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Abstract 

This study investigated the effects of high salinity on the performance and membrane fouling of 

membrane bioreactor (MBR) with saline wastewater. Synthetic wastewaters containing 5 to 20 g/L 

salts (NaCl) were treated in identical lab-scale (7 L) MBRs monitoring removals of dissolved 

organic carbon (DOC) and ammonia. Increase in salt concentrations did not significantly change 

the removal efficiency of DOC in the MBRs. However, the ammonia removals decreased from 87% 

to 46 % with increasing salt concentrations. PCR-DGGE analysis indicated changes in the 

microbial communities’ composition due to high salinity; and the changes in microbial 

composition in turn have affected the performance of the MBRs. Membrane fouling was 

accelerated by the increased pore blocking resistance at higher salt concentrations. Analysis results 

of physicochemical and biological characteristics of biomass (EPS, floc size, zeta potential) 

verified the impacts of high salinity on the increased membrane fouling. 
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1. INTRODUCTION 1 

 2 

Industrialization has led not only to increased water demand, but also to deterioration of water 3 

quality, mostly due to industrial discharges. Many industries such as food processing, canning, 4 

petroleum, and petrochemical industries generate very large amounts of saline wastewater, rich in 5 

both salt and organic matters (Lefebvre & Moletta, 2006). When these wastewaters are discharged 6 

without proper treatment, they can impair the water quality of surface and ground waters. 7 

 8 

Saline wastewater is usually treated through physicochemical treatment processes. However, 9 

physicochemical technologies are generally energy-consuming, and their capital and operation and 10 

maintenance (O&M) costs are relatively high. Alternative unit processes for saline wastewater 11 

treatment include anaerobic or aerobic biological treatments. However, salinity is known to have 12 

toxic effects on bacteria and is also capable of altering microbial characteristics. A number of 13 

researchers have studied and identified the significant impacts of high salinity on conventional 14 

wastewater treatment processes such as sequencing batch reactors (SBR) and activated sludge 15 

processes (ASP) (Campos et al., 2002; Panswad & Anan, 1999; Rene et al., 2008). 16 

 17 

The effects of salinity on sludge properties have been extensively reported (Kargi & Dincer, 1996). 18 

First, the density of saline water is higher than that of freshwater, creating greater resistance to 19 

decantation through higher buoyant forces. Second, high salt concentrations cause cell plasmolysis 20 

and death of microbes usually present in sewage due to the increase of osmotic pressure, which 21 

results in a reduction in particle size and density. Third, hyper-salinity reduces the amount of 22 

filamentous bacteria, which play an important role in the mechanical integrity and structure of the 23 

flocs. Finally, the lack of protozoans can also increase effluent turbidity. 24 

 25 
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One of the technologies that can potentially be utilized to overcome these negative impacts is the 1 

membrane bioreactor (MBR). The MBRs offer many benefits over the conventional activated 2 

sludge processes, which include small space and reactor requirements, better effluent quality, 3 

increased volumetric loadings, and less sludge production (Oppenheimer et al., 2001). Additional 4 

advantages would include better control of solids retention time (SRT), operational reliability and 5 

stability, easy automatic control, and compactness of the whole system.  In addition, acclimation to 6 

a specific wastewater can take place at higher rates in MBR than in a continuous stirred tank reactor 7 

(CSTR) or other high rate bioreactors due to elimination of wash out (Vyrides & Stuckey, 2011). 8 

Moreover, the MBRs were known to be capable to treat not only high strength wastewater but also 9 

toxic compounds (Guo et al., 2012).  10 

 11 

However, membrane fouling represents one of the biggest challenges that hinder the extended 12 

utilization of membrane bioreactor process. The reduction in permeate flux is known to be the main 13 

factor in determining the economic feasibility of membrane processes (Guo et al., 2012). Membrane 14 

fouling can be caused by several factors, which, at the same time, are affected by a set of parameters 15 

such as the compositions of the biological system (Stuckey, 2012). Nevertheless, the influence of 16 

high salt concentrations on the filtration performance and membrane fouling in MBRs has not been 17 

elucidated.  18 

 19 

Therefore, it is imperative to assess the influence of microbial characteristics under high salinity 20 

conditions on membrane permeability and fouling for further application of MBRs when managing 21 

high salinity wastewater.  In this study, changes in the microbial properties of biomass in MBRs 22 

were investigated under various salinity conditions along with their influence on membrane 23 

filtration and fouling.  24 

 25 
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2. MATERIALS AND METHODS 1 

 2 

2.1 Experimental set-up 3 

 4 

A lab scale submerged MBR was used. The MBR system consisted of an activated sludge 5 

bioreactor having an effective volume of 7 L, in which a hollow fiber membrane module was placed. 6 

The membranes are made of high density polyethylene (HDPE) with a nominal pore size of 0.4 μm 7 

and an effective filtration area of 0.1 m
2
.  The sludge for the bioreactors were obtained from the 8 

activated sludge process of a wastewater treatment plant in Daejeon, Republic of Korea, and was 9 

acclimated with synthetic wastewater for 30 days before our experiments. Synthetic wastewater 10 

having influent COD of 1,200 mg/L (COD:N:P = 100:10:2) was supplied to the bioreactor from 11 

storage tank. The composition of the synthetic wastewater is summarized in Table 1; four different 12 

salt concentrations of 0, 5, 10, and 20 g/L were applied. Each of the shock loads was administered 13 

continuously throughout the experimental period. The solid retention time (SRT) could be obtained 14 

by the amount of excessive sludge discharge per day and was maintained for 50 days. Permeation of 15 

membranes was continuously maintained by using a peristaltic pump at a constant flux 3.5 Lm
-2

h
-1

 16 

and hydraulic retention time (HRT) of 18 hours. The air flow rate was kept at 5 L/min. One cycle 17 

consisted of 9 min of filtration and 1 min of backwash. The experiments were conducted at room 18 

temperature (20±5℃). 19 

 20 

2.2 Analytical items and methods 21 

 22 

The following parameters were determined based on the APHA Standard Methods (APHA, 2005): 23 

TSS by method 2540D; VSS by method 2540E; DO by method 4500-O G using a DO meter (Orion 24 

810, Thermo scientific, MA, USA); pH by method 4500-H+ B using  pH meter (Orion 720A, 25 



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

5 

 

Thermo scientific, USA); dissolved organic carbon (DOC) by a TOC analyzer (Appollo 9000, 1 

Teledyne Tekmar, USA) after filtration of the samples with 0.45 m syringe filters (Whatman, UK); 2 

ammonia by method 4500-NH3 C titrimetric method after distillation with a distilling unit 3 

(KJELTEC 1026, FOSS, Denmark). The extracellular polymeric substance (EPS) was extracted by 4 

a thermal extraction (Chang & Lee, 1998). Carbohydrates in the EPS were determined according to 5 

the phenol-sulfuric acid method with glucose as the standard (DuBois et al., 1956). Proteins were 6 

determined by the Folin method with bovine serum albumin as the standard (Lowry et al., 1951). 7 

Particle size of activated sludge in the MBR was measured by a LS230 (Beckman, USA), in a range 8 

of 0.5 to 875 m. Zeta potential was analyzed by a zeta potential analyzer (ELS-Z2, Otsuka 9 

Electronics Co. Ltd., Japan). 10 

 11 

2.3 Resistance analysis 12 

 13 

The resistance-in-series model was used to analyze membrane fouling resistances, which describes 14 

the permeate flux-transmembrane pressure (TMP) relationship over the entire domain of pressure. 15 

Based on this model, the permeate flux on the applied TMP can be described by Darcy’s law as 16 

follows (Judd, 2008): 17 

 18 

)RRμ(R

ΔP

)μ(R

ΔP

Adt

dV
J

fcmt

v



1

 

19 

 20 

where Jv is the permeate flux, m
3
/m

2
/h; V is the total volume of permeate, m

3
; A is the membrane 21 

area, m
2
; P is TMP, Pa; μ is the permeate viscosity, Pa∙s; Rt is the total resistance, m

-1
; Rm is the 22 

intrinsic membrane resistance, m
-1

; Rc is the cake layer resistance, m
-1

; and Rf is the fouling 23 

resistance, m
-1

, which is typically due to adsorption of solutes and pore blocking. 24 
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 1 

Initially, the intrinsic membrane resistance (Rm) was obtained using a new membrane module and 2 

ultrapure water. After TMP reached 27 kPa during the MBR operation, the membrane module was 3 

removed from the reactor and washed with ultrapure water several times to remove the cake layer 4 

on the membrane surface. The washed module was put into the reactor again, and the initial TMP 5 

was monitored. The reduced portion of TMP was regarded as the resistance caused by the cake 6 

layer, while the remaining portion of TMP was regarded as the resistance caused by pore blocking.  7 

 8 

2.4 Microbial community analysis (PCR-DGGE) 9 

 10 

For the DNA extraction from microorganisms in each MBR, a Fast DNA SPIN Kit for Soil 11 

(Catalog No. 6560-200, MP Biomedicals, USA) was used. Characteristics of the primer sequences 12 

used are listed in Table 2. The procedure for PCR-DGGE was described in a previous study by the 13 

authors (Chae et al., 2006).  An 8% PAGE gel with a gradient of 40 to 60 % was prepared. The 14 

gradient was adjusted by mixing the solutions. Immediately prior to loading, 150 L of 10% APS 15 

(ammonium persulfate) and 15 L of TEMED were added.  P2/P3 products were used for the 16 

DGGE analysis. These samples were mixed with 2X loading dye, which is composed of 2% 17 

Bromophenol blue 0.25 ml, 2% xylene cyanol 0.25 ml, 100% glycerol 7.0 mL, and deionized water 18 

2.5 mL. After finishing gel loading, the DGGE was run at 70 V for 8 hours in a DGGE machine (D-19 

Code System, BioRad Inc., USA.). From the finished gel, tick bands were extracted and the DNA 20 

contained in each extracted band was diluted with TE buffer (10 mM Tris–HCl, pH 8.0, 1 mM 21 

EDTA). Using the DNA as a template, an additional PCR was conducted with P2/P3 (without a GC 22 

clamp) primer. The operating conditions were the same as employed for the P2/P3 PCR. These 23 

samples were purified using a MultiScreen Vacuum Manifold (Millipore, USA) and then sequenced. 24 
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The sequences obtained after the sequencing reaction were matched with bacteria through a BLAST 1 

search. 2 

 3 

3. RESULTS AND DISCUSSION 4 

 5 

3.1 Recovery of treatment efficiency in MBR by microbial adaptation 6 

 7 

3.1.1 Recovery of removal efficiencies of DOC and ammonia 8 

 9 

The variations of DOC and ammonia concentrations in the MBR effluents were continuously 10 

monitored to investigate the effect of salt concentration on MBR performance. The results show 11 

that the treatment efficiencies gradually decreased as the salinity increased from 0 to 20 g NaCl/L in 12 

each reactor. An increase in salt concentration did not significantly change the removal efficiency of 13 

DOC in the MBR. The removal efficiency of DOC was maintained above 95 % at 20 g NaCl/L. As 14 

compared to other conventional treatment processes (Kinner & Bishop, 1962; Munozcolunga & 15 

Gonzalezmartinez, 1996), the MBRs responded well to salt shock loads. The high biomass 16 

concentrations in the MBRs can be attributed to withstand shock salt loads. In addition, the 17 

membrane would act as a barrier preventing the washout of solids and dead biomass that could 18 

contribute to increase in organics in the effluent. 19 

 20 

On the contrary, salinity exhibited a significant negative impact on the nitrification process (Fig. 1). 21 

Removal efficiency of ammonia decreased from 87 % to 46 % as the salt concentration increased 22 

from 0 to 20 g NaCl/L. The removal efficiency of ammonia was recovered after 30 to 40 days of 23 

operation due to adaptation of the activated sludge to the high salinity conditions (Panswad & Anan, 24 

1999). The decrease in removal efficiency of ammonia with increasing salt concentration was 25 
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possibly due to washing out of dead biomass and lysed cell constituents (Lefebvre & Moletta, 2006). 1 

According to Moussa et al. (2006), ammonia oxidizers are more sensitive to salt stress than 2 

heterotrophs removing organic matter. These previous research results indicate that nitrifiers are 3 

very sensitive to high salinity, and once they are affected or washed out, sometime will be required 4 

to reestablish them within the system due to their slow growth rates. Therefore, the longer recovery 5 

period for ammonia removal than those of organic removal could be caused by high sensitivity of 6 

ammonia oxidizer to salinity.  7 

 8 

3.1.2 Microbial Population Dynamics 9 

 10 

A comparison of the microbial community in the MBRs was conducted through a PCR-DGGE 11 

analysis. The dominant bands were selected, excised, and sequenced in order to reveal the identity 12 

of the microorganisms involved. DGGE gel band profiles of the microbial communities in the 13 

MBRs at different salt concentrations are illustrated in Fig. 2 and Table 3. Based on the banding 14 

profiles, the difference between microbial community structures at 0 and 5 g NaCl/L were minimal. 15 

This result indicated that salt loadings below 5 g/L had little or no impact on the microbial 16 

community in the MBRs. Also, it explained why the removal efficiency of ammonia removal was 17 

not significantly affected below 5 g/L of salt loading. 18 

 19 

Microbial diversity reduced in the MBRs more than 5 g/L of salt loading. Bands D, E, F, K, L, and 20 

P completely disappeared at 10 and 20 g NaCl/L. However, bands A, B, G, I, an N (Nitrosomonas 21 

eutropha and Nitrosomonas europaea) were still present at 20 g/L of salt and the intensity of bands 22 

E, N especially increased with salt concentration increments. This was similar to the result obtained 23 

by Bassin et al. (2012) who found that Nitrosomonas genus were still detected in SBR system even 24 

at the highest salt concentration (20 g NaCl/L).  These findings indicated changes in the microbial 25 
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communities’ composition due to high salinity and the changes in microbial composition in turn 1 

many have affected the performance of the MBRs. 2 

 3 

3.2 Effects of salinity on membrane filtration and biomass properties in MBRs 4 

 5 

3.2.1 Filtration characteristics 6 

 7 

To illustrate the characteristics of membrane filtration in each MBR, TMP was monitored at a 8 

constant flux at 3.5 Lm
-2

h
-1

. Since a peristaltic pump drove out the permeate and the pressure in the 9 

retentate did not change, the TMP increased naturally due to fouling, resulting in a decrease in 10 

permeate pressure. The membrane filtration was stopped and washed as when the TMP reached 27 11 

kPa, because it was difficult to maintain constant flux above this point.  12 

 13 

Fig. 3 depicts the profiles of TMP over time in each MBR at different salt concentrations. TMP 14 

reached the critical flux (27 kPa) after 132 hours in the control reactor at 20 days operation. 15 

However, TMP reached the critical flux within 60 hours of operation with a salt concentration of 20 16 

g/L. The results indicated that the fouling tendency was significantly accelerated at high salt 17 

concentrations. In addition, slope of TMPs increased as the filtration time was extended in higher 18 

salt concentration. The time to reach critical flux was decreased in 46 hours with 20 g/L of salt at 90 19 

days operation.  20 

 21 

The contribution of each resistance to membrane fouling was obtained by the resistance-in-series 22 

model. As shown in Fig. 4, a decrease in Rc was observed along with increased salt concentration, 23 

whereas Rf increased from 7 to 22% of the total resistance. These results revealed that Rf led to a 24 

faster increment of TMP, causing an intense loss in permeability at high salt concentrations. With 25 
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an increase in salt concentration from 0 to 5 g/L, did not evidence any sudden increase in membrane 1 

fouling or high TSS concentration due to biomass detachment. This was likely due to the biomass 2 

being able to adapt more easily and quickly to smaller increases in salt concentration, thus having 3 

less impact on biomass detachment.  4 

 5 

3.2.2 Extracellular polymeric substance (EPS) composition 6 

 7 

Table 4 illustrates the concentrations of EPS components (carbohydrate and protein) in microbial 8 

floc at various salt concentrations. After salt shock loadings (20 days), concentrations of both EPS 9 

carbohydrate and protein dramatically increased, and higher amounts of EPS released were 10 

observed under higher salt concentrations. It has been widely accepted that the exposure of biomass 11 

to a toxic wastewater generates substantial amounts of EPS (Vyrides & Stuckey, 2011), and these 12 

can contribute to more severe membrane fouling compared to nontoxic wastewater (Wang & Wu, 13 

2009).  14 

 15 

Reid et al. (2006) reported that high salt levels greatly affect EPS concentrations, especially the 16 

initial period of operation with saline wastewater. This increase in EPS was mainly due to 17 

plasmolysis and release of intracellular constituents as well as the accumulation of unmetabolized 18 

and intermediate products of incomplete degradation of organic substances and microbial produced 19 

polymers. Also, composition of released EPS can significantly influence the hydrophobicity of 20 

microbial aggregates and their formation in bioreactors (Guo et al., 2012). Moreover, high 21 

molecular carbohydrates can stimulate the formation of sticky hydrogels on membrane surface 22 

(Frank & Belfort, 2003). These release of products, can be part of the EPS would in turn influence 23 

sludge structure and membrane fouling in MBR.  24 

 25 

3.2.3 Zeta potential 26 
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 1 

The activated sludge flocs are negatively charged as a result of the physicochemical interactions 2 

between microorganisms (mainly bacteria), inorganic particles (silicates, calcium phosphate, and 3 

iron oxides), exocellular polymers and multivalent cations (Urbain et al., 1993). If the amount of 4 

negative charge is large enough, colloids remain discrete and dispersed in suspension. Reducing or 5 

eliminating the charge has the opposite effect and the colloids will gradually aggregate and settle. 6 

 7 

 The zeta potential of the control reactor at 0 day was measured as -30.4 mV, and a slight decrease 8 

in negativity was observed with an increase of salt concentration at 20 days, as depicted in Table 5. 9 

This can be attributed to neutralization of negative surface charges by the introduction of positively 10 

charged sodium ions. As the sodium (Na) concentration is increased negatively charged 11 

carbohydrate type polymer is also increased (Table 4). Also, the amount of protein type polymers 12 

contributes to positive surface charges of activated sludge and is expected to decrease zeta potential 13 

values (Kara et al., 2008). All these results turn up as a response to the concentration of sodium ions 14 

indicate that bacterial flocculation ability deteriorates at higher salt concentrations. These results are 15 

expected to change flocs’ physical sludge structure and behavior. 16 

 17 

3.2.4 Particle size distribution 18 

 19 

As indicated in Table 5, a significant increment in floc size was observed when the salt 20 

concentrations increased at 20 days. However, a slight decreasing trend was observed in particle 21 

sizes after salt shock loadings in 90 days. This result may reflect degradation of the aggregate 22 

structure towards to more fragile and therefore larger structures, caused by the initial shock 23 

promoted by salt addition. Zhan (1999) reported that the amount of filamentous organisms in 24 

activated sludge flocs decreased significantly with increased salinity, while filamentous bacteria are 25 

supposed to be the backbone of activated sludge flocs contributing to the formation of large flocs 26 
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(Wu et al., 2008). As these looser structures are also mechanically more delicate, however, their 1 

continuous erosion could be explained by aeration in MBRs. Also, the decrease in floc size was 2 

partially due to a floc breakage present in the suspension of isolated cells and microflocs. The 3 

amount of protozoa in the mixed liquor reduced with increasing the salinity. Protozoa are able to 4 

prey on dispersive microorganisms and the reduction of protozoa would result in more dispersive 5 

microorganisms (Zhan, 1999). Recent research of Dereli et al. (2012) showed that long term 6 

adaptation periods resulted in high salt tolerance under saline conditions, and then sludge was 7 

dispersed by reducing bacterial flocculation. 8 

 9 

3.2.5 Relationship between salt shock loadings and biomass characteristics 10 

 11 

The results showed that EPS (carbohydrate and protein) concentration increased gradually as the 12 

salinity increased. Certain microorganisms produce polymers for self-defense and to protect 13 

themselves against toxic compounds. This could also account for the increase in EPS with 14 

increasing salt concentration. The increase in EPS compounds could affect biomass properties: zeta 15 

potential, floc size, etc. Increased EPS concentrations decreased the zeta potential. The 16 

carbohydrate content of EPS has a positive relationship with the net surface charge. Also, an 17 

increase of salt content would promote bacterial flocculation, a phenomenon that is attributed to 18 

compression of the double electric layer. Higher EPS contents in sludge would result in greater 19 

sludge stability. Sheng et al. (2006) proposed that the sludge has a multiple-layer structure with two 20 

distinct regions. The outer region is a dispersible part, wherein dispersible sludge cells adhere 21 

together by the readily extractable EPS. The total EPS concentration decreases after a certain period 22 

after salt shock, possibly due to adaption. The decrease of EPS content leads to an increase of 23 

negativity of the floc surface and the force of adhesion is then decreased. After exposure to shear, 24 

the outer region would disperse.  25 
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 1 

4. CONCLUSION 2 

 3 

The effects of salinity on treatment efficiency and membrane filtration in MBRs with high salt 4 

loadings were investigated. Compared to the stable organic removal process, the nitrification 5 

process was significantly impeded by high salinity at the initial period. Although the microbial 6 

diversity decreased at high salt concentration, Nitrosomonas genus was still present, and their 7 

intensity of bands in PCR-DGGE increased. These findings indicated changes in the microbial 8 

communities’ composition due to high salinity and the changes in microbial composition in turn 9 

many have affected the performance of the MBRs. Membrane fouling was accelerated by increased 10 

pore blocking resistance at high salt concentrations. High salinity influenced biomass properties 11 

impacting membrane filtration and fouling properties.  12 

 13 
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Table 1. Characteristics of a synthetic wastewater 

 

Compound Chemical formula 

Molecular weight, 

(g/mol) 

Concentration,  

(mg/L) 

Organics and nutrients    

Glucose C6H12O6 180.0 924 

Ammonium sulfate (NH4)2SO4 132.1 1,200 

Potassium phosphate KH2PO4 136.1 84 

Trace nutrients    

Calcium chloride CaCl2·2H2O 147.0 0.368 

Magnesium sulfate MgSO4·7H2O 246.5 5.07 

Manganese chloride MnCl2·4H2O 197.9 0.275 

Zinc sulfate ZnSO4·7H2O 287.5 0.44 

Ferric chloride anhydrous FeCl3 162.2 1.45 

Cupric sulfate CuSO4·5H2O 249.7 0.391 

Cobalt chloride CoCl2·6H2O 237.9 0.42 

Sodium molybdatedihydrate Na2MoO4·2H2O 242.0 1.26 

Yeast extreact   30 
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Table 2. Characteristics of primers used for PCR 

 

Name Sequence (5’ 3’) 

EUB (universal) 9-27 GAGTTTGATCTGGCTCAG 

EUB (universal) 1542 AGAAAGGAGGTGATCCAGCC 

NitA (specific for nitrifiers) CTTAAGTGGGGAATAACGCATCG 

NitB (specific for nitrifiers) TTACGTGTGAAGCCCTACCCA 

P2 ATTACCGCGGCTGCTGG 

P3 

CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGG

GCCTACGGGAGGCAGCAG 
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Table 3. DDGE fragments of microorganisms by 16S rDNA 

DGGE Bands Closest identity  Accession number 

A Nitrosomonas europaea (ATCC25978) GQ451713 

B Nitrosomonas europaea (ATCC25978) GQ451713 

C Methyloversatilis universalis (FAM5) DQ442273 

D Azohydromonas lata (IAM 12599) AB188125 

E Azohydromonas lata (IAM 12599) AB188125 

F Dechloromonas agitata (CKB) AF170357 

G Nitrosomonas europaea (ATCC25978) GQ451713 

H Burkholderia megapolitana (LMG 23650) AM489502 

I Nitrosomonas europaea (ATCC25978) GQ451713 

J Methyloversatilis universalis (FAM5) DQ442273 

K Nitrosomonas europaea (ATCC25978) GQ451713 

L Shewanella japonica (KMM 3299) KMM 3299T 

M Schlegelella thermodepolymerans (K14) AY152824 

N Nitrosomonas europaea (ATCC25978) GQ451713 

O Nitrosomonas europaea (ATCC25978) GQ451713 

P Nitrosomonas eutropha (C91) Q0AG70 
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Table 4. Variations of EPS in the MBRs at different salt shock loadings 

 

EPS 

composition 

NaCl shock 

loading (g/L) 

0 day 20 days 60 days 90 days 

Carbohydrate 

(mg/g VSS) 

0 4.9 3.1 3.0 2.6 

5 5.2 8.4 3.3 2.8 

10 4.3 12.6 4.7 4.5 

20 4.0 16.2 6.5 6.0 

Protein 

(mg/g VSS) 

0 2.9 2.5 3.1 2.9 

5 2.7 4.5 1.9 1.8 

10 3.3 4.7 1.9 1.5 

20 2.3 4.5 1.8 1.1 
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Table 5. Variations of particle size and zeta potential in MBRs at different salt shock loadings  

 

NaCl shock 

loading (g/L) 

Particle size (μm) Zeta potential (mV) 

0 day  20 days  60 days  90 days  0 day  20 days  60 days  90 days  

0 94.7 118.8 123.3 149.1 -30.4 -34.7 -35.1 -34.3 

5 86.9 255.2 313.9 280.5 -31.6 -10.2 -32.4 -32.6 

10 79.5 295.0 326.0 282.3 -31.5 -12.8 -33.5 -31.5 

20 87.5 295.0 330.4 307.2 -29.4 -19.4 -36.5 -33.5 
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Fig. 1. Variation of ammonia removal efficiencies at different sodium chloride concentrations. 

 

 

 

 

 

 

 

 

 

 

 

 

Operation time (d)

0 20 40 60 80 100

A
m

m
o

n
ia

 r
e

m
o

v
a

l 
(%

)

0

20

40

60

80

100

0 g NaCl/L 

5 g NaCl/L 

10 g NaCl/L 

20 g NaCl/L 

Shock loads 



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

22 

 

 

 

 

Fig. 2. DGGE gel banding profiles of microbial communities in the MBRs at different salt 

concentrations. 
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Fig. 3. Overall TMP profiles of salt shock tests. 
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(b) 90 days 
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Fig. 4. Comparison of resistances in the MBRs at various salt loadings. 
 

 

(a) Initial stage (20 days) 

 

 

(b) Finial stage (90 days) 

 

 

 

 

 

 


