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Heat diffusion: Thermodynamic depth complexity of networks
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In this paper we use the Birkhoff–von Neumann decomposition of the diffusion kernel to compute a polytopal
measure of graph complexity. We decompose the diffusion kernel into a series of weighted Birkhoff combinations
and compute the entropy associated with the weighting proportions (polytopal complexity). The maximum
entropy Birkhoff combination can be expressed in terms of matrix permanents. This allows us to introduce
a phase-transition principle that links our definition of polytopal complexity to the heat flowing through the
network at a given diffusion time. The result is an efficiently computed complexity measure, which we refer to
as flow complexity. Moreover, the flow complexity measure allows us to analyze graphs and networks in terms
of the thermodynamic depth. We compare our method with three alternative methods described in the literature
(Estrada’s heterogeneity index, the Laplacian energy, and the von Neumann entropy). Our study is based on 217
protein-protein interaction (PPI) networks including histidine kinases from several species of bacteria. We find a
correlation between structural complexity and phylogeny (more evolved species have statistically more complex
PPIs). Although our methods outperform the alternatives, we find similarities with Estrada’s heterogeneity index
in terms of network size independence and predictive power.

DOI: 10.1103/PhysRevE.85.036206 PACS number(s): 89.75.Kd, 89.75.Hc, 89.75.Fb

I. INTRODUCTION

The quantification of the intrinsic complexity of undirected
graphs and networks has attracted significant attention due
to its fundamental practical importance, not only in network
analysis [1] but also in other areas such as pattern recognition
and control theory. Such a quantification not only allows the
complexity of different graph or network structures to be
compared, but also allows the complexity to be traded against
goodness of fit to data when a structure is being learned in an
information theoretic description length framework [2]. Some
of the existing quantifications are easily computable, i.e., they
have polynomial computational complexity, but others are not
since they rely on NP-hard problems (where NP indicates
solvable by a non deterministic Turing Machine in polynomial
time) or noncomputable quantities. In this paper we focus on
the polynomial class of methods, although we also briefly
discus the most influential methods falling into the second
class. Specifically, we focus in more detail on the dichotomy
induced by distinguishing between randomness complexity
and statistical complexity. Randomness complexity aims to
quantify the degree of randomness or disorganization of a
combinatorial structure; this approach aims to characterize
an observed graph structure probabilistically and compute its
associated Shannon entropy. Statistical complexity, on the
other hand, aims to characterize a combinatorial structure
using statistical features such as node degree statistics, edge
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density, or the Laplacian spectrum. Viewed historically, most
early work in this area falls into the randomness class, while
recent work is statistically based.

Turning our attention first to randomness complexity, we
note that one of the earliest contributions was Körner’s graph
entropy [3,4]. The method poses complexity characterization
as an optimization problem. Assuming there is a probability
distribution associated with the vertices of the graph, the com-
plexity is the minimal cross entropy between the probability
distribution and the vertex packing polytope of the graph.
Unfortunately the approach is not applicable to more general
unweighted graphs. Körner’s approach relies on computing
chromatic numbers, which is in general an NP-complete
problem, but polynomial for perfect graphs. Recently, the von
Neumann entropy (or quantum entropy) has been applied to
the domain of graphs [5,6] through a mapping between discrete
Laplacians and quantum states [7]. If the discrete Laplacian [8]
is scaled by the inverse of the volume of the graph, we obtain
a density matrix whose entropy can be computed using the
spectrum of the discrete Laplacian. The measure distinguishes
between different structures. For instance it is maximal for
random graphs, minimal for complete ones, and takes on
intermediate values for star graphs. In addition, when there
is degree heterogeneity then the Shannon (classical) and von
Neumann (quantal) entropies are correlated. Turning our at-
tention to [9,10], graphs are decomposed into substructures by
grouping vertices so that the discrete entropy is computed from
the local vertex density. In [11], this approach is generalized by
using j -spheres (subgraphs around a vertex having a maximum
topological distance or minimal path length j ) to construct the
required probability distribution over vertices. Moreover, this
approach allows a complexity trace to be defined and this can
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be used to characterize phase changes in structure. In these two
approaches, a complete graph must be as complex as any other
graph with the same number of vertices. Off-diagonal com-
plexity [12] relies on taking statistics from the number of joint
occurrences of pairs of nodes having a given pair of cardinali-
ties. After normalization the method allows a discrete entropy
to be computed, which takes on the value zero for both regular
lattices and complete graphs and has small values for random
graphs and large values for apparently complex structures.

The main drawback of randomness complexity is that it
does not capture properly the correlations between vertices
[13]. Statistical complexity aims to overcome this problem by
measuring regularities beyond randomness and does not neces-
sarily grow monotonically with randomness. Both completely
random systems and completely ordered ones must have a
minimal statistical complexity. Logical depth [14] (the time
required by a universal Turing machine to run the minimal
program that reproduces it) is the statistical counterpart of
Kolmogorov-Chaitin [15,16] randomness complexity because
it is based on the notion of a process rather than a measure.
In [17], graph complexity is characterized using the minimal
dimension in which its corresponding intersection graph can be
embedded. Jukna [18] uses similar ideas and defines the com-
plexity of a graph to be the minimum number of unions and in-
tersections (i.e., Boolean operations) needed to obtain its com-
plete set of edges commencing from stars. Neal and Orrison’s
linear complexity of a graph [19] is given by the number of
additions, subtractions, and multiplications needed to perform
matrix multiplication of the adjacency matrix with an arbitrary
vector. Linear complexity is independent of the permutations
of the vertices. If we reduce the original adjacency matrix by
removing redundant rows (those with identical connectivity
patterns), rows of zeros (isolated vertices), and rows with only a
single one (vertices of unit degree), the linear complexity of the
reduced matrix does not change. Relating the linear complexity
of a reduced matrix to that of its transpose, we can obtain
recursively the linear complexity of the original matrix. Gell-
Mann’s effective complexity [20,21] (the length of a highly
compressed description of its regularities) leads to quantifica-
tion of a high degree of randomness in terms of high complex-
ity and regularity in terms of low complexity. One interesting
property of effective complexity is its ability to distinguish
purely random structures from regular ones. This property is
shared with off-diagonal complexity. The latter approach is
formally linked with the minimum description length princi-
ple, and has been used in practice for learning tree structure [2].
Turning our attention to graph-spectral methods, we note that
Song et al. [22] have recently explored the use of the Laplacian
energy [23], i.e., the sum of absolute differences between the
eigenvalues and the average vertex degree, as a complexity
measure for graphs. In a regular graph, the Laplacian energy is
equal to the energy of the graph (the sum of the absolute values
of the eigenvalues of its adjacency matrix). The Laplacian
energy is also low for graphs associated with polygons.

An important recent addition to the graph-spectral literature
is Estrada’s network heterogeneity index [24]. The index
gauges differences in degree for all pairs of connected vertices.
This index can be expressed as a quadratic form of the
Laplacian and it is equal to zero for regular and random graphs
and equal to 1 for the star graph.

The thermodynamic depth [25] is an alternative measure
which takes on low values for both random and ordered
systems. The thermodynamic depth (TD) shares with logical
depth the idea of using physical depth within a network.
However, the TD relies on the causality of heat flow, rather than
the number of computational steps. Parallel complexity fills the
gap between logical depth and TD. Here depth is defined as the
number of computational steps needed by a parallel computer
to construct a given graph [26]. Within this framework complex
structures require long times to emerge [27]. The length of the
time span depends on the logical depth (the number of steps
taken by a Turing machine with only local communication),
and this differs from parallel depth [the number of steps taken
by parallel random access machines (PRAMs), which are also
endowed with global communication]. In addition, logical
depth refers to individual system states, whereas parallel
depth refers to ensembles. Parallel depth may be viewed as
the running time of a Monte Carlo algorithm that generates
a typical state of the system by sampling with a PRAM
endowed with polynomial bounded hardware. Interactions
between the components of the system play a fundamental
role and can potentially lead to deep states at critical points
(e.g., simulating the Ising model between highly ordered and
highly disordered states). In this paper we borrow some ideas
from the parallel depth (or physical depth) including that of
phase transitions. However, we will focus on the application
of the TD to measure the complexity of graphs. The main
problem in extending the TD to graphs is to define the required
macroscopic states [28]. When dealing with graphs, the TD
aims to quantify the difficulty in constructing a given graph
(the macroscopic state) from scratch (microscopic states). If
there is little uncertainty about the process and all the possible
causal trajectories have narrow variability, then the graph is
narrow (simple). Otherwise, when historical uncertainty arises
and many causal trajectories have been excluded for reaching
a given structural design, the graph is deep (complex).

In this paper we link the ideas of information flow and
thermodynamic depth to construct a different characterization
of graph complexity. To commence, we establish a link
between heat kernels and Birkhoff polytopes. This choice
is motivated by the notion of Körner’s entropy. The use of
Birkhoff polytopes is motivated by the fact that the heat kernel
of a graph can be decomposed into permutation matrices. We
draw on the work of Birkhoff and von Neumann to characterize
structural complexity in terms of the entropy of the polytopal
decomposition coefficients. As the heat kernel is parametrized
by time (diffusion extent), we obtain a complexity trace as time
evolves. We find that, in practice, these traces are endowed with
a phase change. Unfortunately, the mathematical framework
for polytopes makes it difficult to characterize the phase
change. We show the relationship between heat kernels and
the permanent of a graph. The permanent of a graph is a
necessary prerequisite to computing the maximum entropy
decomposition of the kernel. As the latter problem is known
to be #P (the set of the counting problems associated with the
decision problems in the set NP), we derive a fast complexity
measure (flow complexity) which has a similar qualitative
behavior. We establish that the existence of a phase-transition
point in the flow complexity trace implies that the entropy of
the corresponding Birkhoff decomposition is maximal. As a
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result, we can assimilate phase transitions (maximum flow)
into maximum entropy. Once the flow complexity trace is
defined, we proceed to specify (a) the microstates, i.e., the
nodes of the graphs, and (b) the causal histories, i.e., sequences
of subgraphs rooted at each node, where each subgraph
is generated from the previous one by reaching nonvisited
nodes through one edge. According to this picture, each node
generates a history which is a path to the macroscopic state.
Each history is characterized by a flow complexity trace. We
quantify the historical variability with the minimal radius of the
Bregman ball that encloses all traces. We also consider the pro-
jection of the flow complexity trace corresponding to the van
der Waerden matrix to exploit the notion of entropy as the di-
vergence from the uniform distribution. The proposed measure
of depth combines both historical variability and divergence
from the uniform. The experimental evaluation of the method
focuses on the analysis of protein-protein interaction (PPI) net-
works. Given a key protein implicated in signal transduction,
our approach finds a significant correlation between the heat
kernel–thermodynamic depth complexity and the evolution of
PPIs that include the protein in question but in samples from
different species of bacteria. We compare the predictive power
of our proposed method with three alternative graph-spectral
complexity measures, namely, (a) Estrada’s heterogeneity in-
dex, (b) the von Neumann entropy, and (c) the Laplacian energy
(all embedded in the framework of the thermodynamic depth).

As an example of how our approach works, in Fig. 1 we
show the heat kernel–thermodynamic depth complexities for
several graphs with the same numbers of nodes. As regularity
increases then so complexity decreases. In this regard, an
eight-neighbor grid graph constrained to a rectangular grid
is more regular than a four-neighbor grid graph constrained to
the same boundary because it is closer to the complete graph.
In our approach any complete graph has zero complexity.

FIG. 1. Heat kernel–thermodynamic depth complexities for
graphs of |V | = 10. From top to bottom and left to right, Gauss10,
Grid8N10, Grid4N10, Line10, and Circle10 graphs.

A complete graph is characterized by having the maximal
regularity degree. In this example, it is particularly interesting
to note the difference between the loop (zero complexity) and
the linear graph. From a TD perspective, each node in the loop
has the same history before reaching the macroscopic state.
However, a nonzero TD is derived from the fact that each node
has a different view of the process leading to the emergence of
the graph. Each of the possible alternatives is built into the flow
complexity traces which register the amount of information
flowing through the network at each particular diffusion time.
This proceeds from a zero time, where each node retains a
unit of heat, until the equilibrium is reached where we have
the same amount of heat both in the nodes and in the edges.
For any graph the equilibrium state of the diffusion process is
always the van der Waerden matrix, and there is no loss of heat
(heat conservation). Consequently, part of the heat encodes
indirect or transitive relationships between the vertices of the
graph, which are not encoded by the graph itself. The different
histories leading to the macroscopic state arise from the high
variability in the set of complexity traces emanating from dif-
ferent vertices. In the case of complete graphs, the variability
is zero, and this is a paradigmatic example of building a graph
without imposing any constraint in the design (topology) of
the microstate. Without constraints, information flows freely
through the network. This situation is similar to that of the loop,
also with zero complexity, because in this latter case informa-
tion flows isotropically or symmetrically. However, when we
break a link of the loop, the result is that the rate of heat loss at
the extreme vertices is smaller than that in the interior. This is
true for all diffusion times, but quantitively different for differ-
ent histories, and thus leads to a small but nonzero complexity.

II. PRELIMINARIES

In this section we review the prerequisites to the develop-
ment of our complexity characterization. We commence by
defining the Birkhoff polytope, then explain links to the heat
kernel, and finally show how to define complexity using the
Shannon entropy divided by the expansion coefficients of the
Birkhoff–von Neumann decomposition of the heat kernel.

A. The Birkhoff polytope

The nth Birkhoff polytope Bn is the set of doubly stochastic
matrices of dimension n × n:

Bn =

⎧⎪⎨
⎪⎩B = [bij ]n×n :

∑
i bij = 1, ∀ j∑
j bij = 1, ∀ i

bij � 0, ∀i ∀ j

⎫⎪⎬
⎪⎭ . (1)

Such a polytope is convex, has dimension (n − 1)2, and
its extreme points are the set of n! permutation matrices
P = [pij ]n×n (entries are 0 except for a single 1 in each row
and column).

According to the Birkhoff–von Neumann (BvN) theorem,
Every doubly stochastic matrix (DSM) can be expressed as a
convex combination of permutation matrices (PMs) [29]:

B =
∑

α

pαPα, ∀ B ∈ Bn, and
∑

α

pα = 1,

pα � 0 ∀ α, (2)
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where α indexes the coefficients of the convex combination.
Thus Bn is the convex hull of the set of the n × n permutation
matrices. However, the representation of a DSM in terms of
many PMs is not unique because Bn is not a simplex. The
barycenter of Bn is the so-called van der Waerden constant
matrix B∗ with all entries equal to 1/n.

B. Birkhoff–von Neumann decomposition of heat kernels

Consider an undirected graph G = (V,E) where |V | =
n with n × n adjacency matrix A. The Laplacian of the
graph is the n × n matrix L = D − A where D = diag(di =∑

j∈V Aij , i ∈ V ) is the degree matrix. The n × n heat or
diffusion kernel Kβ(G) of the graph is the solution to the
heat or diffusion equation: ∂Kβ

∂β
= −LKβ , and is given by the

matrix exponentiation Kβ(G) = exp(−βL) (with β � 0). The
matrix Kβ is a doubly stochastic matrix, where Kβij

encodes
the probability of reaching vertex j from vertex i, and vice
versa, through lazy random walks [30]. In fact the state vector
of the random walk at time β is qβ = Kβ(G)q0, where q0 is
the initial state vector of the walk. For a given value of β,
the decomposition Kβ(G) = ∑

α pαPα will not only map a
graph (for a given β) into the Birkhoff polytope Bn, but will
also associate with the mapping a set of reals (the expansion
coefficients) satisfying the axioms of probability. In other
words it associates with the mapping a probability distribution
over the convex combination of polytopes Pα . This defines
the solution to a heat transportation problem for a given β.
An interesting example is the complete graph of n vertices
Cn whose diffusion kernel is the barycenter Kβ>0(Cn) =
B∗, that is, the van der Waerden matrix. In addition, the
probability distribution, with exactly n coefficients, associated
with the BvN decomposition is the uniform one Un where
pα = 1/n, ∀ α.

III. POLYTOPAL COMPLEXITY

Having established the link between the heat kernel and
the Birkhoff–von Neumann decomposition, in this section
we exploit this link to define a complexity measure for a
graph using the Shannon entropy divided by the expansion
coefficients.

A. The BvN constructive decomposition

We compute the BvN decomposition recursively. The pro-
cedure is as follows: (i) initially express the doubly stochastic
matrix K(G) as a convex combination of a single permutation
matrix and residual doubly stochastic matrix K(G) ≡ K1 =
λ1P1 + (1 − λ1)K2; and (ii) iteratively repeat this procedure
using the decomposition Kr = λrPr + (1 − λr )Kr+1 until the
final residual DSM is itself a permutation. Let γ be the number
of permutations needed to encode K, satisfying 2 < γ < n2,
and let r be the step number of the recursion process. With
these ingredients, the decomposition is

K(G) = λ1P1 + (1 − λ1)λ2P2 + (1 − λ1)(1 − λ2)λ3P3 + · · ·

=
γ∑

α=1

{
α−1∏
r=1

(1 − λr )

}
λα︸ ︷︷ ︸

pα

Pα =
γ∑

α=1

pαPα. (3)

B. BvN graph complexity

Given an undirected and unweighted graph G = (V,E)
with diffusion kernel Kβ(G), and BvN decomposition
Kβ(G) = ∑γ

α=1 pαPα , we define the polytopal complexity of
G at β as the normalized entropy

Bβ(G) = H (P)

log2 n
, (4)

where P = {p1, . . . ,pγ } is the set of Birkhoff–von Neumann
expansion coefficients and H (P) = −∑γ

α=1 pα log2 pα is the
Shannon entropy. The definition depends on the value of β

and also takes into account both the size of the graph and the
number of components of the decomposition. For a complete
graph Cn, where the set of expansion coefficients is Un, our
definition of graph complexity reduces to the entropy ratio
H (P)/H (Un). Moreover, when β approaches zero or infinity,
we have the following limiting values:

lim
β→0

Bβ(G) = 0 and lim
β→∞

Bβ(G) = 1, ∀ G. (5)

The polytopal complexity is determined by the structure of
the heat kernel and the value of β. To analyze the polytopal
complexity in more detail, we perform the Taylor expansion

Kβ(G) = e−βL = In − βL + β2

2!
L2 − β3

3!
L3 + · · · , (6)

where In is the n × n identity matrix, as limβ→0 Kβ(G) ≈
In − βL. That is, for low values of β the kernel is dominated
by the Laplacian. Under these conditions, the role of In is to
preserve the double stochasticity of the kernel. In terms of
the diffusion process, having Kβ(G) = In at β = 0 means that
every node still retains all its heat (the unit) and therefore the
total heat in the system is n. As In is itself a member of the
set of permutation matrices, its decomposition is trivial and so
Bβ=0(G) = 0.

To understanding the behavior of the polytopal complexity
at large values of β we use the spectral decomposition of the
heat kernel:

Kβ(G) = e−βλ1φ1φ
T
1 + e−βλ2φ2φ

T
2 + · · · + e−βλnφnφ

T
n , (7)

where λ1 = 0 � λ2 � · · · � λn are the ordered eigenvalues
of L and φ1,φ2, . . . ,φn the corresponding eigenvectors. As a
result, for large β the spectrum of Kβ is dominated by the
smallest eigenvalues of L. Since λ1 = 0, and we are dealing
with graphs having only a single connected component (i.e.,
the multiplicity of the smallest eigenvalue is 1), we have
that limβ→∞ Kβ(G) ≈ φ1φ

T
1 + e−βλ2φ2φ

T
2 . Since φi = 1√

n
e,

where e is the all-1 ’s vector of length n, then φ1φ
T
1 = B∗,

the van der Waerden matrix. As a result when β becomes
large enough, say βmax, the diffusion process reaches the
equilibrium state, that is, we have Bβmax (G) ≡ Kβ>0(Cn) = 1.
One consequence of this result is that a complete graph will
have unit polytopal complexity.

The above analysis suggests that the graph complexity
trace Bβ(G) is a signature of the interaction between the heat
diffusion process and the structure or topology of the graph
as β (and thus the range of interactions between vertices)
changes. It can also be interpreted as a trajectory in Bn

between the extreme point given by the identity permutation
PI = In and the barycenter B∗ = Kβ>0(Cn). The typical
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signature is heavy tailed, monotonically increasing from 0 to
β+ = arg max{Bβ(G)}, and either monotonically decreasing
or being stable from β+ to βmax (the smallest β ∈ R+ satisfying
the equilibrium condition). Thus, β+ represents the most
significant topological phase transition regarding the impact
of the diffusion process in the topology of the input graph. For
instance, when comparing star graphs with linear graphs of
the same size n, we have that in the star graph Gstar the central
(salient) node diffuses its heat faster than the remainder of
its n − 1 neighbors. This allows that Bβ+ (Gline) � Bβ+(Gstar),
since all the edges connect one of the n − 1 peripheral nodes to
the salient one, and heat transfer along the edges is isotropic.
This isotropy has two consequences. First, it produces a small
amount of heat in the network before equilibrium is reached.
Second, it results in fast convergence toward equilibrium (the
heat at the salient node reduces toward 1/n faster than the
decrease of the peripheral ones). However, for Gline we have
two salient nodes (the extreme ones) with one edge, and
n − 2 internal nodes with two connecting edges. Heat flows
slowly from the extreme nodes and rapidly from the internal
nodes. As a result heat transfer is anisotropic, and the closer
to one of the extreme nodes the slower the heat transfer.
This implies a higher amount of heat in the network than
in the star case for all β before the equilibrium is reached.
Beyond particular examples, a more formal analysis of the
complexity trace is clearly required. In previous work [31,32]
we show experimental results supporting our hypothesis about
the polytopal complexity trace. However, no characterization
principle has been enunciated so far in order to validate the
latter assumption.

IV. POLYTOPAL VS HEAT FLOW COMPLEXITY

A. Links with matrix permanents

The analysis of the behavior of the diffusion process in
the interval [0,β+) is key to understanding the phase transition
point. In this interval, there is a decreasing number of Kβii

≈ 1
of Kβ(G), and equivalently an increasing number of elements
for which Kβij

= 0, i 
= j , as β increases. This motivates the
analysis of polytopal complexity in terms of the rate of loss
of perfect matchings over this interval. Let A be the n × n

adjacency matrix associated with a given heat kernel Kβij
such

that Aij = 1 if Kβij
> 0, for a given value of β. The permanent

of A is

per(A) =
∑
π∈Sn

n∏
i=1

Aiπ(i), (8)

where Sn is the set of permutations of {1,2, . . . ,n} and π (i) is
the ith element of the π permutation [33]. As each product can
be 1 only when a perfect matching exists in the bipartite graph
induced by A, the overall sum counts the number of perfect
matchings in such a bipartite graph. As Kβ=0(G) = In the
minimum number of perfect matchings in the interval [0,β+]
is 1.

For the sake of polytopal complexity it is useful
to note that ∀ B ∈ Bn : 0 < per(B) � 1 and per(B) = 1 ⇔
B is a permutation matrix. Thus, an alternative definition of
graph complexity relies onB′

β (G) = 1 − per[Kβ(G)] defining

the B′
β(G) profile in [0,βmax]. However, the latter profile is

informative only in the interval [0,β+) and it is typically flat
and equal to 1 for β � β+.

The van der Waerden conjecture, proposed in 1926, states
that ∀ B ∈ Bn : per(B) � per(B∗) ≡ n!/nn and per(B) =
per(B∗) ⇔ B = B∗. The proofs underpinning the latter
conjecture (which embodies a minimization problem and
establishes a minimal value for the permanent) reveal
that the permanent is a mixed discriminant of diagonal
quadratic forms [34]. Mixed discriminants are considered
generalizations of the permanent and rely on determinants.
Valiant [35] proved that computing the permanent is a #P
problem. He also conjectured that the permanent cannot be
computed by circuits of polylogarithmic depth (using a PRAM
model with a polynomial number of processors). This means
that the problem is not in NC: the set of decision problems
decidable in polylogarithmic time on a parallel computer with
a polynomial number of processors. The latter conjecture is
key to understanding not only the hardness of computation of
the permanent, but also to understanding the relation between
NC and #P classes. Mulmuley has explored the determinant
vs permanent problem in the so-called geometric complexity
theory. He has recently shown that #P is not included in
NC [36]. The latter proof relies on showing that the permanent
of an n × n matrix cannot be represented linearly as the
determinant of another matrix of dimension m × m where
m = 2lnan, a > 0. This in turn means that the problem of
computing the permanent of a matrix is highly sequential. In
terms of parallel complexity it is a so-called deep problem.

In practice, one of the best algorithms [37] (the Markov
chain Monte Carlo fully polynomial time approximate
scheme) for computing an approximation of the permanent
takes O(n23) on average only for generating a sample of the
Markov chain on which it it relies. However, when small
graphs are available we may use Ryser’s exact algorithm,
which requires 	(n2n) operations.

The problem of finding per(B) is closely related to
that of finding the maximum entropy (and unique) BvN
decomposition. As pointed out by Slater [38], the problem
of finding such a decomposition is #P hard, since it involves
the computation of matrix permanents. Therefore, finding a
unique BvN decomposition is too hard to do in practice
unless the graph is small or can be simplified (for instance
with the method proposed in [39]). Graph simplification is
required for n � 70 even when we exploit the constructive
proof of the Birkhoff–von Neumann theorem to find one of
the possible decompositions: as the number of iterations of the
BvN decomposition is O(n2) and a Kuhn-Munkres algorithm
[O(n3)] is executed at each iteration, we have an O(n5)
complexity per β value. This complexity precludes the use
of the descriptor for practical analysis of complex networks.
In addition the analysis of phase change is very cumbersome
in the polytopal framework. Thus, a different descriptor,
qualitatively similar but more efficient than the current one,
and also providing a simpler analytical framework, is needed.

B. Heat flow complexity

The connection of a phase change at β+ with the gain
of weighted perfect matchings, and consequently with the
permanents of doubly stochastic matrices, is intriguing. Al-
though it does not yield a practical method for simplifying
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the computation of polytopal complexity, it has inspired the
dynamic analysis of the diffusion flow over the structure as β

changes. As we known, the spectral decomposition of the dif-
fusion kernel is Kβ(G) = exp(−βL) ≡ 
�
T , where � =
diag(e−βλ1 ,e−βλ2 , . . . ,e−βλn ) and 
 = [φ1,φ2, . . . ,φn]. Thus

Kβij
=

n∑
k=1

φk(i)φk(j )e−λkβ, (9)

and Kβij
∈ [0,1] is the (i,j ) entry of a doubly stochastic matrix.

Doubly stochasticity for all β implies heat conservation in
the system as a whole, that is, not only in the nodes and edges
of the graph but in the transitivity links eventually established
between nonadjacent nodes: if i is not adjacent to j , eventually
an entry Kβij

> 0 will appear for a β high enough. The overall
amount of heat is always n = |V |. The way this heat is
diffused for β ∈ [0,βmax] is highly dependent on the structure
of the graph. One of the features of our approach is that we
assimilate the lack of design constraints into simplicity. For
instance, a linear graph of n nodes is more complex than a
complete graph since the number of diffusion constraints is
higher, despite its high two-regularity. A higher number of
diffusion constraints implies the creation of more transitivity
links as β grows. We illustrate this process in Fig. 2 where we
show the heat kernel for a linear graph of n = 100 nodes.

The latter example suggests a simple way of defining a
complexity trace with similar qualitative behavior than the
polytopal one. Such a new trace accounts for the total heat
flowing through the graph at a given β (instantaneous flow),
which is given by

Fβ(G) =
n∑

i=1

n∑
j 
=i

δij

(
n∑

k=1

φk(i)φk(j )e−λkβ

)
, (10)

where δij = 1 if Aij = 1 and δij = 0 otherwise, that is, if
δij = 1 if (i,j ) ∈ E. A more compact definition of the flow is
Fβ(G) = A : Kβ , where X : Z = ∑

ij XijZij = trace(XZT )
is the Frobenius inner product. Instantaneous flow accounts
only for the heat flowing through the edges of the graph, not
for the heat remaining in the nodes nor for that encoding tran-
sitivity links. The limiting cases are F0 = 0 and Fβmax = 2|E|

n
.

Therefore the heat flow complexity Fβ(G) is a β-dependent
function simply defined as the instantaneous flow Fβ(G) al-
though its edge-normalized version Fβ(G) = n/(2|E|)Fβ(G)
can be used for the sake of achieving

lim
β→0

Fβ(G) = 0 and lim
β→∞

Fβ(G) = 1, ∀ G. (11)

Although heat flow complexity, which takes O(n2) for each
β, is not normalized in the same terms as the polytopal
complexity, its complexity trace is qualitatively similar. See
Fig. 3 (center) for typical flow complexity traces corresponding
to subgraphs of a gridlike graph.

C. Characterization of polytopal and flow complexity

Linking formally the complexity traces of both poly-
topal and heat flow complexities allows us not only to
better understand both the heat flow process and matrix
permanents but to justify the use of a simple structural
complexity measure (heat flow trace) in practice. Given an

undirected graph G = (V,E) with node set V (|V | = n)
and edge set E, the existence of a phase-transition point
(PTP) at a β+ � 0 can be inferred from the analysis of
the difference between the sum of off-diagonal elements of
the diffusion kernel Kβ(G) and its trace. For Kβ+(G) we
have

∑n
i=1

∑n
j 
=i Kβ+

ij
< trace(Kβ+) whereas for β > β+ we

always obtain
∑n

i=1

∑n
j 
=i Kβij

� trace(Kβ). This means that
at a PTP the quantity β = trace(Kβ) − ∑n

i=1

∑n
j 
=i Kβij

is
still positive. At K0 = In we have 0 = n and at K∞ = B∗
we obtain ∞ = 1 − (n − 1) = 2 − n. Actually 2 − n may
be reached as soon as the kernel converges to B∗ (reaches the
equilibrium point). Local maxima of β are precluded by the
monotonic nature of the diffusion process and therefore β

is a monotonically decreasing function with a minimum at
equilibrium

The existence of a unique PTP is key to relating heat
flow and maximal entropy, but it is not enough to enunciate
a characterization principle for the change of phase which
involves a dependency between heat flow and entropy. Such a
principle is the phase transition principle.

Phase transition principle. Let β+ > 0 define a PTP. Then,
the heat flow Fβ+ (G) is maximal among all choices of β. This
implies that if Kβ+(G) = ∑γ

α=1 pαPα is the maximum entropy
BvN decomposition for β+ then its entropy, i.e., Hβ+(P) with
P = {p1, . . . ,pγ }, is maximal with respect to all maximum
entropy decompositions in the range [0,βmax].

In other words, flow maximality occurs at β+ as well as
entropy maximality with respect to all BvN maximum entropy
decompositions. For both β < β+ and β � β+ flow maximal-
ity relies on the elements of the kernel matrix associated with
edge links (the first elements in the system receiving heat
from the nodes). When β < β+, elements associated with
edge links must transfer heat to create transitivity links and
consequently the sum of their values decreases with respect
to that at β+. We can write

∑
ij δijKij = A : K , where A is

the adjacency matrix of G. It follows that A : Kβ < A : Kβ+ ,
that is, Fβ+ > Fβ . When β > β+ the individual values of both
diagonal and off-diagonal elements tend to 1/n as β increases.
Elements associated with transitivity links (paths in the graph)
are always smaller than or equal to those associated with
edge links. If the equilibrium is reached later than β, only
off-diagonal transitivity links increase. However, edge links
decrease, which implies A : Kβ+ > A : Kβ , that is, Fβ+ > Fβ .
If equilibrium is reached at β+ we have Fβ+ = 2|E|

n
.

Regarding the implication between flow maximality and
entropy maximality at β+, as entropy maximality is referred
to maximum entropy decompositions in the range [0,βmax] we
link the mechanisms driving a PTP with the dual formulation
of finding the maximum entropy BvN decomposition. From
[40] (Lemma 4) we have that the maximum entropy BvN
decomposition of a DSM B is the solution to the left
optimization problem below (primal), whose dual one is on
the right:

min
∑
α∈Sn

pα(ln pα − 1) max B : Y −
∑

α

eY :Pα

such that
∑

α

pαPα � B such that
∑

α

e(Y :Pα )Pα � B

pα � 0 0 � Y (12)
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FIG. 2. Diffusion process in a linear graph with n = 100 nodes. The horizontal axes are assigned to nodes 1, . . . ,n (therefore the horizontal
plane represents the adjacency matrix). Snapshots taken at β = 0.64, 100, 1000, and 6070 (top left to bottom right). The vertical axis
represents the value of the kernel at a given point. In each case lighter gray means higher Kβij

. In all cases the kernel overlays a contour
plot. Extreme nodes (1 and 100) lose less heat than the rest of the nodes. As β > 0.64 increases, the closer the nodes are to the extremes
the less heat they lose. The true value of βmax is 10 717, which gives an idea of the slow convergence of the diffusion process. In terms
of flow we have Fβ=0.64 = 43.274, Fβ=100 = 6.5185, and Fβ=1000 = 2.7483. For Fβ=6070 = 1.9849 we are close to the equilibrium flow
[(2 × 99)/100 = 1.9800].

where Sn is the set of permutations of {1,2, . . . ,n}, and Y ∈
Rn×n is the matrix of Lagrange multipliers each corresponding
to one constraint (component) in B = ∑

α pαPα . Although
the primal problem (left) is relaxed in the sense that equality
in

∑
α pαPα � B is not required, the proof in Lemma 4

in [40] (see Appendix B.3) shows that it is impossible to have∑
α pαPα < B for the optimal solution. Consequently, the

relaxed primal problem shares its optima with the nonrelaxed
one. Anyway both problems are #P hard since

∑
α eY :Pα =

per(eY ) (componentwise exponentiation). Therefore, the anal-
ysis of the second element of the phase transition principle
(flow maximality–entropy maximality implication) relies on
the analyis of how the Lagrange multipliers in Y interact with
the the diffusion process encoded in Kβ = B at the optimal

solutions (maximum entropy decompositions). For instance,
as in the dual problem we must maximize Kβ : Y − ∑

α eY :Pα ,
we have that the optimal choice of the multipliers actually
maximizes Kβ : Y − 1. In addition, the relaxed formulation
of the primal leads to bounding the optimal multipliers in the
sense that −n ln n � Kβ : Y � 0 and 0 � Yij � −n ln n

kmin
where

kmin = minij {Kβij
}. Therefore, we reduce our analysis to

ensure that −n ln n � Kβ : Yβ < Kβ+ : Yβ+ � 0 for β 
= β+
in order to verify the flow maximality–entropy maximality im-
plication. This rationale is driven by analyzing the possibility
of assigning close-to-zero multipliers to the maximum number
of kernel elements in order to maximize the Frobenius product.
The number of available close-to-zero multipliers decreases as
β increases, although this does not preclude having a maximal
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Kβ : Yβ at β+. The lower bound of Kβ : Yβ for a diffusion
process occurs at β = βmax, and it is Kβmax : Yβmax = − ln n.

V. HEAT FLOW–THERMODYNAMIC
DEPTH COMPLEXITY

The application of the thermodynamic depth to characterize
network complexity demands the formal specification of
the microstates whose history leads to the macrostate (of
the network). Here we define such microstates in terms of
expansion subgraphs.

A. Node history, expansion subgraphs, and causal trajectories

Let G = (V,E) with |V | = n. The first-order expansion
subgraph of a given node i ∈ V is given by i, its neighbors, and
the edges connecting them. Then the history of a node i ∈ V

is hi(G) = {e(i),e2(i), . . . ,ep(i)} where e(i) ⊆ G is the first-
order expansion subgraph given by i and all j ∼ i, e2(i) =

e(e(i)) ⊆ G is the second-order expansion consisting of z ∼
j : j ∈ Ve(i), z 
∈ Ve(i), and so on until p cannot be increased.
If G is connected ep(i) = G, otherwise ep(i) is the connected
component to which i belongs.

Every hi(G) defines a different causal trajectory leading
to G itself, if it is connected, or to one of its connected
components otherwise [see Fig. 3 (left) for a connected
graph]. Thus, in terms of the TD the full graph G or
the union of its connected components is the macrostate
(macroscopic state). The depth of such a macrostate relies
on the variability of the causal trajectories leading to it. The
higher the variability, the more complex it is to explain how the
macrostate is reached and the deeper is this state. Therefore,
in order to characterize each trajectory we combine the heat
flow complexities of its expansion subgraphs by means of
defining minimal enclosing Bregman balls (MEBBs) [41].
Bregman divergences DF define an asymmetric family of
similarity measures, each one characterized by a strictly
convex generator function F : X → R+, where X ⊆ Rd

FIG. 3. Computing heat flow and thermodynamic depth for a four-connected grid graph of n = 25 nodes. Left column: expansion subgraphs
and node histories at nodes 1 (top), 11 (middle), and 13 (bottom); in each case we show the first-order expansion subgraph in black, the next
one in dark gray, and so on. Center column: Minimum enclosing Bregman balls for the histories of these nodes with their radii; in each case, the
center of the ball (in bold) and the boundaries (given by the support vectors) are heat flow complexity traces inferred from the corresponding
node history. Right column, top: projecting f ∞ (van der Waerden trace) on the Bregman ball given by the centers of all the n = 25 balls. Right
column, bottom: plot of Bregman ball radii (BB r) corresponding to all node histories; symmetry is given by the structure and the maximal
radii correspond to nodes 1, 5, 21, and 25 (the four corners).
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is a convex domain and d the data dimension (in this
case the number of discretized β diffusion times). Given
two patterns (discretized functions in this case) �f and �g,
DF ( �f ||�g) = F ( �f ) − F (�g) − ( �f − �f )T �∇F ( �f ). Here, we
use the I–Kullback-Leibler (I-KL)divergence DF ( �f ||�g) =∑d

i=1 fi ln fi

gi
− ∑d

i=1 fi + ∑d
i=1 gi with F ( �f ) = ∑d

i=1

(fi ln fi − fi) (unnormalized Shannon entropy) which yields
better results (more representative centroids of heat flow
complexities) than other divergences or distortions like that of
Itakura and Saito. When using the I-KL divergence in Rd , we
have that �∇F (fi) = lnfi and also that �∇−1F (fi) = efi . Using
these formal ingredients we define the causal trajectory in
terms of MEBBs.

Given hi(G), the heat flow complexity �ft = f (et (i)) for the
t th expansion of i, a generator F , and a Bregman divergence
DF , the causal trajectory leading to G (or one of its connected
components) from i is characterized by the center �ci ∈ Rd and
radius ri ∈ R of the MEBB B�ci ,ri = { �ft ∈ X : DF (�ci || �ft ) �
ri}. Solving for the center and radius implies finding the �c∗

and r∗ that minimize r subject to DF (�ci || �ft ) � r ∀ t ∈ X with
|X | = T . Considering the Lagrange multipliers αt , we have
that �c∗ = �∇−1F [

∑T
t=1 αt

�ft
�∇F ( �ft )]. The efficient algorithm

in [41] estimates both the center and multipliers. This idea
is closely related to core vector machines [42], and it is
interesting to focus on the nonzero multipliers (and their
support vectors) used to compute the optimal radius. More
precisely, the multipliers define a convex combination and we
have αt ∝ DF (�c∗|| �ft ), and the radius is simply chosen as r∗ =
maxαt>0 DF (�c∗|| �ft ). In Fig. 3 (center) we show some Bregman
balls corresponding to different nodes of a four-connected grid
graph.

B. Thermodynamic depth of a network

Given G = (V,E), with |V | = n and all the n pairs
(�ci,ri), the heat flow–thermodynamic depth complexity of G is
characterized by the MEBB B�c,r = {�ct ∈ Xi : DF (�c||�ci) � r}
and Dmin = minf ∈B�c,r DF (f ∞||f ), where f ∞ = f (B∗) ∈ Rd

is the van der Waerden complexity trace. As a result, the TD
depth of the network is given by D(G) = r × Dmin.

The above definitions of complexity and depth are highly
consistent with the summarizing of node histories to find a
global causal trajectory which is as tightly bounded as possible.
Here, r quantifies the historical uncertainty: the smaller r

the simpler (shallower) is G. However, this is not sufficient
for structures because many networks with quite different
complexities may have the same value of r . Therefore, we
define the depth of the network complementing randomness
as suggested in the thermodynamic depth approach. In our
case, the projection of f ∞ on the MEBB preserves the
definition of entropy in terms of the distance to the uniform
distribution [see Fig. 3 (left)]. The combinations or hierarchies
of MEBBs have proved to be more effective than ball trees for
nearest-neighbor retrieval [43]. In the computation of depths,
the Legrendre duality (convex conjugate) is key because it
establishes a one-to-one correspondence between the gradients
�∇F and �∇F−1 due to the convexity of F . Therefore, the
Bregman projection f of f ∞ on the the border of B�c,r lies on
the curve f −1

θ = θ �∇F (�c) + (1 − θ ) �∇F (f ∞) with θ ∈ [0,1]

and fθ = �∇−1F (f −1
θ ). The projection f be easily found

(approximately) through bisection search on θ .
Although we use the heat flow complexity trace for building

the Bregman balls, the thermodynamic depth approach can be
applied to any structural complexity measure (we will compare
some of them in the experimental section) provided that we
redefine f ∞ properly. One key ingredient of our proposal,
which is especially useful when the basic complexity measure
(e.g., heat flow trace) is based on spectral-graph theory, is
the way we build node histories. As node histories rely on
extending subgraphs and then computing the basic measure,
if such a measure is spectral based this precludes many
problems derived from isospectrality. In addition, as only the
variability of the centers is considered, the thermodynamic
depth approach introduces partial graph size independence
(graphs with more nodes than others do not have necessarily
higher complexity).

VI. COMPLEXITY OF PROTEIN-PROTEIN
INTERACTION NETWORKS

A. Experimental setup

We have designed an experiment using PPIs extracted from
STRING 8.2 [44]. This tool allows the user to select a protein
and then a species (typically bacteria). In our experiments we
are interested in both histidine kinase, a key protein in the
development of signal transduction, and bacteria. Given the
histidine kinase and the bacteria species we can select one of
the proteins of the same family (query protein) and then STRING

composes a PPI network centered in that protein. We consider
only links based on physical and functional interactions.
Other settings are the selection of high-confidence interactions
(�0.7), a maximum of 50 interactions per node, and a
network depth of 5. The default parameters are (a) medium
confidence (�0.4), (b) a limit of 10 interactions (degree),
and (c) network depth 1. These parameters yield networks
that are too small for significant complexity comparisons, and
this problem is exacerbated when we increase the confidence
parameter. Increasing network depth, on the other hand, allows
us to obtain more neighbors with a confidence above the
threshold. Thus, in our experimental setting, we operate with
the confidence close to its maximum value (�0.7 vs �0.9)
in order to capture useful internode relations. We also set the
maximum number of interactions to be 50 and the maximum
depth to be 5.

In a first test, we consider PPIs related to histidine kinase
corresponding to ten species belonging to ten phyla of bacteria.
We select subjectively three PPIs (simple, complex, and more
complex) from each species and compute their TDs. In 70%
of the cases, the TD matches intuition. When comparing with
Estrada’s early spectral homogeneity descriptor [45], we also
find that the ratio between intraclass and interclass variability
is slightly better (smaller) for the TD (0.6840 vs 0.7383).

Our main experiment consists of analyzing 217 PPIs,
related to histidine kinase, from six different groups (all the
PPIs in the same group correspond to the same species)
with the following evolutionary order (from older to more
recent): Aquifex, 4 PPIs from Aquifex aeloicus; Thermotoga,
4 PPIs from Thermotoga maritima; Gram positive, 52 PPIs
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from Staphylococcus aureus; Cyanobacteria, 73 PPIs from
Anabaena variabilis; and Proteobacteria, 40 PPIs from Aci-
dovorax avenae. There is an additional class (Acidobacteria,
46 PPIs) which has been more controversial in terms of
bacterial evolution since their discovery [46]. There are
studies which relate many of them to different subphyla of
Proteobacteria (see [47]) and also to Actinobacteria [48].
However, the Candidatus Koribacter genus of Acidobacteria
is not included in the latter classifications [47]. One of them is
the Candidatus Koribacter versatilis Ellin345, despite being
Gram negative like some Proteobacteria. In addition, Ellin345
has been recently placed very early in the phylogenic tree [49].
In Table I we show the origin of all the 217 PPIs analyzed in
this experiment, including the ones related to Ellin345. In
Fig. 4 we show one example of PPI corresponding to each
of the six species with their complexities obtained with our
method.

B. Experimental results

In order to provide a fair comparison of our method (heat
flow and thermodynamic depth) with previous measures of
structural complexity we have chosen three spectral methods
from the literature (Estrada’s network heterogeneity index
[24], Laplacian energy [23], and von Neumann entropy [5,6]).
We have also embedded them in the thermodynamic depth
approach. We choose f ∞ such that for each of the measures
f ∞ = f (B∗), to compute a complexity trace from the van
der Waerden matrix. Unfortunately, this makes no sense
in the case of the Estrada heterogeneity index since f ∞
is always zero. In this case we have chosen f ∞ = f (G),
that is, the complexity of the macrostate. In the case of
both the Laplacian energy and the von Neumann entropy
we have chosen f ∞ = f (Cn), that is, the corresponding
measure of the complete graph, since both quantities rely on
the Laplacian spectrum. The difference between this choice
and f ∞ = f (B∗) is simply a scale factor since all of the
nonzero Laplacian eigenvalues are equal for a complete graph
(uniformly attributed or nonattributed). However, we prefer
to take f ∞ = f (Cn) because both measures (the Laplacian
energy and the von Neumann entropy) rely on the volume
of the graph 2|E|, and we are working with nonattributed
graphs.

Before addressing the main experimental evaluation in this
paper, we provided the results of a toy experiment for the
purposes of illustration. To this end we analyze the graphs
shown in Fig. 1 using the complexity measures discussed
above and incorporated into the proposed TD framework.
We commence by reminding the reader of the mathematical
definition of each measure studied. Given a graph G = (V,E),
the Estrada heterogeneity (EHN) index is formally defined
as IEHN(G) = ∑

i∼j (d−1/2
i − d

−1/2
j )2, where di and dj are

the degrees of the adjacent vertices i and j . The Laplacian
energy (LEN) is defined as ILEN(G) = ∑n

i=1 |λi − 2|E|/n|
where n = |V | and λi are the eigenvalues of the graph
Laplacian. Similarly, the von Neumann entropy (VNE) is
IVNE(G) = −∑n

i=1
λi

2|E| log2
λi

2|E| with the same eigenvalues
as ILEN(G). In Table II, where the values inconsistent with
regularity are shown in bold, we show the TD complexities
for each complexity measure on each graph. The table shows

that the heat diffusion is consistent with regularity. However
the EHN index is consistent only at high complexities, and
underestimates in the mid to high and mid to low complexity
ranges. Both the LEN and VNE indices are coherent neither
at high complexity (which is underestimated) nor at mid to
low complexity (which is overestimated). The EHN descriptor
is highly dependent on the number of edges and this usually
produces a large variability (within the TD process) for highly
connected networks, such as Grid8N10 which has mid to high
complexity. The underestimation of the complexity of Line10
is due to the fact that almost all histories have similar EHN
variability, which implies that the final TD variability is low.
Both the LEN and VNE measures rely on deviations either
from the average degree 2|E|/n (LEN) or the volume 2|E|
(VNE) of the graph. The eigenvalues of the Laplacian satisfy
the trace condition

∑n
i=1 λi = 2|E|. As a result both the LEN

and VNE indices depend on the global network parameter
(2|E|), which is not always correlated with regularity. This
limits their ability to capture finer variations in complexity.
For instance, the VNE measure returns the same complexity
for regular and complete graphs only for large n, while the LEN
index returns the graph energy

∑n
i=1 |λi | for regular graphs.

This lack of flexibility is also observed in the experimental
results for PPIs reported later in this paper.

As we have different TD complexities for each method,
histogramming reveals typically long tailed distributions with
most of the TDs concentrated at a given point. Are these
points ordered according to the evolutive order? This question
can be answered by studying the cumulative distributions
instead of the probability density functions (Fig. 5 where the
abscissa bounds are set in order to improve the results of
each method). In this case, reaching the top (cumulative = 1)
soon indicates low TD whereas reaching it later indicates high
TD. This rationale motivates the measurement of the area
under the curve (AUC) for each of them: the greater the AUC
the (statistically) simpler the PPIs. We show these AUCs in
Table III where incorrect (not coherent with evolution) figures
are shown in bold type. The joint analysis of both the cumula-
tives and their AUCs shows that the TD–heat diffusion measure
yields the correct results; it is followed by TD–Estrada’s
heterogeneity which underestimates the complexity of both the
Gram-possitive and Acidobacteria species. The TD–Laplacian
energy measure overestimates the complexity of Thermotoga,
Aquifex, and Proteobacteria, whereas it underestimates that
of Acidobacteria. Finally, the TD–von Neumann entropy
measure overestimates the complexity of Thermotoga and
Aquifex and underestimates that of Acidobacteria.

The results obtained above are consistent with the degree
dependency between network size and complexity correspond-
ing to each method. As we show in Fig. 6, the two best
methods (heat flow and heterogeneity) are quite independent of
size, whereas the others (Laplacian energy and von Neumann
entropy) are high dependent on the size of the network. As we
show in Table I, most of the PPI classes are quite heterogeneous
(high deviation), and there are networks which are smaller than
others but more complex, and vice versa (see Fig. 4).

Thus, we can conclude that TD combined with heat flow
is a good tool in principle for analyzing the complexity of
networks.
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TABLE I. Table with the bacterial species studied in our main experiment (first column). We include the mean and deviation of the PPI size
(second column) and all the query proteins used (their respective numbers of nodes are inside parentheses) for building PPIs with the settings
described in text.

Species Sizea Proteinsb

Aquifex aeolicus 204.2500 ± 2.7538 TM 0127(201) TM 0400(203) TM 0853(207) TM 1258(206)
Thermotoga maritima 206 ± 3.1623 hksP1 (210) hksP2 (207) hksP3 (203) hksP4 (204)
Staphilococcus aureus 75.6346 ± 67.1203 MW0199 (48) NWMN 1327 (200) NWMN 1741 (54) NWMN 2523 (14)

SA0216 (39) SAB0162c (46) SAB1782c (56) SAB2499c (50) SACOL0202 (50)
SACOL1739 (201) SACOL1906 (54) SACOL2645 (15) SAOUHSC 00185 (48)
SAOUHSC 01799 (109) SAOUHSC 01981 (40) SAOUHSC 02099 (202)
SAOUHSC 02955 (14) SAR0215 (43) SAR1940 (54) SAS0199 (49) SAS1770 (34)
SAUSA300 0218 (45) SAUSA300 1799 (52) SAUSA300 2558 (14) SAV0224 (35)
SAV1321 (204) SAV1849 (205) SAV2624 (205) SaurJH1 0214 (46)
SaurJH1 1937 (42) SaurJH1 1973 (186) SaurJH9 0058 (31) SaurJH9 0208 (30)
SaurJH9 0245 (16) SaurJH9 0729 (32) SaurJH9 1475 (32) SaurJH9 1749 (37)
SaurJH9 1903 (17) SaurJH9 1939 (32) SaurJH9 2115 (22) SaurJH9 2647 (18)
arlS (109) graS (32) hssS (109) kdpD (44) lytS (18) nreB (137) phoR (200)
saeS (112) tycG (206) vraS (202) yhcS (43)

Anabena variabilis 75.4521 ± 68.4091 Ava 0024 (66) Ava 0055 (238) Ava 0062 (224) Ava 0064 (20) Ava 0066 (33)
Ava 0066 (33) Ava 0355 (16) Ava 0413 (66) Ava 0505 (224) Ava 0521 (66)
Ava 0612 (31) Ava 0647 (211) Ava 0792 (54) Ava 0799 (153) Ava 1003 (13)
Ava 1005 (13) Ava 1149 (13) Ava 1149 (13) Ava 1168 (31) Ava 1175 (207)
Ava 1191 (101) Ava 1210 (66) Ava 1486 (16) Ava 1559 (13) Ava 1628 (17)
Ava 1719 (16) Ava 1954 (66) Ava 2027 (55) Ava 2149 (66) Ava 2152 (66)
Ava 2176 (66) Ava 2328 (24) Ava 2420 (17) Ava 2439 (214) Ava 2466 (80)
Ava 2524 (167) Ava 2562 (52) Ava 2563 (36) Ava 3003 (9) Ava 3004 (13)
Ava 3207 (66) Ava 3226 (202) Ava 3368 (60) Ava 3467 (204) Ava 3526 (66)
Ava 3721 (66) Ava 3779 (224) Ava 3850 (47) Ava 3852 (41) Ava 3854 (35)
Ava 3865 (31) Ava 4086 (31) Ava 4135 (43) Ava 4136 (66) Ava 4267 (66)
Ava 4305 (66) Ava 4325 (13) Ava 4326 (17) Ava 4343 (13) Ava 4345 (13)
Ava 4401 (66) Ava 4432 (44) Ava 4433 (66) Ava 4457 (202) Ava 4696 (36)
Ava 4723 (208) Ava 4723 (40) Ava 4783 (40) Ava 4885 (66) Ava 4928 (205)
Ava B0028 (37) Ava B0190 (101) Ava B01974 (101) Ava B0208 (55)
Ava C0117 (32)

Acidovorax avenae 132.7556 ± 85.4209 Aave 0042 (161) Aave 0173 (126) Aave 0317 (6) Aave 0867 (202) Aave 0874 (204)
Aave 0905 (205) Aave 1122 (8) Aave 1444 (208) Aave 1494 (9) Aave 1948 (211)
Aave 2036 (56) Aave 2118 (201) Aave 2218 (76) Aave 2236 (231) Aave 2267 (203)
Aave 2461 (207) Aave 2525 (27) Aave 2535 (25) Aave 2632 (205) Aave 2974 (232)
Aave 2975 (155) Aave 2976 (155) Aave 3001 (149) Aave 3093 (230)
Aave 3275 (161) Aave 3541 (203) Aave 3564 (26) Aave 3778 (3) Aave 3863 (8)
Aave 3993 (204) Aave 3996 (204) Aave 4137 (202) Aave 4230 (8) Aave 4320 (21)
Aave 4378 (220) Aave 4381 (8) Aave 4526 (209) Aave 4637 (161) Aave 4654 (201)
Aave 4732 (206)

Acidobacterium sp. 84.5435 ± 73.6875 Acid345 0310 (118) Acid345 0375 (150) Acid345 0419 (20) Acid345 0474 (136)
(Ellin345) Acid345 0507 (6) Acid345 0508 (6) Acid345 0821 (48) Acid345 0843 (20)

Acid345 0938 (8) Acid345 0973 (77) Acid345 1393 (203) Acid345 1524 (215)
Acid345 1590 (202) Acid345 1659 (29) Acid345 1692 (90) Acid345 1733 (24)
Acid345 1771 (209) Acid345 1812 (8) Acid345 1814 (8) Acid345 2403 (30)
Acid345 2411 (106) Acid345 2412 (140) Acid345 2442 (39) Acid345 2554 (25)
Acid345 2603 (53) Acid345 2781 (140) Acid345 2895 (185) Acid345 2989 (210)
Acid345 3062 (201) Acid345 3087 (77) Acid345 3100 (29) Acid345 3292 (20)
Acid345 3488 (20) Acid345 3503 (104) Acid345 3712 (128) Acid345 3715 (20)
Acid345 3749 (40) Acid345 3837 (20) Acid345 3845 (7) Acid345 4032 (210)
Acid345 4055 (91) Acid345 4063 (120) Acid345 4169 (206) Acid345 4289 (77)
Acid345 4461 (7) Acid345 4561 (7)

aμ ± σ .
bWith |V | in parentheses.
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FIG. 4. PPI examples for protein histidine kinase. From top left to bottom right: Aquifex (hksP2, 207 nodes, TD = 57.8926),
Thermotoga (TM 0127, 201 nodes, TD = 69.2323), Gram positive (SaurJH1 1973, 186 nodes, TD = 85.6689), Cyanobacteria (Ava 0062,
224 nodes, TD = 4.6383), Proteobacteria (Aave 0867, 202 nodes, TD = 58.3774), and Acidobacteria (Acid345 0474, 136 nodes, TD =
618.1457).
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FIG. 5. Cumulatives for heat flow (top left), Estrada’s heterogeneity (top right), Laplacian energy (bottom left), and von Neumann entropy
(bottom right).

VII. CONCLUSIONS

In this paper, we have proposed and successfully tested a
measure of graph complexity: the heat flow–thermodynamic
depth measure. We have characterized formally its link with
Birkhoff polytopes and polytopal complexity, also defined
in this paper. The link is given by the assimilation of
high-entropic decompositions to maximal flow but it has
been derived through exploring the connections between

TABLE II. Comparison of complexity measures after use of TD.

Graph Heata EHNb LENc VNEd

Gauss10 12.8965 6.3599 0.0777 0.0016
Grid4N10 0.6983 5.83 × 10−5 0.1102 0.0103
Grid8N10 0.5054 0.0011 0.0123 0.0034
Line10 0.1509 0.0000 0.1016 4.2623
Circle10 0.0000 0.0000 0.0000 0.0000

aHeat flow.
bEstrada’s heterogeneity.
cLaplacian energy.
dVon Neumann entropy.

polytopal complexity and matrix permanents, and also by
analyzing the dynamics of heat diffusion in graphs. In addition
we have also proposed a thermodynamic depth theoretical
framework for embedding any structural complexity measure.
This framework reduces the risk of isospectrality when
measures inspired in spectral-graph theory are used. We
compare our method with three other methods in the literature:
Estrada’s heterogeneity, the Laplacian energy, and the von

TABLE III. Table of AUCs.

Bacteria Heata EHNb LENc VNEd

Aquifex and Thermotoga 93.29% 94.44% 77.93% 34.09%
Gram positive 91.33% 94.61% 88.85% 62.00%
Cyanobacteria 86.42% 79.94% 83.00% 59.49%
Proteobacteria 75.70% 70.62% 88.86% 48.20%
Acidobacteria 91.39% 96.77% 91.10% 61.00%

aHeat flow.
bEstrada’s heterogeneity.
cLaplacian energy.
dVon Neumann entropy.
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FIG. 6. Network size vs complexity ln-ln plots for heat flow (top left), Estrada’s heterogeneity (top right), Laplacian energy (bottom left),
and von Neumann entropy (bottom right). In all cases the natural logarithm is used.

Neumann entropy. These methods are also embedded in
our thermodynamic depth framework. Our experiments are
addressed to analysis of 217 PPI networks corresponding to
several phyla of bacteria. We find that more evolved species
have (statistically) more complex structure. Both heat flow and
Estrada’s heterogeneity are proved to be quite independent
of network size. Given the relatively good results obtained
with Estrada’s heterogeneity, future work will include a more
in-depth analysis of the formal connections between the two
methods (Estrada’s heterogeneity relies on a quadratic form of
the Laplacian as do the eigenvectors driving heat flow). Finally,
since obtaining both the flow and the node histories are highly

parallel processes, we will also investigate estimating the NC
computational complexity for the proposed method.
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