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Abstract

A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained
technically infeasible, even in simpler systems like dissociated neuronal cultures. We introduce an improved algorithmic
approach based on Transfer Entropy to reconstruct structural connectivity from network activity monitored through calcium
imaging. We focus in this study on the inference of excitatory synaptic links. Based on information theory, our method
requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our
algorithm is benchmarked on surrogate time series of calcium fluorescence generated by the simulated dynamics of a
network with known ground-truth topology. We find that the functional network topology revealed by Transfer Entropy
depends qualitatively on the time-dependent dynamic state of the network (bursting or non-bursting). Thus by
conditioning with respect to the global mean activity, we improve the performance of our method. This allows us to focus
the analysis to specific dynamical regimes of the network in which the inferred functional connectivity is shaped by
monosynaptic excitatory connections, rather than by collective synchrony. Our method can discriminate between actual
causal influences between neurons and spurious non-causal correlations due to light scattering artifacts, which inherently
affect the quality of fluorescence imaging. Compared to other reconstruction strategies such as cross-correlation or Granger
Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a
good estimation of the excitatory network clustering coefficient, allowing for discrimination between weakly and strongly
clustered topologies. Finally, we demonstrate the applicability of our method to analyses of real recordings of in vitro
disinhibited cortical cultures where we suggest that excitatory connections are characterized by an elevated level of
clustering compared to a random graph (although not extreme) and can be markedly non-local.
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Introduction

The identification of the topological features of neuronal

circuits is an essential step towards understanding neuronal

computation and function. Despite considerable progress in

neuroanatomy, electrophysiology and imaging [1–8], the detailed

mapping of neuronal circuits is already a difficult task for a small

population of neurons, and becomes impractical when accessing

large neuronal ensembles. Even in the case of cultures of

dissociated neurons, in which neuronal connections develop de

novo during the formation and maturation of the network, very

few details are known about the statistical features of this

connectivity, which might reflect signatures of self-organized

critical activity [9–11].

Neuronal cultures have emerged in recent years as simple, yet

versatile model systems [12,13] in the quest for uncovering

neuronal connectivity [14,15] and dynamics [16–19]. The fact

that relatively simple cultures already exhibit a rich repertoire of

spontaneous activity [18,20] make them particularly appealing for

studying the interplay between activity and connectivity.

The activity of hundreds to thousands of cells in in vitro cultured

neuronal networks can be simultaneously monitored using calcium

fluorescence imaging techniques [14,21,22]. Calcium imaging can

be applied both in vitro and in vivo and has the potential to be

combined with stimulation techniques like optogenetics [23]. A

major drawback of this technique, however, is that the typical

frame rate during acquisition is slower than the cell’s firing

dynamics by an order of magnitude. Furthermore the poor signal-

to-noise ratio makes the detection of elementary firing events

difficult.

Neuronal cultures are unique platforms to investigate and

quantify the accuracy of network reconstruction from activity data,

extending analysis tools initially devised for the characterization of

macro-scale functional networks [24,25] to the micro-scale of a

developing local circuit.

Here we report a new technique based on information theory to

reconstruct the connectivity of a neuronal network from calcium

imaging data. We use an extension of Transfer Entropy (TE) [26–

28] to extract a directed functional connectivity network in which the

presence of a directed edge between two nodes reflects a direct
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causal influence by the source to the target node [29–31]. Note

that ‘‘causal influence’’ is defined operationally as ‘‘improved

predictability’’ [32,33] reflecting the fact that knowledge of the

activity of one node (putatively pre-synaptic) is helpful in

predicting the future behavior of another node (putatively post-

synaptic). TE has previously been used to study gene regulatory

networks [34], the flow of information between auditory neurons

[35], to infer directed interactions between brain areas based on

EEG recordings [36] or between different LFP frequency bands

[37], as well as for the reconstruction of the connectivity based on

spike times [38,39]. Importantly, our data-driven TE approach is

model-independent. This is in contrast with previous approaches

to network reconstruction, which were most often based on the

knowledge of precise spike times [40–45], or explicitly assumed a

specific model of neuronal activity [43,44].

A problem inherent to the indirect algorithmic inference of

network connectivity from real data is that the true target topology

of the network is not known and that, therefore, it is difficult to

assess the quality of the reconstruction. In order to characterize the

behavior of our algorithm and to benchmark its potential

performance, we resort therefore to synthetic calcium fluorescence

time series generated by a simulated cultured neural network that

exhibits realistic dynamics. Since the ‘‘ground truth’’ topology of

cultures in silico is known and arbitrarily selectable, the quality of

our reconstruction can be evaluated by systematically comparing

the inferred with the real network connectivities.

We use a simplified network simulation to generate surrogate

imaging data, improving their realism with the reproduction of

light scattering artifacts [6] which ordinarily affect the quality of

the recording. Our surrogate data also reproduce another general

feature of the activity of neuronal cultures, namely the occurrence

of temporally irregular switching between states of asynchronous

activity, with relatively weak average firing rates, and states of

highly synchronous activity, commonly denoted as ‘‘network

bursts’’ [20,46,47].

This switching dynamics poses potentially a major obstacle to

reconstruction, since directed functional connectivity can be very

different during bursting and inter-burst phases and can bear a

resemblance to the underlying structural (i.e. synaptic) connectivity

only in selected dynamical regimes in which causal influences

reflect dominantly mono-synaptic interactions. To restrict our

analysis to such ‘‘good’’ regimes, we resort to conditioning with

respect to the averaged fluorescence level, as an indirect but

reliable indicator of the network collective dynamics. Appropriate

conditioning —combined with a simple correction coping with the

poor time-resolution of imaging data— allows the method to

achieve a good topology reconstruction performance (assessed

from synthetic data), out-performing other standard approaches,

without the need to infer exact spike times through sophisticated

techniques (as is required, on the contrary, in [43,45]).

Finally, we apply our algorithm —optimized through model-

based validation— to the analysis of real calcium imaging

recordings. For this purpose, we study spontaneously developing

networks of dissociated cortical neurons in vitro and we address, as

a first step toward a full topology reconstruction, the simpler

problem of extracting only their excitatory connectivity. Early

mature cultures display a bursting dynamics very similar to our

simulated networks, with which they also share an analogous state-

dependency of directed functional connectivity.

Our generalized TE approach thus identifies network topologies

with characteristic and non-trivial features, like the existence of

non-local connections, a broadened and strongly right-skewed

distribution of degrees (although not ‘‘scale free’’) and a moderate

but significant level of clustering.

Results

The Results section is organized as follows. After a brief

presentation of the qualitative similarity between real calcium

fluorescence data from neuronal cultures and simulated data (see

Figure 1), we introduce numerical simulations showing that

networks with very different clustering levels can lead to matching

bursting dynamics (see Figure 2). We then develop our

reconstruction strategy, based on a novel generalization of TE,

and examine the different elements composing our strategy,

namely ‘‘same-bin interactions’’ and conditioning with respect to the

average fluorescence level. We show that only signals recorded

during inter-burst periods convey elevated information about the

underlying structural topology (see Figure 3). After a discussion of

criteria guiding the choice of the number of links to include in the

reconstructed network, we illustrate specific examples of recon-

struction (see Figure 4 and 5), contrasting systematically TE with

other standard linear and nonlinear competitor methods (see

Figure 6) and analyzing factors affecting its performance (see

Figure 7). Finally, we apply our reconstruction algorithm to

biological recordings and infer topological features of actual

neuronal cultures (see Figure 8).

Real and surrogate calcium fluorescence data
In this study, we consider recordings from in vitro cultures of

dissociated cortical neurons (see Materials and Methods). To illustrate

the quality of our recordings, in Figure 1A we provide a bright

field image of a region of a culture together with its associated

calcium fluorescence. As previously anticipated, to simplify the

network reconstruction problem, experiments are carried out with

blocked inhibitory GABA-ergic transmission, so that the network

activity is driven solely by excitatory connections. We record

activity of early mature cultures at day in vitro (DIV) 9–12. Such

young but sufficiently mature cultures display rich bursting events,

Author Summary

Unraveling the general organizing principles of connectiv-
ity in neural circuits is a crucial step towards understanding
brain function. However, even the simpler task of assessing
the global excitatory connectivity of a culture in vitro,
where neurons form self-organized networks in absence of
external stimuli, remains challenging. Neuronal cultures
undergo spontaneous switching between episodes of
synchronous bursting and quieter inter-burst periods. We
introduce here a novel algorithm which aims at inferring
the connectivity of neuronal cultures from calcium
fluorescence recordings of their network dynamics. To
achieve this goal, we develop a suitable generalization of
Transfer Entropy, an information-theoretic measure of
causal influences between time series. Unlike previous
algorithmic approaches to reconstruction, Transfer Entropy
is data-driven and does not rely on specific assumptions
about neuronal firing statistics or network topology. We
generate simulated calcium signals from networks with
controlled ground-truth topology and purely excitatory
interactions and show that, by restricting the analysis to
inter-bursts periods, Transfer Entropy robustly achieves a
good reconstruction performance for disparate network
connectivities. Finally, we apply our method to real data
and find evidence of non-random features in cultured
networks, such as the existence of highly connected hub
excitatory neurons and of an elevated (but not extreme)
level of clustering.

Excitatory Connectivity from Calcium Imaging
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combined with sparse irregular firing activity during inter-burst

periods (cfr. Discussion).

In Figure 1B (left panel) we show actual recordings of the

fluorescence traces associated to five different neurons. The

corresponding population average for the same time window is

shown in Figure 1C (left panel). In these recordings, a stable

baseline is broken by intermittent activity peaks that correspond to

synchronized network bursts recruiting many neurons. The bursts

display a fast rise of fluorescence at their onset followed by a slow

decay. In addition, during inter-burst periods, smaller modulations

above the baseline are sometimes visible despite the poor time-

resolution of a frame every few tens of milliseconds.

In order to benchmark and optimize different reconstruction

methods, we also generate surrogate calcium fluorescence data

(shown in the right panels of Figures 1B and 1C), based on the

activity of simulated networks whose ground truth topology is

known. We simulate the spontaneous spiking dynamics of

networks formed by N~100 excitatory integrate-and-fire neurons,

along a duration of 60 minutes of real time, matching typical

lengths of actual recordings. Calcium fluorescence time series are

then produced based on this spiking dynamics, resorting to a

model introduced in [43] and described in the Materials and Methods

section.

Although over 1000 cells are accessible in our experiments, we

observed in the simulations that N~100 neurons suffice to

reproduce the same dynamical behavior observed for larger

network sizes, while still allowing for an exhaustive exploration of

the entire algorithmic parameter space. Furthermore, despite their

reduced density, we maintain in our simulated cultures the same

average probability of connection as in actual cultures, where this

probability (p~0:12, see Materials and Methods) is an estimate based

on independent studies [15,48].

The fluorescence signal of a particular simulation run or

experiment can be conveniently studied in terms of the

distribution of fluorescence amplitudes. As shown in Figure 1D

for both simulations and experiments, the amplitude distributions

display a characteristic right-skewed shape that emerge from the

switching between two distinct dynamical regimes, namely the

presence or absence of bursts. The distribution in the low

fluorescence region assumes a Gaussian-like shape, corresponding

Figure 1. Network activity in simulation and experiments. A Bright field image (left panel) of a region of a neuronal culture at day in vitro 12,
together with its corresponding fluorescence image (right panel), integrated over 200 frames. Round objects are cell bodies of neurons. B Examples
of real (left) and simulated (right) calcium fluorescence time series, vertically shifted for clarity. C Corresponding averages over the whole population
of neurons. D Distribution of population-averaged fluorescence amplitude for the complete time series, from a real network (left) and a simulated
one (right).
doi:10.1371/journal.pcbi.1002653.g001

Excitatory Connectivity from Calcium Imaging
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to noise-dominated baseline activity, while the high fluorescence

region displays a long tail with a cut-off at the level of calcium

fluorescence of the highest network spikes. As we will show later,

qualitative similarity between the shapes of the simulated and

experimental fluorescence distributions will play an important

guiding role for an appropriate network reconstruction.

Different network topologies lead to equivalent network
bursting

Neurons grown in vitro develop on a two-dimensional substrate

and, hence, both connectivity and clustering may be strongly

sensitive to the physical distance between neurons. At the same

time, due to long axonal projections [13,49], excitatory synaptic

connections might be formed at any distance within the whole

culture and both activity and signaling-dependent mechanisms

might shape non-trivially long-range connectivity [50,51].

To test the reconstruction performance of our algorithm, we

consider two general families of network topologies that cover a

wide range of clustering coefficients. In a first one, clustering

occurs between randomly positioned nodes (non-local clustering). In

a second one, the connection probability between two nodes

decays with their Euclidean distance according to a Gaussian

distribution and, therefore, connected nodes are also likely to be

spatially close. In particular, in this latter case, the overall level of

clustering is determined by how fast the connection probability

decays with distance (local clustering). Cortical slice studies

revealed the existence of both local [52,53] and non-local [7,54]

types of clustering.

We will later benchmark reconstruction performance for both

kinds of topologies and for a wide range of clustering levels,

because very similar patterns of neuronal activity can be generated

by very different networks, as we now show.

Figure 2 illustrates the dynamic behavior of three networks (in

this case from the non-local clustering ensemble). The networks

are designed to have different clustering coefficients but the same

total number of links (see the insets of Figure 2B for an illustration).

The synaptic coupling between neurons was adjusted in each

network using an automated procedure to obtain bursting

activities with comparable bursting rates (see Materials and Methods

for details and Table 1 for the actual values of the synaptic weight).

As a net effect of this procedure, the synaptic coupling between

neurons is slightly reduced for larger clustering coefficients. The

simulated spiking dynamics is shown in the raster plots of

Figure 2A. These three networks display indeed very similar

bursting dynamics, not only in terms of the mean bursting rate, but

also in terms of the entire inter-burst interval (IBIs) distribution,

shown in Figure 2B. In the same manner, we constructed and

simulated local networks —with a small length scale corresponding

to high clustering coefficients and vice versa— and obtained the

same result, i.e. very similar dynamics for very different decay

lengths (not shown).

We stress that our procedure for the automatic generation of

networks with similar bursting dynamics was not guaranteed to

converge for such a wide range of clustering coefficients. Thus, the

illustrative simulations of Figure 2 provide genuine evidence that

the relation between network dynamics and network structural

clustering is not trivially ‘‘one-to-one’’, despite the fact that more

clustered networks have been shown to have different cascading

dynamics at the onset of a burst [42].

Extraction of directed functional connectivity
We focus, first, on the reconstruction of simulated networks,

taken from the local and non-local ensembles described above. We

compute their directed functional connectivity based on simulated

calcium signals. Synthetic fluorescence time series are pre-

processed only by simple discrete differentiation, such as to

extract baseline modulations associated to potential firing. These

differentiated signals are then used as input to any further analyses.

Generalized TE and directed functional connectivity. We

resort to a modified version of TE that includes two novel features

Figure 2. Independence of network dynamics from clustering coefficient. A Examples of spike raster plots for three networks with different
clustering coefficients (non-local clustering ensemble), showing that their underlying dynamics are similar. B Histograms of the inter-burst intervals
(IBIs), with the vertical lines indicating the mean of each distribution. The insets illustrate the amount of clustering by showing the connectivity of
simple networks that have the same clustering coefficients as the simulated ones.
doi:10.1371/journal.pcbi.1002653.g002

Excitatory Connectivity from Calcium Imaging
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(described in detail in the Materials and Methods section), namely the

treatment of ‘‘same bin interactions’’ and the ad hoc selection of

dynamical states.

The original formulation of TE was designed to detect the

causal influence of events in the past with events at a later time.

Practically, since calcium fluorescence is sampled at discrete times,

standard TE evaluates how events occurring in time bin t are

influenced by events occurring in earlier time bins t{1, t{2, . . ..
By including same bin interactions in TE estimation, we also consider

potential causal interactions between events that occur within the

same time-bin t. This is important when dealing with experimental

data of real neuronal cultures since the image acquisition rate is

not sufficiently high to establish the temporal order of elementary

spiking events.

On the other hand, the selection of dynamical states is crucial to

properly capture interactions between neurons which lead to

different activity correlation patterns in different dynamical

regimes. Both simulated and real neuronal cultures indeed show

a dynamical switching between two distinct states (bursting and

non-bursting) that can be separated and characterized by

monitoring the average fluorescence amplitude and restricting

the analysis only to recording sections in which this average

fluorescence falls in a predetermined range. Selection of dynamical

states is discussed in the next section.

Once TE functional connectivity strengths have been calculated

for every possible directed pair of nodes, a reconstructed network

topology can be obtained by applying a threshold to the TE values

at an arbitrary level. Only links whose TE value is above this

threshold are retained in the reconstructed network topology.

Choosing a threshold is equivalent to choosing an average

degree. As a matter of fact, selecting a threshold for the

inclusion of links corresponds to setting the average degrees of the

reconstructed network. Intuitively, and as shown in Figure S1A, a

linear correlation exists between the number of links and the

average degree. Because of this relation, an expectation about the

probability of connection in the culture, and hence, its average

degree, can directly be translated into a threshold number of links

to include.

Based on the aforementioned estimations of probability of

connection and taken into account the different sizes of our

(smaller) simulated network and of our (larger) experimental

cultures, threshold values are roughly selected to include the top

10% of links, for reconstructions of simulated networks, and to

include the top 5% of links, for reconstructions from actual

Figure 3. Dependence of the directed functional connectivity on the dynamical state. A The distribution of averaged fluorescence
amplitudes is divided into seven fluorescence amplitude ranges. The functional connectivity associated to different dynamical regimes is then
assessed by focusing the analysis on specific amplitude ranges. B Quality of reconstruction as a function of the average fluorescence amplitude of
each range. The blue line corresponds to an analysis carried out using the entire data sampled within each interval, while the red line corresponds to
an identical number of data points per interval. C Visual representation of the reconstructed network topology (top 10% of the links only), together
with the corresponding ROC curves, for the seven dynamical regimes studied. Edges marked in green are present in both the reconstructed and the
real topology, while edges marked in red do not match any actual structural link. Reconstructions are based on an equal number of data points in
each interval, therefore reflecting the equal sample size performance (red curve) in panel B. Interval I corresponds to a noise-dominated regime;
intervals II to IV correspond to inter-burst intervals with intermediate firing rate and provide the best reconstruction; and intervals V–VII correspond
to network bursts with highly synchronized neuronal activity. Simulations were carried out on a network with local topology (l~0:25 mm) and light
scattering in the fluorescence dynamics. The results were averaged over 6 network realizations, with the error bars in B and the shaded regions in C
indicating a 95% confidence interval.
doi:10.1371/journal.pcbi.1002653.g003

Excitatory Connectivity from Calcium Imaging
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biological recordings. These choices are such to lead, in both cases,

to reconstructed networks with comparable probability of

connection, as previously mentioned. The (limited) impact of a

‘‘wrong’’ threshold selection on the inference of specific topologic

features, like the clustering coefficient, will be discussed in later

sections.

Network reconstruction depends on the dynamical states
Immediately prior to the onset of a burst the network is very

excitable. In such a situation it is intuitive to consider that the

directed functional connectivity can depart radically from the

structural excitatory connectivity, because local events can

potentially induce changes at very long ranges due to collective

synchronization rather than to direct synaptic coupling. Con-

versely, in the relatively quiet inter-burst phases, a post-synaptic

spike is likely to be influenced solely by the presynaptic firing

history. Hence, the directed functional connectivity between

neurons is intrinsically state dependent (cfr. also [55]), a property

that must be taken into account when reconstructing the

connectivity.

We illustrate here the state dependency of directed functional

connectivity by generating a random network from the local

clustering ensemble and by simulating its dynamics, including light

scattering artifacts to obtain more realistic fluorescence signals.

The resulting distribution of fluorescence amplitudes is divided

into seven non-overlapping ranges of equal width, each of them

identified with a Roman numeral (Figure 3A). Finally, TE is

computed separately for each of these ranges, based on different

corresponding subsets of data from the simulated recordings.

For simulated data, the inferred connectivity can be directly

compared to the ground truth, and a standard Receiver-Operator

Characteristic (ROC) analysis can be used to quantify the quality of

reconstruction. ROC curves are generated by gradually moving a

threshold level from the lowest to the highest TE value, and by

plotting at each point the fraction of true positives as a function of

the fraction of false positives. The quality of reconstruction is then

summarized in a single number by the performance level, which,

following an arbitrary convention, is measured as the fraction of

true positives at 10% of false positives read out of a complete ROC

curve.

Figure 4. TE-based network reconstruction of non-locally clustered topologies. A ROC curve for a network reconstruction with generalized
TE of Markov order k~2, and with fluorescence data conditioned at gv~gg~0:112. The shaded area depicts the 95% confidence intervals based on 6
networks. B Comparison between structural (shown in blue) and reconstructed (red) network properties: clustering coefficients (top), degree
distribution (center), and distance of connections (bottom). C Reconstructed clustering coefficients as a function of the structural ones for different
reconstruction methods. Non-linear causality measures, namely Mutual Information (MI, red) and generalized Transfer Entropy (TE, yellow), provide
the best agreement, while a linear reconstruction method such as cross-correlation (XC, blue) fails, leading invariably to an overestimated level of
clustering. The error bars indicate 95% confidence intervals based on 3 networks for each considered clustering level. All network realizations were
constructed with a clustering index of 0.5, and simulated with light scattering artifacts in the fluorescence signal.
doi:10.1371/journal.pcbi.1002653.g004
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PLOS Computational Biology | www.ploscompbiol.org 6 August 2012 | Volume 8 | Issue 8 | e1002653



We plot the performance level as a function of the average

fluorescence amplitude in each interval, as shown by the blue line

of Figure 3B. The highest accuracy is achieved in the lowest

fluorescence range, denoted by I, and reaches a remarkably

elevated value of approximately 70% of true positives. The

performance in the higher ranges II to IV decreases to a value

around 45%, to abruptly drop at range V and above to a final

plateau that corresponds to the 10% performance of a random

reconstruction (ranges VI and VII).

Note that fluorescence values are not distributed homogeneous-

ly across ranges I–VII, as evidenced by the overall shape of the

fluorescence distribution in Figure 3A. For example, the lowest

and highest ranges (I and VII) differ by two orders of magnitude in

the number of data points. To discriminate unequal-sampling

effects from actual state-dependent phenomena, we studied the

performance level using an equal number of data points in all

ranges. Effectively, we restrict the number of data points available

in each range to be equal to the number of samples in the highest

range, VII. The quality of such a reconstruction is shown as the

red curve in Figure 3B. The performance level is now generally

lower, reflecting the reduced number of time points which are

included in the analysis.

Interestingly, the ‘‘true’’ peak of reconstruction quality is shifted

to range II, corresponding to fluorescence levels just above the

Gaussian in the histogram of Figure 3A. This range is therefore the

most effective in terms of reconstruction performance for a given

data sampling.

For the ranges higher than II, the reconstruction quality

gradually decreases again to the 10% performance of purely

random choices in ranges VI and VII. The effect of adopting a

(shorter) equal sample size is particularly striking for range I, which

drops from the best performance level almost down to the baseline

for random reconstruction. As a matter of fact, range I is the one

for which the shrinkage of sample length due to the constraint for

uniform data sampling is most extreme (see later section on

dependence of performance from sample size).

The above analysis leads to a different functional network for

each dynamical range studied. For the analysis with an equal

number of data point per interval, the seven effective networks are

drawn in Figure 3C (for clarity only the top 10% of links are

Figure 5. TE-based network reconstruction of locally-clustered topologies. A ROC curve for a network reconstruction with generalized TE
Markov order k~2, with fluorescence data conditioned at gv~gg~0:084. The shaded area depicts the 95% confidence interval based on 6 networks. B
Comparison between structural (top) and reconstructed (bottom) connectivity. For the reconstructed network (after thresholding to retain the top
10% of links only) true positives are indicated in green, and false positives in red. C Comparison between structural (blue) and reconstructed (red)
network properties: clustering coefficients (top), degree distribution (center) and distance of connections (bottom). D Reconstructed length scales as
a function of the structural ones for different reconstruction methods. The non-linear causality measures, Mutual Information (MI, red) and
generalized Transfer Entropy (TE, yellow), provide good reconstructions, while the linear cross-correlation (XC, blue) always provides an
underestimated length scale. The error bars indicate 95% confidence intervals based on 3 networks per each considered length scale. All network
realizations were constructed with a characteristic length scale l~0:25 mm, and simulations included light scattering artifacts.
doi:10.1371/journal.pcbi.1002653.g005
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shown). Each functional network is accompanied with the

corresponding ROC curve.

The lowest range I corresponds to a regime in which spiking-

related signals are buried in noise. Correspondingly, the associated

functional connectivity is practically random, as indicated by a

ROC curve close to the diagonal. Nevertheless, information about

structural topology is still conveyed in the activity associated to this

regime and can be extracted through extensive sampling.

At the other extreme, corresponding to the upper ranges V to

VII —associated to fully developed synchronous bursts— the

functional connectivity has also a poor overlap with the underlying

structural network. As addressed later in the Discussion section,

functional connectivity in regimes associated to bursting is

characterized by the existence of hub nodes with an elevated

degree of connection. The spatio-temporal organization of

bursting can be described in terms of these functional connectivity

hubs, since nodes within the neighborhood of the same functional

hub provide the strongest mutual synchronization experienced by

an arbitrary pair of nodes across the network (see Discussion and

also Figure S2).

The best agreement between functional and excitatory struc-

tural connectivity is clearly obtained for the inter-bursts regime

associated with the middle range II, and to a lesser degree in

ranges III and IV, corresponding to the early building-up of

synchronous bursts.

Overall, this study of state-dependent functional connectivity

provides arguments to define the optimal dynamical regime for

network reconstruction: The regime should include all data points

whose average fluorescence across the population gt is below a

‘‘conditioning level’’ ~gg, located just on the right side of the

Gaussian part of the histogram of the average fluorescence (see

Materials and Methods). This selection excludes the regimes of highly

synchronized activity (ranges III to VII) and keeps most of the data

points for the analysis in order to achieve a good signal-to-noise

ratio. Thus, the inclusion of both ranges I and II combines the

positive effects of correct state selection and of extensive sampling.

The state-dependency of functional connectivity is not limited to

synthetic data. Very similar patterns of state-dependency are

observed also in real data from neuronal cultures. In particular, in

both simulated and real cultures, the functional connectivity

associated to the development of bursts displays a stronger

clustering level than in the inter-burst periods. An analysis of the

topological properties of functional networks obtained from real

data in different states (compared with synthetic data) is provided

in Figure S3. In this same figure, sections of fluorescence time-

series associated to different dynamical states are represented in

different colors, for a better visualization of the correspondence

between states and fluorescence values (for simplicity, only four

fluorescence ranges are distinguished).

Analysis of two representative network reconstructions
Our generalized TE, conditioned to the proper dynamic range,

enables the reconstruction of network topologies even in the

presence of light scattering artifacts. For non-locally clustered

topologies we obtain a remarkably high accuracy of up to 75% of

true positives at a cost of 10% of false positives. An example of the

reconstruction for such a network, with CC~0:5, is shown in

Figure 4A. For locally-clustered topologies, accuracy typically

Figure 6. Dependence of performance level on network clustering, conditioning level and light scattering artifacts. The color panels
show the overall reconstruction performance level, quantified by TP10% (black, 0% true positives; white, 100% true positives), for different target
ground-truth clustering coefficients and as a function of the used conditioning level. Five different reconstruction algorithms are compared: cross-
correlation (XC), Granger Causality (GC) with order k~2, Mutual Information (MI), and Transfer Entropy (TE) with Markov orders k~1,2. The top row
corresponds to simulations without artifacts, and the bottom row to simulations including light scattering. Reconstructions with linear methods
perform well only in the absence of light scattering artifacts. TE reconstruction with k~2 shows the best overall reconstruction performance, even
with light scattering and for any target clustering coefficient. An optimal reconstruction is obtained in a narrow range surrounding the conditioning
value of ~gg^0:2.
doi:10.1371/journal.pcbi.1002653.g006
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reaches 60% of true positives at a cost of 10% of false positives,

and an example for l~0:25 mm is shown in Figure 5A.

In both topologies, we observe that for a low fraction of false

positives detection (i.e. at high thresholds HTE) the ROC curve

displays a sharp rise, indicating a very reliable detection of the

causally most efficient excitatory connections. A decrease in the

slope, and therefore a rise in the detection of false positives and a

larger confidence interval, is observed only at higher fractions of

false positives. The confidence intervals are broader in the case of

locally-clustered topologies because of the additional network-to-

network variability that results from the placement of neurons

(which is irrelevant for the generation of the non-locally clustered

ensembles, see Materials and Methods).

Non-local clustering ensemble. To address the reconstruc-

tion quality of the network topology, we focus first on the results

for the non-local clustered ensemble. For a conditioning level

which corresponds to the right hand side of the Gaussian in the

fluorescence amplitude histogram (~gg^0:2), we consider three

main network observables, namely the distributions of local

clustering coefficients, in-degrees, and the distances of connec-

tions. As shown in Figure 4B, we obtain a reconstructed network

that reproduces well the ground truth properties, with similar

mean values and distributions for all three observables considered.

We observe, however, a small shift towards lower clustering indices

(Figure 4B, top panel) and especially towards lower average

distances (bottom panel) for this highly clustered network.

Despite this underestimation bias for instances with high

clustering, Figure 4C shows the existence of a clear linear

correlation between the real average clustering coefficient and

that of the topology reconstructed with generalized TE (Pearson’s

correlation coefficient of r~0:92). Such linear relation allows,

notably, a reliable discrimination between networks with different

levels of clustering but very similar bursting dynamics. Note that

this linear relation between real and reconstructed clustering

coefficient is robust against misestimation of the expected average

degree, or, equivalently, of the number of links to include, as

highlighted by Figure S1B.

TE-based reconstructions also yield estimates of the average

distance of connection —constant and not correlated with the

clustering level— with reasonable accuracy as shown in Figure

S4A.

Local clustering ensemble. For this ensemble (see Figure 5),

the quality of reconstruction can be assessed even visually, due to

the distance-dependency of the connections, by plotting the

network graph of reconstructed connections. In Figure 5B we

compared the structural network (top panel) with the reconstruct-

ed one (bottom panel), obtained by including as links only edges

corresponding to the top 10% of TE values. This corresponds here

to about 600 true positives (*50% of all possible true positives,

and plotted in green) and about 400 false positives (*5% of all

possible false positives, plotted in red). The statistical properties of

the structural and reconstructed networks are shown in Figure 5C.

Figure 7. Dependence of reconstruction quality on TE formulations and recording length. A ROC curves for network reconstructions of
non-locally clustered (left panel) and locally-clustered topologies (right), based on three TE formulations: conventional TE (blue), generalized TE with
same bin interactions only (red) or also including optimal conditioning (yellow). The vertical lines indicate the performance level at TP10%, and
provide a visual guide to compare the quality of reconstruction between different formulations. B Decay of the reconstruction quality as measured by
TP10% for the two topology ensembles and for generalized TE with conditioning, as a function of the data sampling divisor s. A full simulated
recording of 1 h in duration provides a data set of length S1h, corresponding to a data sampling fraction of s~1. Shorter recording lengths are
obtained by shortening the full length time-series to a shorter length given by S’~S1h=s, with s~1,:::,19. The insets show the same results but
plotted as a function of S’ in semi-logarithmic scale. For both A and B, the panels in the left column correspond to the non-locally clustered
ensembles (cfr. Figure 4), while the panels in the right column correspond to the locally-clustered ensemble (cfr. Figure 5). Shaded regions and error
bars indicate 95% confidence intervals based on 6 networks.
doi:10.1371/journal.pcbi.1002653.g007
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Again, reconstructed network properties correlate with real

properties. The reconstructed distribution of connection distances

displays a reduced right-tail compared to the real one. A tendency

to estimate a more local connectivity is evident also from a marked

overestimation of local clustering coefficients. We attribute such a

mismatch to light scattering artifacts that increase local correla-

tions in a spatial region matching the length scale of real structural

connections. This is confirmed by the fact that the length scale is

correctly inferred in simulations without the light scattering artifact

(not shown).

Note, that there is again a very good linear correlation

(Pearson’s correlation of r~0:97) between the actual and

reconstructed (spatial) average connection length, as shown in

Figure 5D. Similarly, the reconstructed average clustering

coefficient is linearly correlated with that of the ground truth

(r~0:98), as shown in Supplementary Figure S4B.

Sensitivity to reconstruction approaches. Overall, TE of

Markov order k~2 (i.e. taking into account multiple time scales of

interaction, see Eq. (11) in Materials and Methods section) achieved a

performance level ranging between 40% and 80% at a level of

10% of false positives, for any clustering type and level.

In Figure 4C and Figure 5D we compare the performance of

generalized TE with other reconstruction strategies, respectively

for the non-local and for the local clustering ensemble. We

considered, as competitors, crosscorrelation (XC), Granger Cau-

sality (GC) or Mutual Information (MI) metrics. All of these

methods have previously been used to study the connectivity in

neural networks [40,56–61]. Detailed definitions of these methods

and of the adaptations we introduce for a fair comparison with

generalized TE are provided in the Materials and Methods section.

When using these alternative metrics, functional networks were

extracted exactly as when using generalized TE. The only

Figure 8. Network reconstruction of an in vitro neuronal culture at DIV 12. A Example of TE reconstructed connectivity in a subset of 49
neurons (identified by black dots) in a culture with N~1720 marked neurons (regions of interest) in the field of view, studied at day in vitro 12. Only
the top 5% of connections are retained in order to achieve, in the final reconstructed network, an average connection degree of 100 (see Results). B
Properties of the network inferred from TE reconstruction method (top panels) compared to a cross-correlation (XC) analysis (bottom panels). The
figure shows reconstructed distributions for the in-degree (left column), the connection distance (middle column), and the clustering coefficient
(right column). In addition to the actual reconstructed histograms (yellow), distributions for randomized networks are also shown. Blue color refers to
complete randomizations that preserves only the total number of connections, and red color to partial randomizations that shuffle only the target
connections of each neuron in the reconstructed network.
doi:10.1371/journal.pcbi.1002653.g008
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difference consisted in evaluating functional coupling scores based

on XC, GC or MI for each directed edge.

We observe then that MI-based reconstructions yield linear

correlations between real and reconstructed clustering coefficient

and length scales as well. For the adopted optimal conditioning

level, MI can actually out-perform generalized TE (cfr. Supple-

mentary Figure S4), probably due to the smaller sample size

required for its estimation. On the contrary, XC-based recon-

structions fail in all cases to reproduce these linear correlations,

yielding a constant value independently from the ground-truth

values. For the non-local clustering ensemble, it distinctly over-

estimates average clustering level; for the local clustering ensemble,

it severely underestimates the average length of connections.

Therefore, in XC-based reconstructions, all information on the

actual degree of clustering in the network is lost and a high

clustering level is invariably inferred.

GC-based reconstructions display the same error syndrome (not

shown), which indicates that capturing non-linear correlations in

neural activity —as MI and TE can do, but XC and GC cannot—

is crucial for the inference of the clustering level.

We would like to remind that XC-, GC- and MI-based

methods, analogously to the generalized TE approach, include, as

generalized TE, the possibility of ‘‘same-bin interactions’’ (zero-

lag). Furthermore, we have modified them to also include optimal

conditioning in order to make the comparison between different

methods fair. The forthcoming section gives more details about

comparison of performance for different conditions and methods.

Performance comparison: Role of topology, dynamics
and light scattering

The performance level (fraction of true positives for 10% of false

positives, denoted by TP10%) provides a measure of the quality of

the reconstruction, and allows the comparison of different methods

for different network topologies, conditioning levels, and external

artifacts (i.e. presence or absence of simulated light scattering). We

test linear methods, XC and GC (of order 2; the performance of

GC of order 1 is very similar and not shown), and non-linear

methods, namely MI and TE (of Markov orders 1 and 2; see

Materials and Methods for details). XC and MI are correlation

measures, while GC and TE are causality measures. Note that, for

each of these methods, we account for state dependency of

functional connectivity, performing state separation as described in

the Materials and Methods section.

In the case of the non-local clustering ensemble and without

light scattering (Figure 6, top row), even a linear method such as

XC achieves a good reconstruction. This success indicates an

overlap between communities of higher synchrony in the calcium

fluorescence, associated to stronger activity correlations, and the

underlying structural connectivity, especially for higher full

clustering indices.

GC-based reconstructions have an overall worse quality, due to

the inadequacy of a linear model for the prediction of our highly

nonlinear network dynamics, but they show similarly improved

performance for higher CC.

In a band centered around a shared optimal conditioning level

~gg^0:2, both MI and generalized TE show a robust performance

across all clustering indices. This value is similar to the upper

bound of the range II depicted in Figure 3A, i.e. it lies at the

interface between the bursting and silent dynamical regimes. In

particular for TE and in the case of low clustering indices (which

leads to networks closer to random graphs), conditioning greatly

improves reconstruction quality. At higher clustering indices the

decay in performance is only moderate for conditioning levels

above the optimal value, indicating an overlap between the

functional connectivities in the bursting and silent regimes. Note,

on the contrary, that the performance of MI rapidly decreases if a

non-optimal conditioning level is assumed.

The introduction of light scattering causes a dramatic drop in

performance of the two linear methods (XC and GC), and even of

MI and TE with Markov order k~1. The performance of TE at

Markov order 2 also deteriorates, but is still significantly above the

random reconstruction baseline in a broad region of parameters.

Interestingly, for the optimal conditioning level ~gg^0:2 the

performance of the TE for k~2 does not fall below

TP10%*40% for any clustering level or l value. It is precisely in

this optimal conditioning range that we obtain the linear relations

between reconstructed and structural clustering coefficients, for

both the non-local and the local clustering ensembles.

A similar trend is obtained when varying the length scale l in

the local ensembles (see Supplementary Figure S5). For very local

clustering and without light scattering, both XC and TE achieve

performance levels up to 80%. The introduction of light scattering,

however, reduces the performance of all measures except for MI

(but only in the narrow optimal conditioning range) and for TE of

higher Markov orders (robust against non-optimal selection of

conditioning level). Overall, the performance of the reconstruction

for the local clustering ensembles is lower than for the non-locally

clustered ensembles. This is also true, incidentally, in absence of

light scattering since networks sampled from this ensemble tend to

be very similar to purely random topologies (of the Erdös-Rényi

type, see e.g. [62]) as soon as the length scale is sufficiently long,

and for which performance is generally poorer (cfr. top row of

Figure 6, for weak clustering levels).

Contributions to the performance of generalized TE
Our new TE method significantly improves the reconstruction

performance compared to the original TE formulation [Eq. (9)].

As shown in Figure 7A for both the local and the non-local

clustered networks, reconstruction with the original TE formula-

tion (Figure 7A, blue line) yields worse results than a random

reconstruction, as indicated by the corresponding ROC curves

falling below the diagonal. Such a poor performance is due in

large part to ‘‘misinterpreted’’ delayed interactions. Indeed, by

Table 1. Synaptic weights used in the simulation.

Topological index SaintT (pA) sd of aint

CC 0.1 6.604 0.146

0.2 6.156 0.124

0.3 5.719 0.054

0.4 5.361 0.113

0.5 5.274 0.067

0.6 5.214 0.209

l (mm) 0.25 5.207 0.171

0.5 6.241 0.166

0.75 6.481 0.150

1.0 6.556 0.230

1.25 6.505 0.158

1.5 6.519 0.113

Mean and standard deviation for the internal synaptic weights aint , used in the
simulation of 6 networks with a non-locally clustered ensemble (listed with
ascending clustering coefficients CC, and 6 networks with a locally-clustered
ensemble (listed by ascending length scales l).
doi:10.1371/journal.pcbi.1002653.t001
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taking into account same bin interactions, a boost in performance

is observed (red line). Figure 7A also shows that an additional leap

in performance is obtained when the analysis is conditioned (i.e.

restricted) to a particular dynamical state of the network,

increasing reconstruction quality by 20% (yellow line in

Figure 7A). The determination of the optimal conditioning level

is discussed later and takes into account the considerations

introduced above (cfr. Figure 3).

Note that the introduction of same bin interactions alone (red

color curves) or conditioning on the dynamical state of network

alone (yellow color curves) already brings the performance to a

level well superior to random performance. However, at least for

our simulated calcium-fluorescence time series, a remarkable boost

in performance is obtained only when the inclusion of same-bin

interactions and optimal conditioning are combined together

(green color curves). Although, in principle, conditioning is enough

to indirectly select a proper dynamical regime, the poor time-

resolution of the analyzed signals (constrained not only by the

frame-rate of acquisition but also intrinsically by the kinetics of the

dissociation reaction of the calcium-sensitive dye [63]) also

requires the potential consideration of causally-linked events

occurring in the same time-bin.

A different way to represent reconstruction performance are

‘‘Positive Precision Curves’’ (as introduced in [56] and described in

the Materials and Methods section), obtained by plotting, at a given

number of reconstructed links, the ‘‘true-false ratio’’ (TPR), which

emphasizes the probability that a reconstructed link is present in

the ground truth topology (true positive). For the same networks

and reconstruction as above, we plot the PPCs in Figure S6 (for

the ROC curves see Figure 7A). Over a wide range of the number

of reconstructed links (TFS), the PPC displays positive values of the

TFR, indicative of a majority of true positives over false positives.

For both the locally and non-locally clustered networks, the PPC

reaches a maximum value of the TPR about 0.5 and remains

positive up to about 18% of included links for the clustered

topology, or up to 12% in the case of the local topology.

Recording length affects performance
In Figure 7B, we analyze the performance of our algorithm

against changes of the sample size. Starting from simulated

recordings lasting 1 h of real time (corresponding to about 360

bursting events) and with a full sample number of S1h, we trimmed

these recordings producing shorter fluorescence time series with

S’~S1h=s samples, with s being a divisor of the sample size. For

both network topology ensembles, we found that a reduction in the

number of samples by a factor of two (corresponding to

30 minutes or about 180 bursts) still yields a performance level

of *70%. By further reducing the sample size, we reach a plateau

with a quality of *30% for about 40 bursts (corresponding to

6 minutes).

All the experiments analyzed in this work are carried out with a

duration between 30 and 60 minutes. Since conditioning, needed

to achieve high performance, requires one to ignore a conspicuous

fraction of the recorded data, we expect long recordings to be

necessary for a good reconstruction, albeit the fact that it is

possible to increase the signal-to-noise ratio by increasing the

intensity of the fluorescent light. However, the latter manipulation

has negative implications for the health of neurons due to photo-

damage, limiting our experimental recordings to a maximum of

2 hours.

Analysis of biological recordings
We apply our analysis to actual recordings from in vitro networks

derived from cortical neurons (see Materials and Methods). To

simplify the network reconstruction problem, experiments are

carried out with blocked inhibitory GABA-ergic transmission, so

that the network activity is driven solely by excitatory connections.

This is consistent with previously discussed simulations, in which

only excitatory neurons were included.

We consider in Figure 8 a network reconstruction based on a

60 minutes recording of the activity of a mature culture, at day in

vitro (DIV) 12, in which N~1720 active neurons were simulta-

neously imaged. A fully analogous network reconstruction for a

second, younger dataset at DIV 9 is presented in Supplementary

Figure S7. In general, fluorescence data neither affected by photo-

bleaching nor by photo-damage during this time, as proved by the

stability of the average fluorescence signal shown in the

Supplementary Figure S8A.

The probability distribution of the average fluorescence signal is

computed in the same way as for the simulated data. Neuronal

dynamics and the calcium fluorescence display the same bursting

dynamics that are well captured by the simulations, leading to a

similar fluorescence distribution (Figure 1D). Thanks to this

similarity we can make use of the intuition developed for synthetic

data to estimate an adequate conditioning level. We select

therefore a conditioning level such as to exclude the right-tail of

high fluorescence associated to to fully-developed bursting

transient regimes. We have verified, however, that the main

qualitative topological features of the reconstructed network are

left unchanged when varying the conditioning level in a range

centered on our ‘‘optimal’’ selection. More details on conditioning

level selection are given in the Materials and Methods section.

Reconstruction analysis is carried out for the entire population

of imaged neurons. We analyze a network defined by the top 5%

of TE-ranked links, as discussed in a previous section. Such choice

leads to an average in–degree of about 100, compatible with

average degrees reported previously for neuronal cultures of

corresponding age (DIV) and density [14,64].

Comparison with randomized networks. The ground

truth excitatory connectivity is obviously not known for real

recordings and performance cannot be assessed by means of an

ROC analysis. However, we can compare the obtained recon-

struction to randomized variations to identify non-trivial topolog-

ical features of the reconstructed network. We perform two kinds

of randomizations: In a first one, randomization is full and only

the number of network edges is preserved. Comparison with such

fully randomized networks detects significant deviations of the

reconstructed network from an ensemble of random graphs in

which the degree follows the same prescribed Poisson distribution

for each node (Erdös-Rényi ensemble, see e.g. [62]). In a second

randomization, both the total edge number and the precise out-

degrees of each node are preserved. The comparison of the

reconstructed network with such a partially randomized ensemble

detects local patterns of correlations between in- and out-degrees

—including, notably, clustering— which do not arise just in virtue

of a specific distribution of out-degrees. Comparison with partial

randomizations is particularly important when skewed distribu-

tions of degrees are expected.

Topology retrieved by TE. Our analysis shows that the

resulting reconstructed topology is characterized by markedly non-

local structures, as visible in the portion of the reconstructed

network in Figure 8A. Distributions of degree, distance of

connection and local clustering coefficients inferred by TE are

shown in the top row of Figure 8B (yellow histograms). The degree

distribution is characteristically broadened and distinctly right-

skewed, deviating from the Poisson distribution associated to

Erdös-Rényi random graphs (the histogram for fully randomized

networks shown in blue). Note that, for partial randomizations
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(histograms shown in red), we have randomized the out-degree of

each node but plotted here the resulting in-degree distribution (the

distribution of out-degrees would be, by construction, unchanged).

While the distribution of connection distances matches the one

of randomized networks, TE detects clustering at a level which is

moderate (CC^0:09) but significantly larger than for random

networks. Note that this larger clustering cannot be ascribed to the

broadened degree distribution since both full and partial (red

histograms) randomizations lead to consistently smaller clustering

levels (CC^0:05).

Topology retrieved by XC. By analyzing a network

reconstruction based on cross-correlation (XC), we find differences

to TE (bottom row of Figure 8B). In particular, XC infers a

distribution of distances markedly more local than for full and

partially randomized network instances and, correspondingly,

markedly higher clustering coefficient (CC^0:17). Distribution of

degrees inferred by XC is on the contrary random-like.

As a matter of fact, remarkably similar patterns of discrepancy

between reconstruction results based on TE and on XC are also

robustly present in synthetic data. Synthetic data analyses

consistently show the superior performance of TE compared to

XC. Furthermore, these analyses identify a tendency of XC to

infer an artificially too local and too clustered connectivity.

Therefore, we believe that the topology of the neuronal culture

inferred by XC is not reliable, and is biased by the aforementioned

systematic drifts.

Discussion

Relation to state of the art
We have introduced a novel extension of Transfer Entropy, an

information theoretical measure, and applied it to infer excitatory

connectivity of neuronal cultures in vitro. Other studies have

previously applied TE (or a generalization of TE) to the

reconstruction of the topology of cultured networks [39,56].

However, our study introduces and discusses important novel

aspects, relevant for applications.

Model independency. Our algorithm is model-independent

and it is thus not constrained to linear interactions between nodes.

This absence of a parametric model can be advantageous not only

conceptually, where we hope to make the least amount of

assumptions necessary, but also practical for applications to real

data. Due to its generality, it can be used virtually without

modifications even for the reconstruction based on spike trains or

voltage traces. This is important, since massive datasets with

modalities beyond calcium fluorescence imaging might become

available in a near future, thanks to progresses in connectomics

research. Model-independence is also important to avoid potential

artifacts due to a too restrictive or inappropriate choice of model

for neuronal firing or for network topology. Therefore, it

constitutes a major advantage with respect to regression methods

or even more elaborated Bayesian approaches, as the one

considered in [45]. Both regression and Bayesian techniques

indeed assume specific models of calcium fluorescence and

neuronal firing dynamics, either explicitly (in the case of the

Bayesian framework) or implicitly (assuming a linear dynamical

model in the case, e.g., of XC or GC). Note that we use here

dynamical network models to benchmark our reconstruction

quality. However, our method still remains model-free, because

knowledge about these models is not required for reconstruction.

No need for spike times. Competitor approaches used [56]

or put emphasis on the need of reconstructing exact spike times

[45] with sophisticated deconvolution techniques [43], as a

preprocessing step before actual topology reconstruction.

As we have shown here, acquiring such difficult-to-access

information is unnecessary for our method, which performs

efficiently even for slow calcium fluorescence acquisition rate and

operates directly on imaging time series. This is a crucial feature

for applications to noisy data, which remains useful even when —

as for the data analyzed in this study— the signal-to-noise ratio is

sufficiently good to allow sometimes the isolation of individual

firing events (cfr. Figure 1B).

Robustness against bursting. We optimized our algorithm

to infer excitatory connectivity based on time series of calcium

fluorescence with a complex nonlinear dynamics, capturing the

irregular bursting and the corresponding time-dependent degree

of synchronization observed in cultured networks in vitro. To our

knowledge, no previous study about algorithmic connectivity

reconstruction has tackled with simulated dynamics reaching this

level of realism. We have here identified a simple and conceptually

elegant mean-field solution to the problem of switching between

bursting and non-bursting states, based just on conditioning with

respect to the average level of fluorescence from the whole culture.

A feature of our model network dynamics, and one that is

crucial to reproduce temporally irregular network bursting, is the

inclusion of short-term depressing synapses. Remarkably, other

studies [39], which have modeled explicitly more complex forms of

spike-time dependent synaptic plasticity, neglect completely this

short-term plasticity, failing correspondingly to generate a realistic

model of spontaneous activity of an in vitro culture. Yet, our

network model remains very simplified, although the use of

networks of integrate-and-fire neurons to generate surrogate data

is widespread [39,45,46]. Several features of real cultured neurons

are not explicitly included, like heterogeneity in synaptic

conductances and time-constants, slow NMDA excitatory currents

or distance-dependent axonal delays. However, time-series from

more complex models could be used to benchmark our algorithm,

without need of introducing any change into it, due to its model-

free nature.

Robustness against light scattering. We have found that,

among the tested methods, only generalized TE of at least Markov

order k~2 with a proper conditioning allows to distinguish

random from clustered topologies and local from long-range

connectivities in a reliable manner, in the presence of light

scattering artifacts. These artifacts indeed lead to the inference of

spurious interactions between the calcium signal of two nodes,

reducing the performance of linear causality measures like XC or

GC to a random level. Note that this is very likely a similar effect

as in [36], where reconstruction with TE is still possible despite

cross-talk between EEG electrodes.

Low computational complexity. Finally, we note that our

algorithm is computationally simple and relatively efficient.

Preprocessing of time series is a simple discrete differentiation.

State selection is achieved via conditioning data on a range, which

requires only to read once the input time series and compare them

with a threshold. The inference procedure itself is not iterative

(unlike in [42,45]) and evaluation of TE is done through simple

‘‘plug-in’’ estimation, which is fast (unlike elementary steps in, e.g.,

[45]). The principal determinant of computational complexity is

therefore the growing number of putative links (which grow as

O(N2)) and, hence, of TE scores that must be computed.

For the recording duration of one hour considered in this work,

we typically found a computation time of approximately

Tcomp&60ms �N2 including pre-processing on a 2.67 GHz Intel

Xeon processor. Reconstructions of networks with 100 nodes

required roughly ten minutes; with 1000 nodes roughly half a day.

Note however that as the computation of TE for two distinct links

is (after pre-processing and conditioning) computationally inde-
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pendent, it can be easily parallelized, reducing the computation

time by a factor equal to the number of CPUs.

Good reconstruction of topological features
Good reconstruction of clustering. Based on synthetic time

series of calcium fluorescence, we have studied the relation

between ground truth topological features and their reconstructed

counterparts. By restricting directed functional connectivity

estimation to a proper dynamical regime through conditioning,

we found strong linear correlations between real and reconstructed

topological properties, both for the average Euclidean distance of

connections and the clustering coefficient (CC). Note that

deviations from this linear relationship at higher CC values,

visible in Figure 4C, are in part due to the fact that we have used a

constant conditioning level for all reconstructions, while the

optimal conditioning level increases slightly for high CCs.

Clustering coefficient is the most widespread measure of higher

order topological features, going beyond characterization of

neighbors in a network, but analyzing correlation between local

neighborhoods of different nodes. We have adopted the so-called

‘‘full’’ clustering index to measure clustering in our directed

networks. However, several other definitions of clustering coeffi-

cient for directed network exist, emphasizing the contribution to

the clustering phenomenon of different topological motifs such as

cycles or ‘‘middleman’’ loops [65]. We have checked that the

linear relationship between real and reconstructed clustering

indices hold for all the clustering index types defined in [65], with

an almost identical degree of correlation. This hints at a good

capacity of our algorithm to reconstruct different classes of graph

topology motifs.

Good reconstruction of connectivity motifs. We have

focused on the performance of our algorithm in reconstructing

specific topological motifs involving more than two nodes.

Considering for instance the network whose reconstruction is

illustrated in Figure 5, we identified in the ground truth topology

of this network all occurrences of shared source motifs, i.e. motifs in

which a node A was connected to a node B (A?B) and to a node

C (A?C) but in which there was no direct connection between B

and C in the reconstructed as well as the ground truth topology.

Such a motif might be harmful for reconstruction, because the

existence of a shared input A might be mistaken for a reciprocal

causal interaction between nodes B and C. Nevertheless, only in a

minority of cases (about 20%), spurious links B?C or C?B

where erroneously included in our reconstruction. Equivalently, in

the case of embedded chains, i.e. motifs in which a node A is

connected to B, connected on its turn to C, without a direct link

from A to C (A?B?C), the presence of a link A?C (reflecting

potentially indirect causation, mistaken for direct) was erroneously

inferred only in, once again, about 20% of cases. Note that other

studies have investigated the performance of various metrics in the

reconstruction of specific small network motifs [66,67], but it is not

clear that the efficiency of reconstruction quantified for such small

networks continues to hold when these motifs are embedded in

larger networks with hundreds of nodes or more.

Good reconstruction of higher-order topological features is

important since these features (like e.g. the tendency of existing

links to form chains) are known to affect the synchronizability of

networks, as stressed by a recent study [68]. Our algorithm was

not specifically optimized to infer higher order structures. Analyses

based on k-ples rather than on pairs of nodes might lead to a

better description of higher order connectivity structures, at a

price, however, of a more severe sampling problem. In this sense,

conditioning transition probabilities for a specific edge to the

ongoing mean-field activity, constitute already a first compromise,

allowing to extend the analysis beyond a mere pairwise approach.

Overestimation of bidirectional links. In [68], the role

played by the fraction of bidirectional links (i.e. situations in which

there is a connection A?B, but also a connection B?A) was also

explored.

In our case, approximately 60% of the bidirectional links

present in the ground truth topology were reconstructed as

bidirectional in the reconstruction of Figure 4. However, this

reconstruction exhibited as well a severe overestimation of the

number of bidirectional links. Unidirectional in the ground-truth

topology were more difficult to detect, such as only 4% of them

were ranked among the top 10% of TE scores. Furthermore, when

such unidirectional links A?B were reconstructed, the presence of

a link B?A was also in most of the cases (85%) spuriously

inferred, i.e. included unidirectional links were often mistaken for

bidirectional links.

It is likely that an improvement in the inference of directionality

might be achieved by increasing the time-resolution of the

recordings beyond the present limits of calcium imaging techniques.

Good reconstruction of connectivity length scale. Finally,

we have also analyzed the distance dependence of the recon-

structed probability of connection in the system. We have found a

good agreement between real and reconstructed average length

scale of connections, albeit we did find more local connections

than present in the ground truth topology (see for example

Figure 4B, bottom panel). This is an artifact due to light scattering,

as it is suggested by the underestimated peak of the reconstructed

connection distance histogram, which matches the characteristic

length scale of simulated light scattering lsc.

Functional connectivity hubs
As shown in Figure 3 for simulated data and in Supplementary

Figure S3 for actual culture data, epochs of synchronous bursting

are associated to functional connectivity with a stronger degree of

clustering and a weaker overlap with the underlying structural

topology. This feature of functional connectivity is tightly related

to the spatio-temporal organization of the synchronous bursts.

In Figure S2A, we highlight the position of selected nodes (of the

simulated network considered in Figure 3), characterized by an

above-average in-degree of functional connectivity (see Materials

and Methods for a detailed definition in terms of TE scores). We

denote these nodes —different in general for each of the dynamic

regimes numbered from I to VII— as (state-dependent) functional

connectivity hubs.

Given a specific hub, we can then define the community of its

first neighbors in the corresponding functional network. Consis-

tently across all dynamic ranges (but the noise-dominated range I)

we find that synchronization within each of these functional

communities is significantly stronger than between the commu-

nities centered on different hubs ((pv0:01, Mann-Whitney test,

see Materials and Methods). The results of this comparison are

reported in Figure S2B, showing particularly marked excess

synchronization during burst build-up (ranges II, III and IV) or

just prior to burst waning in the largest-size bursts (VII).

Therefore, functional connectivity hubs reflect foci of enhanced

local bursting synchrony.

Other studies (in brain slices) reported evidence of functional

connectivity hubs, whose direct stimulation elicited a strong

synchronous activation [69,70]. In [69], the functional hubs were

also structural hubs. In the case of our networks, however only

functional hubs associated to ranges II and III have an in-degree

(and out-degree) larger than average as in [69]. In the other

dynamic ranges, this tight correspondence between structural and
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functional hubs does not hold anymore. Nevertheless, in all

dynamic ranges (but range I), we find that pairs of functional hubs

have an approximately three-times larger chance of being

structurally connected than pairs of arbitrarily selected nodes

(not shown).

The timing of firing of these strong-synchrony communities is

analyzed in Figure S2C. There we show that the average time of

bursting of functional communities for different dynamic ranges is

shifted relatively to the average bursting time over the entire

network (details of the estimation are provided in Materials and

Methods). This temporal shift is negative for the ranges II and III

(indicating that functional hubs and related communities fire on

average earlier than the rest of the culture) and positive for the

ranges V to VII (indicating that firing of these communities occurs

on average later than the rest of the culture). The highest negative

time delay is detected in range III, such that the communities

organized around its associated functional hubs can be described

as local burst initiation cores [71,72].

Purely excitatory networks
In this study we did not consider inhibitory interactions, neither

in simulations nor in experiments (GABAergic transmission was

blocked), but we attempted uniquely the reconstruction of

excitatory connectivity.

We would like to point out that this is not a general limitation of

TE, since the applicability of TE does not rely on assumptions as

to the specific nature of a given causal relationship – for instance

about whether a synapse is excitatory or inhibitory. In this sense,

TE can be seen as a measure for the absolute strength of a causal

interaction, and is able in principle to capture the effects on

dynamics of both inhibitory and excitatory connections. Note

indeed that previous studies [39,56] have used TE to infer as well

the presence of inhibitory connections. However, TE alone could

not discriminate the sign of the interaction and additional post-hoc

considerations had to be made in order to separate the retrieved

connections into separate excitatory and inhibitory subgroups

(e.g., in [39], based on the supposedly known existence of a

difference in relative strength between excitatory and inhibitory

conductances).

A simpler complex problem. By focusing on excitatory

connectivity only, our intention was to simplify the full problem of

network reconstruction, aiming as a first step to uncover

systematically the strongest excitatory links in the network. Such

simplification allows indeed to remove potential causes of error,

like, e.g. disynaptic inhibition or synchronous excitatory and

inhibitory inputs to a same cell, that might result in failed inference

of both the excitatory and the inhibitory connections. Nonetheless,

this simpler problem remains very difficult because we attempt to

reconstruct not only few connections but an entire adjacency

matrix for the excitatory subnetwork.

Excitation shapes spontaneous activity. The inference of

excitatory connectivity is by itself a very relevant issue. Excitatory

recurrent connections are indeed a strong —if not the main—

determinant of spontaneous activity. They act as an ‘‘amplifier’’,

propagating to the network locally generated firing, and guaran-

teeing thus that the level of spontaneous activity of the culture

remains elevated. Furthermore, modeling studies (see e.g. [9,73])

suggest that excitatory connections only are sufficient to obtain

network bursts with experimentally observed statistics [74,75].

Sharper signals. Second, when moving to experimental

data, neurons fire more strongly when inhibition is blocked, which

makes the identification of firing occurrences more accurate. The

amplitude of the fluorescence signal increases by a factor two or

more when inhibition is blocked (see e.g. [64]). In Figure S8B we

show an example of the fluorescence signal for the same neuron,

before (blue) and after (black) blocking inhibitory synaptic

transmission. Therefore the reconstruction problem of purely

excitatory networks becomes simpler, not really from the

algorithmic side (since the algorithm is potentially ready to cope

with inhibition), but rather from the experimental side, because of

an improved signal-to-noise ratio. Thus, when we generate

synthetic data for algorithmic benchmarking, we aim at repro-

ducing these same optimal experimental conditions.

We also note that the distribution of fluorescence values would

be different for recordings with and without inhibition. Neverthe-

less, our method might still be applied, without need of qualitative

changes, and state selection might still be performed. The optimal

range for conditioning would be different and should again be

estimated through a model-based benchmarking, but this would

lead only to quantitative adjustments.

A two-steps strategy? A possible strategy to extend our

method to the reconstruction of inhibitory connections could be to

follow a two-steps experimental approach: first, reconstruct only

excitatory connectivity, based on recordings in which inhibitory

transmission is blocked; and second, reconstruct only inhibitory

connectivity, based on recordings in which, after the wash-out of

the culture, excitatory transmission is blocked. In such an

experiment, when recurrent excitation is blocked, the spontaneous

level of firing activity should be restored by chemical non-synaptic

activation. We note however, that although complete blockade of

excitation combined with drug-induced network activation is a

standard protocol in slice studies (cfr. e.g. [76]), such an approach

has never been attempted in cultures of dissociated neurons.

A compromise might be, therefore, to systematically compare

the reconstructed connectivity before and after the wash-out of the

inhibition blocker thereby collecting indirect evidence about the

existence of inhibitory connection, through an analysis of the

modulatory action they exert on the causal strengths of previously

inferred excitatory connections.

Experimental paradigm
Connectivity in cultures vs. connectivity in vivo. We

have here used our current TE algorithm to the inference of

connectivity from calcium fluorescence recordings of in vitro

cultured networks of dissociated cortical neurons. However, such

studies of cultures do not yield direct information about the

connectivity of cortical tissues in vivo. Several factors contribute to

shape the neuronal circuits in an intact living brain, including the

adequate orientation of neurons, dendrites, and axons, the

biochemical guidance of processes towards their targets, and the

refinement of circuitry through activity. Ultimately, development

leads to a complex cortical structure organized both in layers and

in columns, and with many particular topological features such as

clusters or hierarchical organization [5].

All these structures —which are preserved in slices [7,53,77,78]

— are completely lost during the dissociation of the embryonic

brain that precedes the preparation of in vitro cultures. Neuronal

cultures form new connections ‘‘from scratch’’, with a combination

of short and long length connections, leading to circuits that have

orders of magnitude less neurons and synapses.

Nevertheless, understanding how neurons wire together spon-

taneously in a controlled medium is also of utmost importance,

because it allows separating endogenous and exogenous driving

components of neuronal wiring. Furthermore, cultures and slices

share similar spontaneous bursting dynamics. If this observation

alone should not be used to support the existence of shared

topological features (cfr. Figure 2), it is true that the self-

organization principles underlying the development of networks
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up to a bursting dynamical state may be common in all living

neuronal networks.

Calcium imaging vs. multielectrode arrays. Our algo-

rithm has been optimized for the application to real calcium

imaging data, by determining an optimal conditioning range based

only on qualitative features of the distribution of the average

fluorescence in the network (very similar for synthetic and real

data). Other studies have however used electrophysiological

recordings from cultures grown on multielectrode arrays (MEAs)

[12,15,17,18,74] as a basis for their topology reconstruction

strategies (see e.g. [39,56]).

MEAs provide excellent temporal resolution and, to a certain

extent, also the possibility to resolve individual spikes. However,

MEAs have a limited number of electrodes and often neurons are

not precisely positioned on an electrode but at its vicinity, which

requires complex processing of the data to identify the source of a

given spike. Additionally, the electrodes have to be in contact or

embedded into the neuronal tissue, limiting its use to mostly

cultures and brain slices.

Calcium imaging, in contrast, offers important advantages.

First, the technique provides access to the activity of thousands of

neurons in large fields of view for several hours [13,14], and with a

time resolution proven to be sufficient for reconstruction in the

present study. Second, calcium imaging with superior temporal

and spatial resolution [22,79] is a technique that combines

perfectly with new breakthroughs in experimental neuroscience,

particularly optogenetics [23,80] and genetically encoded calcium

indicators [80,81], technologies that are under expansion both in

vitro [82] and in vivo [83]. Our reconstruction method can promptly

be readapted for the analysis of other calcium imaging datasets.

The analysis of in vitro cultures of dissociated neurons is just a first

proof-of-concept of the applicability of generalized TE to real

data.

As a matter of fact, extended TE might even be applied to

multielectrode array data with very few modifications, along lines

analogous to [39]. The advantages of an increased time-resolution

might then be combined with the efficacy of the state-selection

through conditioning concept.

Age of neuronal cultures. In our study we recorded from

early mature (DIV 9–12) instead of fully mature cultures. Young but

sufficiently mature cultures have rich bursting events while

preserving some isolated activity. On the contrary, fully mature

cultures show strong synchronized bursting dynamics with very

little isolated neuronal activity [84]. In this sense, therefore, young

cultures emerge as a model system which better matches the

features of non pathologic cortical tissue activity. At the same time,

conditions are ideal for an analysis focusing on inter-burst periods,

as our one (different, in this sense, from an alternative approach

focusing on burst initiation as [42].)

Several authors have studied the process of maturation of

neuronal cultures, and characterized their spontaneous activity

along days or weeks [11,85]. Some studies have identified a stage

of full maturation and stable bursting dynamics at the third week,

a stage that can last for months (e.g. [84]). However, depending on

neuronal density [14,18,20], glial density [86], and the gestation

time of the embryo at the moment of dissection [14], spontaneous

activity with rich episodes of population bursts can emerge as early

as DIV 3–4 [14,20]).

On the other hand, GABA switch (the developmental event

after which the action of GABAergic synapses become inhibitory

as in fully developed networks and stops being excitatory [87]) in

cultures similar to ours occurs at around day 7 [14,20].

Therefore, it has already taken place in early mature cultures

at DIV 9 (such as the one analyzed in Figure S7). This is

confirmed by the fact that the blockade of inhibition by

bicuculline leads to an increase of the amplitude of the fluorescent

signal by a factor 2–3 (see Figure S8B), as expected after GABA

switch has occurred.

Non-local and moderately clustered connectivity in
cultures

Evidence for long-range connections. Our TE-based

algorithm applied to the reconstruction of the topology of

neuronal cultures in vitro have inferred the existence of direct

connections between neurons separated by a considerable

distance. Indeed, the reconstructed distribution of connection

distances peaks at a remarkably high value and is markedly high-

skewed (Figure 8B).

Experimental studies showed that cortical slices have a

maximum probability of connection at much shorter distances

[52]. We note, however, that the density of cells in our culture is

considerably more diluted than in normal cortical tissues.

Furthermore, cortical developmental processes strongly dictate in

vivo (and slice) connectivity [88], while a larger freedom to establish

connections exist potentially in cultures in vitro. The growth process

and the final length of the processes depend not only on the

density of the culture and the population of glia, but also on the

chemical properties of the substrate where neurons and process

grow [89]. The lack of restrictions during the development of

neuronal processes (axons and dendrites) leads to longer axonal

lengths in the culture on average, explaining the high connection

distance obtained in the reconstruction.

Such long axons in cultures have been reported in other studies

[15,49,90], providing broad distributions of lengths with an

average value of 1:1mm. Using Green Fluorescence Protein

transfection [91], we have directly visualized axonal processes as

long as 1:8mm in cultures of comparable age and density to the

ones that we used for the fluorescence imaging recordings (Figure

S8C). Such long axons would be required to mediate the long-

range causal interactions captured by the TE analysis. As a matter

of fact, as revealed by the randomization of the reconstructed

connectivity, long average connection lengths might simply be

expected to exist as a result of the bi-dimensional distribution of

neurons on a substrate in combination with long individual axonal

lengths (i.e. spanning the entire field of view).

For a younger culture at 9 DIV (Figure S7), on the other hand,

we retrieved a probability of connection at short distances higher

than expected from randomized networks. This over-connectivity

at short distances can be ascribed to the fact that young cultures

have less developed axons and therefore a connectivity favored

towards closer neurons. However, more exhaustive studies —

going beyond the scope of the present work— would be needed to

assess the full dependence of reconstructed network topology on

culture age, neuronal density and spatial distribution, as well as on

connection length.

Evidence for moderate clustering. Our TE-based analysis

suggest an enhanced tendency to clustering of connections in the

analyzed neuronal cultures. Indeed, although the average cluster-

ing coefficient is moderated, it is significantly higher than what

might be expected based on randomized networks.

Neurons in culture aggregate during growth, giving rise to

fluctuations in neuronal density. Since denser areas in the culture

have been reported to have a higher connectivity [14], some level

of clustering is naturally expected in the real network, as detected

by the reconstruction. We could not however identify in our

reconstructed topology a statistically significant correlation

between the local density of neurons —quantified by the number

of cells within a radius of 50mm centered on each given neuron—
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and the local degree of clustering (rv0:01 for both considered

cultures).

This finding suggests the existence of a mixture of local and

non-local clustering in the culture and indicates that network

clustering in a sparse culture is not a mere byproduct of the

inhomogeneous density of cells, but might reflect activity-

dependent mechanisms for synaptic wiring.

A bias of cross-correlation methods? XC-based reconstruc-

tions inferred a much more local average distance of connection,

significantly smaller not only than the inference based on TE, but

also than what expected from randomized networks. At the same

time, XC-based methods inferred an average clustering coefficient

almost twice as large as TE approaches.

As a matter of fact, the analyses of Figure 4 and 5 suggest that

the connectivity of real cultures inferred by XC is prone to include

artifactual features, such as an exceedingly local connectivity,

paired to an overestimated level of clustering with respect to

ground-truth (unknown in cultures).

Interestingly (and possibly indicative of biased estimations), the

discrepancies between TE-based and XC-based inferences of

mean connection distance and clustering level are paralleling both

the systematic deviations between XC-bases and TE-based

reconstructions identified in applications to surrogate data.

No evidence for scale free connectivity. Despite the

observation that the distribution of degrees inferred by TE is

characteristically broadened and has a conspicuous right tail, we

have found no evidence of a scale free degree distribution (i.e.

following a power-law [92]). A similar conclusion was also reached

for cultured neuronal networks in Ref. [93].

On the contrary, studies like [42] hinted at a large overlap in

cultures between the structural connectivity and the retrieved scale

free functional connectivity, meeting other studies that identified

power-law degree distributions in the functional connectivity of

cultures [46] or of slices [70].

Whether connectivity in neural networks, in vitro or in vivo can be

characterized as scale free or not is a highly debated issue (see e.g.

[94]), and, especially for self-organized networks of dissociated

neurons, it is likely to depend on details of how the culture is

grown. The connectivity retrieved from our calcium recordings

might possibly be better described as ‘‘small-world’’ [95], due to

the existence of hub nodes with very high out- and in-degree.

However, due to the large uncertainty in the reconstruction, we

did not attempt any systematic assessment of the average path

length between nodes (since this is a quantity very sensitive to

error), and prefer to describe the reconstructed degree distribution

just as ‘‘right-skewed’’.

How reliable are absolute values of reconstructed

properties? Through our reconstructions of culture connectivity,

we have provided actual absolute values for properties such as

average degree, average clustering or average connection length.

We note that such estimates are affected by a large uncertainty

that goes beyond the variability described by their reconstructed

distributions. Indeed, these estimates come from a reconstruction

based on a specific choice of the number of links to include. This

choice, as highlighted by Figure S1 for synthetic data, corresponds

to selecting directly a specific value of the average culture in- and

out-degree. Therefore, as previously discussed, the included link

number should be determined by our expectations on the average

degree of the network to reconstruct, based on independent

experimental evidence or on extrinsic guiding hypotheses.

The inference of average clustering or of average distance is

robust even against relatively large mistakes in the initial guess for

the average degree (see e.g. Figure S1, for clustering estimation). In

the case of the DIV 12 network reconstructed in Figure 8,

doubling the threshold of included links from 5% to 10% (and

therefore adopting a twice as large guess for the average culture

degree) changes the inference for the average clustering coefficient

from 0:090+0:010 to 0:157+0:011 and the average connection

distance from 852+463mm to 855+464mm. Nevertheless, the

precise values obtained do depend on the number of reconstructed

links.

Due to the lack of information, a better strategy might be, rather

than focusing on absolute estimated values, to focus on compar-

isons with fully and partially randomized networks with analogous

average degree or degree distribution, respectively. Such compar-

isons indeed can convey qualitative information about the

occurrence of non-trivial deviations from chance expectations,

which are likely to be more reliable than quantitative assessments.

Conclusions and perspectives
In summary, we have developed a new generalization of

Transfer Entropy for inferring connectivity in neuronal networks

based on fluorescence calcium imaging data. Our new formalism

goes beyond previous approaches by introducing two key

ingredients, namely the inclusion of same bin interactions and

the separation of dynamical states through conditioning of the

fluorescence signal. We have thoroughly tested our formalism in

a number of simulated neuronal architectures, and later applied

it to extract topological features of real, cultured cortical

neurons.

We expect that, in the future, algorithmic approaches to

network reconstruction, and in particular our own method, will

play a pivotal role in unravelling not only topological features of

neuronal circuits, but also in providing a better understanding of

the circuitry underlying neuronal function. These theoretical and

numerical tools may well work side by side with new state-of-the-

art techniques (such as optogenetics or high-speed two-photon

imaging [96–100]) that will enable direct large-scale reconstruc-

tions of living neuronal networks. Our Transfer Entropy

formalism is highly versatile and could be applied to the analysis

of in vivo voltage-sensitive dye recordings with virtually no

modifications.

On a shorter time-scale, it would be important to extend our

analysis to the reconstruction of both excitatory and inhibitory

connectivity in in vitro cultures, which is technically feasible, and

to compare diverse network characteristics, such as neuronal

density or aggregation. Our algorithm could be used to

systematically reconstruct the connectivity of cultures at different

development stages in the quest for understanding the switch

from local to global neuronal dynamics. Another crucial open

issue is to design suitable experimental protocols allowing to

confirm the existence of at least some of the inferred synaptic

links, in order to validate statistically the reconstructed connec-

tivity. For instance, the actual presence of directed links to which

our algorithm assigns the largest TE scores might be systemat-

ically probed through targeted paired electrophysiological stim-

ulation and recording. Furthermore, GFP transfection or

inmunostaining might be used to obtain actual, precise anatom-

ical data on network architecture to be compared with the

reconstructed one. Finally, it might be interesting to reconstruct

connectivity of cultured networks before and after physical

disconnection of different areas of the culture (e.g. by mechanical

etching of the substrate or by chemical silencing). These

manipulations would provide a scenario to verify whether TE-

based reconstructions correctly capture the absence of direct

connections between areas of the neuronal network which are

known to be artificially segregated.
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Materials and Methods

Network construction and topologies
We generated synthetic networks with N~100 neurons,

distributed randomly over a squared area of 0.5 mm lateral size.

We chose p~0:12 as the connection probability between neurons

[48], leading to sparse connectivities similar to those observed in

local cortical circuits [53]. We used non-periodic boundary

conditions to reproduce eventual ‘‘edge’’ effects that arise from

the anisotropic cell density at the boundaries of the culture.

We considered two general types of networks: (i) a locally-clustered

ensemble, where the probability of connection depended on the

spatial distance between two neurons; and (ii) a non-locally clustered

ensemble, with the connections engineered to display a certain

degree of clustering.

For the case of a non-local clustering ensemble, we first created

a sparse connectivity matrix, randomly generating links with a

homogeneous probability of connection across pairs of neurons.

We next selected a random pairs of links and ‘‘crossed’’ them (links

A?B and C?D became A?D and C?B). We accepted only

those changes that updated the clustering index in the direction of

a desired target value, thereby maintaining the number of

incoming as well as outgoing connections of each neuron. The

crossing process was iterated until a clustering index higher or

equal to the target value was reached. The overall procedure led to

a full clustering index of the reference random network of

0:120+0:004 (mean and standard deviation, respectively, across 6

networks). After the rewiring iterations, we then achieved standard

deviations from the desired target clustering value smaller than

0.1% for all higher clustering indices.

We measured the full clustering index of our directed networks

according to a common definition introduced by [65]:

CC~S
(AzAT )3

ii

2d tot
i (d tot

i {1){4dbidir
i

Ti: ð1Þ

The binary adjacency matrix is denoted by A, with Aji~1 for a

link j?i, and zero otherwise. The adjacent matrix provides a

complete description of the network topological properties. For

instance, the in-degree of a node i can be computed as

d in
i ~

P
j Aji, and the out-degree as dout

i ~
P

j Aij . The total

number of links of a node is given by the sum of its in-degree and

its out-degree (dtot
i ~d in

i zdout
i ). The number of bidirectional links

of a given node i (i.e. links between i and j so that i and j are

reciprocally connected by directed connections) is given by

dbidir
i ~(A)2

ii.

The adjacency matrix did not contain diagonal entries. Such

entries would correspond ‘‘toautaptic’’ links that connect a neuron

with itself. Note that our directed functional connectivity analysis

is based on bivariate time series, and therefore it would be

structurally unfit to detect this type of links.

For the case of the local clustering ensemble, two neurons

separated a Euclidean distance r were randomly connected with a

distance dependent probability described by a Gaussian distribu-

tion, of the form p0(r)~exp({(r=l)2), with l a characteristic

length scale. To guarantee that a constant average number of links

C was present in the network, this Gaussian distribution was

rescaled by a constant pre-factor, obtained as follows. We first

generated a network based on the unscaled kernel p0(r) and

computed the resulting number of links C’. With this value we

then generated a final network based on the rescaled kernel

p(r)~C=C’ exp({(r=l2)).

Simulation of the dynamics of cultured networks
The dynamics of the generated neuronal networks was studied

using the NEST simulator [101,102]. We modeled the neurons as

leaky integrate-and-fire neurons, with the membrane potential

Vi(t) of a neuron i described by [103,104]:

tm

dVi(t)

dt
~{Viz

Isyn(t)

gl

, ð2Þ

where gl~50pS is the leak conductance and tm~20ms is the

membrane time-constant. The term Isyn accounts for a time-

dependent input current that arises from recurrent synaptic

connections. In the absence of synaptic inputs, the membrane

potential relaxes exponentially to a resting level set arbitrarily to

zero. Stimulation in the form of inputs from other neurons

increase the membrane potential, and above the threshold

Vthr~20mV an action potential is elicited (neuronal firing). The

membrane voltage is then reset to zero for a refractory period of

tref~2ms.

The generated action potential excites post-synaptic target

neurons. The total synaptic currents are then described by

dIsyn(t)

dt
~{

Isyn

ts

zaint

XN
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X
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where A is the adjacency matrix, and ts~2ms is a synaptic time

constant. The resulting excitatory post-synaptic potentials (EPSPs)

have a standard difference-of-exponentials time-course [105].

Neurons in culture show a rich spontaneous activity that

originates from both fluctuations in the membrane potential and

small currents in the pre-synaptic terminals (minis). The latter is the

most important source of noise and plays a pivotal role in the

generation and maintenance of spontaneous activity [106]. To

introduce the spontaneous firing of neurons in Eq. (3), each

neuron i was driven, through a static coupling conductance with

strength aext~4:0pA, by independent Poisson spike trains (with a

stationary firing rate of next~1:6Hz, spikes fired at stochastic times

ftl
ext,ig).
Neurons were connected via synapses with short-term depres-

sion, due to the finite amount of synaptic resources [104]. We

considered only purely excitatory networks to mimic the

experimental conditions in which inhibitory transmission is fully

blocked. Concerning the recurrent input to neuron i, the set ftk
j g

represents times of spikes emitted by a presynaptic neuron j, td is a

conduction delay of td~2ms, while aint sets a homogeneous scale

for the synaptic weights of recurrent connections, whose time-

dependent strength aintEji(t) depends on network firing history

through the equations

dEji(t)

dt
~{

Eji

tinact

zU Rji

X
k

d(t{tk
j ), ð4Þ

dRji(t)

dt
~{

1

trec
1{Rji{Eji

� �
: ð5Þ

In these equations, Eji(t) represents the fraction of neurotrans-

mitters in the ‘‘effective state’’, Rji(t) in the ‘‘recovered state’’ and

Iji(t)~1{Rji{Eji in the ‘‘inactive state’’ [103,104]. Once a pre-
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synaptic action potential is elicited, a fraction U~0:3 of the

neurotransmitters in the recovered state enters the effective state,

which is proportional to the synaptic current. This fraction decays

exponentially towards the inactive state with a time scale

tinact~3ms, from which it recovers with a time scale

trec~500ms. Hence, repeated firing of the presynaptic cell in an

interval shorter than trec gradually reduces the amplitude of the

evoked EPSPs as the synapse is experiencing fatigue effects

(depression).

Random networks of integrate-and-fire neurons coupled by

depressing synapses are well-known to naturally generate syn-

chronous events [104], comparable to the all-or-none behavior

that is observed in cultured neurons [46,47]. To obtain in our

model a realistic bursting rate [47], the synaptic weight of internal

connections was set to result into a network bursting of

0:10+0:01Hz for all the network realizations that we studied,

and in particular for any considered (local or non-local) clustering

level. Therefore, after having generated each network topology,

we assigned the arbitrary initial value of aint~5:0pA to internal

synaptic weights and simulated 200 seconds of network dynamics,

evaluating the resulting average bursting rate. If it was larger

(smaller) than the target bursting rate, then the synaptic weight aint

was reduced (increased) by 10%. We then iteratively adjusted aint

by (linearly) extrapolating the last two simulation results towards

the target bursting rate, until the result was closer than 0.01 Hz to

the target value. The resulting used values of aint are provided in

Table 1.

Note that we defined a network burst to occur when more than

40% of the neurons in the network were active within a time

window of 50 ms. Such a criterion does not play any role in the

reconstruction algorithm itself, where state selection is achieved

through conditioning, but is only used for the automated

generation of random networks with a prescribed bursting rate.

Typically, for a fully developed burst, more than 90% of the

neurons fire within a 50 ms bin, while, during inter-burst

intervals, less than 10% do. Due to the clear separation between

these two regimes, our burst detection procedure does not depend

significantly on the precise choice of threshold within a broad

interval.

Model of calcium fluorescence signals
To reproduce the fluorescence signal measured experimentally,

we treated the simulated spiking dynamics to generate surrogate

calcium fluorescence signals. We used a common model

introduced in [43] that gives rise to an initial fast increase of

fluorescence after activation, followed by a slow decay (tCa~1s).

Such a model describes the intra-cellular concentration of calcium

that is bound to the fluorescent probe. The concentration changes

rapidly by a step amount of ACa~50mM for each action potential

that the cell is eliciting in a time step t, of the form

½Ca2z�t{½Ca2z�t{1~{
Dt

tCa

½Ca2z�t{1zACa nt, ð6Þ

where nt is the total number of action potentials.

The net fluorescence level F associated to the activity of a

neuron i is finally obtained by further feeding the Calcium

concentration into a saturating static non-linearity, and by adding

a Gaussian distributed noise gt with zero mean:

Fi,t~
½Ca2z�t

½Ca2z�tzKd

zgt: ð7Þ

For the simulations, we used a saturation concentration of

Kd~300mM and noise with a standard deviation of 0.03.

Modeling of light scattering
We considered the light scattered in a simulated region of

interest (ROI) from surrounding cells. Denoting as dij the distance

between two neurons i and j and by lsc~0:15 mm the scattering

length scale (determined by the typical light deflection in the

medium and the optical apparatus), the resulting fluorescence

amplitude of a given neuron Fsc
i,t is given by

Fsc
i,t~Fi,tzAsc

XN

j~1,j=i

Fj,t exp { dij=lsc

� �2
n o

: ð8Þ

A sketch illustrating the radius of influence of the light

scattering phenomenon is given in Figure S9. The scaling factor

Asc sets the overall strength of the simulated scattering artifact.

Note that light scattered, according to the equation shown above,

could be completely corrected using a standard deconvolution

algorithm, at least for very large fields of view and a scattering

length known with sufficient accuracy. In a real setup however,

the relatively small fields of view (on the order of 3mm2), the

inaccuracies in inferring the scattering radius lsc, as well as the

inhomogeneities in the medium and on the optical system, make

perfect deconvolution not possible. Therefore, artifacts due to

light scattering cannot be completely eliminated [107,108]. The

scaling factor Asc, that we arbitrarily assumed to be small and

with value Asc~0:15, can be seen as a measure of this residual

artifact component.

Generalized Transfer Entropy
In its original formulation [26], for two discrete Markov

processes X and Y (here shown for equal Markov order k), the

Transfer Entropy (TE) from Y to X was defined as:

TE Y?X ~
X

P(xnz1,x(k)
n ,y(k)

n ) log
P(xnz1Dx(k)

n ,y(k)
n )

P(xnz1Dx
(k)
n )

, ð9Þ

where n is a discrete time index and x(k)
n is a vector of length k

whose entries are the samples of X at the time steps n, n{1, …,

n{k. The sum goes over all possible values of xnz1, x(k)
n and y(k)

n .

TE can be seen as the distance in probability space (known as

the Kullback-Leibler divergence [109]) between the ‘‘single node’’

transition matrix P(xnz1Dx(k)
n ) and the ‘‘two nodes’’ transition

matrix P(xnz1Dx(k)
n ,y(k)

n ). As expected from a distance measure, TE

is zero if and only if the two transition matrices are identical, i.e. if

transitions of X do not depend statistically on past values of Y ,

and is greater than zero otherwise, signaling dependence of the

transition dynamics of X on Y .

We use TE to evaluate the directed functional connectivity

between different network nodes. In a pre-processing step, we

apply a basic discrete differentiation operator to calcium

fluorescence time series F sc
x,t, as a rather crude way to isolate

potential spike events. Thus, given a network node x, we define

xn~F sc
x,nz1{F sc

x,n. This pre-processing step also improves the

signal-to-noise ratio, thus allowing for a better sampling of

probability distributions with a limited number of data points.

To adapt TE to our particular problem we need to take into

account the general characteristics of the system. We therefore

modified TE in two crucial aspects:
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1. We take into account that the synaptic time constants of the

neuronal network (*1ms) are much shorter than the

acquisition times of the recording (*10ms). We therefore

need to account for ‘‘same bin’’ causal interactions between

nodes, i.e. between events that fall in the same time-bin. Slower

interactions with longer lags are still taken into account by

evaluating TE for a Markov order larger than one (in time-bins

units).

2. We consider the possibility that the network dynamics switches

between multiple dynamical states, i.e. between bursting and

inter-bursting regimes. These regimes are characterized by

different mean rates of activity and, potentially, by different

transition matrices. Hence, we have to restrict the evaluation of

TE to time ranges in which the network is consistently in a

single dynamical state. The separation of dynamical states can

be achieved by introducing a variable gt for the average signal

of the whole network,

gt~
1

N

XN

i~1

xi(t): ð10Þ

We then include all data points at time instants in which this

average fluorescence gt is below a predefined threshold parameter

~gg, i.e. we consider only the time points that fulfill ft : gtv~ggg. We

only make an exception that corresponds to the simulations of

Figure 3 and Figure S2, where we considered time points that fall

within an interval bounded by a higher and a lower thresholds, i.e.

ft : ~gglowvgtv~gghighg.
Using these two novel aspects, we have extended the original

description of Transfer Entropy [Eq. (9)] to the following form

TE �Y?X (~gg)~

X
P(xnz1,x(k)

n ,y
(k)
nz1jgnz1v~gg) log

P(xnz1jx(k)
n ,y

(k)
nz1,gnz1v~gg)

P(xnz1jx(k)
n ,gnz1v~gg)

:
ð11Þ

Probability distributions have to be evaluated as discrete

histograms. Hence, the continuous range of fluorescence values

(see e.g. the bottom panels of Figure 1) is quantized into a finite

number B of discrete levels. We typically used a small B~3, a

value that we justify based on the observation that the resulting bin

width b is close to twice the standard deviation of the signal. The

presence of large fluctuations, most likely associated to spiking

events, is then still captured by such a coarse, almost non-

parametric description of fluorescence levels.

Network reconstruction
Generalized TE values are obtained for every possible directed

pair of network nodes, and using a fixed threshold level ~gg. The set

of TE scores are then ranked in ascending order and scaled to fall

in the unit range. A threshold TEthr is then applied to the rescaled

data, so that only those links with scores above TEthr are retained

in the reconstructed network.

A standard Receiver-Operator Characteristic (ROC) analysis is used

to assess the quality of the reconstruction by evaluating the

number of true positives (reconstructed links that are present in the

actual network) or false positives (not present), and for different

threshold values TEthr [110]. The highest threshold value leads to

zero reconstructed links and therefore zero true positives and false

positives. At the other extreme, the lowest threshold provides both

100% of true positives and false positives. Intermediate thresholds

give rise to a smooth curve of true/false positives as a function of

the threshold. The performance of the reconstruction is then

measured as the degree of deviation of this curve from the

diagonal, and that corresponds to a random choice of connections

between neurons.

To provide a simple method to compare different reconstruc-

tions, we arbitrarily use the quantity TE10%, defined as the fraction

of true positives for a 10% of false positives, as indicator for the

quality of the reconstruction.

An alternative to the ROC is the Positive Prediction Curve [56],

plotting the ‘‘true-false ratio’’ (TFR) against the number of

reconstructed links, called ‘‘true-false sum’’ (TFS). The TFR

represents the fraction of true positives relative to the false

positives. Denoting by #TP the absolute number of true positives

and by #FP the number of false positives, TFR is therefore

defined in [56] in the following way:

TFR~
#TP{#FP

#TPz#FP
ð12Þ

The case TFR~0 corresponds to the case that, for any given

reconstructed link, it is on average equally likely that it is in fact a

true positive rather than a false positive.

Alternative reconstruction methods
To gain further insight into the quality of our reconstruction

method, we compare reconstructions based on TE with three

other reconstruction strategies, namely cross-correlation, mutual

information, and Granger causality.

Cross-correlation (XC) reconstructions are based on standard

Pearson cross-correlation. The score assigned to each potential

link is given by the largest cross-correlogram peak for lags between

0 and tmax~60ms, of the form

XC Y?X ~ max
Dt~0:::tmax

corr x
(S{Dt)
S ,y

(S{Dt)
S{Dt

� �
DgSv~gg

n o
: ð13Þ

In a similar way, the scores for Mutual Information (MI)

reconstructions are evaluated as

MI Y?X ~ max
Dt~0:::tmax

X
P(xn,yn{Dtjgnv~gg)

n

log
P(xn,yn{Dtjgnv~gg)

P(xnjgnv~gg)P(yn{Dtjgnv~gg)

�
:

ð14Þ

Analogously to TE, the sum goes over all entries of the joint

probability matrix.

For the reconstruction based on Granger causality (GC) [33] we

first model the signal xt by least-squares fitting of a univariate

autoregressive model, obtaining the coefficients a0
k and the residual

g0,

xt~
Xk

l~1

a0
l xt{lzg0

t : ð15Þ

In a second step, we fit a second bivariate autoregressive model

that includes the potential source signal yt, and determine the

residual g1,
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xt~
Xk

l~1

a1
l xt{lz

Xk{1

m~0

b1
m yt{mzg1

t : ð16Þ

Note that in the latter bivariate regression scheme we take into

account ‘‘same bin’’ interactions as for Transfer Entropy (index of

the second sum starts at m~0). Given C0, the covariance matrix of

the univariate fit in Eq. (15), and C1, the covariance matrix of the

bivariate fit in Eq. (16), GC is then given by the logarithm of the

ratio between their traces:

GCY?X ~log
(C0)0,0z(C0)1,1

(C1)0,0z(C1)1,1

: ð17Þ

GC analyses were performed at an order k~2. Analyses at k~1
yielded however fully analogous performance (not shown).

We note that the same pre-processing used for TE is also

adopted for all the other analyses. The same holds for conditioning

on the value of the average fluorescence gn, which can be applied

simply by only including the subset of samples in which gtv~gg.

Hubs of (causal) connectivity
Connectivity in reconstructed networks is often inhomogeneous,

and groups of nodes with tighter internal connectivity are

sometimes visually apparent (see e.g. reconstructed topologies in

Figure 3C). We do not attempt a systematic reconstruction of

network communities [111], but we limit ourselves to the detection

of ‘‘causal sink’’ nodes [112], which have a larger than average in-

degree. We define this property in terms of the sum of TE from all

other nodes to one particular node (
P

j TEj?i), choosing the top

20 nodes for each particular network as selected ‘‘hub nodes’’.

We then analyze the dynamics of these selected hub nodes and

of their neighbors. Specifically we define as C the subgraph

spanned by a given hub node and by its first neighbors. We

analyze then the cross-correlogram of the average fluorescence of

a given group C with the average fluorescence of the whole

culture:

y(t)~corr DSF sc(tzt)TieC ,DSF sc(t)Tið Þ: ð18Þ

The D-notation indicates that we correlate discretely differentiated

average fluorescence time series, rather than the average time

series themselves. Indeed, cross-correlograms for these differenti-

ated time series are well modeled by a Gaussian functional form,

due to the slow change of the averaged fluorescence compared to

the sampling rate.

Therefore, we fit a Gaussian to the cross-correlogram y(t):

yfit(t)~ACexp {
tC{t

sC

� �2
( )

, ð19Þ

determining thus a cross-correlation amplitude AC , a cross-

correlation peak lag tC and the standard deviation sC .

The cross-correlation peak lag tC indicates therefore whether

nodes in a given local hub neighborhood C fire on average earlier

or later than other neurons in the network.

Relative strength of synchrony within a local hub neighborhood

C can be analogously evaluated by computing XCs, as defined in

Eq. (13), for all the links within C and comparing it with peak XCs

over the entire network.

Experimental preparation
Primary cultures of cortical neurons were prepared following

standard procedures [14,113]. Cortices were dissected from

Sprague-Dawley embryonic rat brains at 19 days of development,

and neurons dissociated by mechanical trituration. Neurons were

plated onto 13 mm glass cover slips (Marienfeld, Germany)

previously coated overnight with 0.01% Poly-l-lysine (Sigma) to

facilitate cell adhesion. Neuronal cultures were incubated at 370C,

95% humidity, and 5%CO2 for 5 days in plating medium,

consisting of 90% Eagle’s MEM —supplemented with 0.6%

glucose, 1% 1006 glutamax (Gibco), and 20mg=ml gentamicin

(Sigma) — with 5% heat-inactivated horse serum (Invitrogen), 5%

heat-inactivated fetal calf serum (Invitrogen), and 1mg=ml B27

(Invitrogen). The medium was next switched to changing medium,

consisting of of 90% supplemented MEM, 9.5% heat-inactivated

horse serum, and 0.5% FUDR (5-fluoro-deoxy-uridine) for 3 days

to limit glia growth, and thereafter to final medium, consisting of

90% supplemented MEM and 10% heat-inactivated horse serum.

The final medium was refreshed every 3 days by replacing the

entire culture well volume. Typical neuronal densities (measured

at the end of the experiments) ranged between 500 and

700neurons=mm2. Cultures prepared in these conditions develop

connections within 24 hours and show spontaneous activity by day

in vitro (DIV) 3–4 [14,18,20]. GABA switch, the change of

GABAergic response from excitatory to inhibitory, occurs at DIV

6–7 [14,20].

Neuronal activity was studied at day in vitro (DIV) 9–12. Prior to

imaging, cultures were incubated for 60 min in pH-stable

recording medium in the presence of 0.4% of the cell-permeant

calcium sensitive dye Fluo-4-AM (Invitrogen).

Recording solution includes (in mM): 128 NaCl, 4 KCl,
1 CaCl2, 1 MgCl2, 10 glucose, and 10 HEPES; pH titrated to

7.4 and osmolarity to 320 mOsm with 45 mM sucrose.

The culture was washed off Fluo-4 after incubation and finally

placed in a chamber filled with fresh recording medium. The

chamber was mounted on a Zeiss inverted microscope equipped

with a 56 objective and a 0.46 optical zoom.

Neuronal activity was monitored through high-speed fluores-

cence imaging using a Hamamatsu Orca Flash 2.8 CMOS camera

attached to the microscope. Images were acquired at a speed of

100 frames/s (i.e. 10 ms between two consecutive frames), which

were later converted to a 20 ms resolution using a sliding window

average to match the typical temporal resolution of such

recordings [13,43,45,90,114]. The recorded images had a size of

648|312 pixels with 256 grey-scale levels, and a final spatial

resolution of 3:4 mm=pixel. This settings provided a final field of

view of 2:2|1:1 mm2 that contained on the order of 2000

neurons.

Activity was finally recorded as a long image sequence of

60 minutes in duration. We verified that the fluorescence signal

remained stable during the recording, as shown in Supplementary

Figure S8A, and we did not observe neither photo-bleaching of the

calcium probe nor photo-damage of the neurons.

Before the beginning of the experiment, inhibitory synapses

were fully blocked with 40 mM bicuculline, a GABAA antagonist,

so that activity was solely driven by excitatory neurons.

Since cultures were studied after GABA switch, the blockade of

inhibition resulted in an increase of the fluorescence amplitude,

which facilitated the detection of neuronal firing, as illustrated in

Figure S8B.

The image sequence was analyzed at the end of the experiment

to identify all active neurons, which were marked as regions of

interest (ROIs) on the images. The average grey-level on each

ROI along the complete sequence finally provided, for each
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neuron, the fluorescence intensity as a function of time. Each

sequence typically contained on the order of a hundred bursts.

Examples of recorded fluorescence signal for individual neurons

are shown in Figure 1B.

Analysis of experimental recordings
The fluorescence data obtained from recordings of neuronal

cultures was analyzed following exactly the same procedures used

for simulated data (e.g. processed in a pipeline including discrete

differentiation, TE or other metrics evaluation, ranking, and final

thresholding to maintain the top 10% of connections).

Due to the lack of knowledge of the ground-truth topology,

optimal conditioning level cannot be known. However, based on

the similarity between experimental and simulated distributions of

calcium fluorescence, we select a conditioning level such to

exclude the high fluorescence transients associated to fully-

developed bursting transients while keeping as many data points

as possible. Concretely, this is achieved by taking a conditioning

level equal to approximately two standard deviations above the

mean of a Gaussian fit to the left peak of the fluorescence

histogram. Such a level coincides with the point where, when

gradually increasing the conditioning level, the reconstructed

clustering index reaches a plateau, i.e. matches indicatively the

upper limit of range II in Figure 3.

To check for robustness of our reconstruction, we generated

alternative reconstructions based on different conditioning levels.

For the selected conditioning value, and for both the experimental

datasets analyzed (Figures 8 and S7), we verified that the inferred

topological features, including notably the average clustering

coefficient and connection distance, were stable in a range

centered on the selected conditioning value and wide as much as

approximately two standard deviations of the fluorescence

distribution.

To identify statistically significant non-random features of the

real cultured networks in exam, we compared the reconstructed

topology to two randomizations.

A first one consisted in a complete randomization that preserved

only the total number of connections in the network, but

scrambled completely the source and target nodes. The resulting

random ensemble of graphs was an Erdös-Rényi ensemble (see,

e.g. [62]) in which each possible link exists with a uniform

probability of connection p~C=(N(N{1)), where C is the total

number of connections in the reference reconstructed network.

A second partial randomization preserved the in-degree

distributions only, and was implemented by shuffling the entries

of each row of the reconstructed adjacency matrix, internally row-

by-row. In this way, the out-degrees of each node were preserved.

In both randomization processes, we disallowed diagonal entries.

For both randomizations we calculated the in-degree, the

distance of connections and the full clustering index for each node,

leading to distributions of network topology features that could be

compared between the reconstructed network and the randomized

ensembles, to identify significant deviations from random expec-

tancy.

Supporting Information

Figure S1 Dependence of reconstructed degree and
clustering coefficient on the fraction of included links.
We report here analyses for three representative non-locally

clustered networks with clustering coefficients 0.1, 0.3 and 0.5 (as

in Figure 2). A The average degree, by construction, varies linearly

with the fraction of included links (threshold). B The reconstructed

clustering coefficient shows a steep rise at low threshold values,

and describe broad hill-like profiles between approximately 5%

and 10% of reconstructed links, which peaks around CC values

approximately matching the ground truth clustering value of the

network. For higher values of the threshold, the dependency of the

reconstructed clustering coefficient on the threshold is closer to

linear. Note that by definition of the ‘‘full’’ clustering coefficient,

measured here (see Materials and Methods section), a random

network would show a perfect linear correlation.

(EPS)

Figure S2 Hubs of functional connectivity. A Plot of the

spatial position of neurons of an example simulated network,

highlighting functional connectivity hubs (red dots) for each of the

dynamic intervals I–VII depicted in Figure 3. B For the

corresponding dynamical regimes, the average cross-correlation

between calcium signals of first-neighbor nodes of functional

connectivity hubs (blue bars, see Materials and Methods) is compared

to the average cross-correlation between nodes inside the latter

local groups and the rest of the population (green). Significance

analysis is carried out using a Mann-Whitney test (n.s.: not

significant). The results show that the degree of synchronization

within the neighborhood of functional connectivity hubs is

significantly higher than across groups. C Cross-correlogram

time-shift of the average activity of the same local groups with

respect to the whole network average (see Materials and Methods, cfr.

also Figure S3). Negative shifts denote ‘‘bursting earlier’’ and

positive shifts ‘‘bursting later’’. The analysis shows that the calcium

fluorescence signal in the neighborhood of functional connectivity

hubs for the dynamic ranges II-IV is ‘‘leading’’, i.e. has a negative

lag in relation to the average population. Such functional

connectivity hubs correspond therefore to foci of burst initiation.

(EPS)

Figure S3 State dependency in simulated and real data.
Two experiments are considered, ‘‘A’’ being the one at DIV 12

(Figure 8) and ‘‘B’’ corresponding to the one at DIV 9 (Figure S7),

together with a simulated data set, corresponding to the network

from the local clustering ensemble (studied in Figure 5). For the

three cases, we separate the fluorescence signal into four ranges

and identify to each a different dynamical regime (encoded by

different colors, top row). We then compute, in each one of these

regimes, the clustering index (central row) and the average

connection distance (bottom row). While the exact reconstructed

values of the clustering index and the average connection distance

are of course different, all three datasets share their main

qualitative features, e.g. the fact that the reconstructed clustering

index is peaked in range ‘‘III’’ (marked in yellow in the top panels)

where their average connection distance is lowest.

(EPS)

Figure S4 Analysis of additional topological features. A
In non-locally clustered topologies, the non-linear causality

measures, Mutual Information (MI, red) and Transfer Entropy

(TE, yellow), correctly estimate the average connection distance,

while a linear measure such as cross-correlation (XC, blue) fail to

do so. The latter invariably under-estimates this distance, as it does

for the locally clustered ensemble (cfr. Figure 5D). Note that non-

locally clustered topologies are random by construction in terms of

the spatial distribution of connections, and, therefore, they display

a virtually identical average connection length, independent of the

clustering coefficient. B In locally-clustered topologies, the non-

linear measures, MI (red) and TE (yellow), also provide a good

estimation of the resulting clustering coefficient, in contrast with

cross-correlation, XC (blue). The latter invariably overestimates

the clustering level, as it does for the non-locally clustered
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ensemble (cfr. Figure 4D). In both plots, the dashed line

corresponds to perfect reconstruction.

(EPS)

Figure S5 Dependence of performance on characteristic
length scale, conditioning level and light scattering. The

color panels show the overall reconstruction performance level,

quantified by TP10% (black, 0% true positives; white, 100% true

positives), for different target ground-truth clustering coefficients

and as a function of the used conditioning level. Five different

reconstruction algorithms are compared: cross-correlation (XC),

Granger Causality (GC) with order k~2, Mutual Information

(MI), and Transfer Entropy (TE) with Markov orders k~1,2. The

top row corresponds to simulations without artifacts, and the

bottom row to simulations including light scattering. TE of order

k~2 and with light scattering provides a fair reconstruction

quality at any length scale for a conditioning value ~gg^0:1. (Note

that the scale bar of reconstruction performance is different from

the one in Figure 6.).

(EPS)

Figure S6 Positive precision curve (PPC) analysis. This

figure provide an alternative description of the reconstruction

performances as a function of the inclusion of different

components of the algorithm to which Figure 7A corresponds.

A definition of positive prevision curves is provided in Materials

and Methods, following Ref. [56]. The plots show the ‘‘true-false

ratio’’ (TFR) as a function of the ‘‘true-false sum’’ (TFS), i.e. the

number of reconstructed links, and indirectly describe the

likelihood that an included link is actual true positive. Positive

values correspond to a larger number of true than false positives

among the reconstructed links. Similarly to Figure 7A, only

generalized TE including both same-bin interactions and optimal

conditioning robustly displays positive values of TFR in a broad

range of TFS. Note that a threshold of 10% top links (used for

example at the bottom panel of Figure 5B), provides a TFS value

of 990. Shaded areas are 95% confidence intervals across 6

networks.

(EPS)

Figure S7 Network reconstruction of an in vitro neuro-
nal culture at DIV 9. A Detail of example fluorescence time

series of individual neurons (top panel) and population-averaged

fluorescence (bottom panel). Both synchronous bursts and inter-

burst modulations of the fluorescence baseline are easily detectable

in these recordings. B Example of TE reconstructed connectivity

in a subset of 39 neurons (identified by black dots) in a culture with

N~1668 marked neurons (regions of interest) in the field of view,

studied at day in vitro 9. Only the top 5% of connections are shown.

C Properties of the network inferred from TE reconstruction

method (top panels) compared to a cross-correlation (XC)

analysis (bottom panels). The figure shows reconstructed

distributions for the in-degree (left column), the connection

distance (middle column), and the clustering coefficient (right

column). In addition to the actual reconstructed histograms

(yellow), distributions for randomized networks are also shown.

Blue color refers to complete randomizations that preserves only

the total number of connections, and red color to partial

randomizations that shuffle only the target connections of each

neuron in the reconstructed network.

(EPS)

Figure S8 Stability, development and axon length of
neuronal cultures. A Typical calcium fluorescence recording of

neuronal activity at DIV 12 across 1 hour, showing the stability of

the fluorescence signal (blue) and the rich network activity. B
Comparison between the fluorescence signal before (bottom) and

after (top) pharmacological blocking of GABAergic transmission at

DIV 9. The increase in burst amplitude after blocking of GABA

confirms that the GABA switch has already occurred. C Direct

visualization of GFP-transfected neurons at DIV 12. The

highlighted axons are between 1 and 2 mm in length and reveal

the existence of long range connections in early mature cultures.

(EPS)

Figure S9 Schematic representation of light scattering
radius. Light scattering artifacts are expected to affect fluores-

cence imaging data when neurons are sufficiently close to each

other. In this example, neurons are indicated as black dots. For

three particular neurons, the radius of the simulated light

scattering artifact lsc~0:15 mm is shown as green circular area

centered on each of these neurons.

(EPS)
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