
Weighted Threshold Secret Sharing Based on the

Chinese Remainder Theorem

Sorin Iftene and Ioana Boureanu

Faculty of Computer Science
”Al. I. Cuza” University
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Abstract

A secret sharing scheme derives from a given secret certain shares (or shad-
ows) which are distributed to users. The secret can be recovered only by certain
predetermined groups. In the first secret sharing schemes only the number of the
participants in the reconstruction phase was important for recovering the secret.
Such schemes have been referred to as threshold secret sharing schemes. In the
weighted threshold secret sharing schemes, the users do not have the same status.
More exactly, a positive weight is associated to each user and the secret can be
reconstructed if and only if the sum of the weights of all participants is greater than
or equal to a fixed threshold. In this paper we extend the threshold secret shar-
ing schemes based on the Chinese remainder theorem in order to realize weighted
threshold secret sharing.
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1 Introduction and Preliminaries

A secret sharing scheme starts with a secret and then derives from it certain shares (or
shadows) which are distributed to users. The secret may be recovered only by certain
predetermined groups. Secret sharing has applications to safeguarding cryptographic
keys and providing shared access to strategical resources, threshold cryptography (see,
for example, [7]) and some e-voting schemes (see, for example, [6]).

In the first secret sharing schemes only the number of the participants in the recon-
struction phase was important for recovering the secret. Such schemes have been referred
to as threshold secret sharing schemes. We mention Shamir’s threshold secret shar-
ing scheme [19] based on polynomial interpolation, Blakley’s geometric threshold secret
sharing scheme [5], Mignotte’s threshold secret sharing scheme [13] and Asmuth-Bloom
threshold secret sharing scheme [1], the last two ones based on the Chinese remainder

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147979029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


theorem. There are situations which require more complex access structures than the
threshold ones. Shamir [19] discussed the case of sharing a secret between the execu-
tives of a company such that the secret can be recovered by any three executives, or by
any executive and any vice-president, or by the president alone. In these situations, the
users do not have the same status. In the weighted threshold secret sharing schemes, a
positive weight is associated to each user and the secret can be reconstructed if and only
if the sum of the weights of all participants is greater than or equal to a fixed threshold.
Weighted threshold secret sharing was studied in [2], [3], and [14].

In this paper, we extend the threshold secret sharing schemes based on the Chinese
remainder theorem in order to realize weighted threshold secret sharing.

The paper is organized as follows. The rest of this section is dedicated to the Chinese
remainder theorem. In Section 2, after a brief introduction to secret sharing, we present
threshold secret sharing schemes based on the Chinese remainder theorem. In Section 3,
we extend the threshold secret sharing schemes based on the Chinese remainder theorem
in order to realize weighted threshold secret sharing. The last section concludes the
paper.

We further present some basic facts on the Chinese remainder theorem.
The Chinese remainder theorem has many applications in computer science (see,

for example, [8]). We only mention its applications to the RSA decryption algorithm
as proposed by Quisquater and Couvreur [17], to the discrete logarithm algorithm as
proposed by Pohlig and Hellman [16], and to the algorithm for recovering the secret in
the Mignotte’s threshold secret sharing scheme [13] and in its generalization [12], or in
the Asmuth-Bloom threshold secret sharing scheme [1]. Several versions of the Chinese
remainder theorem have been proposed. The next one is called the general Chinese
remainder theorem [15]:

Theorem 1 Let k ≥ 2, m1, . . . ,mk ≥ 2, and b1, . . . , bk ∈ Z. The system of equations
x ≡ b1 mod m1

...
x ≡ bk mod mk

has solutions in Z if and only if bi ≡ bj mod (mi,mj) for all 1 ≤ i, j ≤ k. Moreover,
if the above system of equations has solutions in Z, then it has an unique solution in
Z[m1,...,mk] ([m1, . . . ,mk] denotes the least common multiple of m1, . . . ,mk).

When (mi,mj) = 1, for all 1 ≤ i < j ≤ k, one gets the standard version of the
Chinese remainder theorem. Garner [10] found an efficient algorithm for this case and
Fraenkel [9] extended it to the general case.

2 Threshold Secret Sharing Schemes Based on the
Chinese Remainder Theorem

We present first some basic facts about secret sharing schemes. Let n be an integer,
n ≥ 2 and A ⊆ P({1, 2, . . . , n}). An A-secret sharing scheme is a method of generating
(S, (I1, . . . , In)) such that
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• for any A ∈ A, the problem of finding the element S, given the set {Ii | i ∈ A} is
”easy”;

• for any A ∈ P({1, 2, . . . , n}) \ A, the problem of finding the element S, given the
set {Ii | i ∈ A} is intractable.

The set A will be referred to as the authorized access structure or simply as the access
structure, S will be referred to as the secret and I1, . . . , In will be referred to as the shares
(or the shadows) of S. The elements of the set A will be referred to as the authorized
access sets.

A natural condition is that an access structure A is monotone [4], i.e.,

(∀B ∈ P({1, 2, . . . , n}))((∃A ∈ A)(A ⊆ B)⇒ B ∈ A)

Any monotone access structure A is well specified by the set of the minimal authorized
access sets, i.e., the set

Amin = {A ∈ A|(∀B ∈ A \ {A})(¬B ⊆ A)}.

In the same way, the unauthorized access structure A, A = P({1, 2, . . . , n}) \ A, is well
specified by the set of the maximal unauthorized access sets, i.e., the set

Amax = {A ∈ A|(∀B ∈ A \ {A})(¬A ⊆ B)}.

An important particular class of secret sharing schemes is that of the threshold secret
sharing schemes. In these schemes, only the cardinality of the sets of shares is important
for recovering the secret. More exactly, if the required threshold is k, 2 ≤ k ≤ n, the
minimal access structure is Amin = {A ∈ P({1, 2, . . . , n}) | |A| = k}. In this case, an
A-secret sharing scheme will be referred to as a (k, n)-threshold secret sharing scheme.

We briefly present next the most important threshold secret sharing schemes based
on the Chinese remainder theorem.

2.1 Mignotte’s Threshold Secret Sharing scheme

Mignotte’s threshold secret sharing scheme [13] uses special sequences of integers, referred
to as Mignotte sequences.

Definition 1 Let n be an integer, n ≥ 2, and 2 ≤ k ≤ n. An (k, n)-Mignotte sequence
is a sequence of positive integers m1 < · · · < mn such that (mi,mj) = 1, for all 1 ≤ i <
j ≤ n, and mn−k+2 · · ·mn < m1 · · ·mk.

Given an (k, n)-Mignotte sequence, the scheme works as follows:

• The secret S is a randomly chosen integer such that β < S < α, where α =
m1 · · ·mk and β = mn−k+2 · · ·mn;

• The shares Ii are chosen by Ii = S mod mi, for all 1 ≤ i ≤ n;
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• Given k distinct shares Ii1 , . . . , Iik , the secret S is recovered using the standard
Chinese remainder theorem, as the unique solution modulo mi1 · · ·mik of the sys-
tem 

x ≡ Ii1 mod mi1
...

x ≡ Iik mod mik

A generalization of Mignotte’s scheme by allowing modules that are not necessarily pair-
wise coprime was proposed in [12], by introducing generalized Mignotte sequences.

Definition 2 Let n be an integer, n ≥ 2, and 2 ≤ k ≤ n. A generalized (k, n)-Mignotte
sequence is a sequence m1, . . . ,mn of positive integers such that

max1≤i1<···<ik−1≤n([mi1 , . . . ,mik−1 ]) < min1≤i1<···<ik≤n([mi1 , . . . ,mik ])

It is easy to see that every (k, n)-Mignotte sequence is a generalized (k, n)-Mignotte
sequence. Moreover, if we multiply every element of an (k, n)-Mignotte sequence by a
fixed element δ ∈ Z, (δ,m1 · · ·mn) = 1, we obtain a generalized (k, n)-Mignotte sequence.
Generalized Mignotte’s scheme works like Mignotte’s scheme, except for the fact α =
min1≤i1<···<ik≤n([mi1 , . . . ,mik ]) and β = max1≤i1<···<ik−1≤n([mi1 , . . . ,mik−1 ]).
Moreover, in this case, the general Chinese remainder theorem must be used for recovering
the secret.

2.2 Asmuth-Bloom Threshold Secret Sharing Scheme

This scheme, proposed by Asmuth and Bloom in [1], also uses special sequences of inte-
gers. More exactly, a sequence of pairwise coprime positive integers r,m1 < · · · < mn is
chosen such that

r ·mn−k+2 · · ·mn < m1 · · ·mk

Given such a sequence, the scheme works as follows:

• The secret S is chosen as a random element of the set Zr;

• The shares Ii are chosen by Ii = (S + γ · r) mod mi, for all 1 ≤ i ≤ n, where γ is
an arbitrary integer such that S + γ · r ∈ Zm1···mk

;

• Given k distinct shares Ii1 , . . . , Iik , the secret S can be obtained as S = x0 mod r,
where x0 is obtained, using the standard Chinese remainder theorem, as the unique
solution modulo mi1 · · ·mik of the system

x ≡ Ii1 mod mi1
...

x ≡ Iik mod mik

The sequences used in the Asmuth-Bloom scheme can be generalized by allowing modules
that are not necessarily pairwise coprime in an obvious manner. We can use any sequence
r,m1, · · · ,mn such that

r ·max1≤i1<···<ik−1≤n([mi1 , . . . ,mik−1 ]) < min1≤i1<···<ik≤n([mi1 , . . . ,mik ])
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It is easy to see that if we multiply every element of an ordinary Asmuth-Bloom sequence
excepting r with a fixed element δ ∈ Z, (δ,m1 · · ·mn) = 1, we obtain a generalized
Asmuth-Bloom sequence.

The application of the Chinese remainder theorem to threshold secret sharing has
also been discussed in [11] and an unitary point of view on the security of the threshold
secret sharing schemes based on the Chinese remainder theorem was presented in [18].

3 Weighted Threshold Secret Sharing Based on the
Chinese Remainder Theorem

We first introduce the weighted threshold access structures.

Definition 3 Let n ≥ 2, ω = (ω1, . . . , ωn) a sequence of positive integers, and w a
positive integer such that 2 ≤ w ≤

∑n
i=1 ωi. The access structure

A = {A ∈ P({1, 2, . . . , n}) |
∑
i∈A

ωi ≥ w}

will be referred to as the (ω,w, n)-weighted threshold access structure.

The parameters ω1, . . . , ωn will be referred to as the weights and w as the threshold.
If A is a (ω,w, n)-weighted threshold access structure, then any A-secret sharing scheme
will be referred to as a (ω,w, n)-weighted threshold secret sharing scheme. Intuitively,
in the weighted threshold secret sharing schemes, a positive weight is associated to each
user and the secret can be reconstructed if and only if the sum of the weights of all
participants is greater than or equal to a fixed threshold.

We have to remark that exist access structures that are not weighted threshold. We
present a simple example that proves this statement.

Example 1 (Benaloh and Leichter [4])
Let n = 4 and Amin = {{1, 2}, {3, 4}}. Suppose that this access structure is a weighted
threshold access structure with the weights ω1, ω2, ω3 and, respectively, ω4 and the
threshold w. So, ω1 + ω2 ≥ w and ω3 + ω4 ≥ w. If we sum these inequalities we obtain
ω1 +ω2 +ω3 +ω4 ≥ 2w, and, further, 2 ·max(ω1, ω2) + 2 ·max(ω3, ω4) ≥ 2w which leads
to max(ω1, ω2) + max(ω3, ω4) ≥ w. Thus, one of the sets {1, 3}, {1, 4}, {2, 3} or {2, 4}
is an authorized access set!

We indicate now how to extend the threshold secret schemes based on the Chinese
remainder theorem to weighted threshold access structures. For simplicity, we only deal
with the Mignotte’s scheme, but we must mention that this extension technique can be
also applied to the Asmuth-Bloom scheme. We first extend the (generalized) threshold
Mignotte sequences in a natural manner.

Definition 4 Let n ≥ 2, ω = (ω1, . . . , ωn) a sequence of weights, and the threshold w
such that 2 ≤ w ≤

∑n
i=1 ωi. A (ω,w, n)-Mignotte sequence is a sequence m1, . . . ,mn of

positive integers such that

maxA∈P({1,2,...,n})∑
i∈A ωi≤w−1

([{mi|i ∈ A}]) < minA∈P({1,2,...,n})∑
i∈A ωi≥w

([{mi|i ∈ A}]) (1)
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Remark 1 In case ω1 = · · · = ωn = 1 and w = k, a sequence m1, . . . ,mn is a (ω,w, n)-
Mignotte sequence if and only if m1, . . . ,mn is a generalized (k, n)-Mignotte sequence in
sense of Definition 2.

In the same case, an ordered sequence m1, . . . ,mn with pairwise coprime elements is
a (ω,w, n)-Mignotte sequence if and only if m1, . . . ,mn is a (k, n)-Mignotte sequence in
sense of Definition 1.

For arbitrary weights and thresholds, a (ω,w, n)-Mignotte sequence can be con-
structed as follows. Let m′1, . . . ,m

′
N be a generalized (w,N)-Mignotte sequence, where

N =
∑n
i=1 ωi and define mi = [{m′j |j ∈ Pi}], for all 1 ≤ i ≤ n, where {P1, . . . , Pn} is

an arbitrary partition of the set {1, 2, . . . , N} such that |Pi| = ωi, for all 1 ≤ i ≤ n. We
obtain that

maxA∈P({1,2,...,n})∑
i∈A ωi≤w−1

([{mi|i ∈ A}]) = maxA∈P({1,2,...,n})∑
i∈A ωi≤w−1

([{[{m′j |j ∈ Pi}]|i ∈ A}])

= maxA∈P({1,2,...,n})∑
i∈A ωi≤w−1

([{m′j |j ∈ ∪i∈APi}]).

Moreover, for any set A ∈ P({1, 2, . . . , n}) with
∑
i∈A ωi ≤ w − 1 we also have

|{m′j |j ∈ ∪i∈APi}| =
∑
i∈A |Pi| =

∑
i∈A ωi ≤ w − 1 and, thus,

maxA∈P({1,2,...,n})∑
i∈A ωi≤w−1

([{mi|i ∈ A}]) ≤ max1≤i1<···<iw−1≤N ([m′i1 , . . . ,m
′
iw−1

]) (2)

By the same reason, we obtain that

min1≤i1<···<iw≤N ([m′i1 , . . . ,m
′
iw ]) ≤ minA∈P({1,2,...,n})∑

i∈A ωi≥w
([{mi|i ∈ A}]). (3)

Using relations (2), (3), and the fact that m′1, . . . ,m
′
N is a generalized (w,N)-Mignotte se-

quence, we obtain that the relation (1) holds, which implies that the sequence m1, . . . ,mn

is indeed a (ω,w, n)-Mignotte sequence.
Example 2 illustrates this construction.

Example 2 Consider n = 4, the weights ω1 = ω2 = 1, ω3 = ω4 = 2, and the threshold
w = 3. We obtain N = 6. The sequence 7, 11, 13, 17, 19, 23 is a generalized (3, 6)-
Mignotte sequence and, if we consider the partition {{6}, {5}, {1, 4}, {2, 3}} of the set
{1, 2, 3, 4, 5, 6}, we obtain that the sequence 23, 19, [7, 17], [11, 13] is a ((1, 1, 2, 2), 3, 4)-
Mignotte sequence.

These sequences can be used for constructing weighted threshold secret sharing schemes
in an obvious way. More exactly, having a (ω,w, n)-Mignotte sequence m1, . . . ,mn, we
may construct a (ω,w, n)-weighted threshold secret sharing scheme as follows:

• the secret S is an arbitrary integer in the interval [β + 1, α− 1], where
α = minA∈P({1,2,...,n})∑

i∈A ωi≥w
([{mi|i ∈ A}]) and β = maxA∈P({1,2,...,n})∑

i∈A ωi≤w−1
([{mi|i ∈ A}]);

• the shares I1, . . . , In are chosen as follows: Ii = S mod mi, for all 1 ≤ i ≤ n.
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Having a set of shares {Ii | i ∈ A}, where A satisfies
∑
i∈A ωi ≥ w, the secret S can be

obtained as the unique solution modulo [{mi|i ∈ A}] of the system of equations{
x ≡ Ii mod mi, i ∈ A

Indeed, the secret S is the unique solution modulo [{mi|i ∈ A}] of the above system
of equations because S is an integer solution of the system by the choice of the shares
I1, . . . , In and, moreover, S ∈ Z[{mi|i∈A}], by the choice of the secret S (S < α and
α = minA∈P({1,2,...,n})∑

i∈A ωi≥w
([{mi|i ∈ A}])).

Having a set of shares {Ii | i ∈ A}, where A satisfies
∑
i∈A ωi ≤ w − 1, the only

information we can obtain by finding the unique solution x0 in Z[{mi|i∈A}] of the system
of equations {

x ≡ Ii mod mi, i ∈ A
is that S ≡ x0 mod [{mi|i ∈ A}]. Indeed, the secret S is not the unique solution modulo
[{mi|i ∈ A}] of the above system of equations because S 6∈ Z[{mi|i∈A}], by the choice of
the secret S (S > β and β = maxA∈P({1,2,...,n})∑

i∈A ωi≤w−1
([{mi|i ∈ A}])). By choosing (ω,w, n)-

Mignotte sequences with a large factor α−β
β , the problem of finding the secret S, knowing

that S is in the interval [β+1, α−1] and S ≡ x0 mod [{mi|i ∈ A}], for some unauthorized
access set A, is intractable.

Example 3 (with artificial small parameters)
Consider n = 4, the weights ω1 = ω2 = 1, ω3 = ω4 = 2, and the threshold w = 3. The

corresponding weighted threshold access structure is given byAmin = {{1, 3}, {1, 4}, {2, 3},
{2, 4}, {3, 4}} and Amax = {{1, 2}, {3}, {4}}. According to Example 2, the sequence 23,
19, 119, 143 is a ((1, 1, 2, 2), 3, 4)-Mignotte sequence. We obtain that

α = min([23, 119], [23, 143], [19, 119], [19, 143], [119, 143]) = 2261,

β = max([23, 19], 119, 143) = 437.

A ((1, 1, 2, 2), 3, 4)-weighted threshold secret sharing scheme is described next:

• the secret S is chosen in the interval [438, 2260], for example, S = 601;

• the shares are I1 = 601 mod 23 = 3, I2 = 601 mod 19 = 12, I3 = 601 mod 119 = 6,
and I4 = 601 mod 143 = 29.

Having the shares I1 = 3 and I3 = 6, the secret S can be obtained as the unique solution
in Z2737 of the system of equations{

x ≡ 3 mod 23
x ≡ 6 mod 119

that is indeed 601.
But having the shares I1 = 3 and I2 = 12, the secret S can not be obtained as the

unique solution in Z437 of the system of equations{
x ≡ 3 mod 23
x ≡ 12 mod 19

because this is 164.
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4 Conclusions

We have extended the threshold secret schemes based on the Chinese remainder theo-
rem in order to address to the weighted threshold access structures by introducing the
weighted threshold Mignotte sequences. We have proposed a method for generating
such sequences using generalized Mignotte threshold sequences. We leave open the prob-
lem of finding weighted threshold Mignotte sequences without using threshold Mignotte
sequences. Another interesting problem is to efficiently generate weighted threshold
Mignotte sequences with a large factor α−β

β . We shall consider these problems in our
future work.
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