ir  is the virtual displacement of the material point on the surface of the element and ir  

is the acceleration of the material point.  

From equations (25) and (28) the virtual displacement can be illustrated as follows 

      f

f

i

i i i i i i i i i i i i i i

p p

i

R

r R A u A S q I A u I A S H q

q



     



 
 

             
 
 

 (39) 

By substituting equations (30) and (39) into equation (38), the virtual work can be illustrated 

as follows 
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   

   

  

     

                                                                         2

  

i

f

i

T TT
i i i i i i i i i i

p p

iV
T T

i i

i i i i i i i

p p

I R

W q u I A I A u I A S

q
S A

A u u dV

   

  

 
   
                   
     

  

    



      

f

i

T
i i i i

i

R

q M Q

q

 

  
  

   
  

  

 (40) 

where iM  is the mass matrix of ith body and iQ  is the force vector on ith body related with 

centrifugal and Coriolis forces. They can be explained as follows 

 

 .

i

i i i i

p

T T
i i i i i i i

p p p
V

T
i i

I A u I A S

M u I u I u I S dV

sym S S



     
                
 
  

  (41) 

 

 

  

  

    

2

2

2

i

i i i i i i

p p

i i i i i i i i i

p p p
V

T
i i i i i i

p p

A u u

Q u I u u dV

S u u

  

   

  

    
 
 
        
 

     

  (42) 

 

3. NUMERICAL RESULTS 

After implementing the new beam element into HAWC2 three different cases are investigated 

in order to validate the new beam model with a single body and a multibody configuration. The 

first case is used for validating the developed beam element with an anisotropic single body 

example. The second example case is used for validating the multibody formulation used in 

HAWC2. As the last case a whole turbine configuration including anisotropic blades on the rotor 

is considered for validating the beam element in the multibody formulation. Figure 3(a) and (b) 

show the sketches of the considered first and second case. The last considered case is the NREL 

5MW reference wind turbine
45

. Tables 1 and 2 show the detailed structural properties and cross-

sectional stiffness matrix for the first and the second example. More detailed information is 

addressed in Hodges et al.
46

 and Simo et al.
47

.  
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(a) Case 1: an anisotropic rectangular box beam, [20°/-70°/20°/-70°/-70°/20°]T layups with 

T300/5208 Graphite/Epoxy
46

 

 

(b) Case 2: a spin-up maneuver problem by prescribing the angle
47

 

Figure 3. A sketch of considered examples  

 

3.1. Validation of the new beam finite element with an anisotropic single body 

Case 1 is used for validating the beam element with an anisotropic single body configuration. 

The case produces structural couplings due to asymmetric composite layups such as edgewise 

deflection-flapwise bending (S14), flapwise deflection-edgewise bending (S25), axial deflection-

torsion (S36). Natural frequencies computed from HAWC2 are compared to the other existing 

results obtained from Hodges et al.
46 

and the results determined by a commercial software, 

MSC/Nastran. In order to compute the natural frequencies by MSC/Nastran, a 4-node shell 

element located in the mid-thickness of the material is considered. The structure is meshed with 

38 elements circumferentially and 1015 longitudinally. Table 3 shows the natural frequencies 

comparison. The HAWC2 result shows good agreement. 

The mentioned coupling effects on the structure can be captured through the mode shape 

analysis. Figure 4 shows the first 6 mode shapes obtained from HAWC2. In this figure it is 

exhibited by all modes that the flap related mode is coupled with the edge related mode and vice 

versa. First two modes produce small coupling effects and therefore it is not easy to see the 
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coupled behaviors. However, at the higher modes it is very obvious that the flap and edge related 

mode is coupled with the edge and flap related mode, respectively. 

 

 

Figure 4. 6 mode shapes of Case 1 with anisotropic properties 

From the above natural frequencies and mode shapes results it may be concluded that the 

beam model can capture the physical behaviors of a structurally coupled single body very well. 

More validations with an anisotropic single body concept were performed by the authors.
48

  

 

3.2. Validation of a nonlinear multibody formulation 

Case 2 is used for validating a nonlinear multibody formulation. This example is known as the 

Spin-up Maneuver subjected to the angle, ( )t , described in equation (43). The angle is applied 

at the root of the beam shown in Figure 3(b). The angle is scheduled with respect to time as 

follows 

 

 

222 15 2
( ) cos 1     rad,                 0 15 sec

5 2 2 15

( ) 6 45     rad,                 15 sec

t t
t t

t t t








    
        

     

  

 (43) 

where this type of motion was suggested by Kane et al.
49

. 

Tip displacements on 'x  and 'z  direction are compared between HAWC2 and the existing 

results obtained by Simo et al.
47

. Figure 5(a) and (b) show the tip displacements in 'x  and 'z  
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direction, respectively. They are matched very well. The centrifugal stiffening effect is captured 

as well. From the obtained results it can be addressed that the developed multibody formulation 

performs very well.  

 

  
(a) Tip displacement in 'x  direction (b) Tip displacement in 'z  direction 

Figure 5. Tip displacement comparisons between HAWC2 and Simo et al.
47

 

 

3.3. Validation of a whole turbine configuration 

As the final example a whole wind turbine, 5MW reference wind turbine
45

, is considered to 

validate the new beam element in a multibody system. The natural frequencies of the whole 

turbine and the blades are compared between the standard version (i.e. before implementing the 

new beam element) and the new version (i.e. after implementing the new beam element). Table 4 

shows the comparisons. 

Natural frequencies for both the whole turbine and the blades are very similar. Thus, it may 

also be concluded that the developed beam element is successfully developed and implemented 

into HAWC2.   

As a final step a parametric study is accompanied with the new version of HAWC2 to 

investigate an anisotropic structural effect in terms of a whole turbine response.   

3.4. A simple parametric study for a blade bend-twist coupling effect 

According to the literature
35-39

 the bend-twist coupled composite blade yields the benefit to 

reduce the blade flapwise fatigue loads. In this section, a simple parametric study is investigated 

with the developed structural model in order to explore whether or not the developed model is 

able to capture a given anisotropic effect such as a bend-twist coupling in a multibody 

configuration. The 5MW turbine with blades having a bend-twist coupling is used. In this study, 

it is not a scope to design a blade with a detailed composite layup which results in a desired 

bend-twist coupling. Instead, the considered bend-twist coupling is assigned based on equation 

(44) obtained from Lobitz et al.
39

 and it is assumed that such a blade can be produced.  
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0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0
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 
 
 
 

  
 
 
 
  

 (44) 

where SBT is the coupling term represented as  

 ,                1 1BT xS EI GJ       (45) 

The amount of coupling is assigned by  . When   has a negative value flapwise bending 

toward tower results in blade twist toward feather. It is the opposite when   has a positive 

value. In this study two fabricated coupling cases are considered which are 0.05    and 

0.17   . Both cases are producing the bend-twist coupling for which 1m flapwise bending tip 

deflection resulting in approximately 0.3deg and 1deg twist at the blade tip, respectively. From 

the experiments done at DTU on the 8m section from a 23m Vestas blade modified with 

additional UD layers
32, 34

 the bend-twist coupling was measured. The inner part was fixed with 

two clamps and the outer part was loaded at a movable clamp. It was found that in pure flapwise 

bending a flapwise deflection of 120mm at the outer measuring section resulted in a twisting 

angle of 0.5deg, which corresponds to 4.5deg for 1m tip deflection. So the bend-twist couplings 

used here can easily be obtained in reality. The amount of couplings can be calculated by either 

an Eigen vector analysis or a static analysis. In this paper a static analysis is used. A static load at 

the blade tip, which can produce approximately 1m blade flapwise tip deflection for both cases, 

is applied. Figure 6(a) and (b) show results from static analyses obtained by a cantilevered blade. 

A single wind speed, 7m/s, is considered with 22% turbulence intensity. All results obtained 

are compared with a case with no couplings referred to as the baseline. Figure 7 shows the 

comparisons of the blade root flapwise, edgewise, and torsional equivalent fatigue loads and 

blade tip deflection. The negative sign means that the obtained values are lower than for the 

baseline. The S-N slope, 12m  , for a composite material is selected for the equivalent fatigue 

load analysis. Rainflow counting methodology
50

 is adapted for fatigue analysis. The blade root 

flapwise, edgewise, and torsional equivalent fatigue load are decreased up to approximately 2%, 

0.5%, and 10%, respectively when 0.05   . When 0.17   , 20%, 0.8% and 21% of the 

flapwise, edgewise, and torsional equivalent fatigue loads are reduced. The blade tip clearances 

are also improved for both cases, approximately 8% and 21%, respectively. 

 One of the main reasons to obtain the above results is that aerodynamic loads on the blades 

are reduced due to reduced angle of attack resulting from torsion toward feather. Figure 8 shows 

the comparison of the mean value of angle of attack. The angles of attack for both cases are 

reduced, approximately 11% and 33%. The more coupling provides the more angle of attack 

changes resulting to decreasing the loads and the flapwise deflection. However, this phenomenon 

is able to decrease the mechanical power (i.e. the power transmitted through a mechanical 

system). But it is out of scope with the present study to investigate more detailed advantages and 

disadvantages of the bend-twist coupling. From the study it is very clearly seen that the current 

structural model is able to capture the anisotropic effects. 
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(a) Example 1: 0.05    

 

(b) Example 2: 0.17    

Figure 6. The static deflections and rotations of the coupled beam 
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(a) Flapwise equivalent fatigue load (b) Edgewise equivalent fatigue load 

  

(c) Torsional equivalent fatigue load (d) Maximum blade tip deflection 

Figure 7: Equivalent fatigue loads and maximum tip deflection comparisons 

 

 

Figure 8. Angle of attack comparisons 
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4. CONCLUSIONS 

In this paper a new beam element, which is able to take the behavior of anisotropic materials 

into account, is developed and implemented into the multibody system of HAWC2. Validations 

for a single body and a multibody configuration are performed with an anisotropic beam model, 

a spin-up maneuver problem and the NREL 5MW reference wind turbine. Eigenvalue analyses 

are performed. A static analysis is also performed with the purpose of investigating a structural 

coupling effect on the 5MW reference wind turbine. A parametric study is performed to examine 

if the developed structural model in a multibody system is able to capture the given anisotropic 

structural coupling effects. Obtained results can be summarized as follows 

 Case 1: Natural frequencies are compared between HAWC2 computations and 

computations from other methods. The obtained results from HAWC2 are very similar to 

those obtained from the other methods. Mode shapes are also investigated. From the 

obtained results it is seen that the developed beam element is able to capture the given 

couplings well.  

 Case 2: A spin-up maneuver problem by prescribed angle is examined in order to validate 

the developed nonlinear multibody formulation used in HAWC2. The tip displacements are 

compared between HAWC2 and the other published results. They match very well. From 

this comparison it can be concluded that the developed nonlinear multibody formulation 

performs very well.  

 Case 3: The whole 5MW reference wind turbine is considered to investigate the newly 

developed beam element in a multibody system. The obtained natural frequencies between 

the standard version (i.e. before implementing the new beam element) and the new version 

(i.e. after implementing the new beam element) are very similar so it may be concluded 

that the implementation of the new element is successful.  

 Parametric study: a simple parametric study is performed with the new version of HAWC2 

to investigate a structural coupling effect in terms of blade responses. Two fictitious bend-

twist coupling cases are fabricated such that 1m flapwise tip deflection resulting in 0.3deg 

and 1deg torsion at the blade tip, respectively. The angle of attack is in both cases reduced 

due to the torsion toward feather coupling effect. Therefore, both coupling cases are able 

to reduce the loads. From this parametric study it is seen that structural coupling effects 

are able to be examined by the developed beam element in the HAWC2 multibody 

system.  

 

Next step in the ongoing research activities is to study the whole wind turbine system 

response, considering realistic composite tailoring effects such as bend-twist or bend-bend 

couplings produced by layup changes. This will bring more clear answers concerning the 

potential improvement of the turbine performance by smart design of the blades using structural 

couplings resulting from the anisotropic materials.     
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Tables 

 

 

                   Table 1. Sectional properties of Case 1 

Material  T300/5208 Graphite/Epoxy 

properties Rectangular box beam 

E11 11.03 GPa 

E33 146.79 GPa 

G12 4.82 GPa 

G13, G23 6.20 GPa 

ν12 0.28 

Ρ 1599 kg/m
3
 

Sectional stiffness of Case 1 (Hodges et al.
46

) 

S11 (kxGA) 7.7440×10
5 

(N) 

S14  8.3266×10
3 

(N-m) 

S22 (kyGA) 2.9557×10
5 

(N) 

S25 9.0666×10
3 

(N-m) 

S33 (EA) 5.0574×10
6
 (N) 

S36 -1.7195×10
4
 (N-m) 

S44 (EIx) 2.4576×10
2
 (N-m

2
) 

S55 (EIy) 7.4439×10
2 

(N-m
2
) 

S66 (GJ) 1.5040×10
2
 (N-m

2
) 

 

 

                   Table 2. Sectional properties of Case 2 

A ρ 1.2 kg/m 

I ρ 6.0×10
-4 

kg-m 

L 10 m 

Sectional stiffness of Case 2 (Simo et al.
47

) 

S11 (kxGA) 1.0000×10
7 

(N) 

S22 (kyGA) 1.0000×10
7 

(N) 

S33 (EA) 2.8000×10
7 

(N) 

S44 (EIx) 1.4000×10
4
 (N-m

2
) 

S55 (EIy) 1.4000×10
4
 (N-m

2
) 

S66 (GJ) 9.9821×10
3
 (N-m

2
) 
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Table 3: Natural frequencies comparison of Case 1 

 Case 1 

Mode HAWC2 [Hz] Hodges et al.
 46

 [Hz] MSC/Nastran [Hz] 

1 (flap-edge) 3.00 3.00 2.98 

2 (edge-flap) 5.19 5.19 5.12 

3 (flap-edge) 18.79 19.04 18.65 

4 (edge-flap) 32.41 32.88 32.02 

5 (flap-edge) 52.57 54.69 52.17 

6 (edge-flap) 89.54  93.39 

 

 

Table 4: The natural frequencies comparisons 

Whole turbine natural frequency [Hz] 

(structure) 

Blade natural frequency [Hz] 

(body) 

 Standard version New version  Standard version New version 

1 3.17017×10
-1

 3.17004×10
-1

 1 6.72048×10
-1

 6.71166×10
-1

 

2 3.19657×10
-1

 3.19631×10
-1

 2 1.07864×10
0
 1.07804×10

0
 

3 6.06803×10
-1

 6.06571×10
-1

 3 1.93946×10
0
 1.93328×10

0
 

4 6.31398×10
-1

 6.30632×10
-1

 4 3.95532×10
0
 3.95023×10

0
 

5 6.61957×10
-1

 6.61118×10
-1

 5 4.47147×10
0
 4.46693×10

0
 

6 6.99601×10
-1

 6.98869×10
-1

 6 5.83890×10
0
 5.76753×10

0
 

7 1.07370×10
0
 1.07308×10

0
 7 7.91385×10

0
 7.89320×10

0
 

8 1.08798×10
0
 1.08722×10

0
 8 9.21933×10

0
 9.20979×10

0
 

9 1.68962×10
0
 1.68661×10

0
 9 1.01272×10

1
 1.02861×10

1
 

10 1.83475×10
0
 1.83001×10

0
 10 1.23857×10

1
 1.24129×10

1
 

 

 


