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T he stab ility  o f tw o-d im ensional (2D ) layers and m em branes is su b ject o f a 

long stan d in g  th eoretica l debate. A ccording to  th e  so called M erm in-W agner  

th eorem  [1], long w avelen gth  flu ctuation s destroy th e  long-range order for 2D  

crystals. Sim ilarly, 2D  m em branes em bedded  in a 3D  space have a ten d en cy  

to  be crum pled [2]. T hese dangerous flu ctu ation s can, how ever, be suppressed  

by anharm onic coupling betw een  bend ing  and stretch in g  m odes m aking th a t a 

tw o-d im ensional m em brane can ex ist but should  present strong height fluctua­

tion s [2, 3 , 4 ]. T he discovery o f graphene, th e  first tru ly  2D  crysta l [5, 6] and th e  

recent exp erim en ta l observation  o f ripples in freely hanging graphene [7] m akes 

th ese  issues esp ecia lly  im p ortant. B esid e  th e  academ ic in terest, un derstan ding  

th e  m echanism s o f stab ility  o f graphene is crucial for understan ding electronic  

tran sp ort in th is m aterial th a t is a ttractin g  so much in terest for its unusual 

D irac sp ectru m  and electron ic  properties [8, 9 , 10, 11]. H ere w e address th e  

nature o f th ese  height flu ctuation s by m eans o f straightforw ard a tom istic  M onte  

Carlo sim ulations based on a very accurate m an y-bod y interatom ic p oten tia l for 

carbon [12]. W e find th a t ripples sp on tan eou sly  appear due to  th erm al flu ctu ­

ation s w ith  a size d istr ib u tion  peaked around 70A  w hich is com patib le  w ith  

experim en ta l findings [7] (50-100 A ) but not w ith  th e  current understan ding o f  

stab ility  o f flexib le m em branes [2, 3 , 4 ]. T his u n exp ected  resu lt seem s to  be due 

to  th e  m u ltip licity  o f chem ical bonding in carbon.

The phenomenological theories for flexible membranes [2, 3, 4] are derived in the contin­

uum limit w ithout including any microscopic feature and their applicability to graphene in 

the interesting range of tem peratures, sample sizes etc. is not evident. We present Monte 

Carlo simulations of the equilibrium structure of single layer graphene. By monitoring the 

normal-normal correlation functions we can directly compare our results to the predictions of 

the existing theories. The effect of interest is crucially dependent on acoustical phonons and 

interactions between them  and therefore the simulations require samples much larger than  

interatomic distances, typically many thousands of atoms at therm al equilibrium, making 

prohibitive ab-initio simulations a la Car-Parrinello [13]. However, for carbon a very accurate 

description of energetic and thermodynamic properties of different phases is provided by the 

effective many body potential LCBOPII [12, 14]. This bond order potential is constructed 

in such a way as to provide a unified description of the energetics and elastic constants of all
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carbon phases as well as the energy characteristics of different defects with accuracy com­

parable to experimental accuracy. We find clear deviations from harmonic behavior for long 

wavelength fluctuations but, instead of the expected power-law scaling at long wavelengths, 

we find a marked maximum of fluctuations with wavelength of about 70 A. Against the 

expectations, we also find a stiffening of the bending rigidity with increasing tem perature. 

We relate these features to fluctuations in bond length th a t in carbon signal a partial change 

from conjugated to single/double bonds, with consequent deviations from planarity.

We perform atomistic Monte Carlo (MC) simulations based on the standard Metropolis 

algorithm for approximately squared samples of different sizes (see Table I) with periodic 

boundary conditions. We always start with completely flat graphene layers to avoid any bias. 

Typically we used 400000 MC steps (1 MC step corresponds to N  attem pts to a coordinate 

change) to equilibrate and half a million for averaging. Every 5 MC steps, we allow for 

isotropic size fluctuations. The energy of a given configuration is evaluated according to the 

bond order potential LCBOPII developed in the recent past [12]. This potential is based 

on a large database of experimental and theoretical data for molecules and solids and has 

been proven to describe very well thermodynamic and structural properties of all phases 

of carbon and its phase diagram in a wide range of tem peratures and pressures [12, 14]. 

We believe th a t LCBOPII can give a good description of graphene because it reproduces 

correctly the elastic properties of graphene and yields structure and energetics of vacancies 

in graphene in good agreement with ab initio calculations [15]. Of particular importance 

here, is tha t bond order potentials correlate coordination, bond length and bond strength, 

allowing changes between single, double and conjugated bonds with the correct energetics. 

Most simulations have been performed at room tem perature T  =  300 K but we have also 

simulated some of the structures at very high tem perature T  =  3500 K close to the bulk 

graphite melting to study qualitatively tem perature effects.

A typical snapshot of graphene at room tem perature is shown in Fig.1. The first thing 

to notice is th a t height fluctuations are present at equilibrium. We find a very broad dis­

tribution of height displacements h with a typical size of order of 0.6 A for the N  =  8640 

sample, comparable to the interatomic distance 1.42 A.

The natural way to analyse further our results is to compare them  to the results and 

predictions of the phenomenological theories of therm al fluctuations in flexible membranes [2,

3, 4]. To this purpose it is worth to review in some detail the main ideas and results of
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these theories [2, 3, 4] tha t are not of common knowledge outside the soft condensed m atter 

community. The primary quantities are the two-component displacement vector in the plane

u, the out of plane displacement out of plane h and the normal unit vector n with in-plane 

component - V h / ^ J  1 +  (V h)2 illustrated in Fig.2. The elastic energy of the membrane is 

given by

E  =  Í  d2X K (V2h) 2 +  Ä  +  ^ Ula  (1)

where k is the bending rigidity, ß and A are Lame param eters and uaß is the deformation 

tensor:
1 (  dua duß dh dh

u a ß = 2  U x ;  +  dXaa+ dXa a x ß j  ■ (2)

In harmonic approximation, by neglecting the last, non linear, term  in the deformation 

tensor (2), the bending (h) and stretching (u) modes are decoupled. In this approximation 

the Fourier components of the bending correlation function with wavevector q  is

<i'g 2 > =  kS N  <3)

where N  is the number of atoms, So =  LxLy/ N  is the area per atom  and T  is the tem perature 

in units of energy. In this approximation, the mean square displacement in the direction 

normal to the layer is

<h2> =  E < | h q l 2> *  TkL2 (4)
q

where L is a typical linear sample size. The correlation function of the normals

G (q) =  <1 n q12 > =  q2 <1 hq12 > (5)

in this approximation becomes
T N

G  <q> =  k s ?  <6>
which implies th a t the mean square angle between the normals is logarithmically divergent 

as L —> to  [2]. This behaviour indicates the tendency to crumpling of membranes due to 

therm al fluctuations.

Deviations from this harmonic behaviour, namely anharmonic coupling between bending 

and stretching modes, can stabilize the flat phase by suppressing the long wavelength fluc­

tuations [2, 3, 4]. In this case the corresponding correlation function of the normals is given 

by the Dyson equation

G - 1 (q) =  G - 1 (q) +  £(q)  (7)
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E(?)  =  “ I (8)

with self energy
ASo /  q  
N q 2 V qo,

where q0 =  2 ^ \ J B / k , B  being the two-dimensional bulk modulus, n is the anomalous rigidity 

exponent and A is a numerical factor.

The simplest way to derive this expression is to use the self-consistent perturbation the­

ory [4] which gives n ~  0.8 in reasonable agreement with the results of Monte Carlo sim­

ulation for a model of tethered membranes [16]. However, Eqs.(7),(8) can be w ritten from 

a more general scaling consideration [3], q0 being the only factor with dimension of an in­

verse length th a t can be constructed from relevant param eters of this theory. As a result 

of this anharmonic coupling, the typical height of fluctuations in the direction normal to 

the membrane is much smaller than  the one given by E q.(4) and scales with the sample 

size as L z, with (  =  1 — n/2. Nevertheless, the fluctuations are still anomalously large and 

they can be much larger than  the interatomic distance for large samples. Thus, the theory 

predicts an intrinsic tendency to ripple formation. At the same time, the amplitude h *  Lz 

of these transverse fluctuations remains much smaller than  the sample size and preserves the 

long-range order of the normals so th a t the membrane can be considered as approximately 

flat and not crumpled.

Another structural issue is the existence of long range crystallographic order in mem­

branes th a t can be destroyed by a finite concentration of topological defects, namely dis­

locations and disclinations. For the case of 2D crystals in 2D space both types of defects 

have infinite energy as L — to: the elastic energy of dislocations grows as ln(L), and of 

disclinations as L. A general analysis [2] (Chap. 6) for flexible membranes shows th a t 

these divergencies are suppressed by bending in such a way th a t the energy of disclina- 

tions behaves as ln(L) whereas th a t of dislocations remains finite, and of the order of k. 

This means th a t the orientational order survives whereas translational order is destroyed 

by spontaneous creation of dislocations. However, the corresponding correlation length is 

*  exp(const ■ k/ T ) which makes this mechanism completely irrelevant for covalently bonded 

layers such as graphene, with k ~  1.17 eV [17]. Indeed, we never observe any topological 

defect in our simulations also at very high tem perature, nor any experimental evidence of 

their existence has been reported [7].

To obtain a quantitative comparison with these theoretical predictions for the spatial
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distribution of the ripples, we have calculated numerically the Fourier components of the 

correlation function of the normals G(q) for qx and qy multiples of 2 n /L x and 2 n /L y respec­

tively. To our surprise, our numerical results are not described by this general theory.

In Fig.3 we show G(q) at T  =  300 K for all considered samples and in Fig.4 we compare 

the results at two tem peratures for the sample N  =  8640. First of all, there is a whole range 

of wave vectors where the harmonic approximation given by Eq.(6) is quite accurate. The 

interval is restricted above close to the Bragg peaks and in the limit of small q. The deviations 

are opposite at the two sides. The rigidity k =  1.1 eV extracted from the data at T  =  300 K 

by comparison with E q.(6) is in very good agreement with the experimental value of 1.2 eV 

derived from the phonon spectrum  of graphite [17]. Surprisingly, the same comparison at 

T  =  3500 K gives a higher value k ~  2.0 eV whereas the contimuum theory [2] predicts the 

opposite trend k (T ) «  k — (3T/4n) ln (L/a). This is due to the peculiar character of bonding 

in carbon. In the ground state of graphene all bonds are equivalent. However, even at room 

tem perature, there is a large probability of having an asymmetric distribution of short/long 

(strong/weak) bonds, associated with local deviations from planarity. Indeed, the radial 

distribution functions shown in Fig.5 for both tem peratures show a broad distribution of 

first neighbors bond lengths, going down to the length of double bonds in carbon of 1.31 

A at high tem perature. Changes of bond conjugation are also the reason for the negative 

therm al expansion coefficient in graphene found in ab-initio calculations [18]. We observe a

0.13 % contraction of the lattice spacing at T  =  300 K, in good agrement with the 0.11 % 

of Ref. 18. We believe th a t it is the ability of carbon to form different types of bonding th a t 

makes graphene different from a generic two-dimensional crystal.

At small q, the behaviour of G(q) is not described by the harmonic approximation G0(q) 

nor by the anharmonic expression Ga(q). The most remarkable feature of G(q) is a maximum 

instead of the power law dependence Ga(q) th a t implies the absence of any relevant length 

scale in the system. The presence of this maximum, instead, means th a t there is a preferred 

average value of about 70 A. This length is also recognizable in real space images, as shown 

by the arrows in F ig.1. Indeed, the two samples tha t are smaller than  this length do not 

show this decrease of G(q) at low q. The results at T  =  3500 K confirm this picture but 

with the maximum shifted to a larger q corresponding to a length of roughly 30 A. This 

tem perature dependence of the typical ripple lengthscale should be measurable.

The preferable length th a t we find is reminiscent of the “avoided criticality” scenario in
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frustrated systems near second-order phase transitions [19]. Such systems have an intrinsic 

tendency to be modulated and to form some inhomogeneous patterns tha t destroys the 

scaling. It is known th a t some soft condensed m atter membranes tend to spontaneous 

bending and ripple formation [20, 21, 22] but this behaviour for elemental solids like graphene 

is rather unexpected.

The results obtained are relevant not only for a better understanding of the stability and 

structure of graphene but also of electronic transport. The fluctuations of normals leads to a 

m odulation of the hopping integrals and are bound to affect the electronic structure [23, 24]. 

Knowledge of the normal-normal correlation functions is necessary for the calculation of the 

electron scattering by ripples.

The cleavage technique th a t has led to the discovery of graphene has already been applied 

to other layered materials, like BN [5], so th a t the investigation of structural properties of 

one atom  thick layers is im portant for a whole new class of systems. We have found th a t 

even fluctuations at the scale of tens of interatomic distances cannot be described by con­

tinuum  medium theory. It will be very instructive to carry out systematic experimental and 

theoretical investigations of other two-dimensional crystals to understand which properties 

are common to flexible membranes and which ones are consequences of particular features 

of the chemical bonding and interatomic interactions.
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N p q Lx(A) Ly(A)

240 10 6 24.59 25.56

960 20 12 49.29 51.12

2160 30 18 73.78 76.68

4860 45 27 110.68 115.02

8640 60 36 147.57 153.36

19940 90 54 221.36 230.04

TABLE I: Details of the simulated samples. The initial, roughly squared, box is defined by 

(Lx,Ly) =  (2p|ai|,q |ai +  2a21) where ai and a2 are the in-plane lattice vectors ai =  a\/3x, 

a2 =  a\/3 /2x+3/2y, x and y being cartesian unit vectors.
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FIG. 1: Snapshot of the N  =  8640 sample at T =  300 K. The red arrows are 70 Â long.
n

FIG. 2: Sketch of a flexible membrane (solid line). h is the out of plane deviation with respect 

to the z =  0-plane (dashed line) defined by the center of mass. The unit vector n and n0 are the 

normals to each point in the membrane and in the reference plane respectively.
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q

FIG. 3: Normal-normal correlation function G(q)/N for all studied samples. The solid straight 

line gives the harmonic power law behaviour G0(q)/N with k=1.1 eV. Deviations from harmonic 

behavior occur for q close to the Bragg peaks at q =  4n/3a =  2.94 Â -i and q =  4 n / \/{3)a =  5.11 

Â -i with a =  1.42 Â and at small q where the peak of G(q) at q æ 0.1 signals a preferred length 

scale of about 70 A.
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FIG. 4: Normal-normal correlation function G(q)/N for the N  =  8640 sample at T =  300 K and 

T =  3500 K. The solid straight line gives the harmonic power law behaviour G0(q) with k=1.1 eV 

at T =  300 and k=2.0 eV at T =  3500 K.
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FIG. 5: Radial distribution function for the N  =  8640 sample at T =  300 K and T =  3500 K as 

a function of interatomic distances in A. The arrows indicate the length of double (r =  1.31 Â), 

conjugated (r =  1.42 Â) and single (r =  1.54 Â) bonds.
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FIG. 6: Portion of one typical configuration of the N  =  8640 sample at T =  300 K. The numbers 

indicate the bond length in Â. Notice that often one of the bonds with first neighbours is much 

shorter than the other two.
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