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ABSTRACT

Sugiyama et al. have shown that, for a t-error-correcting Goppa
code of block length n, the key equation for errors-only decoding as
well as for errors-and-erasures decoding can be solved in 0(t2) arith-
metic operations. Their algorithms use the extended version of Euclid’'s
algorithm for the greatest common division (GCD) of two polynomials and
have the same order of complexity as Berlekamp’'s algorithm for BOH codes.
It is shown here that if a more efficient algorithm for computing poly-
nomial Qs is used, then the key equation can be solved in 0(t log2t)
arithmetic operations. Also, determining the syndrome, the error loca-
tions and the error or erasure values all require O(n log n) arithmetic
operations. Thus, for a fixed ratio of t/n, errors-only decoding as
well as errors-and-erasures decoding of a Goppa code can be done in
O(n log2n) arithmetic operations. It is also shown that long primitive

binary BCH codes can be decoded in O(n log n) arithmetic operations.
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ON THE COMPLEXITY OF DECODERS FOR GOPPA GODES

by
Dilip V. Sarwate
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

1. INTRODUCTION

Sugiyama et al. [1] have shown that, for a t-error-correcting Goppa
code [2-4], the key equation for errors-only decoding can be solved for
the error-locator polynomial o(z) and the error-evaluator polynomial n(z)
by use of the extended version of Euclid's algorithm for the greatest com-
mon divisor (GCD) of two polynomials. They also show that the number of
multiplications required for this algorithm is approximately 7.5 t2 whereas
Burton's modification [5] of Berlekamp's algorithm for BCH codes [6]
requires approximately 5 t2 multiplications. Thus, both these algorithms
require 0(t2) arithmetic operations. Patterson's algorithm [7] for decod-
ing Goppa codes uses Berlekamp's algorithm and hence has complexity at
least 0(t2). In Section I, it is shown that if an efficient computational
technique for polynomial GODs is used [8,9], theno(z) and n(z) can be
determined in O(t log2t) arithmetic operations. As one might expect,
this algorithm is faster than the other only if t (and hence, by
implication, the block length n) is large. In Section Ill, it is shown

that the syndrome can be computed from the received vector in O(n log n)



arithmetic operations and that the error locations and error values also
can be computed from a(z) and n(z) in 0(n log n) arithmetic operations.
The results of these sections have also been independently proposed by
Justesen [15] in the context of the decoding of Reed-Solomon codes.
Thus, for a fixed ratio of t/n, errors-only decoding of a Goppa code
can be done in O(n log2n) arithmetic operations. Using Berlekamp’'s
estimates of the minimum distance of long primitive binary BCH codes [11],
it is shown that these codes can be decoded in O(n log n) arithmetic
operations. In Section 1V, errors-and-erasures decoding of Goppa codes
is considered. The efficient QD algorithm is applied to the errors-
and-erasures version of the Sugiyama et al. algorithm [12] and it is
shown that in this case also, the key equation can be solved in

0(t log2t) arithmetic operations. Some other computations necessary

in this case are also shown to be of complexity at most O(t log2t) or
O(n log n). Thus errors-and-erasures decoding of Goppa codes is shown
to be of the same order of complexity as errors-only decoding of Goppa

codes.
1. ERRORSONLY DECODING

Following the notation in [4], let g(z) be a polynomial of degree
2t with coefficients in GF(QmM , L the subset of elements of GF(gmM that
are not roots of g(z), and n the number of elements in L. Then the Goppa

code of length n, symbol field GF(q), location field GF(@gm , and Goppa



polynomial g(z) is the set of all vectors £ that satisfy

X =0 mod .
Ly 9(2)

This code has minimum distance at least 2t + 1. Let £ be the error vector,
jr = ¢+ e the received vector, Then, the syndrome polynomial S(z) is the

polynomial of degree 2t - 1 or less such that

S@z) = It mod g(z)
YeLZ Y
Thus
S@) = - | 9@ 9w X (1)
Y e L

Let eY *0iff y e M and define

a(z) Xt (z-Y) (2)
YeM

I e [l (z - 9. (€))
YeM Y 6 eM- (y)

n(z)

Then, the key equation for errors-only decoding is

S(z)o(z) =n(z) mod g(2) (4)
and
if a(y) * 0
v = "
ai‘(({()) if o(y) = 0 (5)

where a’'(z) is the formal derivative of a(z) [1-4]



The decoding algorithm for the Goppa code then consists of
(1) Computation of S(z) from (1).
(i) Solution of (4) for a(z) and n(z).

(i) Determination of the roots of a(z).

In the remainder of this section, an efficient algorithm for (ii) is
discussed.

Following [9], define a sequence of "remainder polynomials”
aQz) »a™z) ,... ,a™(z) ,ak+l(z) with degree a”z) < deg ai_1(z) as follows.

aQ(z) = g(z), a*Cz) = S(z). By successive divisions

an(z) = al(z)qi(z) + a2(z)
anz) = a2(z)q2(z) + a3(z)
(6)
anCz) =
Since a”~(z) ] (z), we set a~+1(z) = 0.
Then GCD[aQ(z) ,al(z)] = a™z) .
Two other sequences of polynomials x”(z),y”~(z) are defined as
Xj(z) =0
yo(z) =0 ynz) =1
xx(z) = xii2(z) - ili_1(z)xi_1(2)
> P> 2 (7)
y+(z) =y$_2(z) <q~Cz"jCz)



where the g”s are defined in (6). Then, for i >0

40(z)xi (z) + al(z)yx(z) = ax(z2) (8)

S(z)yx(z) = ax(z) mod g(z) .

The following theorem is due to Sugiyama et al. [1],

Theorem 1: Given aQ(z) = g(z) and a”z) = S(zl, let i be the unique

integer such that deg ai(z)<< t and deg ai _1(z) > t. If t or fewer

errors have occurred, then
n(z)

a(z)

Sanz)

6y+(2)

where 6 is a nonzero constant chosen to make 6y”*(z) monic.

A fast decoding algorithm must find a® and y* in an efficient manner,
An algorithm due to Moenck [8] can be used for this purpose. Given aQz)
of degree 2t and a}(z) of degree 2t - 1 or less, define j as the unique
integer such that deg a™(z) >t and deg a™~1(z) < t. The algorithm is a

recursive procedure that computes the matrix R. where

X(z) yi (2)
R = (9)

L xj+i(2) yj+i(z) J



From (8),
v z) " aQ(?)
= R, 10
| i (10)
| EP anz)
= P e
The algorithm for the matrix is as follows [9], where, by analogy to

the integer function, ~d/ej denotes the quotient when d(z) is divided by

e(z) .

Algorithm 1:
procedure HGCD@EQ,ap;
1
if deg (a™ <y deg (aQ then return
0

else begin
let aQ= bQ@m+ .4 where m= | _deg (aQ/2j and deg (cQ <m
let al =b~zll+ c1where deg (c1) <m;

comment bn and b, are the leading terms of a and a :

R « HGCD(bQ,b

%

« R

f d modulo e;
let e = g2+ hQwhere deg (hQ < Lm/2j;

let f + h1 where deg (hj) <Lm/2j;



S + HID (80,8";

q + Ld/edi
o 1
return S * * R
1-q
end

After computing R‘j by Algorithm 1, a .(z) can be computed from (10).

If deg a.+1(z) <t, then a*+1(z) is the same as a”(z) of Theorem 1.

If deg ad+1(z) = t, the one can divide aj(z) by aj+i(z) tO 8et

a.+2(z) = aj(z) - g +1(z)ad+1(z). (11)
Then deg a™2(z) <t this polynomial is the a”™(z) of Theorem 1.
From (7)
yilz> = yit+2(z) =V 2) - <d3+1(2)yj+1(2)- (12)

The number of arithmetic operations required to compute a(z) and
n(z) from g(z) and S(z) can be found using the following results from

[8- 10].

Theorem 2: HXD requires O[M(n) log n] arithmetic operations if its
arguments are of degree at most n, where M(n) is the number of arithmetic

operations required to multiply two polynomials of degree n.



Theorem 3: Two polynomials of degree n can be multiplied in O(n log n)

arithmetic operations.

Theorem 4: Division of a 2nth-degree polynomial by a nth degree

polynomial requires O(n log n) arithmetic operations.

Thus, H3D requires 0(t log2t) arithmetic operations to produce
Following this, the multiplication in (10) requires 0O(t log t) oper-
ations. The division in (11) requires O(t log t) operations and
computing y™ in (12) also requires 0(t log t) operations. Finally,
multiplying a2 and y”~(z) by 6 requires O(t) arithmetic operations.

This result is summarized in the following theorem.

Theorem 5: Given the Goppa polynomial g(z) of degree.2t and the syndrome
polynomial S(z) of degree at most 2t - 1, a(z) and n(z) can be computed

in O(t log2t) arithmetic operations.
I11. SYNDROVE COVPUTATION AND ERROR CORRECTION
Given the received vector j:, the decoder must first determine S(z)

from (1). Let

214
S(2) £ SN and S— [N jSAL-2rrrrynglr
i=0



If Yir»- ..y, are the n elements in L, then

sT= Hr! (13)
and
2t 2t 2t
aCyp g(Y2) 8('Yn)
H g2t-1+ 82tyi g2t-1 + g2ty2 g2t-1 + g2t¥n
s(yp g(Yo) g(Yn)
gHg2Y+*--+g2tYIt"1 gl+g2Y2+...+g2tY2t' 1 gl+g2 V . --+g2tYat~1
g(Yr) g(Yo)
= XYZ where
r 0 0 0
g2t
0 0
g21-1 g2t (14)
X = g21-2 g2t-1 g2t 0



Vi
Y
Y1 2
Y =
r2t-I ,21-1
and
Z > diag

g(yx *g(y2) * “ *g(Yn)]

10

\Z
(15)

4t 1

(16)

Let us assume that L = GF(gm) . Let a be a primitive element of GF(gm .

Without loss of generality, one can take Y as

1 1 1 1
0 A agm?2
0 a2(gm 2)
A2% "L e a(2t“l) (gm -2)

z diag (g(0) ' g()>' g(ct) >eeee g(atul-z)

(17)

(18)

Now, the intermediate quantity, r*T * ZrT can be computed using n = qm

arithmetic operations. Let

r = [r*r*r*r*.... r’m2]



11

qm+2 :
and define r.*(z) = V ryzI
i=
Then, computing Yjr*T is the same as evaluating r*(z) at z = l,a,a2,.,. »a2*' 1.

(Of course, r* must be added to r*(l),) Polynomial evaluations at the
nth roots of unity are best done using the Fast Fourier Transforms [9,10]

and this requires O(n log n) arithmetic operations.

Let S*T = Yr*T = YZrT, where S* = [S} S;1 and define the
polynomial S*(z) as
211
S*(z) = | S7zl.
i=0 1

It is straightforward to verify that computing XS¥ is the same as computing
the higher order 2t coefficients of g(z)S*(z). This polynomial multipli-
cation requires 0(t log t) arithmetic operations only. Thus, the syndrome
can be computed in O(nslog n) arithmetic operations for L = GF(gnm) .

When L is a proper subset of GF(gm and the received vector is given

= \ ;|
r [rVrYZ’ r\] et

r~ =1[r,r Il*al

if yel
where !
Y 1 if 7 tL
and

Z' = diag(zQzl,za,. .. .Z ;>
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if y£L

where z
Y

if YilL
Obviously ST = HIT = XYZ _r T where Y is given by (17). Thus, the
syndrome can always be computed in O(mgm) = O(n log n) arithmetic
operations.

To correct the errors that have occurred, the decoder must find
the roots of a(z) and then find the error values from (5). The Fourie
Transform of cr(z) gives the values of a(z) at z=al, i =0,.,...,gm?2
and hence the roots of o(z) can be found in O(n log n) arithmetic
operations by use of the Fast Fourier Transform. Similarly, the
Fourier Transforms of n(z) and a'(z) can be computed in O(n log n)
steps and the error values can be computed in t arithmetic operations.
It has thus been shown that the errors-only decoding of a Goppa code
requires

(i) O(n log n) arithmetic operations to compute the syndrome,
(ii) O(t log2t) airthmetic operations to compute the polynomial
a(z) and n(z).
(iii) O(n log n) arithmetic operations to compute the error

locations.

(iv)  0(n log n) arithmetic operations to compute the error values
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The use of Fast Fourier Transforms to compute the syndrome, error
locations and error values can substantially reduce the time spent in
decoding even for quite short block lengths [13,14]. On the other hand,
the computation of a and n using HXD is more efficient than using
Euclid’s algorithm or Berlekamps' algorithm only when t (and, hence, by
implication, n) is quite large. Thus, the decoding algorithm is
efficient asymptotically. If the ratio t/n is fixed, then the following

result has been proved.

Theorem 6: Errors-only decoding of a Goppa code of block length n

can be done in O(n log2n) arithmetic operations.

Corollary 1: Errors-only decoding of a long primitive binary BOH code

can be done in O(n log n) arithmetic steps.

Proof: It is well-known that the BOH codes are a subclass of the Goppa
codes. Berlekamp [11] has proved that for long primitive binary BH
codes of rate R and block length n, the designed distance is approximately
2n In R1/log n, i.e., tis O(+-*~n)« Hence the solution of the key

equation requires

o(t 102t) - 108(T ™ > loS<I5i-~> = 0(log-n(los n ' 108 108 n)2)

= 0(n log n)

arithmetic operations. All other computations necessary are also of the

same order of complexity. Q.E.D.



Corollary 2: Justesen [15]: Errors-only decoding of a Reed-Solomon

code can be done in O(n log2n) arithmetic steps.
V. ERRORSAND-ERASURES DECODING

Sugiyama et al. [12] have shown that the key equation for errors-
and-erasures decoding can be solved in a manner similar to that of
their errors-only decoding algorithm. (Their paper contains an error
which is patched up in this section,) Here, the relevant polynomials
are the error-locator polynomial a&z) and the error-evaluator poly-
nomial ne(z) (which were defined without subscripts in (2-3)) and the
erasure-locator and erasure-evaluator polynomials defined analogously

as

a (2) I -y
Y e N (19)

n (z) I e I (z - 6)

YeN Y6eN- (y)

where N is the set of erasure locations (N and Min (2) are disjoint
sets) and the e”'s are erasure values, i.e., the difference between
the (arbitrary) value assigned by the decoder to r and the trans-

mitted symbol CN The key equation in this case is

ne (z)

s(z) E raw  + fjit mod 8(z)

(20)

and the decoder knows S(z) as well as a (z) .



Let de% a, *.11e and deg a, =ng with 1 < 2ne + +n, < 2t + 1.
The errata-locator and errata-evaluator polynomials are defined as

0(z) =0 (2)a (2)

_ (21)

n(z) - nC(z)ab(z) + ne(z)ao(z).
The modified syndrome polynomial SE(z) of degree 2t - 1 or less is
defined as

S™Nz) = 0£(z)S(z) mod g(z) (22)
and the key equation can be rewritten as

a&(z)S£(z) =n(z) mod g(z). (23)

r-10 nO
In [12], it is shown that deg °e - t — " anc*deg H™N t - 1 4--j

and the following solution of (23) is proposed.

Theorem 7:
@ | f ne =0 i.e., no erasures occurred, the decoder can
follow the errors-only decoding procedure.
(ii) deg S < n iff n =0 and the solution is thus
ae(z) = 1, ne(z) =0, n(z) = nE(z) = SE(2).
(iii) Otherwise, take aQ(z) = g(z) and a”z) = SE(z) and let the

remainder sequence a”(z) be as defined in (6-8). Let k be

the unique integer such that deg &~ ™t + i and
dega’\<t+n - 1. Then,

n(z) = 6ak(z)

ae(z) = 6yk(z)

where 6 is a nonzero constant chosen to make 6y”™ monic.
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The proof of (iii) in [12] is valid only if ne is an even number.
When n£ is odd, the bounds above can be replaced by deg a® 1 >
t + Bp + % deg \ ~t+ E?--- ngever, it is entirely possible
that one of the polynmoials in the remainder sequence has degree
t + 2--—-- y;i In this case, there is no integer k such that the degrees

of both af 1 and a" are bounded as above. If, instead, one defines k
n

as the unique integer such that deg a® ">t + ’\9———1 and
Ny Ny, _
deg 2 < t + ~—1» then, (for odd nf), deg a» 1>t + ——---—-— However,
deg Yk = deg aQ - deg afc 1
n i n -
<2t- (t+2 i) t ~~ +2°
n, 1
In this case, the solution for a may have degree t - — F  while

n

the degree of & is actually at most t - ’\————yi.

The way around this difficulty is quite straightforward. If nf
is odd, so is 2ng + nE. However, all that is necessary for correct
decoding is that 2ng + ™ <2t + 1, i.e., nfE can be increased by 1
and still satisfy the constraint. Thus, the decoder can simply keep
count of the number of erasures in the received symbols as they are
received from the demodulator. |If the first (n - 1) symbols contain
an odd number of erasures, the decoder simply ignores the last received
symbol and treats it as an erasure. In this manner, one can always
ensure that the number of erasures is even.

In applying the fast computational algorithms, it is easy to see

that case (i) of Theorem 7 has been dealt with in Section Il while
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case (ii) involves only polynomial multiplication and division and
hence can be done in O(t log t) arithmetic operations. However, HXD
cannot be applied directly to case (iii) of Theorem 7. In this case,

(20) can be rewritten as

°e(Z) Ce(z)S(z)] 5 n(z) mod g(z). (24)

Any solution of (24) is a solution of (20) and (23) and vice versa.
Furthermore, if 2nf + n£ < 2t + 1, the solution of (20) is unique [12,
Theorem 1] and hence it suffices to solve (24) for a pair of relatively
n
prime polynomials a (z) and n(z) of degrees at most t - and
N, e L
t - 1+ — , respectively.

Lemma: If at least one erasure has occurred, then the erasure value(s)

can be chosen so that deg S = 2t - 1.

Proof: S g2try
2t-1 1 'mg">
If S2t-1 is zero> one tie erasure values (which are arbitrarily

assigned) can be changed (to r™ + 1, say). For this modified received
vector, S '"* 0 and deg S = 2t - 1. Note that this checking and forcing
of S2t_1 to be nonzero takes 0(n) arithmetic operations and can be done

before the rest of the syndrome is computed.
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Theorem 8: If deg S = 2t - 1 and the number of erasures ng is even,
the congruence (24) can be solved fora and n in 0(t log2t) steps

using HECD.

Prooj: Let an = & S and a, = g. Then deg an = 2t - 1+ ng and
deg al = 2t. Invoking H3XD gives the matrix defined in (9) where
j is the unique integer such that deg a. >j(2t - 1+ nf) and

, J n
deg a.+1 £ -j(2t - 1+ n ). Since n is even, deg a. > t + y- and

- w i 1-*-"
Also,

xj+1°eS + yj+18 = agj+|1 n
and deg xJ... = deg ¢ " deg aj N2t - (t+ )

i.e., deg xj+1 ™Mt - —

Thus, n(z)

52+ i (2)

°e(z)

Sxj+1(z2)
where & is a constant chosen to make 6x1.1(_11 monic. The proof that
a,,, and x_.., are relatively prime follows along the lines of the
J+l J+
proof of [12, Theorem 2] and is omitted.

The multiplication ¢S requires 0(t log t) arithmetic operations
H3MD requires 0(t log2t) arithmetic operations, the computation of
a.+i from (10) can be done in O(t log t) arithmetic operations and

the multiplication by 6 above requires 0(t) arithmetic operations

Q.E.D.



19

Notice that, from the Lemma and prior discussion, the decoder can
always ensure that the hypotheses of Theorem 8 are satisfied. Fol-
lowing the solution of (24), the decoder can compute a(z) from (21),
find the roots of a and use (5) to determine the errata values. All
of these operations require O(n log n) time only.

The next theorem considers the following problem. The demodulator
output may be either a symbol from GF(q) or a special symbol denoting
an erasure, for which the decoder substitutes some symbol from GF(q).
The decoder thus knows the ..erasurelocations i.e., the set N. However,
the computations required of the decoder make use of O£(z) and hence

the decoder must first find a6(z) from the set N.

Theorem 9: Given the set of erasures N, the erasure-locator poly-
nomial a£(z) can be determined by procedures of complexity O(n log n)

and O(t log2t).

Proof: ™ = [N < 2t. Consider the Goppa code length n and minimum
distance > 4t + 1 which has the Goppa polynomial g2(z). Suppose that
the all-zeroes codeword was transmitted and the vector v was received

Using an errors-only decoding
if y €N

algorithm for this code, one can find the syndrome in O(n log n)
steps and the error-locator polynomial in O(t log2t) steps. This

error-locator must be Il (z - y), since this Goppa code has
y e N
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minimum distance at least 4t + 1 and at most 2t errors occurred. Hence
a”™(z) can be computed by procedures of complexity O(n log n) and

0(t log2t). Q.E.D.
The results of this section can be summarized as:

Theorem 10: For a fixed ratio of t/n, errors-and-erasures decoding

of a Goppa code requires O(n log2n) arithmetic steps.

Corollary: Errors-and-erasures decoding of a Reed-Solomon code of
block length n requires O(n log2n) arithmetic steps.

In [16], Justesen describes his well-known asymptotically good
codes. For these, the inner decoder uses O(’\r(]32\2n) arithmetic
operations while the outer decoder uses 0(1:02g n.) arithmetic operations.
The corresponding bit complexities are OB(n2) and (Ié(nZIog n).

The outer decoder uses an errors-and-erasures decoding algorithm for
Reed-Solomon codes. If the algorithm described in this section is

used, the outer decoder requires 0(n log2n) arithmetic operations

and the corresponding bit complexity is Oﬁ(n log”™n). Thus, the com-
plexity of the decoder for Justesen codes is dominated by the complexity
of the inner, rather than the outer, decoder, and the bit complexity

is Og(n2) rather than Og(n2log n). Thus, the following results has

been proved.

Theorem 11: A Justesen code of block length n can be decoded in 0(n2)

bit operations.
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V.  CONCLUSIONS

Asymptotically efficient decoding algorithms have been presented
for errors-only and errors-and-erasures decoding of Goppa codes. The
methods suggested for syndrome computation and error-correction can be
used to improve decoder efficiency even at moderate block lengths.
However, the algorithm for the computation of the errata-locator
polynomial and the errata-evaluator polynomial is more efficient than
Berlekamp's algorithm or Euclid's algorithm only for very large block
lengths. Therefore, a fruitful area of research would be in improving
the coefficient of the arithmetic complexity of the H3D algorithm,
and also in investigating the complexity of the inner decoder for

Justesen codes.
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