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Abstract  

The use of Mahalanobis squared distance (MSD) based novelty detection in statistical 

damage identification has become increasingly popular in recent years. The merit of the 

MSD-based method is that it is simple and requires low computational effort to enable 

the use of a higher-dimensional damage sensitive feature which is generally more 

sensitive to structural changes. MSD-based damage identification is also believed to be 

one of the most suitable methods for modern sensing systems such as wireless sensors. 

Although possessing such advantages, this method is rather strict with the input 

requirement as it assumes the training data to be multivariate normal which is not 

always available particularly at an early monitoring stage. As a consequence it may 

result in an ill-conditioned training model with erroneous novelty detection and damage 

identification outcomes. To date, there appears to be no study on how to systematically 

cope with such practical issues especially in the context of a statistical damage 

identification problem. To address this need, this paper proposes a controlled data 



 

 

generation scheme which is based upon the Monte Carlo simulation methodology with 

the addition of several controlling and evaluation tools to assess the condition of output 

data. By evaluating the convergence of the data condition indices, the proposed scheme 

is able to determine the optimal setups for the data generation process and subsequently 

avoid unnecessarily excessive data. The efficacy of this scheme is demonstrated via 

applications to a benchmark structure data in the field.    
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Introduction 

It is well-known that environmental and operational variations (EOVs) can prevent 

genuine structural damage in real civil structures from being identified since their 

effects can be larger than those from the genuine structural damage.
1, 2

 One of the most 

popular approaches to deal with this, especially when measures of EOVs are not fully 

available, is based on statistical pattern recognition. In this case, machine learning 

algorithms are oftentimes used to learn the underlying trend induced by EOVs and 

create a robust damage index which can be considered to be invariant under the EOV 



 

 

presence. Amongst different methods in this approach, Mahalanobis squared distance 

(MSD) based damage identification is believed to be one of the best in unsupervised 

learning mode i.e. only using data from undamaged structures.
3, 4

  In this regard, one 

will simply turn MSD-based (multivariate) outlier analysis into a novelty detection 

method and attempt to identify a potentially damaged observation as an outlier.
5, 6

  

Well-known for its simplicity and computational efficiency, MSD-based method has 

good potential to be cooperated on embedded modern sensing systems such as wireless 

sensors 
4, 7

. However, the proper use of the standard MSD for the novelty detection 

purpose theoretically requires the training data needs to be multivariate normal (short as 

multinormal) or also known as multi-Gaussian.
5, 8

 Due to the unavailability of complete 

multinormal data in many practical applications, one can obtain an approximation by 

increasing the observation-to-variable ratio.
9, 10

 In practical structural monitoring, 

however, this is not always experimentally available particularly at an early monitoring 

stage. To systematically cope with such an adverse situation, this paper present a 

controlled data generation scheme which is based upon the Monte Carlo simulation 

methodology cooperated with several controlling and evaluation tools to assess the 

output data condition. By evaluating the convergence of the data condition indices, the 

proposed data generation scheme is able to determine the optimal simulation input 

parameters that need to be used and subsequently avoid improper simulation setups or 

unnecessarily excessive data. The efficacy of this scheme is demonstrated via 



 

 

applications to benchmark experimental data in the field. The layout of this paper is as 

follows. The next section provides descriptions of MSD-based damage identification 

and the controlled Monte Carlo data generation scheme. The benchmarks and their 

dataset used in this study are then briefly described. In the two last sections, detailed 

analyses and discussions are first provided before the key findings are summarised in 

the conclusion. 

 

Damage identification and data generation methods 

MSD-based damage identification  

There are two main types of data used in statistical damage identification process. In 

general, the primary (or raw) data acquired by sensors is not directly used but is 

transformed into a damage sensitive feature (DSF) which then become input data for the 

statistical training model. This secondary data is oftentimes in a much lower dimension 

compared to the primary one so as to alleviate the computational effort and to extract 

the most meaningful structural information. Typical examples for this can be found in 

the case of common DSFs such as modal parameters and auto-regressive (AR) vectors. 

7, 11-16
   

Suppose that a training dataset consists of p (i.e. DSF dimension) variables and n 

observations. If its shape approximates a multinormal distribution, this dataset can be 

represented by the sample mean vector ( x ) and the sample covariance matrix (S). In 



 

 

this case, these two parameters are often referred as “sufficient statistics”. By using the 

standard MSD technique as a multivariate outlier analysis 
6
, each feature vector ( ix ) for 

either the training or testing purposes will be converted into a damage index in terms of 

distance measure ( id ) as follows  

)(S)( 1 xxxxd i

T
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                    )1(    

In damage identification context, the mean and covariance should be formulated as an 

exclusive measure, or in other words, consisting of no potential outlier from the testing 

phase.
6
 After computing all training distances, the assumption of a multinormal 

distribution again allows the estimation of the threshold from the basis of chi-square 

distribution for the training distances.
5
 It is because under such an assumption, one can 

specify a statistical threshold for the distances based on a distribution quantile or 

equivalently a confidence level.
5, 8

 There might be a trade-off in choosing the 

confidence level: using very high level of confidence level might not be able to detect a 

lightly damaged case that is known as one class of Type II errors but the least critical. 

However, such confidence level can assist in avoiding as many as possible false-

positive indication of damage (i.e. Type I errors).
5
   

In the testing phase, whenever a new DSF comes, its corresponding distance can be 

used to compare against the threshold to determine whether it corresponds to a normal 

or damaged state. In this sense, the anticipation is that the more severe a damaged state 



 

 

is, the more significant the difference between its actual distance and the threshold 

becomes. This has been observed in prior studies in this area.
4, 6, 14

  

As seen earlier, even though the MSD-based damage identification possesses a simple 

computational structure, the success of this method depends on whether its assumption 

of data distribution (i.e. multinormal) can be adequately satisfied.  Since complete 

multinormal data is seldom available in practice, the overall remedy, stemming from the 

central limit theorem (CLT) and the law of large numbers (LLN), is to increase the 

observation size (n) relative to number of variables (p).
9, 10

 One simple and inexpensive 

approach to realise this remedy in the context of measured data shortage is using the 

controlled Monte Carlo data generation scheme. 

 

Controlled Monte Carlo data generation  

As previously mentioned, the controlled data generation scheme developed in this paper 

originates from the Monte Carlo simulation methodology. In a broad sense, a Monte 

Carlo method today refers to any simulation method that involves the use of random 

numbers and was termed by Neumann and Ulam in the 1940’s.
17, 18

 Being easy and 

inexpensive, this approach is particularly applicable for evaluation of highly 

multidimensional and complex problems.
19

 To conduct a Monte Carlo simulation, one 

just needs to define a model that represents the population or phenomenon of interest 

and a criterion to generate random numbers for the model. The latter commonly 



 

 

involves the use of a user-selected probability distribution. Once completed, the data 

generated from the model can then be used as though they were actual observations.
18

  

In the damage identification context, Monte Carlo data generation has also seen its 

applicability since the DSFs are often in high dimension. However, prior studies in the 

field have mainly applied the Monte Carlo simulation methodology in an ad hoc 

manner. The conventional trend in such studies was to generate large number of 

observations from the data seed of a single or few DSF(s) by applying certain amount of 

random Gaussian noise onto each copy.
6, 15 

Even though the noise was constructed from 

a Gaussian distribution, its magnitude and the sample quantity were generally set in a 

rather uncontrolled manner. Another general suggestion from prior research is that using 

lower levels of noise allows more lightly damaged cases to be detected.
20

 However, a 

possible problem for applying a too low level of noise in data generation is that 

subsequently generated observations might not be sufficiently random with respect to 

initial observations to improve the data condition (and this issue will be examined in the 

application section). Obviously, a more systematic data generation scheme is in need 

particularly when considering real structural monitoring circumstances with a certain 

number of observations initially available to form the seed. Such a type of seed 

apparently reflects more accurately the training conditions of structures but also requires 

a more thorough data generation scheme to be cooperated.  



 

 

To cater to this need, the present paper proposes an enhanced data generation scheme 

termed as controlled Monte Carlo data generation (CMCDG). This is realised by adding 

into the conventional scheme two controlling tools that are in fact two data condition 

assessment methods and a robust probability-based evaluation procedure to assist these 

methods. Of the two condition assessment methods, the first one is based on evaluating 

the condition of the generated data through the condition of its sample covariance 

matrix which is represented by a well-known and robust index, i.e. (2-norm) condition 

number (COND) in linear algebra.
21, 22

 On the other hand, the second method is based 

on one of the most popular graphical tools for evaluating multinormality of data i.e. the 

quantile-quantile (Q-Q) plot of a beta distribution or, in certain cases, a chi-square 

distribution.
9, 10, 23

 In this study, the beta Q-Q plot is employed since it is generally more 

accurate than the chi-square counterpartner.
10

 To evaluate multinormality of a dataset, 

the actual plot of data is compared with the theoretical one and a significant discrepancy 

in the plot would indicate that the data no longer belongs to a multinormal distribution. 

Since the number of datasets generated by CMCDG for statistical evaluations is large, 

the root-mean-square error (RMSE), one of the most commonly-used discrepancy 

measures, between the theoretical and actual Q-Q plots will be used as another 

condition index. The mathematical expression of this measure will be included in the 

application section. The rationale of employing these two methods to evaluate CMCDG 

process is as follows. First, under the regulation of CLT and LLN, the sample 



 

 

covariance matrix (S) converges in probability to the actual population covariance 

matrix ( ) as number of random observations (n) increases.
9
 It is therefore sensible to 

anticipate that, as n increases, COND (S) also converges in probability to COND ( ). 

Similarity can be seen for the second method. As n increases, the Q-Q plot is expected 

to converge in probability to the theoretical line and its RMSE is therefore anticipated to 

converge in probability to zero. 

Inherent in the way that the two data condition assessment methods is implemented in 

CMCDG is a robust probability-based evaluation procedure with two robust measures 

i.e. the median and inter-quartile range (IQR) 
24

 to examine the central tendency and 

dispersion of COND and beta Q-Q RMSE. By tracking the convergence of these 

measures, CMCDG is able to determine the optimal noise level and possibly minimum 

number of data replications that need to be set in the simulation process. Details of 

CMCDG and its controlling and evaluation components are illustrated in the application 

section.   

 

Description of the benchmark structure and data   

The benchmark dataset used in this study is from Los Alamos national laboratory 

(LANL), USA and has been intensively used in recent statistical damage identification 

studies.
4, 7

 This data was collected by four accelerometers from a benchmark building 

model (Figure 1) with varied practical conditions (Table 1) including stiffness deviation 



 

 

due to temperature change and mass difference (e.g. caused by traffic). Nonlinear 

damage was generated by contacting a suspended column with a bumper mounted on 

the floor below to simulating fatigue crack that can open and close under loading 

conditions, or loose connections in structures. Different levels of damage were created 

by adjusting the gap between the column and the bumper. In total, there were 9 

undamaged states and 8 damaged states each of which consists of a number of tests 

performed to take into account excitation variability. In this study, the largest dataset 

available for public use with 50 tests for each state is used.
25

 According to the test 

description 
7
, state 14 can be considered as the most severe one since it corresponds to 

the smallest gap case which induces the highest impact of contact. State 10 is the least 

severe damaged scenario whereas state 11, 12 and 13 can represent mid-level damage 

scenarios. Other states (i.e. 15, 16 and 17) are the variant states of either state 10 or 13 

with mass added effect. 

 



 

 

 

Figure 1. The test structure (left) and damage simulation mechanism (right) at LANL.
7
  

Table 1. Data labels of the structural state conditions (adapted from LANL).
7
 

Label Feature Description 

State 1 Undamaged Baseline condition 

State 2 Undamaged Mass = 1.2 kg added at the base 

State 3 Undamaged Mass = 1.2 kg added on the 1
st
 floor 

State 4 Undamaged 

State 4-9: 87.5% stiffness reduction at various positions to 

simulate temperature impact (see 
7
 for details) 

State 5 Undamaged 

State 6 Undamaged 

State 7 Undamaged 

State 8 Undamaged 

State 9 Undamaged 

State 10 Damaged Gap = 0.20 mm 

State 11 Damaged Gap = 0.15 mm 

State 12 Damaged Gap = 0.13 mm 

State 13 Damaged Gap = 0.10 mm 

State 14 Damaged Gap = 0.05 mm  

State 15 Damaged Gap = 0.20 mm & mass = 1.2 kg added at the base 

State 16 Damaged Gap = 0.20 mm & mass = 1.2 kg added on the 1
st
 floor 

State 17 Damaged Gap = 0.10 mm & mass = 1.2 kg added on the 1
st
 floor 



 

 

 

Analyses and discussions 

The data used in this study is from the second floor sensor which is close to the damage 

location to guarantee the sensitivity of the method when classifying different-level 

damage cases. The testing data, established by taking 20 first tests in each of 9 

undamaged states and all tests of damaged structure, therefore has 580 (i.e. 209+508) 

observations. With 30 remaining tests in each undamaged state for the training purpose, 

differently sized learning data can be formed by varying number of training tests (i.e. 

from as low as 1 up to 30) taken in each learning state. This is to illustrate the impact of 

the observation size reflected through the two data condition assessment methods (as 

previously mentioned) by means of pure experimental data. For the sake of simplicity, 

this number of tests per learning state will be referred below as “state observation size”.   

DSF used in this investigation is the autoregressive (AR) vector which has also been 

used in recent studies using this dataset.
4, 7

 Each raw data time series is first 

standardized to zero mean and unit variance before being transformed into an AR vector 

with a user-selected model order. Even though there are a number of order estimation 

techniques 
4, 7

, in this study, the heuristic technique, based on directly observing RMSE 

of the AR model, is adopted. The basis for this adoption is that it reflects the actual 

impact of order change on prediction capacity of AR model which, in the opinion of the 

present authors, is the most crucial. For the sake of completeness, the following part 



 

 

will present a brief description of AR model and the order estimation method based on 

RMSE. 

The AR (p) model, for a regularly sampled time series process Y with n observations 

can be described by the following formulae 

iii yy  ˆ                           )2(    
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where iy , iŷ  and i  are the measured signal the predicted signal and the residual error, 

respectively at the discrete time index i  while j  is the jth AR variable which can be 

estimated by one of a number of techniques such as Burge, least squares and Yule-

Walker.
26

 RMSE of the time series predicted by an AR (p) model with respect to the 

measured signal is therefore as follows 
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To find an appropriate model order, RMSE is plotted as a function of the model order 

which in turn can be estimated by minimizing the RMSE value. Figure 2 shows the 

average RMSE of AR models with the orders ranging from 1 to 40 for each of the 9 

undamaged states. One can see that, RMSE becomes significantly steady for all 9 states 

from the order of 10 which suggests that one should choose the order at least from this 



 

 

value. In the following sections, this suggested starting order (i.e. 10) and one rather 

high (i.e. 30), along with one medium (i.e. 15) at some points when necessary will be 

used in the succeeding sections.  

 

Figure 2. RMSE of AR models of increasing order for each undamaged state. 

MSD-based damage identification performance on pure experimental data 

At the model order p, one DSF (i.e. AR vector) for each observation in either training or 

testing data is computed by least squares technique. This leads to 270 by p training data 

and 580 by p testing data. The threshold distance which is used to differentiate between 

the undamaged and damaged states is established based on the highest confidence level 

(i.e. 100%). This can avoid as many as possible the Type I error which, in the opinion of 

the present authors, is more crucial than the ability of detecting lightly damaged cases 

which one might achieve by using a lower confidence level. Using this confidence level, 



 

 

the MSD training model is able to correctly detect almost all damage cases – only 1 out 

of 400 Type II error tests is occasionally found across the lower-dimensional DSF (i.e. 

AR10 and AR15). The high-dimensional DSF (AR30) herein has seen no Type II error 

indicating that it is slightly more sensitive to damage than AR10 and AR15. Overall, the 

results have confirmed that the previously selected confidence level is appropriate.  

 

Figure 3. Type I error of increasing observation size. 

In spite of using the highest confidence level, the result of Type I errors significantly 

differs from that of the Type II errors especially for the smaller range of observations. 

Figure 3 plots the number of false positive errors (out of total 180 tests) against the state 

observation size in the range between 5 to the maximum (i.e. 30) as previously 

described. It can be seen that, the Type I error becomes significant for most of the DSF 



 

 

dimensions when less than a quarter of the maximum training data is available and is 

generally higher for higher dimensions. This is most likely due to the fact that, with 

higher number of variables, higher-order AR models require more observations to be as 

sufficiently trained as lower-order models. It is worth noting that this problem is well 

known as “curse of dimensionality” 
5
 and the use of CMCDG herein should be seen to 

mitigate this problem.  

Performance of two condition assessment methods on pure experimental data 

In Figure 4, the condition number of the MSD model is plotted against the state 

observation size across three DSF dimensions in normal linear scale as well as 

logarithmic (log) scale to facilitate the comparison at different ranges.  

 

Figure 4. COND in linear (left) and log (right) scales. 



 

 

From this figure, one could see that the condition number tends to converge after certain 

number of observations which is larger for higher DSF dimensions. Overall, it can be 

seen that the convergence trend of this condition number is in fairly good agreement 

with the performance result presented in Figure 3.  

To construct a beta Q-Q plot, the training distance in formula (1) first needs to be scaled 

by a factor related to the sample size (n) as follows   

2
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i                          )5(    

If the training data is multinormal, this scaled distance would follow a beta distribution. 

The scaled distance is then ranked in ascending order and plotted with the 

corresponding beta quantiles.
10

 For illustration purpose, Figure 5 shows the beta Q-Q 

plots of AR10 (at the state observation of 5 and 13 tests) and AR30 (at the state 

observation of 8 and 16 tests). These two (one small and one medium) datasets are 

selected to represent two (one unstable and one improved) conditions of the data, 

respectively.  



 

 

 

Figure 5. Beta Q-Q plot of (a) AR10-05 tests, (b) AR10-13 tests, (c) AR30-08 tests and 

(d) AR30-16 tests. 

From Figure 5, one can see that increasing number of observations generally improves 

the agreement between the actual and theoretical plots for most of the data points. This 

reveals that it is feasible to use a good-of-fitness measure between the two plots as 

another data condition index (besides COND) to evaluate a huge number of datasets 

generated from CMCDG process. As previously mentioned, the measure adopted is 

RMSE which is one of the most commonly-used measures for this type of purpose. 

Performance of CMCDG on premature data   



 

 

Previous results have shown that the condition of the experimental data will require 

certain numbers of observations to reach a stable point. Before that, data can be 

considered as premature and will therefore need a compensation solution such as from 

CMCDG to improve its condition. In this section, CMCDG will be applied on two 

premature training datasets each of which is for each DSF type, i.e. at the state 

observation size of 5 tests (for AR10) and 8 tests (for AR30) as preliminarily checked 

by COND and beta Q-Q plot as shown in Figure 4 and 5. With such limited 

observations, the main problem for these two premature datasets is the Type I errors as 

previously discussed and presented in Figure 3. Out of a total of 180 tests, the original 

Type I errors of these two (AR10 and AR30) training datasets are 13 and 105 tests (or 

7.2% and 58.3% in terms of the error rate), respectively. Under the CMCDG scheme, 

each premature dataset is first employed as the seed to generate a (user-specified) 

number of additional datasets of the same size as the seed (by means of random noise) 

and all the datasets are then tiled one after another to obtain the final data.  The random 

noise herein is generated based on its optimal level in root-mean-square (RMS) sense 

with respect to the largest deviation of the training DSFs. In this study, the optimal level 

of noise is determined by the convergence basis of median and IQR of COND. As an 

example, Figure 6(a) and (b) shows the probability distribution of COND values at 

different noise levels (from 0.05 to 5%) when running 10,000 simulations to evaluate 

the case of using CMCDG generating 19 additional data replications. Note that the 



 

 

presented noise levels on Figure 6 are unequally distributed to accommodate different 

ranges of noise. From Figure 6(a) and (b), one can clearly see that the median and IQR 

of COND are very large if very low level of noise is employed such as at 0.05 or 0.1%. 

This is because when noise levels that are too low are applied to the data generation 

process, subsequently generated observations will have inadequate randomness with 

respect to the initial observations in the seed as previously discussed. In this case, the 

covariance matrix becomes more computationally unstable (reflected by larger and 

more widely variable COND values 
27

) than those formulated by later ranges of noise 

levels.  

 

 



 

 

 

Figure 6. COND and mean error rate of increasing noise level: AR10 (left) and AR30 

(right). 

However, when the noise level increases, COND rapidly decreases in both median and 

IQR values. This results in unnoticeable difference in these values from the noise level 

of around 0.4% onward even though the noise increment later is set at 1%. For 

correlation purposes, the corresponding mean Type I and Type II errors are also shown 

in Figure 6(c) and (d) in relative sense with respect to a total of 180 Type I and 400 

Type II tests. One can first see that the Type I error result is generally in good 

agreement with the convergence trend of COND. Note that higher Type I error rate for 



 

 

AR30 (in comparison with AR10) at low noise levels should not be seen as abnormal 

since the initial rate of the premature AR30 data is 58.3% (while that of AR10 is only 

7.2%) as previously mentioned. On the other hand, Figure 6(c) and (d) appear to show 

certain impact for the Type II error at high noise levels. However, checking the details 

across multiple noise levels from 0.5% (for AR10) or 1% (for AR30) up to 5% has 

revealed that all the Type II errors for both AR10 and AR30 merely belong to the most 

lightly damaged states (i.e. state 10 and its two variants, state 15 and 16 as illustrated in 

Table 1). Detecting such a damage state may be desirable but not always in the highest 

priority of damage identification as previously discussed in the regard to choosing the 

confidence level. Nevertheless, using a higher-dimensional DSF (such as AR30 that has 

lower Type II error rate) and/or a correct noise level (close to such an optimal level as 

0.4% herein) will enhance the damage identification outcome. This also reaffirms the 

need to determine of an optimal noise level such as being considered in the CMCDG 

scheme herein since this can lead to a more satisfactory solution. 

To find a possibly minimum number of data replications to be used in CMCDG, the 

same approach used to produce Figure 6 will be implemented with a minor swap. The 

noise level is fixed (at 0.3% for AR10 and 0.5% for AR30) while number of data 

replications is varied. Figure 7 shows the probability distribution of COND and beta Q-

Q RMSE along with the mean rate of the Type I error. Again, one can see that both 

COND and RMSE tend to rapidly converge in both median and IQR values after a 



 

 

certain number of data replications. The figure also shows that the convergence trends 

of these two indices are in excellent agreement with each other and with that of the 

Type I error. On the other side, the Type II error results can be retained as more or less 

the same as those from pure experimental data as previously presented. Once again, 

there is no single error for AR30 while AR10 only fails to detect one or two most lightly 

damaged cases out of total 400 tests. This is probably mostly due to the nature of lower-

dimensional DSF such as AR10 which is less sensitive to damage than high-

dimensional DSF like AR30 as previously remarked. This also highlights the feasibility 

of CMCDG in assisting the use of the high-dimensional DSF that may result in higher 

capability of detecting structural damage.  



 

 

 

Figure 7. COND, Q-Q RMSE and Type I error rate of increasing replication size: AR10 

(left) and AR30 (right).
*
 

Based on the convergence of these two condition indices, one can adopt 15 as a possibly 

minimum number of additional data replications that need to be generated in CMCDG 

for both DSF types of this demonstration example.  At this replication size, both post-

                                                 
*
 As they are (nearly) zero, Type II error rates have been omitted for a better display of Type I errors 



 

 

CMCDG datasets (of both DSF types) face no single Type I error across 180 total tests. 

Compared to aforementioned initial error rates (7.2% and 58.3%) of original datasets, 

this obviously reflects excellent improvements for the Type I testing performance for 

both DSF types in general and for high-dimensional DSF (AR30) in particular. 

 

Figure 8. Overlay of one typical seed observation and its 15 variants: AR10 (left) and 

AR30 (right). 

In Figure 8 for each DSF type, one typical seed (initial) observation and its 15 variants 

generated by CMCDG are overlaid together and one can see that they are almost 

identical. This means that the noise addition process in CMCDG does not induce 

significant variations on the amplitude of the observation. Instead, the efficacy of 

CMCDG is mainly from the generation of multiple additional random observations to 

provide a sufficiently large random dataset as directed by CLT and LLN. Finally, to 

illustrate detailed effectiveness of CMCDG on the training data multinormality, the beta 

Q-Q plots of two typical datasets generated by CMCDG using aforementioned selected 



 

 

noise levels (0.3% and 0.5%) and replication sizes (15 blocks for both DSF types) are 

shown in Figure 9. Compared to those of original (pre-CMCDG) datasets as in Figure 

5(a) and 5(c), there are inarguable improvements in terms of the agreement between 

actual and theoretical lines of the post-CMCDG datasets of both DSF types. This once 

again confirms the effectiveness of the CMCDG scheme. 

 

Figure 9. Post-CMCDG beta Q-Q plots: AR10 (left) and AR30 (right). 

From results presented, it has become apparent that one can conquer the data shortage 

by employing CMCDG without having to suffer from data burden that is more likely to 

be confronted during the application of the uncontrolled data generation approach. 

 

Conclusions 

This paper has proposed an enhanced data generation scheme named CMCDG which 

can be used to compensate for the shortage of data such as at an early monitoring stage. 

Targeting a more systematic approach, CMCDG is constructed by adding into the 

conventional data generation approach two condition assessment methods cooperated 



 

 

with a robust probability-based evaluation procedure. Stemming from a computationally 

efficient method in linear algebra, COND has been shown to be a simple but useful 

condition index. This indicator can be used for not only assessing the data condition but 

also statistically evaluating the effect of random disturbance at different levels such as 

random noise. Based on the latter usage, the optimal noise level and the possibly 

minimum number of data replications to be used in CMCDG can be derived so that the 

generated data can be used for reliable damage identification while being kept 

reasonable in size. As a different approach, the second assessment method can first act 

as a convenient tool for graphically examining the status of any single dataset. To use in 

CMCDG besides COND to work with huge number of simulated datasets, the previous 

graphical evaluation method is transformed into a single condition indicator which is 

actually one of the most common good-of-fitness measures, RMSE, to track the 

discrepancy between actual data and theoretical data. The rationale of utilising the 

convergence basis of all of data condition indices for determining optimal input for 

CMCDG has been proved under the regulation of two well-known theorems i.e. CLT 

and LLN. These two theorems have also been found to be the theoretical bases not only 

for the CMCDG scheme developed herein but also for the traditional data generation 

approach. The implementation and application of CMCDG to a benchmark data have 

shown that CMCDG and its added components can compensate well for the data 

shortage, improve computational stability and therefore the reliability of MSD-based 



 

 

damage identification. This has also highlighted an important role of CMCDG in 

assisting the high-dimensional DSF such as AR30 that is likely to have higher 

sensitivity toward a lightly damaged case. Finally, as been shown to be able to improve 

multinormality of data, CMCDG can be seen as a promising scheme not only for 

novelty detection based damage identification but also for statistically-based structural 

analysis in a broader field. 
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