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ABSTRACT

The work presented in this thesis focuses on the classical problem of gravity-driven

thin films flowing over rigid substrate. Two problems are considered, the formation

of rivulets at the advancing front of a spreading liquid and the inner flow structures

formed when a continuous fluid film flows over a substrate on whose surface topo-

graphical features are present. The governing equations for each problem are thus

formulated in two distinct forms: one using the long-wave approximation theory

and the other the full Navier-Stokes and continuity equations. Accordingly, two

state-of-the-art computational methodologies are developed and utilised to extract

tractable numerical solutions from the two equation sets.

The first problem of rivulet formation, explored using an error-controlled adaptive

multigrid method to solve the lubrication equations, builds on the seminal work of

Huppert (1982). By constructing a systematic and thorough data set for both fully

and partially wetting liquids, a new expression for the wavelength of the rivulet pat-

tern is obtained incorporating the wetting properties of the film. Long-time solu-

tions uncover the transient dynamics that are associated with rivulet formation such

as the merging of neighbouring fingers. The study is extended to consider film flow

on the outer and inner surfaces of a cylinder; curvature effects becoming prevalent

as the radius of the cylinder decreases. The cylinder’s circumference counter-acts

curvature effects in that at a critical value, the evolution of the contact line is re-

stricted to a single rivulet. The impact of surface heterogeneities (topographic and

chemical), as well as the presence of surface tension gradients, on rivulet evolution

is also explored.

Distinctly different in focus, the induction of the transport of liquid from separated

re-circulating regions in the valleys of substrate topography is investigated. Results

from this preliminary work demonstrate how pulsed surface waves passing over the

topography to break the symmetry and excite the separatrix, forming lobes which

transport liquid across the boundary between the bulk and eddy flow. Using particle
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tracking calculations to visualise this phenomena reveals the dependence of the

transport enhancement on the size of the free-surface disturbance created.
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1.1 Motivation

The deposition of thin liquid films is common place in many manufacturing pro-

cesses and understanding the underlying physics that determine the quality of the

final coating is vital in achieving even, defect-free surfaces. For example, the coat-

ing of devices such as television screens and microchips is required in a fast, contin-

uous manner with a final uniform, defect-free surface being the goal. Such features

are also encountered in medical and naturally-occurring phenomenon and thus the

study of coatings encompasses a wide-range of applications and so garner much at-

tention from the research community at large, a comprehensive summary of which

can be found in the review paper by Craster and Matar (2009).

Much research has been undertaken and understanding achieved regarding thin film

flows on flat, homogeneous substrates driven by gravity (Huppert, 1982), ther-

mal/surface tension gradients (Cazabat et al., 1990) or forces induced by spin-

coating (Melo et al., 1989). Flow on more complex, heterogeneous geometries con-

taining topographical features or made up of different chemical compounds giving

rise to a variation in wetting properties leads to considerable challenges both ex-

perimentally and computationally. To fully understand coatings in a manufacturing

context, and the many others besides including those encountered in the field of

microfluidics Lin (2011), it is necessary to address the role the wetting properties

of the fluid, surface heterogeneities and topographies play in determining the final

surface coverage. Uniform coverage determines the success and quality of a prod-

uct, for instance when depositing an anti-reflective coating of a television screen a

defect-free final surface is essential as is the case when creating electronic wafers

(Schwartz et al., 2004).

Engineering processes involving the manufacture of various devices where the coat-

ing flows of interest are a key component include a wide-range of industries. Exam-

ples of which include, the manufacture of micro-scale sensors (Menetrier-Deremble

and Tabeling, 2006), heat exchanger devices (Focke and Knibbe, 1986), the pro-
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duction of distillation trays (de Santos et al., 1991; Stone et al., 2004), flat-bed

perfusion chambers (Horner et al., 1998), the optimal design for aeroengine bear-

ing chambers (Baxter et al., 2010) and the de-icing of aircraft wings (Fitt and Pope,

2001). Designing efficient inkjet printers also requires the understanding of liquid

motion, specifically droplet spreading, on substrates (Castrejon-Pita et al., 2011;

Xiao et al., 2012). Coatings are also at the forefront of future technology that looks

to address the increasing energy consumption in the modern world; for instance, the

development of OLEDs (organic light-emitting diodes) that may be used in moni-

tors and other electronic devices and which run with less energy needs than standard

LEDs (Peters et al., 2013), or the development of solar power cells, which require

an in-depth knowledge of the complex coating process involved (Wengeler et al.,

2013).

Natural surfaces often have a much less uniform geometry containing random to-

pographies which adds to the complex and fascinating dynamics that are induced.

Medically, the understanding of how surfactants affect the spreading of a liquid film

on the lungs is essential in treating respiratory distress syndrome (RDS) (Matar and

Troian, 1999; Yong Liang et al., 2002), also the coating of flexible tubes (Grotberg,

1994) and the motion of other linings. From an agricultural perspective maximal

coverage of a leaf surface with pesticide solutions (Glass et al., 2009) is vital in

terms of pest control. Other examples include the lubricant film between the head

and the cup of a hip replacement joint (Gao et al., 2007; Meng et al., 2011), the mo-

tion of a tear film on a contact lens (Nong and Anderson, 2010) and the formation

of biofilms (Duddu et al., 2009).

In the natural world major environmental events such as lava flow (Balmforth and

Craster, 2000) and the movement of glaciers and ice sheets (Craster and Matar,

2009) can be though of as thin film phenomenon.

The work in this thesis focuses on two diverse characteristics of thin-film coatings;

the formation of fingers (rivulets) at the advancing front of a spreading film and

the inner flow structure of a continuous liquid film flowing over topography. What
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follows is a review of related work present in the literature, both theoretical and ex-

perimental. The stability of thin-films driven by gravity is considered in Section 1.2,

including the theoretical and experimental observations of the rivulet phenomenon

which forms a major part of this thesis. Flow on real surfaces is reviewed in Sec-

tion 1.3 and the disturbance of flow over topography summarised in Section 1.3.1,

focusing on how eddy structures found in the liquid are altered which can enhance

inner flow transport. Lastly, an outline for the content of the thesis itself is given,

Section 1.4.

Subsequently, Section 3.1 gives a summary of the common approaches adopted

for the numerical investigation of thin-film flow both the long-wave approximation

(Oron et al., 1997) and the full Navier-Stokes and continuity equations.

1.2 Stability of thin-films

Stability considerations are important to understand the parameter space within

which a stable flow can be established. The results of such analytical and numeri-

cal calculations, as well as corresponding experimental observations, can be used to

guide the design of engineering processes or manufactured fluids such as pesticides.

1.2.1 Surface waves and topography

Early work on stability considered two-dimensional gravity driven flow on an in-

clined flat substrate establishing the existence of a critical Reynolds number,Recrit =

5
4

cotα, where α is the angle of inclination, beyond which the flow is unstable to

long waves, see Yih (1963); Chang (1994). These findings have been verified ex-

perimentally by Liu and Gollub (1993, 1994) and Alekseenko et al. (1994) who

demonstrated the increasing amplitude of noise-driven surface waves with increas-

ing inertia in a falling film.
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The influence of inertia and topography has been investigated in a number of exper-

imental studies; there is a strong-coupling between both inertia and topography in

gravity-driven flow over a substrate having periodic spanwise topographic features,

see Vlachogiannis and Bontozoglou (2002); Wierschem et al. (2005). Topography

is found to have a stabilising effect on the flow if significantly steep; in the classi-

cal step-down topography problem, the capillary ridge generated by this feature is

stable for a wide range of parameters due to surface tension and pressure gradients

induced by the substrate geometry (Kalliadasis et al., 2000; Kalliadasis and Homsy,

2001; Davis and Troian, 2003). Trifonov (2007) showed, for corrugated geometry

within a certain range of amplitude and wavelength, that infinitesimal disturbances

decay - outside this range the flow is unstable.

Other effects that influence the stability of gravity-driven film flow include insol-

uble surfactant which has been shown to raise the critical Reynolds number, such

that Recrit = 5
4

cotα + 15Ma
8Ca

, Blyth and Pozrikidis (2004). Marangoni instability

has been observed in thermocapillary driven flows, often manifesting itself as rup-

tures in the free-surface, as discussed by Davis (1987) and shown theoretically by

Burelbach et al. (1988) and experimentally by Burelbach et al. (1990).

The recent work of D’Alessio et al. (2009, 2010); Ogden et al. (2011) have ex-

tended the knowledge of stability for film flow over undulating substrates. While

stabilising the flow at moderate surface tension values, it was found that the bottom

topography destabilises the flow at larger surface tension (D’Alessio et al., 2009).

When the substrate is heated the same observation is reported; however heating

plays a destabilising role on both flat and undulating surfaces (D’Alessio et al.,

2010). If the substrate is porous then the interaction of heating and permeability

effects destabilise the flow; both factors are also individually responsible for further

destabilising the flow if they are increased in magnitude (Ogden et al., 2011).



6

FIGURE 1.1: Rivulet formation as demonstrated by Huppert (1982); finger shaped fluid
channels growing from the advancing front of (e) silicone oil and (g) glycerin.

1.2.2 Rivulet phenomena

While much of the literature on the stability of thin film flows is based around sur-

face waves and inertia, there is another classical instability phenomenon which has

garnered some attention within the research community, namely rivulet formation;

these are finger-shaped structures that form at the advancing front of a spreading

liquid film, as shown in the images of Figure 1.1. The instability can influence con-

siderably the efficiency and final surface coverage. More commonly encountered

everyday occurences of rivulets include the pouring of sauce over a pudding or as

seen in the opening credits of a ‘Bond’ film, as shown in Figure 1.2

The seminal work of Huppert (1982) first brought the instability that manifests itself

as rivulets to a wider audience. He found that, after a short time period after release
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FIGURE 1.2: Examples of rivulets encountered when pouring sauce on a pudding or seen
at the famous gun barrel opening sequence in a ‘Bond’ movie.

of a fluid bulk, fingers grew at the subsequent advancing front from the volume of

fluid spreading on an inclined perspex plate. The wavelength of the pattern was

shown to scale linearly with the capillary length of the fluid (Troian et al., 1989).

Following the interest sparked by the early work of Huppert, further experimen-

tal work was undertaken by Silvi and Dussan (1985); de Bruyn (1992); Jerrett and

Bruyn (1992); Veretennikov et al. (1998); Johnson et al. (1999) to name a few. Silvi

and Dussan (1985) followed Huppert’s original work but by considering both par-

tially and fully wetting fluids they observed very different pattern formation when

the wetting properties of the fluids were contrasted. The work of de Bruyn (1992);

Jerrett and Bruyn (1992) continued in the same vain, the fits for the data, of wave-

length and width, were found to have different coefficients for fluids with different

equilibrium contact angles. While such studies have revealed that the wettability

of the coating liquid has a significant impact on the development of rivulets, a rela-

tionship has yet to be obtained that links the fully and partial wetting case in terms

of wavelength, thus building on the work of Huppert (1982).

The usual approach adopted for experimental set ups used to explore rivulet forma-

tion is the release of a large volume of fluid initially confined behind a dam wall,

with the liquid allowed to settle before releasing it; in contrast Johnson et al. (1999)

used a continuous inflow approach and found, so long as a large enough volume of
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fluid is deposited, the results were remarkably similar to the observations of others.

The ability to model this experimental setup with relative ease makes the results

generated in Johnson (1997) the ideal candidate data with which to compare theo-

retical predictions against.

Related theoretical work has mainly concentrated on the associated stability prob-

lem, the base state which exhibits a capillary ridge that forms at the advancing front

(Troian et al., 1989). This ridge is a direct indication of the instability; Troian

et al. (1989) predicted the wavenumber of the manifesting instability, that is the

fastest growing unstable wavenumber, correlated reasonably well with the findings

of Huppert (1982). Bertozzi and Brenner (1997) considered the effect of inclina-

tion angle on the stability of the advancing front; as the inclination angle decreases

the capillary ridge size also decreases until the flow becomes stable at low inclina-

tion angles. Other stability related work is contained in Schmuki and Laso (1990);

Hocking (1990); Spaid and Homsy (1996, 1997); Ye and Chang (1999); Kalliada-

sis (2000); Davis and Troian (2003), and includes considerations of wetting and

viscoelasticity. Hocking (1990) used linear and non-linear stability calculations to

try and understand the delayed on-set of the instability that is seen in Huppert’s

experiments. Hocking (1990) also proposed that the mechanism of the instability

may be the same as Rayleigh-Taylor instability, as motion is driven by gravity and

influenced by surface tension, but modified by contact line and contact angle ef-

fects. Spaid and Homsy (1996) considered the linear stability of Newtonian and

viscoelastic fluids at the contact line, finding that viscoelasticity stabilises the cap-

illary ridge. The issue of contact line modelling was addressed by Davis and Troian

(2003) who introduced a slip model to embody wetting effects; they found that as

the slip length was decreased the magnitude of the instability increased. It should

be pointed out at this stage that in theoretical studies, stability analysis and three-

dimensional simulations, the contact line model employed (slip or precursor film)

does not impact on the results so long as the precursor film height and slip length

are of the same magnitude, see Spaid and Homsy (1996).
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Theoretical studies involving the generation of two and three-dimensional numeri-

cal solutions have also been pursued alongside the above. Schwartz (1989) reported

the first computational results in three-dimensions and found that fingering always

occurs on a vertical plane, and that even at angles less than vertical the front profile

develops sufficiently high curvature so that small disturbances evolve into rivulets.

Subsequent three-dimensional investigations have been relatively sparse, with the

exception of Moyle et al. (1999) and Eres et al. (2000) who began to consider the

incorporation of wetting effects; rivulets developing at the front of a partially wet-

ting fluid were seen to grow faster than for a fully wetting one. A large bulk of

related literature is made up from the work of Kondic and Diez (Diez et al., 2000;

Diez and Kondic, 2001b, 2002; Kondic and Diez, 2001; Kondic, 2003; Kondic and

Diez, 2004, 2005); their findings (Kondic and Diez, 2001) being in good agreement

with the experimental work of Johnson et al. (1999). Their attention was directed

in addition to the case of patterned surfaces and how these can influence the wave-

length of the instability that emerges; this is discussed in more detail subsequently.

Their main finding for planar substrates was that the length of the rivulets is limited

at all inclination angles below the vertical, Kondic and Diez (2005).

While there has been much attention to rivulet formation on a flat inclined plane

there is still much dispute over the wavelength that emerges naturally. While there

is some consensus that the wavelength scales linearly with capillary length (Hup-

pert, 1982; Troian et al., 1989) other models have been devised which depend on

different powers of the associated capillary number (Jerrett and Bruyn, 1992; John-

son et al., 1999). There has also been very little attention paid to the impact of

wetting dynamics at the advancing front and the influence this has on the wave-

length, despite the observations of Silvi and Dussan (1985), see Section 1.3.

The rivulet instability occurs in a diverse range of situations other than the gravity-

driven setting; the spin-coating of a drop of liquid, which is a process used within

manufacturing, see for instance Melo et al. (1989); Fraysse and Homsy (1994);

Wang and Choud (2001), also induces a rivulet type instability. Thermally-driven
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films have also been shown to develop fingers (Cazabat et al., 1990; Kataoka and

Troian, 1997) and those containing surfactants (Matar and Troian, 1999; Warner

et al., 2004a,b; Edmonstone et al., 2005; Craster and Matar, 2006; Edmonstone

et al., 2006; Mavromoustaki et al., 2013a,b).

Also of significant interest is the growth of rivulets in scenarios that differ from

that of an inclined flat substrate. The growth of rivulets on an inverted plane has

been studied recently by Lin and Kondic (2010); Lin et al. (2012) who found that

the instability is comprised of surface waves and contact line finger growth, both

of which interact to form complex dynamics. Flow in other geometries is also of

interest due to the diverse nature of surfaces used in manufacturing and found in

nature. Takagi and Huppert (2010) consider flow on the outside of a sphere and a

horizontally aligned cylinder. Flow on a horizontally aligned cylinder, both rotating

and stationary, has received much consideration in the theoretical literature, see

Duffy and Wilson (1999); Holland et al. (2001); Evans et al. (2004); Leslie et al.

(2011), with attention given to the drop that forms at the bottom of the cylinder as

well as the flow of a single rivulet flowing over the geometry.

Recently work has focused on film flow on the outside of a vertically-aligned cylin-

der. Smolka and SeGall (2011) considered the flow of two such fluids experimen-

tally and found that the curvature of the cylinder impacted on the stability at small

enough cylinder radius; the results obtained were shown to match well with theo-

retical findings. More recently Mayo et al. (2013) attempted to model the above

flow using lubrication theory. Their three-dimensional numerical results matched

well with experiments but found that curvature effects were minimal - the flow was

stated to be analogous to the problem of film flow on an inverted plane (Lin and

Kondic, 2010; Lin et al., 2012). Work that considers the coating of geometries such

as cylinders is pivotal in understanding how the curvature of a substrate influences

the ability to coat it, this is particularly true in instances such as the coating of small

bronchial tubes within mammalian lungs.
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1.2.3 Effect of substrate heterogeneities on rivulets

FIGURE 1.3: Sketch of the different forms of rivulets that emerge at the advancing front of
a (a) fully wetting and (b) partially wetting fluid Silvi and Dussan (1985).

The wavelength of the rivulet pattern that forms at the advancing front of a spread-

ing film can be altered by regular patterned trench stripes with equal spacing (Kondic

and Diez, 2002); if the spacing is less than the natural wavelength of the instability

then rivulets are forced to grow in close proximity to one another enforcing merg-

ing. If the spacing is greater than the natural wavelength then the rivulets form in

regular spacing down the path of least resistance. For large spacing several rivulets

form in each channel. Kondic and Diez (2004) further noted how small trench

topographies could introduce a large enough disturbance to induce rivulet forma-

tion and that the spacing directly influenced the wavelength of the instability that

emerged. Similar observations were made when considering chemical heterogene-

ity; experiments in Kondic and Diez (2004) (Figures 16,17 and 18 in their publica-

tion) were performed using PDMS (polydimenthylsiloxane) to coat a glass surface;

stripes of an oil-based paint were deposited on the substrate at controlled intervals.

PDMS has a much higher contact angle with the paint (low wetting) so as the ad-

vancing front approaches the stripes the fluid travels down the non-painted areas,

thus the spacing between the two directly impacts the wavelength of the rivulets.

The field of wetting and spreading, including hysteresis in droplet spreading, is a

vastly researched area with still many opposing theories requiring validation. While

neither the macro- or micro-scale science behind spreading is discussed in detail
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here, the reader is directed to a recent thorough review by Bonn et al. (2009) and

the references therein contained.

FIGURE 1.4: Top: Rivulet flow over randomly distributed heterogeneous patches from
Zhao and Marshall (2006). The contact angle associated at each co-ordinate (x, y) using a
random correlation function controlled by correlation length, l; (a) l = 6, (b) l = 13 and (c)
l = 24. Three time snapshots are shown - (i) t = 12, (ii) t = 24 and (iii) t = 33. Flow is
from left to right and contours shown at h = 0.2, 0.6, 1 and 1.4, grey shading is used when
h > 1.4. Bottom: The network of patches created by the random function assigning the
associated contact angle to the substrate; white areas are fully wetting, grey areas indicate
where the contact angle is greater than 15o and in black shaded areas the contact angle is

less than 9o.

Droplet spreading on a heterogeneous substrate was investigated by Schwartz and
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Eley (1998); Schwartz (1998) employing a disjoining pressure model (Derjaguin

et al., 1987) to imitate the effect of hysteresis and assigning regular patchwork

areas of high contact angle. They found that although the spreading rates/time

scale of the simulations were out by a large factor, the numerical solutions ob-

tained matched well with experiments for a droplet spreading over a low wetting

Teflon cross and splitting into four micro-droplets. Further work including droplet

spreading onto mound topographies with low wettability/high contact angle was

carried out in Gaskell, Jimack, Sellier and Thompson (2004) employing a multi-

grid method with error-controlled variable time-stepping to solve the lubrication

equations. They found that the wettability of the liquid on the surface impacted the

spreading dynamics and shape of the drop; for example, a drop on a highly wet-

ting surface that spread towards a low wetting square mound would recede from the

low wetting area and spread on the highly wettable surface creating a bow shaped

interface at the corner of the low wetting region. In the reverse case, a low wet-

ting substrate containing a highly wetting mound, the droplet would preferentially

spread and climb onto the mound.

With respect to rivulets, surface patterning with chemical heterogeneities has gar-

nered much less attention than other aspects of thin film flow. Silvi and Dussan

(1985) observed that when silicone oil spread on a perspex surface the rivulets

would take a much different form to those seen when glycerin, which has a much

larger contact angle on perspex than silicone oil, was used to coat the substrate; see

Figure 1.3 for a sketch of the saw-tooth pattern of a fully wetting fluid and long, thin

fingers of a partially wetting fluid that were observed. The elongation of the rivulets

was also observed to be much faster when glycerin was used, with the bulk staying

almost stationary compared to the rivulets. Similarly, Jerrett and Bruyn (1992) con-

sidered three different liquids in their experiments; glycerin and two different types

of mineral oil. The mineral oils had a static contact angle of 14o on the plexiglass

substrate utilised, whereas glycerin had much higher contact angle of 60o. Their

observations were similar to those of Silvi and Dussan (1985) in relation to the dif-
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ferences in pattern and shape between the higher and lower wetting liquids. They

also correlated the wavelength and found two different expressions for mineral oil

and glycerin;

λ =

14.1Lc sinα0.12 (glycerin)

19.2Lc sinα0.21 (mineral oil),

where α is the inclination angle and the capillary length Lc = H0/(3Ca)1/3, where

H0 is the asymptotic film thickness and Ca the capillary number. Clearly, the wave-

length is smaller when the fluid is less wetting (glycerin) than another one (mineral

oil); however, the expressions do not include the contact angle (which indicates

wettability).

Numerical investigations have mostly ignored the effect of wetting properties on

the wavelength in the context of rivulet formation. Of those that attempt to assess

their impact, Eres et al. (2000) found, for single rivulets, that an increase in contact

angle made a rivulet longer and thinner. Marshall and Wang (2005) and Zhao and

Marshall (2006) uncovered the subtle influence that both periodically and randomly

distributed heterogeneous regions can have over the rivulet instability - see Figure

1.4 for an example of flow over randomly distributed patches of varying wettability

- finding that when the regions were small (a small correlation length l, see Figure

1.4) the wavelength that emerged was similar to that calculated from linear stability

theory. However, when the regions were large the wavelength varied significantly

around the predicted value. Kondic and Diez (2004) showed experimentally that

rivulets of PDMS form within the spacings between regularly arranged low wet-

ting patches (created with an oil-based paint), as discussed previously. A similar

observation to this was noted for a climbing film, a phenomena seen when a tem-

perature gradient is applied to a vertically aligned substrate in such a manner that

the Marangoni forces, induced by the surface tension gradient associated with the

temperature profile, are large enough to overcome gravity (Cazabat et al., 1990;

Kataoka and Troian, 1997, 1999). An example of this is explored in Kataoka and

Troian (1999) using chemically striped silicone wafers. A flow of PDMS, driven
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by Marangoni forces, develops rivulets at the advancing front climbing the sub-

strate. The rivulet pattern was seen to develop a wavelength that correlated with the

spacing of the chemical heterogeneity, much like in the gravity-driven case.

1.3 Flow on heterogeneous surfaces

FIGURE 1.5: Example of a continuous thin film of water flowing over a peak and trench
topography of non-dimensional height 0.25 from Gaskell, Jimack, Sellier, Thompson and
Wilson (2004). Evident to see in the countour plots of free-surface height is the bow-
wave shaped peak around the upstream topography boundary and the downstream surge not
captured by two-dimensional simulations. The arrow on the plots indicates the direction of

flow.

Real surfaces encountered in the diverse applications discussed above often contain

a variety of randomly distributed heterogeneities; these often are made up of topo-

graphic features and areas of varying wettability due to the chemical make up of the

surface to be coated.

Free-surface flows of continuous films over topographical features reflect substrates

more often encountered within industry or in nature. The long-wave approxima-
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tion (see Section 3.1) has been utilised to generate equations that have been used

to investigate the free-surface deformation created by step-up, step-down, trench

and mound topographies; Stillwagon et al. (1987); Stillwagon and Larson (1988,

1990) were the first to consider such an approach and found remarkable agreement

with features observed in practice. Gaskell, Jimack, Sellier, Thompson and Wilson

(2004) compared results with the experiments of Decré and Baret (2003) and found

very good agreement; they were the first to attempt and successfully obtain such

solutions. A bow-wave upstream of the trench and a downstream surge are found

to exist both computationally and experimentally. The computations enabled the

loci of the capillary ridges forming the bow-wave to be determined and showed just

how well lubrication theory is suited for modelling such flows. An example of such

numerical solutions is given in Figure 1.5 for flow over a trench and a mound.

Subsequent, complementary investigations have considered evaporating flow over

trenches (Gaskell et al., 2006); the results allowing the identification of three regimes

of free-surface development (thinning, thickening and a combination of both), the

onset of each regime depending on solvent concentration, the evaporation rate and

the sensitivity of the viscosity to the solvent concentration. Film flow around oc-

clusions (Lee et al., 2007; Baxter et al., 2009) within a lubrication context has also

been explored identifying the free-surface height around obstacles when a constant

contact angle with the occlusion is specified.

Rarely will a substrate contain just one topographical feature and it has been ob-

served that multiple and/or complex patterned topographies induce more wide spread

free-surface deformation (Lee et al., 2008; Gaskell et al., 2010) as do multiple pro-

truding obstacles (Baxter et al., 2010); if the topographies are close together then

the free-surface distortion induced by each feature may interact creating a larger

deformation.

One of the drawbacks in the use of lubrication theory to model the above flows

is the removal of inertial effects from the equation set as the Reynolds number is

assumed negligible, understanding the impact of inertia is important for making
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global conclusions about film flow. To this end, Veremieiev et al. (2010) extended

the previously mentioned work of lubrication theory to include inertial effects by

using a depth-averaged form (DAF) of the equations; within this derivation, the

velocity profile of the film is assumed to be parabolic across the depth. The DAF

approximation is equivalent to the integral-boundary-layer (IBL) approximation,

see for example Shkadov (1967). When inertia is increased the bow-wave around

the upstream of a trench topography gradually rises and becomes wider, while the

extent of the downstream surge is reduced. Furthermore, Veremieiev et al. (2012)

included the effects of an electric field within the DAF formulation finding the elec-

tric field to dominate inertial effects, suppressing inertially-induced disturbances.

Introducing an electric field initially enhances the size of the free-surface distur-

bance but as the strength is increased the electric field can be used to suppress the

bow-wave disturbance. The downstream surge can also be reduced as the pressure

in the trench is increased thus restricting the flow of liquid into the topography as

the film flows over it.

1.3.1 Flow over topography: Inner flow transport

While being computationally advantageous, solution of equation sets based on the

long-wave approximations are limited to exploring free-surface features only, they

reveal nothing about the internal flow structures within the film.

Continuous film flow over step-up and step-down topographies have become classi-

cal problems where the associated inner flow structure induced is other than purely

unidirectional. Eddies are observed to exist, an example of which is shown in Figure

1.6; here, flow structures formed under Stokes flow conditions can be seen from ex-

periments and complementary numerical solutions for increasing film thickness on

an undulating plane inclined at 45o - as the film thickness increases the emergence

of an eddy can be observed, a further increase induces an increase in magnitude of

the size of the separated flow region. The potential existence of eddies is important
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as flow separation, between the bulk flow coating the surface and eddies trapped

within a topographical feature, can strongly influence the flow and thus the asso-

ciated rates of chemical reactions, heat (Scholle, Haas, Aksel, Thompson, Hewson

and Gaskell, 2009) and mass transfer (Wierschem and Aksel, 2004).

FIGURE 1.6: An example of eddy formation in flow under Stokes flow conditions in
the topography of an undulating substrate, with amplitude of the wavy topography de-
fined as a = 2π/5 and inclined at 45o to the horizontal, for increasing film thickness;
(a) h = 16π/25, (b) h = 18π/25 and (c) h = 24π/5. The left hand side shows experimental
observations of Wierschem and Aksel (2003) (with complex variable numerical solutions
overlaid) and the right column showing corresponding finite element numerical results of

Scholle et al. (2008).

Flow separation is found for a variety of substrate undulations, depending on the

level of inertia and topography shape and steepness. Taneda (1979) visualised the

flow of silicone oil over square and triangular shaped topographies demonstrating

the effect the topographies had on the formation of eddies including separation of

eddies with increasing trench topography length; such results have been observed

in full three-dimensional computations see, for example, Veremieiev (2011). Zhao

and Cerro (1992) found eddies to exist even under laminar flow conditions for a
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large range of film thickness; Wierschem et al. (2003) found that the generation of

eddies at very low Reynolds numbers depended on surface tension, film thickness

and substrate waviness. Wierschem and Aksel (2004) observed eddies created at

low Reynolds numbers were then modified by increasing inertia, and similar obser-

vations have been reported in Scholle et al. (2004, 2006).

The subtle interplay between geometric and inertial effects on the formation of lo-

cal flow structures in the corrugations of a wavy substrate was revealed by Scholle

et al. (2008). The effects can be measured by considering local (based on topogra-

phy length scale) and global Reynolds numbers; two types of eddies were observed,

those induced kinematically and those induced by inertia. The manipulation of ed-

dies has also been investigated for shear-driven flow over a corrugated substrate

(Scholle, Haas, Aksel, Wilson, Thompson and Gaskell, 2009); it was found that,

as well as geometric and inertial effects seen in free-surface flow, the mean plate

separation (the average distance between the top moving plate and bottom corru-

gated plate) also influences the associated flow structures. Should no eddies be

present in the flow at a certain mean separation, by decreasing the mean separation

an eddy could be induced - this is the opposite to free-surface flow where increasing

the Nusselt film thickness would induce an eddy where previously there was none

(Scholle et al., 2008).

Waves are generated on the surface of a film coating an undulating substrate when

inertia becomes an important factor due to instability. Wierschem and Aksel (2003)

found that the critical Reynolds number for the instability was higher than on a flat

inclined plate. The generation of surface waves and the resonance phenomena, the

amplification of the free-surface and film thickness amplitude, seen in the case of

flow over topography, has been investigated extensively; see for example Bonto-

zoglou and Papapolymerou (1997), Malamataris and Bontozoglou (1999), Bonto-

zoglou (2000), Vlachogiannis and Bontozoglou (2002) and Heining et al. (2009).

Linear resonance is investigated within the context of corrugations whose depth is

much smaller than its wavelength and the film thickness Wierschem et al. (2008)
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whereas non-linear resonance effects are influential when this assumption no longer

holds (Heining et al., 2009). As inertia is increased the free-surface of the flow is

further disturbed, the magnitude of the disturbances have been found to depend on

the depth of the valleys comprising the substrate (Argyriadi et al., 2006). Wier-

schem and Aksel (2004) found that material transport between eddies was induced

by disturbances to the free-surface resulting in the formation of surface waves; they

observed the motion of the separatrix created by the local changes in film thickness

induced a lobe mechanism of material transfer between the re-circulating flow and

the bulk flow above.

Mass transfer and mixing is an important aspect within fluid flows in general in an

engineering context. The enhancement or suppression of transport rates from re-

circulation zones is important in the cleansing of rough surfaces (Tighe and Mid-

dleman, 1985), the mechanisms involved in pitting corrosion (Frankel, 1998) and

transport to cells in perfusion bioreactors (Horner et al., 1998). Investigations into

mixing and transport enhancement in open cavities are limited; Jana and Ottino

(1992) briefly looked at how oscillating the motion of an impinging jet above a

cavity can induce removal of material, Howes and Shardlow (1997) pulsed the inlet

flow to clean out a number of cavities in a channel. By placing obstacles upstream

of an open cavity, oscillations can be induced in the flow to enhance transport (Gar-

rison and Rogers, 1994). Horner et al. (2002) considered oscillating the shape and

speed of a moving wall, driving flow past an open square cavity to increase the

rate of fluid transport between the bulk and the cavity flow; the authors noted that

changing the frequency and amplitude of the forcing induced a turnstile lobe mech-

anism of transport. The dependence of the increased flux of fluid transport reaches a

maximum at a critical value of the frequency of the forcing, after which the the flux

decreases. In the case where the amplitude of the wall forcing is increased there is

no limiting criteria, the flux is always increased.

The turnstile lobe mechanism is the same phenomenon as observed in free-surface

flow over an undulating substrate (Wierschem and Aksel, 2004). Transport in the
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bulk flow over a wavy substrate can be enhanced by optimising the film thickness

for an increase in mean transport velocity, Scholle et al. (2006); for small to moder-

ate waviness they found a reduction in the mean transport velocity, when the onset

of eddies is observed the reduction in material transport is partially compensated for

by these inner flow structures which act like a fluid roller bearing promoting mate-

rial transport. Heining et al. (2012) investigated film flow over undulating surfaces

that were both partially- and fully-submerged focusing on how laminar mixing is

affected by the topography.

FIGURE 1.7: Experimental images of mixing between two counter-rotating rollers via lobe
formation, Wilson et al. (2006); the speed of one of the rollers is varied inducing a turnstile

lobe mechanism of fluid transport creating the mixing pattern that can be observed.

Mixing and transport enhancement is important in many different thin film based

applications, for instance in roll coating. Stirring and transport enhancement of fluid

entrapped in the nip between two counter-rotating rollers was shown to increase

when increasing the speed ratio of the two rollers by Wilson et al. (2006), one

rotating at fixed speed, the other varying. As above, they noted that transport and

mixing were described by a turnstile lobe mechanism induced by the tangling of

the invariant stable and unstable manifolds associated with the separation boundary,

see Figure 1.7. A complication with this method of transport enhancement was the

disturbance induced at the free-surface - the percentage change in film thickness at

the free-surface was found to be approximately a quarter of the percentage change

of roll speed although this could be counter-acted by modulating the speed of both

rollers.
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1.4 Thesis outline

Due to the formidable challenges faced when investigating the problems of interest

contained in this thesis experimentally, as well as the fact that closed analytical so-

lutions remain elusive, use is made of mathematical models and efficient numerical

solutions of the same to explored the associated flow - the free-surface disturbance

generated, rivulet formation and internal flow structures. The solutions reveal the

behaviour of liquid flow in a variety of scenarios focusing on a number of aspects.

The work focuses on a number of areas associated with coating flows:

1. The use of an efficient, accurate and adaptive multigrid method to solve the

governing equations of thin-film flow derived via a long wave approximation

for a variety of flow problems.

2. An in-depth investigation of rivulet formation on an inclined plane for both

fully and partially wetting fluids utilising this multigrid methodology.

3. Exploring the effect on rivulet formation of substrate heterogeneities includ-

ing trench and mound topographies and patches of varying wettability; also

considered is the inclusion of a surface tension gradient (induced by, for in-

stance, a temperature profile) that is used to drive the climbing of thin films.

4. An in-depth investigation of rivulet formation on the inner and outer surfaces

of a vertically aligned cylinder, with direct comparison drawn to the planar

case to reveal the effects of curvature and with recently reported experiments.

5. An explanation of the inner-flow dynamics induced by free-surface excite-

ment creating transport across the separatrix associated with eddies contained

within surface topography via a turnstile lobe mechanism.

The thesis proceeds as follows:
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Chapter 2 introduces a rigorous mathematical formulation of the long-wave approx-

imation which is utilised to investigate rivulet formation on both inclined planes and

vertically-aligned cylinders. A disjoining pressure model is introduced, outlining

its underlying and formulation. Also shown is the non-dimensional form of the

Navier-Stokes and continuity equations. The numerical methods used to solve dis-

crete analogues of both sets of equations are introduced in Chapter 3. The multigrid

algorithm embodies local mesh refinement and truncation error controlled variable

time stepping. An additional feature enhancing the method, called grid devolution,

is developed to further improve the efficiency of the solution procedure. A demon-

stration of the multigrid efficiency is showcased in Appendix D for the interested

reader, revealing the exceptional speed of the solver when compared to previous al-

gorithms. The finite element method used to solve the Navier-Stokes and continuity

equations is described and the discretisation methodology explained, including the

parametrisation of the free-surface by the method of spines.

Following this, an in-depth investigation of the classical problem of a spreading

film on an inclined substrate is considered in Chapter 4. The formation of rivulets

is investigated and the effect of wetting properties quantified and compared with the

findings of the experiments of Johnson et al. (1999). A new relationship describing

the global characteristics of the rivulet pattern that links together the case of a fully

wetting fluid with a partially wetting one via a partial wetting parameter is formu-

lated. The concept of flow on real surfaces is considered in Chapter 5 by exploring

film flow on substrates containing heterogeneities, topographical and chemical, re-

vealing in some cases asymmetry effects that can be imposed on the evolution of

rivulets. Additional physical effects are incorporated into the problem formulation

by considering the effect of surface tension gradients on the spreading and climbing

of a film.

The effect on rivulet formation from the curvature of a cylinder is quantified in

Chapter 6. The equations are formulated via a different long-wave approximation

to that used in lubrication theory but solved using the same multigrid algorithm.
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Flow on the inside and outside surfaces of the cylinder is considered, as well as

the effect of wetting properties. A regime model, based upon a sequence of nu-

merical solutions, is provided; the model term for wavelength links the planar case

to the cylindrical scenario demonstrating that curvature does indeed affect rivulet

formation.

Finally, the transport of re-circulating material from eddy structures, formed within

the valleys of a topography in the substrate, to the bulk flow is considered in Chap-

ter 7. Numerical solutions are sought and reveal how a turnstile lobe mechanism

can be induced by perturbing the free-surface which creates a symmetry-breaking

effect which enhances transport across the separatrix boundary. Snapshots of the

dynamic simulations and the use of an inert-particle tracking scheme illustrate the

phenomenon, mimicking the dynamics observed in experiments. The concept is

explored revealing the influence of geometry and inertia on the ability to induce the

lobe mechanism.

The content of the thesis is summarised in Chapter 8 and conclusions drawn from

the results discussed. Recommendations for future work are provided.
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The research contained in this thesis considers two distinct features of gravity-

driven thin film flow. The first concerns rivulet formation at the unstable advancing

front of a thin film; the second, the inner flow structures formed when a continuous

film flows over a substrate containing topographical features, the focus being the

fate of material trapped within eddies. Accordingly, two different approaches are

employed to generate the numerical solutions required to solve these two related

but different flow problems.

The governing equations for the first class of problems considered arise from using

the long wave approximation (Oron et al., 1997) to generate what is commonly re-

ferred to as the lubrication approximation to the Navier-Stokes and continuity equa-

tions. Written and solved in finite-difference form, this equation set is well suited to

the numerical investigation of three-dimensional free-surface disturbances due to its

computational efficiency in generating solutions, compared to the computationally

exhaustive process of solving the full Navier-Stokes equations. This efficiency is

particularly pertinent when investigating a transient process such as rivulet growth,

which requires long-time solutions to be obtained over large domains (Gaskell, Ji-

mack, Sellier, Thompson and Wilson, 2004; Gaskell et al., 2010) to fully reveal

the flow characteristics of interest. Furthermore, wetting properties can be readily

introduced into the formulation using a disjoining pressure term, adding depth to

the possible scope of investigations and conclusions.

The second problem considered, which includes exploring the internal flow struc-

ture within the fluid film also, utilises the full Navier-Stokes and continuity equa-

tions which are solved using an appropriate finite element formulation.
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α

X

YZ
H0

Advancing front

Lp Wp

Lt Wt

FIGURE 2.1: Schematic of the side view of thin film flow down a flat plate (width, Wp,
length, Lp) inclined at an angle α to the horizontal, featuring an advancing front before
the onset of instability. The surface of the substrate is shown, for the sake of generality,
to contain a rectangular topography (length Lt, width Wt and height/depth S(X,Y )). The
film is fed by a constant inflow at the upstream boundary and H0 denotes the asymptotic

film thickness and — the contact line.

2.1 Lubrication approximation - Rivulet formation

2.1.1 Governing equations

The first problem of interest takes the form of a constantly fed thin liquid layer,

with flux Q0 at the inlet, of asymptotic thickness H0 flowing down a rigid planar

substrate (length Lp, width Wp) inclined at an angle α to the horizontal; as illus-

trated schematically in Figure 2.1. The free-surface position at time T is denoted

by F (X, Y, T ); as such the film thickness is given by H (X, Y, T ) = F (X, Y, T )−

S (X, Y ). The fluid involved is assumed incompressible with constant density, ρ,

dynamic viscosity, µ, and surface tension, σ, such that the governing Navier-Stokes

and continuity equations for the system, can be written as:

ρ

(
∂U

∂T
+ U · ∇U

)
= −∇P +∇ ·T + ρG (2.1)

∇ ·U = 0 (2.2)



28

where U = (U, V,W ) is the fluid velocity, P the pressure, T = µ
(
∇U + (∇U)T

)
is the viscous stress tensor and G = (g sinα, 0,−g cosα) the gravity vector. In

Cartesian co-ordinates with a general point in the plane denoted by (X, Y, Z).

The Navier-Stokes equations are supplemented by an appropriate no-slip condition

at the substrate surface Z = S(X, Y ), namely:

U (X, Y, 0) = V (X, Y, 0) = W (X, Y, 0) = 0. (2.3)

The kinematic and stress balance conditions (expanded into tangential and normal

components) at the free-surface, Z = F (X, Y, T ) = H(X, Y, T ) + S(X, Y ), are

given (Sellier, 2003) by:

∂F

∂T
+ U

∂F

∂X
+ V

∂F

∂Y
= W, (2.4)

t ·
(
−P I + T

)
· n = 0, (2.5)

n ·
(
−P I + T

)
· n = σκ+ Π(H), (2.6)

where Π(H) is the disjoining pressure generated by intermolecular forces at the

contact line, the form and significance of which is discussed further in Section

2.1.2, and I is the identity matrix. The pressure variable P has been shifted with

respect to the atmospheric pressure, P → P + PA, to denote a reference pressure

which is utilised from here on in. The unit normal to the surface denoted by n is

defined as:

n =
(−FX ,−FY , 1)

(F 2
X + F 2

Y + 1)
1
2

, (2.7)

where FX , FY denote the partial derivative of F with respect to X and Y , this
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notation is adopted for clarity and the curvature of the surface, κ, is given by:

κ = −∇ · n. (2.8)

The tangent vector, denoted by t, in the X-direction is:

tX =
(1, 0, FX)

(1 + F 2
X)

1
2

, (2.9)

and in the Y -direction is obtained from:

tY =
(0, 1, FY )

(1 + F 2
Y )

1
2

. (2.10)

The governing system of equations (2.1)-(2.6) is complete and fully describe the

dynamics of free-surface thin film flow.

In the case of the problem of rivulet formation, there is a large difference between

the fully developed asymptotic film thickness and the characteristic length L0 in

the direction of flow. This can be exploited to reduce equations (2.1) and (2.2) to

a dimensionless and more computationally tractable form by invoking the long-

wave approximation (Oron et al., 1997) for the case H0/L0 = ε � 1, where

L0 = H0/(6Ca)1/3 is the associated capillary length (Decré and Baret, 2003) and

H0 = (3µQ0/ρg sinα)
1
3 the fully developed film thickness. Ca denotes the cap-

illary number, measuring the ratio of viscous to surface tension forces, given by

µU0/σ ∼ O (ε3) � 1, where U0 = 3Q0/2H0 is the surface velocity of the fully

developed film.

Scaling dimensional variables in equation (2.1) by appropriate characteristic lengths,
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heights and velocities via:

(x, y, lp, wp, lt, wt) =
(X, Y, Lp,Wp, Lt,Wt)

L0

, (z, h∗) =
(Z,H∗)

H0

, t =
T

T0

,

(h, s) (x, y, t) =
(H,S) (X, Y, T )

H0

, p (x, y, z, t) =
2P (X, Y, Z, T )

ρgL0 sinα
,

(u, v, w) =

(
U

U0

,
V

U0

,
W

εU0

)
, T0 =

L0

U0

;

leads to the following non-dimensional form of the Navier-Stokes equation:

εRe

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂p

∂x
+ ε2

(
∂2u

∂x2
+
∂2u

∂y2

)
+
∂2u

∂z2
+ 2,

(2.11)

εRe

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −∂p

∂x
+ ε2

(
∂2v

∂x2
+
∂2v

∂y2

)
+
∂2v

∂z2
, (2.12)

ε3Re

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= (2.13)

− ∂p

∂z
+ ε4

(
∂2w

∂x2
+
∂2w

∂y2

)
+ ε2

∂2w

∂z2
− 2ε cotα.

(2.14)

Assuming the Reynolds number, Re = ρU0H0/µ, is small and of order ε and re-

taining leading order terms up to O (ε2, εRe) only, together with introducing the

continuity equation from (2.2), the above equation set can be reduced further to

give:

∂2u

∂z2
=
∂p

∂x
− 2, (2.15)

∂2v

∂z2
=
∂p

∂y
, (2.16)

∂p

∂z
= −2ε cotα, (2.17)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (2.18)

If the non-dimensional variables are substituted into the conditions of no-slip, kine-
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matic balance at the free-surface (2.4), tangential stress (2.5) and normal stress

(2.6), then the lubrication boundary conditions, retaining leading order terms up to

O (ε2), become:

u = v = w = 0 at z = s(x, y), (2.19)

∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
= w at z = f(x, y, t), (2.20)

∂u

∂z
=
∂v

∂z
= 0 at z = f (x, y, t) , (2.21)

p = − ε3

Ca
∇2h− Π(h) at z = f (x, y, t) . (2.22)

By integrating equations (2.15) and (2.16) twice with respect to z over the film

thickness (i.e s 6 z 6 f , where f = h−s), applying the above boundary conditions

followed by combining the terms for u and v with the dimensionless version of

equation (2.4) and Leibniz’s integral rule (Woods, 1926), leads to the following

time-dependent governing equation for film thickness h;

∂h

∂t
=

∂

∂x

[
h3

3

(
∂p

∂x
− 2

)]
+

∂

∂y

[
h3

3

(
∂p

∂y

)]
. (2.23)

Integrating equation (2.17) once with respect to z and applying equation (2.22) at

the free-surface leads to the following expression for the non-dimensional pressure,

p:

p = − ε3

Ca
∇2(h+ s) + 2ε (h+ s− z) cotα− Π(h). (2.24)

Equations (2.23) and (2.24) describe the evolution of thin film flow on an inclined

substrate; these equations based on a lubrication approach to the problem are anal-

ogous to a first order accurate long-wave approximation, see Appendix A, under

the assumption that Re = O(ε) (Stillwagon and Larson, 1988). Most often in the

literature these equations are combined to create a fourth-order equation in h, see
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for example Kondic and Diez (2001) and Bertozzi and Brenner (1997). However, it

has been shown that the above coupled form is most suitable for use with multigrid

algorithms (Cowling et al., 2011) and is thus the approach adopted in this thesis.

2.1.2 Contact line approach: disjoining pressure

A singularity exists at a three-phase contact line when a no-slip boundary condition

is prescribed there; liquid displaces air as the film advances along the substrate,

leading to a multi-valued velocity field at the contact line (Bertozzi et al., 1998).

The two most commonly used methods for releaving this singularity involve either

specifying a disjoining pressure term in the pressure equation, (Schwartz and Eley,

1998), by introducing a thin precursor film ahead of the advancing front (Diez and

Kondic, 2002) or specifying a slip condition at the substrate (Davis and Troian,

2003).

While there is evidence to suggest, for fully wetting fluids, that the two lead to

comparable results when the precursor film thickness and slip-length have a similar

value, (Spaid and Homsy, 1996), adopting the former approach is preferable in that

it is more efficient from a computational perspective (Diez et al., 2001). The solu-

tions generated are independent of the choice of precursor film thickness provided

it is sufficiently small (Diez and Kondic, 2001a) and the associated computational

mesh of the same order so as to ensure adequate resolution of the contact line re-

gion (Diez et al., 2001). Precursor films have been observed experimentally and

measured at the advancing foot of a droplet and thus give some physical reality to

the model (Popescu et al., 2012). The related rivulet experiments of Johnson (1997)

employed a pre-wetted substrate, the data from which are used for direct compari-

son purposes in Chapter 4. For all these reasons the disjoining pressure/precursor

film approach was adopted in the work presented in Chapter 4, the formulation of

which is reported more thoroughly below.
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2.1.2.1 Contact line forces - Young’s equation

As a liquid spreads over a substrate it displaces air from the surface. As this happens

there is a shift in the surface free energy of the system; if the area of the interface

increases, the surface free energy also increases, Rosen (2004), and vice versa when

the area decreases. If a liquid spreads from A to B on a substrate, see Figure 2.2,

then the decrease in surface free energy due to the decrease in the vapour-solid

interface area is given by a× γSV , where a is the area from A to B. The free energy

increases for the liquid-vapour and liquid-solid interfaces in a similar manner. This

gives the increase in surface free energy per unit area (force per unit length) as

S ′ = γSV − (γSL + γLV ). This quantity is a measure of the driving force behind the

spreading of a liquid on a solid substrate and is called the spreading coefficient, S ′

(de Gennes, 1985).

substrate, S
B AγSV

γLV

γSL

vapour phase, V
liquid phase, L

θc

FIGURE 2.2: Schematic showing a liquid front spreading over a substrate displacing the
vapour phase.

If the liquid makes a contact angle, θc, with the substrate, see Figure 2.3, and is

considered to spread a small distance only, while maintaining the contact angle as

θc, so as to cause an increase, ∆a, in the area of the liquid-solid interface (the solid-

vapour interface decreases by the same amount), the change in area of the liquid-

vapour interface is then given by ∆a cos θc. Therefore, the increase in surface free

energy is:

∆E = −γSV ∆a+ γSL∆a+ γLV ∆a cos θc, (2.25)
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i.e.
∆E

∆a
= −γSV + γSL + γLV cos θc. (2.26)

Noting that as ∆a→ 0 so does ∆E, equation (2.26) leads (de Gennes, 1985) to:

γLV cos θc = γSV − γSL, (2.27)

which is the well known Young’s equation, found by considering a droplet in equi-

librium on a solid substrate (Butt et al., 2013).

Note that γLV is equivalent to the surface tension of the liquid, σ, as it represents

the interfacial free energy density.

substrate, S

γSV

γLV

γSL

vapour phase, V

liquid phase, L

θcθc

∆a

FIGURE 2.3: Schematic showing a spreading liquid with a contact angle of θc, displacing
an area of ∆a of the solid-vapour interface.

Substituting Young’s equation, equation (2.27), into the equation for the spreading

coefficient, S ′ = γSV −(γSL+γLV ), one obtains a term for the spreading coefficient

for a fluid with equilibrium contact angle, θc, namely:

S ′θc = γLV (cos θc − 1) , (2.28)

which is a measure of the driving force of spreading at the contact line.

In the next section, by considering the forces imparted on the contact line are via
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gradients of disjoining pressure, caused by molecular, electrostatic and structural

forces, a model can be developed which recovers the physics discussed above.

2.1.2.2 Disjoining pressure

The basis for all subsequent work on disjoining pressure at the contact line of thin

films and colloids was forged by Frumkin and Derjaguin (Frumkin, 1938; Der-

jaguin, 1940). They showed that the disjoining pressure, denoted by Π, can be

divided split into contributions from molecular, electrostatic and structural forces

acting on the fluid at the contact line. Derjaguin (1955) was the first to suggest the

motion of the contact line was caused by gradients of the disjoining pressure. An

important equation from the theory of Frumkin and Derjaguin is the one for finding

the equilibrium contact angle (Churaev and Derjaguin, 1985) via:

cos θc = 1− 1

σ

∫ ∞
Hmin

Π(H)dH, (2.29)

which is now often referred to as the augmented Young-Laplace equation (Telet-

zke et al., 1987), representing the balance of capillary, hydrostatic and disjoining

pressures.

The form which the disjoining pressure term takes was also considered in the

work of Derjaguin et al. (1987) and may be written in general form (Churaev and

Sobolev, 1995) as:

Π =
A1

H3
− A2

H2
+ A3 exp

(
−H
λ

)
, (2.30)

where the first two terms are the molecular attraction forces and electrostatic repul-

sion forces; the third term embodies the structural forces. The coefficients Ai are

non-arbitrary constants relating to the forces concerned and λ is the decay length of

the structural forces.

Neglecting polar structural forces (Mitlin, 1995), which are considered short range
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and exponentially decaying (Jameel and Sharma, 1994), the form of the disjoin-

ing pressure incorporating liquid-solid attraction and liquid-solid repulsion can be

written (Mitlin and Petviashvili, 1994) as:

Π =
B

Hn
min

[(
Hmin

H

)n
−
(
Hmin

H

)m]
, (2.31)

if a precursor film is incorporatedHmin which naturally becomes the precursor layer

thickness H∗ [in the work of Derjaguin and others, Hmin is the thickness of the film

when Π = 0]. The coefficients (n,m) from the theory of Derjaguin, who found

terms describing the molecular and electrostatic forces which were also considered

by Teletzke et al. (1987), would be given as (3, 2) as used in (Churaev and Der-

jaguin, 1985; Churaev and Sobolev, 1995; Schwartz and Eley, 1998); alternatively,

the pair (9, 3) comes from the integration of the Lennard-Jones 6-12 potential de-

scribing molecular forces between the bulk and precursor layer, as used in (Mitlin

and Petviashvili, 1994).

FIGURE 2.4: A diagram, from (Schwartz and Eley, 1998), of the contact line area; an inte-
grated force balance is performed on the dotted area in the x direction to find the coefficient

of the disjoining pressure term, B.
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The coefficient B can be found by considering an integrated force balance in the

x-direction at the contact line area, see Figure 2.4, and defining the local energy per

unit area (or local disjoining energy density) (Derjaguin, 1940; Schwartz and Eley,

1998) as:

ed(H) = −
∫ H

H∗
Π(H ′) dH ′. (2.32)

By assuming that H at A in Figure 2.4 is essentially∞ relative to H∗ then Π = 0

there; also note that the inclination at A is constant so the total pressure equates to

zero. A similar argument applies at point B. The force balance equation then reads

(Schwartz and Eley, 1998):

∫ ∞
H∗

P (H) dH = σ

∫ ∞
H∗

dθ

ds
dH −

∫ ∞
H∗

Π(H) dH = 0, (2.33)

with s the arc length on the free-surface giving dH/ds = − sin θ, allowing the

integral σ
∫∞
H∗

dθ
ds
dH to be written as σ cos θ|θc0 . Hence from equations (2.29), (2.32)

and (2.33) it follows that:

σ cos θc = σ − ed(∞), (2.34)

which is the disjoining pressure model equivalent of Young’s equation, also called

the augmented Young-Laplace equation as given by the Frumkin-Derjaguin theory

(Churaev and Derjaguin, 1985). Rewriting Young’s equation, equation (2.27), as

γSL + σ cos θc = γSV , where γSL, σ and γSV are the interfacial energies at the

solid-liquid, liquid-vapour (surface tension) and solid-vapour interfaces, respec-

tively, when combined with equation (2.34) gives:

−ed(∞) = S ′θc = γSL − σ − γSV = σ (cos θc − 1) , (2.35)

showing that ed(∞) is analogous to the spreading coefficient, S ′θc .

By combining the definition of ed(H), equation (2.32), and the augmented Young’s
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equation, equation (2.34), it can be shown that:

ed(∞) = σ (1− cos θc)

=
B

H∗n−1

n−m
(m− 1) (n− 1)

[
1− n− 1

n−m

(
H∗

H

)m−1

+
m− 1

n−m

(
H∗

H

)n−1
]

(2.36)

and as h =∞,

B =
H∗n−1 (n− 1) (m− 1)σ (1− cos θc)

(n−m)
, (2.37)

Π(H) =
(n− 1) (m− 1)σ (1− cos θc)

(n−m)H∗

[(
H∗

H

)n
−
(
H∗

H

)m]
. (2.38)

If the scalings adopted in deriving the governing equations of a thin film are imple-

mented into the derivation of B then Π becomes:

Sθc (n− 1) (m− 1)

(n−m)h∗

[(
h∗

h

)n
−
(
h∗

h

)m]
. (2.39)

and

Sθc = 6 (6Ca)−2/3 (1− cos θc) , (2.40)

where the non-dimensional precursor film thickness h∗ = H∗/H0. and Sθc is termed

here the non-dimensional spreading coefficient. This form of the disjoining pressure

is the one adopted in equation (2.24) and utilised to investigate the role of wetting

properties in rivulet formation. It is of note that if the fluid fully wets the substrate,

i.e. θc = 0o, then the disjoining pressure term becomes zero.

2.1.2.3 Precursor film

The thickness of the precursor filmH∗ is a determining factor in the evolution of the

contact line. The instability at the advancing front is damped by a thick precursor
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film (Bertozzi and Brenner, 1997) and can even be completely suppressed. The

spreading rate of the film is also dependent on the choice ofH∗ (Schwartz and Eley,

1998). A realistic range for precursor film thickness is thought to lie in the region

1− 100nm (Schwartz and Eley, 1998). The computational mesh size must then be

specified to have a similar order of magnitude to the non-dimensional precursor film

thickness h∗; which is prohibitively expensive from a computational standpoint.

Kondic and Diez (2001) found that for values of h∗ < 0.02 the global features

of the flow remained unchanged. As the spreading rate itself is of little interest

in the current work a slightly thicker than physically real precursor film with a

value somewhere in this region may be employed while being confident the reported

results are equivalent to those obtained with a smaller h∗. Throughout the thesis a

value of h∗ = 0.01 is used.

2.1.3 Boundary conditions

Numerical solutions to equations (2.23) and (2.24) are sought on a rectangular do-

main defined by (x, y) ∈ Ω = (0, lp) × (0, wp). To close the problem suitable

boundary conditions are required at the edges of the solution domain. At the up-

stream a constant flux condition is applied via a constant film thickness condition,

h(0, y) = 1, at the downstream the film thickness is assumed to be that of the

precursor film thickness, h(lp, y) = h∗. On all boundaries zero flux (Neumann)

conditions for both h and p are calculated via:

∂h

∂x

∣∣∣∣
x=0

=
∂p

∂x

∣∣∣∣
x=0

=
∂h

∂x

∣∣∣∣
x=lp

=
∂p

∂x

∣∣∣∣
x=lp

= 0, (2.41)

∂p

∂y

∣∣∣∣
y=0

=
∂h

∂y

∣∣∣∣
y=0

=
∂p

∂y

∣∣∣∣
y=wp

=
∂h

∂y

∣∣∣∣
y=wp

= 0. (2.42)
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2.1.4 Initial conditions

At time t = 0, the film is designated to be a flat profile with a near square front

given by:

h(x, y, 0) + s(x, y) = 0.5

{
1 + h∗ − (1− h∗) tanh

[
(x− xf (y))

δ

]}
, (2.43)

where δ defines the steepness at the front. The contact line is perturbed, see Kondic

and Diez (2001), in the spanwise direction with a superposition of N modes char-

acterised by wavelengths λ0,j = 2wp / j for j = 1, ..., N and random length

lj ∈ [−0.2, 0.2] so that the position of the front at a given y location is:

xf (y) = xu −
N∑
j=1

lj cos

(
2πy

λ0,j

)
, (2.44)

where xf and xu are the positions of the perturbed front and the unperturbed front

slopes, respectively. When obtaining all the results discussed in subsequent chap-

ters the initial film profile was taken to be the same, with δ = 0.01 and xu = 30, and

guaranteed to be independent of the starting condition by takingN to be sufficiently

large; accordingly the value N = 50 was used.

2.1.5 Topography definition

Although the model allows for the incorporation of complex topographies (Lee

et al., 2008), in the current work only the effect of simple rectangular peak and

trench features on rivulet formation is considered. It is impossible to consider

trenches/peaks with completely sharp edges as the height/depth of the substrate

appears in the equations of interest as a function of x and y. Thus arctangents are

used to create the required shape (Kalliadasis et al., 2000; Bielarz and Kalliadasis,

2003; Gaskell, Jimack, Sellier, Thompson and Wilson, 2004; Lee et al., 2007).

Accordingly, topography, s(x, y), with height (depth) s0 = S0/H0 > 0 (s0 < 0),
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length lt = Lt/L0 and width wt = Wt/L0, is defined via:

s (x, y) =
s0

b0

[
tan−1

(
x− xt − lt

2

γlt

)
+ tan−1

(
xt − x− lt

2

γlt

)]
×[

tan−1

(
y − yt − wt

2

γwt

)
+ tan−1

(
yt − y − wt

2

γwt

)]
, (2.45)

with the centre of the topography at co-ordinates (xt, yt). The steepness of the

topography is controlled by γ and:

b0 = 4

[
tan−1

(
1

2γ

)]2

. (2.46)

2.1.6 Linear stability analysis

There has been considerable of attention directed at rivulet flow from a linear sta-

bility analysis perspective, see for example Troian et al. (1989), Spaid and Homsy

(1996), Davis and Troian (2003); however, far less attention has been paid to three-

dimensional transient simulations. Results of linear stability analysis are computed

within this thesis for comparison with the latter and with corresponding experimen-

tal results.

2.1.6.1 Inclined planar substrate

A full derivation of the linear stability equations for film flow down an inclined

planar substrate can be found in Appendix C. The usual approach, considering

spanwise perturbations of the base state travelling wave solution of the governing

equations, is adopted.

In brief, consider a base state solution of the equation set, equations (2.23) and

(2.24), in an inertial frame of reference, h(x, y, t) = h0(ξ) + ςh1 (ξ, y, t), where

ξ = x − Uwt, with Uw = 2(1 − h∗3)/(1 − h∗) the velocity of the travelling wave

solution; h0 is the base state and h1 the perturbation. Substituting the perturbed so-
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lution into equations (2.23) and (2.24), keeping terms of O(ς) only and applying an

appropriate Fourier transform (see Appendix C), results in a fourth order equation

for the perturbation h1;

∂h1 (ξ, k, t)

∂t
=

(
h2

0h1p0ξ +
h3

0

3
p1ξ

)
ξ

−
(
2h2

0h1

)
ξ

+ Uwh1ξ −
k2h3

0

3
p1

+
k2ε3

Ca

[(
h3

0

3
h1ξ

)
ξ

− k2h3
0

3
h1

]
, (2.47)

where k is the wavenumber of the spanwise perturbation, p0 is given by equation

(2.24) and p1 the perturbation of the same.

The exponential dependence on t of h1 gives an eigenvalue problem written as:

ω(k)φ = A(ξ, k)φ, (2.48)

where A is the matrix operator of equation (2.47). The growth rates of the pertur-

bation are denoted by ω; positive values imply instability of the perturbation with

wavenumber k.

The growth rates ω(k) are found by solving the eigenvalue problem (2.48), in the

present work via Matlab using the eig function to obtain the associated eigenfunc-

tions and eigenvalues. The most positive real part of the eigenvalues is the required

growth rate for a particular k.

2.2 Navier-Stokes equations - Inner flow structures

2.2.1 Non-dimensional governing equations

The second problem of interest in this thesis, shown schematically in Figure 2.5 and

considered in the (X,Z) plane, is comprised of a fully developed film of thickness

H0, fed by a constant inflow, that is flowing over a substrate inclined at an angle α
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α

X

Z

H0

Āt

λ̄t

FIGURE 2.5: Schematic of the side view of thin film flow down a plate (length, Lx) inclined
at an angle α to the horizontal, featuring a wave-like trench of depth Ā(t) and wavelength
λ̄t. The film is fed by a constant inflow at the upstream boundary and H0 denotes the

asymptotic film thickness.

to the horizontal and containing a wave-like trench topography of height S(X) and

wavelength λ̄t. The film flows with velocity U = (U,W ) and the fluid pressure is

denoted by P .

The equations used to describe the flow in two-dimensions (variables in the Y plane

become zero) are the full Navier-Stokes and continuity equations, given by equa-

tions (2.1) and (2.2). These equations are supplemented by the boundary conditions

defined via equations (2.3)-(2.6) and the specification of inflow and outflow condi-

tions in the form of fully developed inflow/outflow via a parabolic velocity field

there, namely:

H|X=0 = H0, U |X=0,Lp
= U0

Z

H0

(
2− Z

H0

)
, W |X=0,Lp

= 0. (2.49)

Non-dimensional forms of the governing equations are derived in a similar manner

to the lubrication equations, here the assumption that ε = H0/L0 � 1 is relaxed.

The variables are scaled in the same manner except lengths which are now scaled

by H0 rather than L0.
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Substitution of the non-dimensional variables into equations (2.1) and (2.2), as

well as boundary conditions (2.3)-(2.6) & (2.49), leads to the following full, well-

posed, non-dimensional Navier-Stokes and continuity equations, plus boundary

conditions:

Re

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · τ + Stg, (2.50)

∇ · u = 0, (2.51)

u|z=s = 0, (2.52)

h|x=0 = 1, u|x=0,lp
= z (2− z) , w|x=0,lp

= 0, (2.53)

∂f

∂t
+ u |z=f

∂f

∂x
= w|z=f , (2.54)

n ·
(
−pI + τ

)
|z=f · n =

κ

Ca
. (2.55)

Noting that there is no disjoining pressure in this case, as there is no contact line sin-

gularity to deal with or contact angle to introduce, and that τ is the non-dimensional

form of the viscous stress tensor. The non-dimensional fluid velocity is denoted by

u = (u,w) and gravity component g = G/g. Any point in the non-dimensional co-

ordinate system is expressed by x = (x, z). The Reynolds number Re = ρU0H0/µ

is a measure of the relative importance of inertial and viscous forces and the Stokes

number, defined as St = 2/sinα, represents the ratio of gravitational to viscous

forces.

The substrate height, s(x), for a wave-like trench is created via a sin function of the

form:

s(x) =

−At sin
[
π
(
x−xt+λ

2

λ

)]
if |x− xt| < λ

2

s(x) = 0 otherwise,

with amplitude, At = Āt/H0, and wavelength, λt = λ̄t/H0.

The initial profile is taken as a fully developed film with with flat free-surface (non-

dimensional height 1) and parabolic inlet velocity profile - see equation (2.53).
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In order to generate meaningful numerical results and useful numerical data, the

governing equations of thin film flow were discretised and solved in a highly accu-

rate, yet efficient, manner. This was achieved in two very different ways: the first,

for the lubrication equations, involves defining a robust, adaptive multigrid algo-

rithm to solve discrete finite difference analogues of equations (2.23) and (2.24);

the second, for the accompanying internal flow of continuous films, is based on

a Bubnov-Galerkin finite-element formulation of the Navier-Stokes and continuity

equations, solved via a multifrontal solver (Veremieiev, 2011). Below, an overview

of numerical techniques used is provided.

3.1 Numerical methods for investigating thin-film coat-

ing flows

The problematic task of investigating thin-film flows experimentally is, by the na-

ture of the topic, the micro-scale of the characteristics of interest and the difficulty

in controlling the influencing physical parameters. This has brought numerical in-

vestigations to the forefront of the research topic and with it the development of

accurate and efficient numerical methods of solution has become pivotal to produc-

ing in-depth three-dimensional solutions.

3.1.1 Long-wave approximation

Rather than solving thin film flows numerically from the stand point of the Navier-

Stokes and continuity equations, the task can be made much simpler and com-

putationally tractable by utilising a long-wave approximation (Oron et al., 1997).

Such an approach is well suited to flows in which the disparity between the asymp-

totic fully-developed film thickness and the characteristic in-plane length scale is

large, see for example Gaskell, Jimack, Sellier, Thompson and Wilson (2004). Ex-



47

panding the velocity and pressure in terms of the long-wave parameter within the

Navier-Stokes and continuity equations, then retaining leading order terms reduces

the governing equations to a fourth order, highly non-linear coupled equation set or

alternatively, as shown in Chapter 2, a coupled equation set for the film height and

pressure. Obtaining numerical solutions to the lubrication equations, although still

forming a considerable challenge, requires substantially less and thus much more

reasonable computational resources.

3.1.2 Three-dimensional solutions

The long-wave approach has been adopted in numerous investigations and for many

different problems including continuous flow over topography (Stillwagon and Lar-

son, 1990; Kalliadasis and Homsy, 2001; Gaskell, Jimack, Sellier, Thompson and

Wilson, 2004), flow on flexible substrates (Lee et al., 2009a) and past occlusions

(Lee et al., 2008), rivulet flow driven by gravity (Kondic and Diez, 2001) and ther-

mal gradients (Kataoka and Troian, 1997). The stability of gravity-driven flow of a

single rivulet has been investigated also by the lubrication approach, see for instance

(Wilson and Duffy, 1998; Wilson et al., 2002; Wilson and Duffy, 2005).

While computing two-dimensional solutions is relatively straightforward and re-

veals characteristics of the free-surface disturbance experienced by the film (Gaskell,

Jimack, Sellier, Thompson and Wilson, 2004), only three-dimensional results give

a complete picture of the free-surface dynamics. For instance when considering a

continuous film flowing over a trench topography, see for example Decré and Baret

(2003), Lee et al. (2007), in two-dimensions a capillary ridge forms at the upstream

side of the trench. Corresponding three-dimensional solutions reveal much more

detail: a downstream surge is also found to be present and the capillary ridge ac-

tually forms a bow-wave around the front of the trench Gaskell, Jimack, Sellier,

Thompson and Wilson (2004), see Figure 1.5 of Chapter 1.

While generating steady-state solutions may be suitable for continuous flow, further



48

computational time is required for calculating transient processes such as a spread-

ing film. A further complication comes when attempting to find solutions in the

vicinity of a three-phase contact line; a well-known singularity is associated with

the advancing front when a no-slip boundary condition is applied. As described in

full in Section 2.1.2 of Chapter 2, a method of relieving this complexity is to assign

a thin precursor film ahead of the spreading film; to fully resolve this area a mesh

size of a similar order to that of the precursor film must be defined (Bertozzi et al.,

1998). This requirement is emphasised further still if a disjoining pressure model is

utilised, in conjunction with the precursor film model, due to the large gradients in

pressure in the region of the attendant contact line (Schwartz and Eley, 1998).

The formidable numerical challenge posed thus requires the development of state-

of-the-art numerical methods for the efficient solution of the governing equations.

The ever increasing ability and power of computers available to researchers allows

for the extraction of grid independent results; Schwartz (1989) employed approx-

imately 10,000 nodes in typical computations of rivulet formation, whereas most

computations described in the recent literature use much finer and larger grid sys-

tems containing up to O(106) nodes, see for example Gaskell, Jimack, Sellier and

Thompson (2004); Gaskell et al. (2008); Mayo et al. (2013). Solving the discretised

analogues of the governing equations on a scale such as this can become more man-

ageable if devolved onto multiple processors, see for instance (Lee et al., 2009a)

where a multigrid framework is utilised to explore film flow on substrates con-

taining densely distributed and complex topographies. An alternate approach to

utilising parallel computing is to use an efficient solution procedure and implement

various forms of error-controlled mesh and time adaptivity.

The most popular approach is to solve the governing fourth order partial differential

lubrication equation - formed by combining equations (2.23) and (2.24) in Chap-

ter 2 - using a semi-implicit time-splitting method (Cowling et al., 2011) in con-

junction with an alternating-direction implicit (ADI) scheme (Weidner et al., 1997;

Schwartz and Eley, 1998). This method exploits the stability of implicit schemes
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and combines it with the CPU efficiency of explicit ones. While successful in its

objective, in terms of efficiency multigrid methods are much better, in theory, to

solve such problems having N unknowns in, at most, O(N) operations (Wesseling,

1992; Trottenberg et al., 2001) thus showcasing the method as a far more attractive

alternative.

In practice multigrid methods have been applied to thin film problems in a vari-

ety of scenarios. A method which also incorporated an automatic, error-controlled

variable time-stepping algorithm was used to consider droplet spreading on hetero-

geneous substrates (Gaskell, Jimack, Sellier and Thompson, 2004) demonstrating

not only the accuracy of the method but also the vast savings in CPU time achieved

by employing such a solver. Further efficiency can be incorporated via local mesh

refinement, especially appropriate when there are large areas where the solution is

known or demonstrates small gradients in the film thickness, which offers the op-

portunity to enhance further the computations - see Lee et al. (2007) for details.

This method has also been used to investigate flow over complex topography and

occlusions (Sellier and Panda, 2009), the effect of flexible membrane (Lee et al.,

2009b) and to consider an evaporating thin film on a substrate containing trench

topographies (Gaskell et al., 2006). Recently, the framework has been adopted to

solve inertial thin-film flow Veremieiev et al. (2010) via a depth-averaged form of

long-wave equations with and without the effect of an electric field on the flow

dynamics (Veremieiev et al., 2012).

3.1.3 Solving the Navier-Stokes equations

Solving the full governing equations of thin-film flow, the Navier-Stokes and con-

tinuity equations, alleviates the restrictions imposed by long-wave theory; namely,

those related to film thickness, in-plane length scale and Capillary number. While

it may be prohibitively expensive to solve such problems in three-dimensions (and

even in two-dimensions) it is the most accurate way of investigating both the in-
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ner flow structure and free-surface disturbance present in situations other than for

Stokes flow - in which case a boundary element approach can prove more suitable

to adopt, see for example (Pozrikidis and Thoroddsen, 1991; Blyth and Pozrikidis,

2006; Baxter et al., 2009, 2010).

Analytical solutions of the Stokes and Navier-Stokes equations for flow over a wavy

wall can be constructed via a perturbation analysis based on assumptions such as

disparity between film thickness, substrate wavelength and amplitude (Wierschem

et al., 2002). This technique has been used effectively for two-dimensional flow

over a wavy substrate (Wang, 1981; Wierschem et al., 2002) and three-dimensional

flow (Wang, 2005; Luo and Pozrikidis, 2007; Heining and Aksel, 2009). This cal-

culation method does not, however, have the ability to predict, for example, the

presence of eddies in the valleys of an undulating substrate. To overcome this limi-

tation, a semi-analytical approach can be employed where complex function theory

reduces the two-dimensional Stokes equations to a system of ordinary differential

and integral equations, solved employing Fourier analysis and an iterative algorithm

(Scholle et al., 2004, 2006; Scholle and Aksel, 2007). This method has been show

to give good agreement to experimental observations. To investigate the inertial in-

fluence on the inner flow the full Navier-Stokes equations must be considered as in

Scholle et al. (2008); a volume-of-fluid (VOF) method was used by Heining et al.

(2012) to solve full equations to investigate flow over undulating substrates and the

associated laminar mixing in the flow.

Parallel computing is necessary, even in two-dimensions, to achieve the required

resolution to capture the re-circulating flow structures, eddies, that form in a rea-

sonable time for transient flow situations. A multi-frontal solver has been shown to

be a suitable means of achieving this as efficiently as possible (Veremieiev, 2011).

Transient solutions to the Navier-Stokes equations can be solved using a finite el-

ement discretisation to understand how applying perturbations to a system alters

the flow (Wilson et al., 2006). When a free-surface is present a further unknown

is added to the system; by making the node co-ordinates of the mesh one of the
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unknowns it is possible to find the free-surface boundary using a method of spines

(Kistler and Schweizer, 1997). A combination of all these techniques gives an effi-

cient algorithm for producing revealing transient data of the inner flow.

3.2 Lubrication equations

The discrete form of the governing lubrication equations is provided below for the

case of film flow down a planar substrate; the equations particular to the case of film

flow down a vertically aligned cylinder, investigated in Chapter 6, can be found in

Appendix B.

3.2.1 Spatial discretisation

Equations (2.23) and (2.24) are solved on a rectangular domain Ω = (0, lp)×(0, wp)

subject to the boundary conditions given in Section 2.1.3, meshed using a regular

grid of nodes with increments of ∆x and ∆y in the x and y directions, respectively

[for simplicity only square meshes are considered with ∆ = ∆x = ∆y]. Values of

h and p are assigned to each node (i, j) in the domain, Ω. Spatial derivatives are

approximated via the standard second-order accurate, central differencing scheme

as in Lee et al. (2007), which leads to the following discrete forms of equations

(2.23) and (2.24):

∂hi,j
∂t

=
1

∆2

[
h3

3
|i+ 1

2
,j (pi+1,j − pi,j)−

h3

3
|i− 1

2
,j (pi,j − pi−1,j)

+
h3

3
|i,j+ 1

2
(pi,j+1 − pi,j)−

h3

3
|i,j− 1

2
(pi,j − pi,j−1)

]
− 2

∆

(
h3

3
|i+ 1

2
,j −

h3

3
|i− 1

2
,j

)
,

(3.1)
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pi,j +
ε3

Ca∆2
[(h+ s)i+1,j + (h+ s)i−1,j + (h+ s)i,j+1 + (h+ s)i,j−1

−4(h+ s)i,j]− 2ε(h+ s)i,j cotα + Π (hi,j) = 0. (3.2)

The terms h3

3
|i± 1

2
,j,

h3

3
|i,j± 1

2
, known as prefactors, are obtained using linear interpo-

lation between neighbouring grid points and are given, for example, by:

h3

3
|i+ 1

2
,j =

1

2

(
1

3
h3
i+1,j +

1

3
h3
i,j

)
,

and similarly for the other prefactors (Kondic and Diez, 2001).

Neumann (no flux) boundary conditions are implemented by introducing ghost

nodes at the edge of the computational domain; values defined by Dirichlet bound-

ary conditions can be assigned exactly at the appropriate boundary nodes.

3.2.2 Temporal discretisation

Here, F h
i,j (hn, pn) , F p

i,j (hn+1) are used to represent the spatial discretisation, de-

fined in equations (3.1) and (3.2), of the associated h and p equation at the n-th

time step, where t = tn, at node (i, j). To advance the solution in time an im-

plicit, unconditionally stable Crank-Nicolson scheme (Gaskell, Jimack, Sellier and

Thompson, 2004) is employed:

hn+1
i,j −

∆tn+1

2
F h
i,j

(
hn+1, pn+1

)
= hni,j +

∆tn+1

2
F h
i,j (hn, pn) , (3.3)

pn+1
i,j + F p

i,j

(
hn+1

)
. (3.4)

For simplicity, the fully discretised forms of equations (2.23) and (2.24) can be

written in terms of non-linear operators:

N h
(
hn+1, pn+1

)
= fh

(
hn, pn

)
, (3.5)

N p
(
hn+1, pn+1

)
= 0, (3.6)
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where N h,N p represent the non-linear operator of the left hand side of equations

(3.3) and (3.4), and fh the right hand side of equation (3.3). Thus, writing the

solution at time n as un = (hn, pn)T , the full system of discrete equations (3.3) and

(3.4) may be written in the form:

Nun+1 = f (un) . (3.7)

3.2.2.1 Variable time-stepping

To obtain an optimal time step, and so increase the efficiency of the method, automatic-

error-controlled variable time-stepping is incorporated via an analysis of an es-

timate of the local truncation error (LTE). This is achieved by comparing pre-

dicted and previous solutions with the current solution (Gaskell, Jimack, Sellier and

Thompson, 2004); predicted values for h and p are obtained via explicit, second-

order in time discretisation of the governing equations:

hpred|n+1
i,j = γ2

t h
n−1
i,j +

(
1− γ2

t

)
hni,j −∆tn+1 (1 + γt)F

h
i,j (hn, pn) , (3.8)

ppred|n+1
i,j + F p

i,j

(
hn+1
pred

)
= 0, (3.9)

where γt = ∆tn+1/∆tn, with ∆tn = tn − tn−1.

The LTE for hpred can be defined via a Taylor series expansion of equation (3.8),

given by:

(LTE)pred

∣∣∣
i,j

=
∆tn+1∆tn (1 + γ)

6

∂3hi,j
∂t3

|t=tp , (3.10)

for tp ∈ (tn, tn+1). Similarly, a Taylor expansion of equation (3.3) leads to a term

for the LTE for h at the solution stage, namely:

(LTE)sol|i,j = −(∆tn+1)
3

12

∂3hi,j
∂t3

|t=ts , (3.11)

for ts ∈ (tn, tn+1).



54

Under the assumption that the third order derivative of h varies by a small amount

only over a time step, allows an estimate for the local truncation error to be calcu-

lated via:

(LTE)i,j =
−1

1 + 2
(

1+γ
γ

) (hn+1
i,j − hn+1

pred i,j

)
. (3.12)

This in turn can be used to estimate the overall truncation error by finding the Eu-

clidean norm, ‖LTE‖, Dormand (1996), which can then be used to define the next

time step, ∆tn+1, as:

∆tn+1 = 0.9∆tn
(

TOL
‖LTE‖

) 1
3

, (3.13)

if ‖LTE‖ 6 TOL, where TOL is a user prescribed tolerance. However, if ‖LTE‖ >

TOL then the previous time step is restarted with half the current time step.

3.2.3 Adaptive multigrid strategy

3.2.3.1 Full approximation storage algorithm

The system of equations (3.7) is solved via a multigrid solution strategy exploiting

the method’s ability to solve a problem having N unknowns in O(N) operations

(Lee et al., 2007). Problems can be solved even more efficiently by employing in

addition error-controlled automatic mesh refinement/de-refinement strategies. Such

a procedure has been utilised and applied successfully to solve the lubrication equa-

tions to explore thin film flow over topography and droplet spreading, see for exam-

ple Gaskell, Jimack, Sellier, Thompson and Wilson (2004), Gaskell, Jimack, Sellier

and Thompson (2004),Gaskell et al. (2006), Lee et al. (2007).

The approach of multigridding, the detailed theory of which can be found in a

number of books - see for example Brandt and Livne (1984), Wesseling (1992),

Trottenberg et al. (2001) - is to use a simple but efficient iterative technique as

a smoother to reduce high frequency (local) errors on a particular computational
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grid that spans the solution domain, while using a hierarchy of successively finer

grids Gk, k ∈ [0, 1, 2, ..., K], to smooth low frequency (global) errors. Here, GK
represents the finest grid level and G0 the coarsest.

G0 contains n0 = Ax+1 nodes in the x-direction andm0 = Ay+1 in the y-direction,

where Ax and Ay are integers greater or equal to 1. These values are used to define

the resolution of the finer grids; for any grid Gk, nk = Ax2
k+1 andmk = Ay2

k+1,

which gives a grid resolution (spacing) of ∆x = lp/ nk and ∆y = wp/mk.

Writing the system of equations to be solved, equation (3.7), incorporating the

multigrid notation, on a computational grid Gk the equations to be solved are:

Nun+1
k = fk (unk) . (3.14)

Taking the current multigrid iteration asm withm = 0 at the start of each multigrid

cycle, consider for the sake of clarity a two grid set up, G0 and G1; for an initial fine

grid approximation on G1 of um1 =
(
hm1 , p

m
1

)T
a set number, νpre, of pre-relaxation

sweeps is performed on G1 to give relaxed fine grid values ũm1 . A restriction inter-

grid transfer operator, Rk−1
k , is used to transfer ũm1 to G0 and the coarse grid solver

employed to give a coarse grid solution wm
0 . From this correction terms are calcu-

lated via vm0 = wm
0 −ũm0 , which are then interpolated onto the finer grid via another

interpolation operator Ikk−1 and used to update ũm1 to u1 = ũm1 + vm1 . Finally νpost

relaxation sweeps are applied to the updated solution on the fine grid to give a new,

updated solution um+1
1 .

The number of so-called FAS (Full Approximation Storage, see below) iterations

at each level is specified by κ and this determines what type of cycle is employed,

so if κ = 1 then the process is completed using V-cycles, if κ = 2 then W-cycles

are employed, see Figure 3.1, and so on. The maximum and minimum number

of iterations, i.e. the number of FAS-cycles, on the current grid level are defined;

should the residual error reduce to a suitable level before the maximum number of

iterations are performed then the multigrid iterations on the current grid level are
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terminated and the next level of the so-called FMG (Full Multigrid, see Section

3.2.3.2) iteration is performed.

The FAS multigrid algorithm is described below in the same pseudo-code formal-

ism as seen in Trottenberg et al. (2001) and Lee et al. (2007):

um+1
k = MGFASCYC (k,umk , fk, ν1, ν2, κ)

Pre-relaxation sweeps

• Perform νpre relaxation sweeps ũmk = RELAX (umk , fk)

Coarse grid correction

• Compute residual on Gk
dmk = fk −Nkũ

m
k

• Restrict residual and fine grid solution on to the next coarsest grid Gk−1

dmk−1 = Rk−1
k dmk , ũmk−1 = Rk−1

k ũmk

• Compute the right hand side of equation (3.14), fk−1

fk−1 = dmk−1 + Nk−1ũ
m
k−1

• If k = 1 and thus Gk−1 is the coarsest grid then solve for coarse grid solution

wm
k−1

Nk−1w
m
k−1 = fk−1

• If k > 1 then perform κ iterations of the multigrid cycle

wm
k−1 = MGFASCYC

(
k − 1, ũmk−1, fk, ν1, ν2, κ

)
• Compute corrections, vmk−1 on Gk−1

vmk−1 = wm
k−1 − ũmk−1

• Interpolate corrections on to Gk
vmk = Ikk−1v

m
k−1
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• Update solution on fine grid Gk via

umk = ũmk + vmk

Post-relaxation sweeps

• Perform νpost relaxation sweeps to complete cycle

um+1
k = RELAX (umk , fk)

The full realisation of the benefits of using a multigrid strategy can only be achieved

if a suitable post and pre-relaxation iterative smoother is utilised that is stable, accu-

rate and efficient. To this end a red-black Gauss-Seidel Newton relaxation scheme

is employed. Other node by node smoothing schemes have been tested extensively

and were found wanting in comparison to the speed of the Newton solver, see Ap-

pendix D.3.

Another detail concerning obtaining numerical solutions via Newtonian smoothers

is the calculation of the associated Jacobian of the governing equation set, see Ap-

pendix D.3 and Gaskell et al. (2010). For ease of use and flexibility of the method,

a numerical Jacobian can be calculated by considering a small change in the current

solution and calculating the gradient induced by this small perturbation, i.e.

J =
N
(
un+1
k + ς

)
−Nun+1

k

ς
. (3.15)

An alternative but less general approach is to calculate the Jacobian analytically -

from a computational perspective this would require the Jacobian to be reformu-

lated and hard-coded when solving different forms of the governing equations, for

example including surface tension gradient effects, solving the flow on a cylinder,

or incorporating additional physics.

The two methods - analytical and numerical - were compared for computational

efficiency with the difference between the two shown to be minimal, see Appendix

D. As such the numerical Jacobian was employed in carrying out the work reported

in this thesis.
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3.2.3.2 Full Multigrid method

A full multigrid (FMG) approach is used to avoid possible divergence due to a poor

initial solution. The basis of the method is to use smoothed solutions from coarser

grids to generate an appropriate initial estimate of the solution on the finer grids.

A interpolation operator Πk
k−1 is used to transfer information from Gk−1 to Gk, the

order of Πk
k−1 may or may not be equal to the order of the interpolation operator

used within the FAS algorithm (Lee et al., 2007). Combined with the previously

described FAS multigrid algorithm, see Figure 3.1 for a schematic diagram, the

procedure is as follows:

For grid levels k = 0, 1, ..., K

• If k = 0, solve N0u
m+1
0 = f0 to obtain initial guess um0

• If k > 0 then interpolate onto fine grid, thus

umk = Πk
k−1u

m
k−1

um+1
k = MGFASCYC (k,umk , fk, νpre, νpost, κ)

3.2.3.3 Local mesh refinement

Automatic mesh adaptation is implemented via a local truncation error analysis that

measures the value, τ k−1
k , for each grid level via:

τ k−1
k = NkR

k−1
k ũk −Rk−1

k (Nkũk) , (3.16)

as in Lee et al. (2007). For all grids k = R+1, ..., K, giving the number of adaptive

multigrid levels asK−R, local refinement takes place wherever τ k−1
k > υ, where υ

is a user defined tolerance. This means that the grids are refined only in the areas of

highest error in the next grid level’s solution; accordingly, unnecessary refinement

is avoided creating improved efficiency at each time step. For full details see Lee

et al. (2007).
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G0

G1

G2

G3

coarse grid solution

smoothing

Π1
0

Π2
1

Π3
2

restriction

interpolation

u0

u2

u3

u1

FIGURE 3.1: Schematic diagram of the full multigrid algorithm incorporating one FAS W-
cycle over four grid levels, Gk with k ∈ [0, 3]. The solution on each grid Gk, k ∈ [1, 3], at
the end of the FAS W-cycle on each level, k, is indicated by uk; the initial solution given
by the coarse grid solution is u0. Full multigrid interpolation is indicated at the end of each
FAS-cycle by Πk

k−1. Restriction and interpolation is performed using inter-grid transfer
operators Rk−1

k and Ikk−1 respectively, between grid levels Gk and Gk−1.

3.2.3.4 Grid devolution

The methodology described above has been developed specifically to fully max-

imise efficiency when considering the flow of continuous films over complex to-

pography; however, the long-time growth of rivulets over a large computational

domain leads to the possibility of introducing further time saving measures while

retaining the accuracy of the multigrid process. Li et al. (2011) used a multigrid

method with no adaptivity to consider thermally driven rivulet growth; they de-

signed an automatic domain shifting algorithm so that long-time evolutions could

be considered. This methodology essentially redefines the computational domain as

the front approaches the end of the current domain and disregards the free-surface

data in the vicinity of the upstream boundary. Its disadvantages are that it makes

the implementation of grid adaptivity increasingly complex and difficult to manage

and there must be extra care taken over when to ‘shift’ the current domain so the

false boundary conditions do not pollute the final solution.
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Alternatively, Gomba (2012) has suggested formulating the lubrication equations,

but in two dimensions only, in a moving frame of reference so as to minimise the

size of the computational domain required to compute solutions; for the problems

considered the saving in computational time over that spent with a non-adaptive

grid was shown to be vast. However, this method can prove to be problematic as

the time-step variable must be kept small enough to adequately estimate the chang-

ing velocity of the moving frame to minimise the ‘slip’ of the advancing front.

Additionally, for the rivulet problem of interest here, indvidual rivulets extend in

length from a starting value of zero to as much as 100L0 or greater (depending on

simulation time and fluid properties the final length of the rivulets varies greatly).

So, even with the adoption of a moving frame of reference, the size of the computa-

tional domain must still be large enough to contain the long-time evolutions length

of the associated rivulets. A dynamically changing computational domain is the

obvious answer, especially given the size of the solution domain typical in rivulet

flows; this idea is developed below.

A method of devolving the solution grid in regions where the film profile exhibits

no change is implemented; it is well suited to rivulet formation on a large substrate

as the area of interest is confined to the contact line region, away from which the

film is either fully developed upstream, i.e h = 1, or, downstream ahead of the

advancing front, is equal to the precursor film thickness, h∗. This implies that a

suitable criteria for grid devolution can be based on the gradient of the solution at

the starting grid level for devolution, k = D.

Accordingly, for each node in the computational domain the norm of the gradient

of the solution is calculated on the grid level D at time iteration n to determine

whether the node is to be removed by the devolution routine:

Grad = |∇hnD|+ |∇pnD| < TOLd. (3.17)

Grad, the absolute sum of the gradient, will be largest in areas where the gradient of
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h and/or p is large; therefore if for any node in the solution domain Grad < TOLd,

where TOLd is a user defined tolerance, that node is marked for devolution. At

the beginning of each time iteration Grad is calculated at each node on D and if

Grad is within the specified tolerance then the node is removed from subsequent

calculations in the cycle. This process essentially re-defines the computational do-

main to a much smaller, appropriate size while not affecting the final solution. The

criteria for devolution is determined on grid level D and corresponding nodes are

also removed from subsequent calculations on levels k < D.

For a comparison of the relative efficiency of the three variants of the multigrid

method described here - non-adaptive, local mesh refinement only and local mesh

refinement in conjunction with grid devolution - see Section D.1 in Appendix D.

3.3 Navier-Stokes equations

The two-dimensional, time-dependent Navier-Stokes equations and associated bound-

ary conditions, (2.50)-(2.55), are solved using a finite element formulation; the

equations are written:

Re

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · τ + Stg, (3.18)

∇ · u = 0, (3.19)

u|z=s = 0, (3.20)

h|x=0 = 1, u|X=0,lp
= z (2− z) , w|x=0,lp

= 0, (3.21)

∂f

∂t
+ u

∂f

∂x
= w, (3.22)

n ·
(
−pI + τ

)
|z=f · n =

κ

Ca
. (3.23)

Although well-known, the Navier-Stokes equations require substantial computa-

tional resources to be solved even in two dimensions, further complexity arises due

to the presence of a transient free-surface, the position of which must be obtained
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as part of the solution. Here, a generalisation of the spinal method, introduced in

Kistler and Schweizer (1997), and the Abritary Langrangian Eulerian (ALE) for-

mulations of Cairncross et al. (2000) is employed. In brief, the grid adapts depend-

ing on the free-surface shape, like a Lagrangian method, and remains fixed where

necessary, as per a Eulerian formulation; thus the grid co-ordinates are treated as

unknowns and must be solved for. A truncated formulation of the discretisation

is provided in the next section and a brief explanation of how the domain inte-

grals are calculated is given; the reader can find the remaining details if required in

Veremieiev (2011).

3.3.1 Discretisation

3.3.1.1 Basis functions and interpolation

Within the finite element method, the unknown velocity, pressure and coordinate

fields are written in terms of basis functions (also known as trial, interpolation or

shape functions - the reason for naming them basis functions becomes apparent

later in the text):

u =
ni∑
i=1

uiφi, p =
nj∑
j=1

pjψj, x =
ni∑
i=1

xiφi, (3.24)

where ui = (ui, wi), pj and xi = (xi, zi) are the unknown nodal values of velocity,

pressure and coordinates, respectively. The total number of domain u/x-nodes is

denoted by ni and the total number of p-nodes is nj with i ∈ [1, nie], j ∈ [1, nje]. The

basis functions for velocity and coordinates are represented by φi and for pressure

by ψj .

A Bubnov-Galerkin weighted residual formulation that assumes values of the test

functions are the same as the basis functions is employed for the discretisation of

equations (3.18), (3.19) and (3.22). A mixed-formulation approach is adopted with
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the number of u/x-nodes per element denoted by nie and, similarly, the number of

p-nodes is nje. Such a formulation is applied in Chung (2002) and, as seen in the

same, to calculate the local integrals for the triangular elements it is appropriate to

introduce local barycentric coordinates Lβ for β ∈ [1, nje]. The value of Lβ ranges

between zero, along the edges, and 1 at the vertices of the element; the value vary

linearly between vertices within the element, see Figure 3.2.

z

x

L1 = 0

L2 = 0

L3 = 0

1

2

3

4

5

6L1 = 1
L2 = 0
L3 = 0

L1 = 0
L2 = 1
L3 = 0

L1 = 0
L2 = 0
L3 = 1

FIGURE 3.2: Local barycentric coordinates for a triangular element in the domain Ω. u/x-
nodes are denoted by both filled and unfilled circles, p-nodes by unfilled circles only.

The basis functions, φi and ψj , are then written in terms of local coordinates as:

φi =

Li (2Li − 1) , i ∈ [1, nje] ,

4Li1Li2 , i ∈ (nje, n
i
e] ,

ψj = Lj, j ∈
[
1, nje

]
, (3.25)

where i1 and i2 are defined as:

i1(i) = trunc

3 +
√

8
(
i− nje

)
− 7

2

 , i2(i) = i−nje−
(i1 − 1) (i1 − 2)

2
, (3.26)

where trunc(x) truncates x from a real number to an integer. A final condition of
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the local coordinate system is that the sum of Lβ is equal to 1, i.e. :

nje∑
j=1

Lj = 1. (3.27)

Accordingly, the interpolation of velocity and coordinates within the triangular el-

ement is quadratic and linear for pressure, also known as a ‘mixed interpolation

formulation, see Hood and Taylor (1974). This means that the number of nodes

for u and p are different; the interpolation for coordinates may be of the same or-

der as the velocities (Christodoulou et al., 1997) thus giving second-order accurate

free-surface coordinates for a similar computational cost. Triangular V6/P3/X6 el-

ements are therefore employed, meaning elements with 6 u/x-nodes and 3 p-nodes,

for the two-dimensional problem at hand.

The momentum equation, (3.18), is discretised by multiplying it with appropriate

weighting functions, integrating over the computational domain, Ω, then converting

it into divergence form by applying equation (3.19) and the divergence theorem,

giving:

Nmom
i =

∫
Ω

[
Re (u̇ + (u− ẋ) · ∇u) +∇p−∇ · τ − Stg

]
φi dΩ

=

∫
Ω

{
Reu̇ +∇

[
Re ((u− ẋ)⊗ u) + pI− τ

]
− Stg

}
φi dΩ = 0, (3.28)

where ⊗ denotes the dyadic product of two vectors, u̇ is the time derivative of u

and the mesh velocity is denoted by ẋ. Note that due to the movement of the com-

putational grid in response to the free-surface deformation, the material derivative

in the momentum equation must be modified (Jimack and Wathen, 1991). Time

derivatives were discretised using a backward Euler scheme, following the work of

Wilson et al. (2006), via:

u̇ =
un+1 − un

∆t
, (3.29)

where un is the velocity calculated at time-step n. The time step, ∆t, must be
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kept sufficiently small to capture the temporal gradients in the flow that exist, as

in Wilson et al. (2006). This scheme was found to be sufficient in describing the

temporal flow dynamics accurately.

Equation (3.28) can be split into two integrals:

Nmom
i = Nmom,d

i + ∆i,kNmom,fs
k ; (3.30)

where ∆i,k is only non-zero if global u/x-node i corresponds to free-surface u/x-

node k, k ∈
[
1, nke

]
. Nmom,d

i the integral over the interior of the domain Ω is

calculated via:

Nmom,d
i =

∫
Ω

{
Reu̇−∇

[
Re ((u− ẋ)⊗ u) + pI− τ

]
∇φi − Stgφi

}
dΩ,

(3.31)

and Nmom,fs
i the integral over the boundary of the domain, Γ, can be derived via

the free-surface boundary conditions, equation (3.22) and (3.23), giving:

Nmom,fs
k = −

∫
Γ

(
−pI + τ

)
nφk dΓ = − 1

Ca

∫
Γ

κnφk dΓ. (3.32)

Inflow/outflow conditions and no-slip at the substrate means Nmom,fs
i is only non-

zero at the free-surface boundary. As the work is restricted to two-dimensional flow,

equation (3.32) is a line integral and can be simplified by using an expression for

line curvature, nκ = dt/dΓ (where t is the tangent vector to the free-surface); using

this and integrating by parts and applying the inflow/outflow boundary condition

leads (Wilson et al., 2006) to:

Nmom,fs
k =

1

Ca

∫
Γ

t
dφk
dΓ

dΓ. (3.33)

Discrete forms of the continuity equation, (3.19), and the kinematic boundary con-
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FIGURE 3.3: An illustration of spines used to track the free-surface. Each base node xbk
and direction vector dk is associated with a spine k.

dition, (3.22), are obtained in a similar manner:

N cont
j =

∫
Ω

∇ · uψj dΩ = 0, (3.34)

N kin
k =

∫
Γ

[n · (u− ẋ)]φk dΓ = 0. (3.35)

3.3.1.2 Free-surface spine method

The current system of equations (3.30), (3.34) and (3.35) is incomplete, currently

the number of equations is 2nie + nje which is less than the number of unknown

values, 2nij + nje + nke . To complete the problem it is necessary to define how

the mesh evolves with the free-surface deformation via nke free-surface parameters.

This is achieved by the method of spines, Kistler and Schweizer (1997), that relates

the mesh x-nodes to a set of free-surface parameters, hk, that must be solved for; the

values of hk determine the deformation of the mesh. The basis of the technique is

to parameterise the free-surface location via a series of spines, each spine is defined

by the location of a fixed base node, denoted by xnk , and a direction vector dk. The

nodes of the mesh are chosen so that each node lies on a spine.

The free-surface parameters, hk, are defined as the distance along the spine from
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base to free-surface. Therefore, for each x-node, the position can be defined via:

xi = xbi + ∆̃i,khkdi, (3.36)

where ∆̃i,k is unity if global node i lies on spine k and zero otherwise. Equa-

tion (3.36) defines that all nodes lie on some spine k intermediately between the

free-surface node of the spine and the associated base node. In all cases here, the

direction vectors only have z-direction and indicate the proportion along the spine

that xi is located. An annotated example is shown in Figure 3.3 (note that the fig-

ure does not depict an actual numerical solution). As the free-surface deforms, the

free-surface nodes are displaced and so all nodes on the associated spine have a

displacement that depends on the free-surface parameters to be calculated, hk. In

the time-dependent case, the mesh therefore has a velocity ẋ which is accounted for

within the time-dependent governing equations.

The number of free-surface parameters, nke , is the same as the total number of spines

and so the system of discretised equations is complete and can be written in the

following form:

N (z) =


Nmom
i

N cont
j

N kin
k




ui

pj

hk

 = 0. (3.37)

3.3.1.3 Calculation of integrals

The computational domain, Ω, is split into ne triangular elements with local do-

main Ωe for element e; the free-surface boundary Γ is divided into nfs free-surface

elements with local domain Γfs for free-surface element fs. The integral contribu-

tions of equations (3.31), (3.32), (3.34) and (3.35) over each element in the domain,

Ωe, or free-surface, Γfs, can be assembled to calculate the integrals over the whole

problem domain. The number of local u/x-nodes on an element e is defined as nαe

similarly there are nβe p-nodes and nγe free-surface nodes on e.
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Accordingly, the weighted-residual discretised equations must be written in terms

of the local coordinates of each element as described in Section 3.3.1.1. The Jaco-

bian of the transformation of the Cartesian coordinates of the element into local co-

ordinates x (L1, L2, L3) is denoted by J . The weighted-residual equationNmom,d,e
α

on any element e, where α is a node on element e, can then be written as an integral

over a unit orthogonal triangle and is defined as:

Nmom,d,e
α =

∫
Ωe

{
Reu̇−

[
(u− ẋ)⊗ u + pI− τ

]
∇φα + Stgφα

}
dΩe

=

∫ 1

0

∫ 1−L1

0

{
Reu̇−

[
Re (u− ẋ)⊗ u + pI− τ

]
∇φα + Stgφα

}
|J | dL1 dL2,

(3.38)

where |J | is the determinant of the Jacobian of the coordinate transformation, J :

J =


1 1 1

∂x
∂L1

∂x
∂L2

∂x
∂L3

∂z
∂L1

∂z
∂L2

∂z
∂L3

 , (3.39)

and ∇φα is calculated via:

∇φα =

nβe∑
β=1

∂φα
∂Lβ

∂Lβ
∂x

=
1

|J |

nβe∑
β=1

∂φα
∂Lβ

[iCβx (J) + kCβz (J)], (3.40)

where ∂φα/∂Lβ values are calculated via equation (3.25). The derivatives ∂Lβ/∂x

are the elements of J−1, the inverse of the Jacobian matrix J , calculated via an ex-

pression in terms of the transpose of the matrix of cofactors, C(J), and determinant

|J |:

J−1 =
1

|J |


C11 C1x C1z

C21 C2x C2z

C31 C3x C3z

 . (3.41)
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The rest of the integrals, (3.32), (3.34) and (3.35), are obtained similarly:

Nmom,fs,e
γ =

1

Ca

∫
Γ

t
dφk
dΓ

dΓ

=
1

Ca

∫ 1

0

[i (n · k)− k (n · i)]
(
∂φγ
∂L2

− ∂φγ
∂L3

)
|L1=0 dL2

(3.42)

N cont,e
β =

∫
Ωe

∇ · uψj dΩe =

∫ 1

0

∫ 1−L1

0

∇ · u |J |ψβ dL1 dL2, (3.43)

N kin,e
γ =

∫
Γ

[n · (u− ẋ)]φγ dΓ

=

∫ 1

0

[N · (u− ẋ)] |L1=0 φγ dL2,

(3.44)

this is assuming, without loss of generality, that a natural coordinate that is equal to

zero at the free-surface edge is L1 so the location of a point on the free-surface is

determined by L2 and L3. N is a vector normal to the free-surface defined by:

N =

(
∂x

∂L2

× ∂x

∂L3

)
|L1=0 , (3.45)

where × denotes the vector product and the unit normal vector n = N/|N|.

3.3.1.4 Solution strategy

The Newton method is used to linearise the global system of discrete Navier-Stokes

equations, (3.37), leading to:

∂N
∂z

= −N∆z, (3.46)

where ∂N /∂z is the global Jacobian matrix and ∆z the solution increment, both of

which are defined as

∂N
∂z

=


∂Nmomi

∂ul

∂Nmomi

∂pj

∂Nmomi

∂hm
∂N contj

∂ul
0

∂N contj

∂hm

∂N kink

∂ul
0

∂N kink

∂hm

 ,∆z =


∆ui

∆pj

∆hk

 . (3.47)
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The solution increment is then used to update the solution, this process is repeated

until the norm of the residual N is reduced below a specified tolerance of 10−6.

The integral contributions for each element are calculated numerically from equa-

tions (3.38), (3.42), (3.43) and (3.44) and appropriate derivatives of the same (needed

to form the global Jacobian matrix) using Gaussian quadrature - a commonly used,

accurate method adopted widely in finite element calculations, see for example

Chung (2002); Veremieiev (2011). For illustration purposes, consider a function

dependent on a set of local coordinates, i.e. f (L1, L2, L3), the value of the integral

of the function over an interior element in the domain may be approximated as:

∫ 1

0

∫ 1−L1

0

f (L1, L2, L3) dL1 dL2 ≈
np∑
p=1

wpf (Lp1, L
p
2, L

p
3), (3.48)

where wp are weight coefficients, (Lp1, L
p
2, L

p
3) are quadrature points and np the

number of integration points. The weight coefficients and quadrature points can

be found by representing the function f as a polynomial of degree 2np or less,

substituting into (3.48) and resolving the system of non-linear equations; results of

weight coefficients and quadrature points (abscissae) can be found for triangular

elements (integrals of order 2) in Rathod et al. (2004).
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Density, ρ (kgm−3) Dynamic viscosity, µ (Pa s) Surface tension, σ (Pa m) Contact angle, θc (degs)
Fluid A 1075 3.11× 10−2 0.069 38o

Fluid B 1210 8.349× 10−2 0.066 7o

TABLE 4.1: Table of the fluid properties that are utilised here. The two fluids were used in
experiments in Johnson et al. (1999).

This chapter utilises the numerical procedure described in Chapter 3 to solve the

lubrication equations for the problem of rivulet formation on an inclined planar

substrate, with comparisons drawn to the experimental data of Johnson (Johnson,

1997) and Johnson et al. (1999). Three-dimensional free-surface plots reveal fea-

tures of the long-time evolution such as merging of neighbouring rivulets. The

incorporation of wetting properties forms a major part of the investigation with

the differences between fully and partially wetting scenarios examined, again with

comparisons drawn with experimental observations. The results obtained lead to the

formulation of a general expression for the final, long-time wavelength of the rivulet

structures with dependence on the wetting properties of the fluid; this is compared

to the classical expression of Huppert (1982) and other subsequent models.

Many of the experimental investigations found in the literature are inconsistent with

one another in terms of fluid properties, wetting properties and substrate material.

A majority also employ a constant volume configuration; where a fixed volume

of fluid is deposited on an inclined plane and allowed to develop. Comparisons

are drawn here with the experimental results of Johnson (1997) and Johnson et al.

(1999) who obtained data for several different fluids for experiments which had

a constant inflow upstream. Numerical solutions are obtained using two fluids,

‘Fluid A’ and ‘Fluid B’ (see Table 4.1 for fluid properties), which are water-glycerin

mixtures with different properties; ‘Fluid B’ is near fully wetting (treated as such

in the numerical solutions) and ‘Fluid A’ has a larger equilibrium contact angle.

The differing wettability of each fluid allows for comparisons to be drawn between

partial and fully wetting fluids. Such a full set of data is rarely available in the

literature and is used for validation of the results collected from numerical solutions.

For the interested reader, the performance of the fully adaptive multigrid method
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FIGURE 4.1: Definitions of width, Wr, length, L and wavelength, λ of the rivulets.

is demonstrated and compared in Appendix D. Also considered is the most appro-

priate approach to calculating the Jacobian of the problem, either numerically or

analytically; in addition, a number of different smoothers are compared and the

most efficient was adopted to obtain the numerical results presented below.

4.1 Long-time rivulet formation - results

The unstable advancing front evolves such that at long-times, a characteristic near-

periodic rivulet pattern emerges; the associated wavelength together with the rivulet

width and length are as indicted in Figure 4.1 and reported in the present work so

as to be consistent with the same qualities as extracted from experiment. The wave-

length, λ, is obtained by measuring the distance between the tips of the adjacent

rivulets forming the system, Johnson (1997), the value quoted, λf , being the mean

across the entire front and at a stage when the possibility of rivulets merging has

long since passed. The corresponding mean rivulet width , Wr, is based on mea-

surements taken half-way along the length of a rivulet, see Johnson et al. (1999).
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4.1.1 Fully wetting fluid

Free-surface film thickness colour maps at long-times are depicted in Figure 4.2 for

α = 13.9o, 27.9o, 60o and 90o; for flow rate Q0 = 8.87mm2/s, this gives H0 = 0.92

mm, 0.74 mm, 0.62 mm and 0.57 mm respectively (Johnson, 1997). The profiles

exhibit a number of characteristic features as α increases, these include a decrease

of the final mean wavelength, λf , of the pattern that emerges at the advancing front,

with a corresponding reduction in the width of the rivulets. The pattern develops

straighter edged rivulets, in contrast to the saw-toothed shaped rivulets seen at lower

values of α. The length of the fingers increases with inclination angle and the final,

saturated length of the rivulets also increases in keeping with the findings of Kondic

and Diez (2005). The free-surface profiles shown in Figure 4.2 may be compared

directly with those of Figure 5.11 in Johnson (1997) which shows snapshots of

experiments that are seen to exhibit very good agreement.

The finite difference solutions were obtained for long times and reveal the merging

of neighbouring rivulets; this can be observed in Figure 4.3 which shows a progres-

sion of rivulet formation in time. The merger of rivulets affect their wavelength

and thickness depending at what time in the evolution of the system an evaluation

is conducted. This phenomena does not appear to have been considered in-depth

before and is the subject of further investigation below.

4.1.1.1 Merger of neighbouring rivulets

Merging has been observed and commented on before; one such instance is in a

numerical study where a heterogeneous striped substrate was used to directly influ-

ence the wavelength of the emerging pattern (Zhao and Marshall, 2006); the authors

noticed that rivulets that were forced to grow near one another would merge to form

a new, single rivulet. Johnson et al. (1999) observed the merger of rivulets in an

experimental setting, concluding that coalescence of rivulets growing in close prox-

imity was observed to happen in an apparent random fashion.
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FIGURE 4.2: free-surface colour maps of film thickness for the flow of ‘Fluid B’ down an
inclined planar substrate at long times; cf the experiments of Johnson, see Figure 5.11 in
(Johnson, 1997); (a) α = 13.9o, (b) α = 27.9o, (c) α = 60o and (d) α = 90o. Lengths
and heights are given in centimetres. The vertical axis is shifted to keep the advancing front

central.
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This merging process can be observed in Figure 4.3 which shows the flow pattern

in terms of colour maps of the film thickness at four different times in the case of

a vertically aligned substrate. In Figure 4.3(a), there are three areas indicated; B

and C, which show two sets of rivulets growing in close proximity to one another,

and A which shows the early time merging of two rivulets. In the second snapshot,

the rivulets at B have combined to form a new rivulet, while the rivulets at C are

growing from a combined root at a slower rate. In the third colour map the com-

bined root of the two rivulets at C is approaching the tips of the rivulets as the two

structures fuse from the root towards the tips. All merging events are near comple-

tion in the fourth figure - the slower, less developed rivulet at C is drawn towards

the side of the longer rivulet which merge to form a new, single rivulet. The single

rivulet now found at B has continued to grow and is noticeably one of the longer

rivulets in the system, similarly the merged rivulet at C also stretches ahead. The

final wavelength is shown in Figure 4.2(d) where the rivulets formed by the joining

of two or more original fingers are more advanced than the other structures which

grew independently. The merging of neighbouring fingers observed here explains

some of the characteristic patterns seen in experiments (see for example Figure 1 of

Kondic and Diez (2001) or Figure 3 in Kondic and Diez (2004)) such as rivulets of

uneven length and merging from a combined root.

When two rivulets amalgamate the root area of the rivulets combine and the merging

continues up to the point when the tips of the rivulets coalesce into one, this leads to

a steep rise in the height of the capillary ridge which creates an increase in velocity

and extension of the merged rivulet. The change in capillary ridge height is revealed

in Figure 4.4 which shows the evolution at successive times of the contact line and

corresponding capillary ridge height for a film on a substrate inclined at α = 90o.

At position I, the capillary ridge height starts to increase as the rivulets begin to

merge, peaking at position II as the rivulet tips merge fully. The newly formed

rivulet thereafter stretches in front of the neighbouring rivulets, as with the rivulets

indicated at B and C in Figure 4.3. The capillary ridge then gradually reduces to
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FIGURE 4.3: Colour maps of the evolution of the advancing front of ‘Fluid B’ on a sub-
strate, with α = 90o, at four different increasing non-dimensional times showing the de-
velopment and merging of rivulets - note that these snapshots are before the one shown in
Figure 4.2(d). The ordinate in (b),(c) and (d) is shifted to keep the rivulets central to the

plot.
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FIGURE 4.4: (a) Contact line evolution for a thin film of fully wetting ‘Fluid B’ on a
substrate inclined at 90o plotted with Ω = (0, 150) × (0, 200). (b) is the capillary ridge
height for Y = 3.9cm and Y = 10.7cm (indicated on (a) by dotted lines). At y = 39 no
merging takes place so the height is relatively steady, however at y = 105 there is merging
between two neighbouring rivulets; when they merge the capillary ridge height exhibits a

sharp increase before settling to a height slightly higher than before the merger process.

a height consistent with the surrounding rivulets at the advancing front of the film,

correspondingly the rivulet’s relative elongation rate reduces to the same as the

other rivulets, and indicated at III in Figure 4.4. As the number of rivulets decreases

through rivulet merger, the capillary ridge height at the tips of the structures that

are in the vicinity of merging rivulets increases and thus the elongation rate of these

rivulets increases; this is a consequence of mass conservation as the volume of fluid

‘feeding’ each rivulet is increased.

The trajectory of the rivulets is influenced by the merging of the rivulets; for in-

stance, considering the rivulets indicated by C in Figure 4.3 the smaller rivulet is

drawn into the side of the larger one creating a meandering path as the two merge.

The newly formed rivulet follows, almost exactly, the path the larger rivulet was

directed along. Similarly, in Figure 4.4 (a), the rivulets, which are of a similar size,

that merge along the solid line create a rivulet with a path directed almost directly

down the centre of the two merged rivulets.

In both cases the merger creates a base wider than the newly formed rivulet, with

the slanted path of the smaller rivulet still visible, for example point C of Figure 4.3
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and along Y = 15cm in Figure 4.4 (a). The large combined base with slanted path

has been observed in experiments - see for example Figure 1(g) in Huppert (1982)

and Figure 5.10 in Johnson (1997) - and can be seen in the free-surface colour maps

and contact line outlines shown in the present work when two rivulets merge (being

particularly obvious when one rivulet is drawn into the other).

4.1.1.2 Comparison to experimental data

The long-time, final wavelength, λf , is measured as the mean wavelength of the

rivulet pattern at long-times when all merging processes have completed. Figure

4.5 (a) shows the wavelength when merging is complete, extracted from numerical

solutions at the advancing front at these long times for a range of inclination angles

between 0o and 90o. Plotted alongside the numerical results are the corresponding

experimental data of Johnson et al. (1999) which show very good agreement. These

results enable predictions as to whether two adjacent rivulets will merge as the flow

evolves with time; for instance, if two rivulets are observed that have tips that are

in closer proximity than the final long-time wavelength, λf , then they will merge at

some point in the future. This is due to the interaction between the two rivulets that

occurs if the two rivulets are within the critical wavelength of one another which

leads to the eventual merger.

An example of how Figure 4.5 (a) may be interpreted is shown below the wave-

length graph. If a film is allowed to develop to its final long-time pattern on a

substrate inclined at 60o the wavelength will be as indicated by point A (the corre-

sponding contact line pattern shown). Should the substrate inclination angle reduce

instantaneously to 30o, point A’, as time continues the rivulets become wider initi-

ating merging. The wavelength then increases, past point B, until finally reaching

λf at C. If the inclination angle is subsequently instantaneously increased back to

60o the number of rivulets remain constant with time, but grow longer and thinner.

These observations show that if the wavelength of the advancing front is below λf

in Figure 4.5 (a) then λ → λf . However, if λ > λf then the wavelength, λf , will
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FIGURE 4.5: (a) The final, long-time wavelength, λf , of the rivulet pattern at the advancing
front for ‘Fluid B’. Comparison is between the experiments of (Johnson et al., 1999) and
the present work. For comparison purposes predictions via linear stability analysis (LSA),
λLSA
f , are also provided. The grey shaded area indicates predicted linear stability. (b) The

width of the rivulets, Wr, for long times of ‘Fluid B’ plotted against inclination angle,
results are from numerical solutions and the experiments of Johnson et al. (1999).
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remain constant for all time.

Similarly, the results for the width of the rivulets are found to be in very good

agreement with the data from the experiments of Johnson et al. (1999). Figure 4.5

(b) shows how the width decreases with inclination angle as the effect of gravity

is reduced. The ratio of the rivulets width to wavelength gives a good indication

of the shape of the rivulets that are forming. A small ratio implies the rivulets are

straight edged, thin rivulets as opposed to the saw-tooth pattern that emerges at

lower inclination angles; for instance at α = 13.9o the ratio is 0.69 but at α = 90o

it is 0.42. The width of the rivulets when the inclination is changed spontaneously

during growth is measured, see Figure 4.5 (b). As inclination angle is decreased

the rivulets get wider. In contrast to the wavelength, when the inclination angle is

returned to its original higher value the width does return to its initial size from C ′

to A,D.

4.1.1.3 Linear stability analysis

Linear stability analysis (LSA) is a widely used tool within the literature, see for ex-

ample Troian et al. (1989); Spaid and Homsy (1996); Bertozzi and Brenner (1997);

Davis and Troian (2003), to predict the behaviour of the advancing front of a thin

film. The process is much less computationally demanding than obtaining three-

dimensional numerical solutions; this has led to the relative sparseness of such

results in the literature. In this thesis a LSA is utilised for comparison purposes

against the numerical predictions obtained; the derivation of the equations (Ap-

pendix C) is also extended to include the disjoining pressure model incorporating

wetting effects.

Solving the LSA equations, see Appendix C, has been found to produce reasonable

predictions for the wavelength and growth rate of the instability at an advancing

front (Kondic, 2003), for this reason the linear stability of the base states of ‘Fluid

B’ are given for comparison with numerical and experimental results in Figure 4.5
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FIGURE 4.6: LSA growth rates, ω, computed for the base states of the problem mod-
elled for comparison to experiments by Johnson et al.(1999) for ‘Fluid B’ and for α =

13.9o, 27.9o, 60o and α = 90o.

(a). The eigenvalue problem given by equation (C.7) in Appendix C is solved using

Matlab 7.9 via the eig function to yield the leading eigenvalue and corresponding

eigenfunction. A spectrum of the growth rates, ω, at a range of wavenumbers, k,

is assessed to determine the range of wavenumber for which the system is linearly

unstable; the dispersion curves for α = 13.9o, 27.9o, 60o and 90o are shown in

Figure 4.6.

In keeping with observations and the numerical results, the growth rates decrease

for smaller α and so does the most unstable wavenumber, kmax. The most unstable

wavenumber (the wavenumber with largest growth rate, ω) is the one that would be

expected to emerge in an experimental setting (Kondic, 2003) and so the predicted

wavelength, λLSA
f , is calculated via the associated wavelength λLSA

f = 2π/kmax. The

results are plotted in Figure 4.5 for comparison with the numerical results and ex-

periments. LSA predicts a similar trend to that found from experiments and from

numerical solutions; at high inclination angles the agreement is very good. How-

ever, it is clear that LSA over predicts the wavelength at most angles and is much

less accurate compared with the full, non-linear numerical solutions. At low incli-

nation angles the discrepancy between LSA and experiments is large and eventually

linear stability is predicted at sufficiently small angles which have been observed to
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yield unstable advancing fronts in experiments (Johnson et al., 1999). This area of

linear stability is indicated by the grey shaded region in Figure 4.5 (a).

4.1.2 Partially wetting fluid

4.1.2.1 Influence of wetting properties on rivulets characteristics

The wetting properties of a fluid coating an inclined substrate have been shown to

affect the shape of the rivulets that emerge and contact angle hysteresis can deter-

mine the final coverage of the film on the substrate (Silvi and Dussan, 1985). Jerrett

and Bruyn (1992) have also show that a high contact angle leads to a smaller wave-

length of the instability appearing as well as causing thinner rivulets to develop.

The ability to generate results numerically allows for the comparison of different

value of θc for the same fluid and thus expose the effect its value has on the dynam-

ics of the flow pattern; accurate control of such parameters would pose a significant

challenge in an experimental procedure.

Three snapshots of the evolution of the advancing front of ‘Fluid A’ with θc = 38o

(Sθc = 5.5) on a substrate inclined at 36o are shown in Figure 4.7; the evolution of

the advancing front for ‘Fluid A’ with θc = 0o (Sθc = 0.0) and θc = 20o (Sθc =

1.57) are provided for comparison purposes. The flow rate is Q0 = 18.1mm2/s

which for inclination angle 36o gives H0 = 0.64 mm.

There are a number of obvious and key differences between the three flow patterns.

The capillary ridge height at the tips of the rivulets is larger when the fluid is par-

tially wetting; for example in Figure 4.7 the capillary ridge height for θc = 38o is

3.21mm while for θc = 0o it is 2.02mm and θc = 20o gives a value of 2.35mm.

Thicker areas of fluid travel faster so the rivulets evolve at a faster rate for a high

contact angle, clearly exhibited in Figure 4.7; in the final snapshot the rivulets are

as much as 21cm in length for θc = 38o, while at the same time when θc = 0o they

are < 4cm long and between 4cm and 8cm when θc = 20o.
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When Sθc = 5.5, the rivulets are particularly straight edged and thin, as Sθc de-

creases the rivulets become more saw-tooth shaped and wider - this is in keep-

ing with the findings of experiments, see for example (Silvi and Dussan, 1985).

As the rivulets are thinner more can form in a given area and so more rivulets

are present at the front when the contact angle is large, thus the rivulet wave-

length decreases. These differences are less exaggerated the nearer to zero the

non-dimensional spreading coefficient, Sθc, is.

A second example is shown in Figure 4.8; the inclination angle in this case is larger,

α = 60o with the right hand column showing the partially wetting case when

θc = 38o and the left column the corresponding fully wetting scenario. The dif-

ferences observed previously are similar, with obvious differences in length, shape,

wavelength and evolution rate. The length of the rivulets in the final snapshot are

as much as six times longer for this partially wetting case.

In both Figure 4.7 and Figure 4.8, when Sθc > 0, the rivulets appear to bend and

meander slightly during their evolution. This effect is exaggerated as Sθc increases

in magnitude (an increase in contact angle). One hypothesis for this phenomena

is as follows; small fluctuations in the height (and thus the flow rate) of the fluid

feeding the rivulet from the bulk flow leads to one side of the rivulet growing at a

faster rate than the other, this leads to a bend in the path of the finger. As the growth

rate of the rivulets is much greater as Sθc increases and the rivulets are thinner, this

effect is much more pronounced when the contact angle is large. The gradients in

disjoining pressure in the vicinity of the contact line are also larger for high Sθc

which means the effect of small fluctuations in film height along the width of the

rivulet is amplified by the larger variations in pressure near the edge of the rivulets.

Meandering is also caused by the merger of rivulets; as observed earlier, the merg-

ing of rivulets can alter the path of the rivulets that merge, in the partial wetting case

this can lead to slight meandering. A similar observation was made by Marshall and

Wang (2005) where the merger of rivulets was forced by the random placement of

contamination spots (areas of less wettability) in the substrate.
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Plots of finger length against time are shown in Figure 4.9; the top plot shows an

increase in rivulet length as inclination angle, α, increases due to the larger driving

gravitational force behind the instability. At larger values of α the capillary ridge

at the front is larger and so the tips of the rivulets move at a faster pace compared

to the bulk flow. It is of note that the change in length is not always linear but may

increase or decrease during the evolution of the front due to the merging of rivulets,

as discussed previously.

The bottom plot of Figure 4.9 compares three values of Sθc with α = 36o; the

evolution rate of the finger length increases with Sθc , again this can be linked to

the increase in capillary ridge magnitude. The degree of increase in finger length

is proportional to the ratio of non-dimensional spreading coefficient, i.e. the final

finger length for Sθc = 5.5 is over 3 times the size compared to the finger length

when Sθc = 1.57.

4.1.2.2 Wavelength and width: comparison to experimental data

Figure 4.10 shows the final long-time wavelength, λf , for ‘Fluid A’ extracted from

numerical solutions when a disjoining pressure term was used with θc = 38o, as

well as the experimental data points of Johnson (1997). The experimental data

for ‘Fluid A’ correspond very well with the numerical solutions. Moreover, Figure

4.10 also shows the extracted numerical results when θc = 0o; as the contact angle

increases the wavelength decreases. A fully wetting fluid will spread freely on

the substrate and as such have wider rivulets and a greater tendency to merge thus

leading to a larger wavelength. This clearly demonstrates the importance that the

wetting properties of the fluid and substrate have on the emerging pattern at an

advancing front.

The contact angle of the problem introduced via the disjoining pressure model is

incorporated within the LSA formulation, see Appendix C, and the predicted wave-

length is calculated for ‘Fluid A’ with large contact angle; the resultant λLSA
f is
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FIGURE 4.7: Colour maps of the long-time evolution of the advancing front of ‘Fluid A’
on a substrate, with α = 36o, at three different times where the equilibrium contact angle,
θc, is 0o on the left hand column, 20o in the centre column and 38o on the right. Note: the

ordinate in the right column is shifted to keep the rivulets central to the plot.
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FIGURE 4.8: Colour maps of the long-time evolution of the advancing front of ‘Fluid A’ on
a substrate, with α = 60o, at t = 30, t = 100 and t = 180 where the equilibrium contact

angle, θc, is 0o on the left hand column and 38o on the right.
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FIGURE 4.9: Finger growth at the advancing front of ‘Fluid A’ flowing on an inclined plane
with (a) different values of α with θc = 38o; (b) different values of θc (and Sθc) at α = 36o.
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FIGURE 4.10: (a) The long-time wavelength, λf of the rivulet pattern at the advancing
front of ‘Fluid A’ for a range of inclination angles. Comparison is between the experiments
of (Johnson et al., 1999) and the present work when θc = 38o and 0o. LSA prediction is
shown for comparison purposes. (b) The width of the rivulets that emerge at the advancing
front of ‘Fluid A’, when θc = 0o, θc = 15o and θc = 38o, plotted against the inclination

angle, α. Plotted for comparison are the experimental results of Johnson (1997).
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FIGURE 4.11: LSA growth rates, ω, computed for a range of wavenumbers, k, generated
from a linear stability analysis of ‘Fluid A’ on an inclined substrate with α = 60o. The
analysis was performed for three different contact angles, θc = 0o, 15o and 38o. The as-
sociated base states are shown inset demonstrating the change in the capillary ridge height

with θc.

plotted in Figure 4.10 for comparison with experimental and numerical results. The

disparity between predicted results and experimental and numerical solutions is, as

with ‘Fluid B’, greater at low inclination angles. LSA predicts a shift in the critical

wavelength with an increase of contact angle, see Figure 4.10, the same qualitative

trend (but not as large quantitatively) as observed for the numerical data.

The critical inclination angle for a particular fluid, below which no rivulets will

form, is very much dependent on the wetting properties; a highly wetting fluid will

have a higher critical inclination angle, so the asymptotic of the curves are shifted

in a positive direction of the ordinate in Figure 4.10 (a). A similar trend is observed

for the LSA results, see Figure 4.10 (a). As contact angle (and so Sθc) increases

LSA gives a larger predicted growth rate at all inclination angles and even predicts

instability when, for the same case, linear stability is predicted at θc = 0o. The

range of wavenumbers for which the problem is linearly unstable also increases

with contact angle. Figure 4.11 shows the results for growth rate given by LSA

over a range of wavenumbers, k, for ‘Fluid A’ on a substrate inclined at 60o for
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three different values of Sθc .

The width of the rivulets are presented for ‘Fluid A’ with θc = 0o, 15o and 38o in

Figure 4.10 (b). As observed earlier the fluid has much wider, saw-tooth shaped

rivulets for a fully wetting fluid in contrast to a partially wetting one which has very

thin, straight edged rivulets. The width of the rivulets is directly affected by the

value of contact angle (as so value of Sθc). The results are presented alongside the

experimental results of Johnson (1997) and correlate extremely accurately.

4.1.3 General expression for wavelength

Huppert (1982), Silvi and Dussan (1985) and Johnson et al. (1999) all found a linear

relationship between the final wavelength of the rivulet pattern and the capillary

length, i.e. λf ∝ L0 = H0/(6Ca)1/3, in reasonable agreement with one another

even for different fluids. Jerrett and Bruyn (1992) found a similar relationship but

noted a difference when the contact angle was large (60o) in comparison to the

other fluids (contact angles of 14o). The data for fully wetting fluids here suggests

a linear fit to the capillary length, L0, for higher inclination angles (small L0) but

this becomes inaccurate at low inclination angles (larger L0). Johnson et al. (1999)

suggest that the relationship may not be linear but in fact depend on a higher power

of the capillary number; they find the relationship λf = 9.2H0/(2Ca)0.45 to be a

good fit to the data. The contact angle of the fluid had not been considered to be a

factor before and so data for different fluids were considered together when finding

the best fit. Results here suggest that Sθc affects the wavelength of the rivulet pattern

that emerges and so results with different θc should treated separately.

In the present work the relationship found to best correspond to the numerical data

for a fully wetting fluid is:

λf =
20H0

(6Ca)0.4 . (4.1)

This is indicated in Figure 4.12 alongside experimental points for ‘Fluid B’ (con-
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FIGURE 4.12: Relationships extracted from numerical data of current study, given by equa-
tion (4.2), shown for fully wetting fluid and when θc = 38o. The results of Johnson et al.
(1999) are plotted for comparison; ‘Fluid A’ has a contact angle of 38o and ‘Fluid B’ is con-
sidered to be fully wetting. Also shown are the fits found by Huppert (1982) (interpreted

by Troian et al. (1989)) and Johnson et al. (1999).

FIGURE 4.13: Results given by equation (4.2) for a range of spreading coefficient, Sθc .
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sidered fully wetting). The line given by equation (4.1) is in good agreement with

the experimental points of Johnson et al. (1999) and also correlates well with Hup-

pert (1982) (also plotted in Figure 4.12), particularly at smaller L0; the best linear

fit for the data is given by 22H0/(6Ca)1/3 which is not as accurate as the proposed

relationship but is closer to that found by Huppert (1982) (as interpreted by Troian

et al. (1989)).

The relative impact of the combined effect of the contact angle θc and the capil-

larity of the flow, can be evaluated by the value of the non-dimensional spreading

coefficient Sθc = 6 (6Ca)−2/3 (1− cos θc). For instance, as witnessed by results

discussed above, as θc increases so does Sθc and the change in the dynamics of

the rivulet formation at the advancing front are more dramatic. The results for the

long-time average wavelength, λf , generated with θc 6= 0 are found to fit to:

λf =
20H0

(6Ca)0.4 − 1.51H0Sθc = H0

[
20 (6Ca)−0.4 − 1.51Sθc

]
. (4.2)

The line generated by this equation for ‘Fluid A’ with θc = 38o is shown in Figure

4.12. As can be seen as θc increases so does the impact of the contact angle on the

corresponding wavelength, λf . The line for θc = 38o gives very good agreement

to the experimental points of Johnson et al. (1999) for ‘Fluid A’ and fits better than

the nearest linear fit of 20L0.

Figure 4.13 shows the proposed relationship from equation (4.2) for a range of

Sθc . Within the lubrication approximation Sθc can realistically range from 0 for

fully wetting fluids to approximately 9.6 at low inclination angles (larger L0) with a

contact angle of 38o. As the partial wetting parameter Sθc increases λf decreases in

a linear fashion. Note also that the fit (4.2) remains positive as long as Ca is larger

than 3× 10−5 which is well within the values considered in experiments.
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4.1.4 Varying the inflow condition

Complete surface coverage is desirable in most applications or scenarios involving

thin film flows whether industrial or biological - for instance, in the coating of

televisions with non-reflective coating, complete uniform coverage of the screen

is required for a highly-performing quality product. Rivulet formation can cause

a non-even, non-complete coverage of the surface; in this section controlling the

pattern of flow by temporally varying the inflow rate sinusoidally across the width

of the domain is explored.

The inflow condition, h(0, y) = 1 for all t, is replaced by a travelling wave inflow

condition, defined by:

h(0, y, t) = 1 + Ar sin (2πft) sin

(
2πy

βλf

)
, (4.3)

where β controls the wavelength of the sinusoidal wave across the front, Ar is

the amplitude of the variation, f = 1/vr the frequency of the fluctuations and λf ,

calculated from equation (4.2), the wavelength.

Figure 4.14 shows the free-surface colour map and corresponding contour plot for

a constant inflow of ‘Fluid B’ on a vertically inclined substrate; parameters of the

flow are the same as in Section 4.1.1. The amplitude of the fluctuations in inlet

height is 0.5 with a wavelength of 3λf , the frequency is set as 1/15. As the areas

of thicker fluid move faster than the rest of the film they approach the advancing

contact line. Although the height of the pulse is damped as it travels along the film

as it reaches the front rivulets are induced.

The pulses are channeled into rivulets that are already formed, this can be clearly

seen in Figure 4.14 as there is an area of thick fluid half way along the long rivulets.

The height of the rivulet increases and thus the growth rate increases; the longer

rivulets have been extended via several pulses of fluid, whereas the shorter ones

have experienced one less wave of thicker fluid.



95

FIGURE 4.14: Free-surface colour map of ‘Fluid B’ flowing down a vertically inclined
planar substrate with a temporally varying inlet given by equation (4.3) with amplitude
fluctuation of Ar = 0.5, wavelength 3λf and frequency f = 1/15; also shown is the

corresponding contour plot.
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FIGURE 4.15: Free-surface colour maps of ‘Fluid B’ flowing down a planar substrate in-
clined at 27.9o with a temporally varying inlet controlled by parametersAr (0.5 in all cases),
wavelength βλf and frequency f . (a) β = 4, f = 1/60; (b) β = 6, f = 1/40; (c) β = 1,

f = 1/60; (d) no time dependence.
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The wavelength of the rivulets is also controlled by the temporally dependent inlet

flow; the width of the pulses is wider than the natural wavelength λf , thus when the

first pulse reaches the front any rivulets that were forming are forced to unite with

the newly created rivulet which then grows into a rivulet with the same width as

the usual planar case. Figure 4.15 shows this feature; in (a) β = 4 and five rivulets

form, when β is increased to 6 the number of rivulets drops to three as the width of

the wavelength of the sinusoidal wave is increased.

If the forced wavelength is the same as λf , as in Fig 4.15 (c), then the maximum

possible number of rivulets will be formed - in this case ten. There is a disparity

between this case and (d) where there is no time dependence due to the regular

pattern that is created by imposing a time-dependent inlet; in (d) there are eleven

rivulets formed however two sets of neighbouring rivulets are growing in slightly

closer proximity to the other rivulets and so are beginning to merge. This happens

due to the near-periodic pattern that emerges, this is not observed when forcing the

pattern to grow exactly periodic with a time-dependent inflow.

Although a time-varying inflow cannot be used to suppress the formation of rivulets

it is certainly shown to give a limited amount of control in respect to the pattern of

the flow. It is possible to change the number of rivulets that form or induce a more

regular pattern and limit late merging that produces rivulets of varying length.

4.2 Summary

The classical problem of a thin liquid film spreading on a planar surface that is in-

clined has been revisited. The aim of the work was to link the wetting properties

of the fluid to the global characteristic of wavelength thus consolidating work pre-

viously done since Huppert in 1982 (Huppert, 1982). Results are validated with

the experimental data of Johnson (1997) showing excellent agreement for width

and wavelength. A linear stability analysis proves to be reasonable in predicting
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wavelength but not as accurate as full numerical solutions.

Dynamic computations revealed the merger of neighbouring rivulets in certain con-

ditions, an interesting feature of rivulet formation that influences the final long-time

rivulet pattern. Should two rivulets grow within a certain distance of one another

they will merge; as they merge the paths can be altered and growth rate increase.

When the flow is partially wetting the rivulets grow in a very different pattern, in

line with experimental observations. They become much thinner and straight edged,

as opposed to the saw-tooth shape of fully wetting rivulets, they also evolve much

faster leading to a decrease in surface coverage. As the partially wetting parameter

increases these effects become more pronounced. The wavelength of the rivulet

pattern was found to also decrease with decreasing wettability.

A general expression that allows the prediction of the wavelength of the rivulet

pattern was extracted from the numerical data. This model, which encompasses the

wetting properties of the liquid, was found to match well with existing experimental

data and also tends to Huppert’s expression when the film is fully wetting.
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In practice, substrates are rarely planar and may feature defects in the form of trench

or mound topographies and/or areas of chemical heterogeneity; both will impact on

the spreading of a liquid film over the surface. Additionally the flow may be subject

to thermal gradients which can induce Marangoni stresses at the surface of the film.

This chapter investigates the impact such features may have on the rivulet instability

including the formation, merger and long-time evolution of the fingering patterns

that are formed. Chemical heterogeneity, modelled by introducing patches on the

substrate where the fluid is more or less wetting (i.e has a smaller or larger contact

angle than on the rest of the surface) is shown to promote rivulet formation as well

as influence rivulets that have already formed. Topography and surface tension

gradients can also introduce noticeable changes into the system.

First a surface tension gradient term is introduced into the lubrication approxima-

tion and the combined influence of surface tension gradient and topography on

a gravity-driven film investigated. The ability of a film to climb against gravity,

propelled by Marangoni stresses, has been investigated experimentally by Cazabat

et al. (1990); Kataoka and Troian (1997, 1999). The mathematical model is able

to capture this phenomena and shows good agreement with the experimental find-

ings. Secondly, the influence of wettability changes on the surface of a substrate

is considered, with the examples explored revealing how this feature can have a

significant impact on the rivulet pattern that is formed.

5.1 Constant surface tension gradient

5.1.1 Governing equations

The lubrication equations, equations (2.23) and (2.24) in Section 2.1.1, are refor-

mulated with the fluid now considered to have variable surface tension, σ, given

by σ = σ0σ̃ = σ0 + τX , with σ0 the value of surface tension at X = 0 and
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τ (= ∂σ/∂X) a constant surface tension gradient (Cazabat et al., 1990); σ̃ is the

non-dimensional surface tension. Re-deriving the lubrication equations, with the

appropriate adjustments to the tangential free-surface boundary condition, leads to

the following governing equation incorporating surface tension gradient:

∂h

∂t
=

∂

∂x

[
h3

3

(
∂p

∂x
− 2

)
− τ̃h2

2

]
+

∂

∂y

[
h3

3

(
∂p

∂y

)]
, (5.1)

together with:

p = − ε3

Ca
σ̂∇2 (h+ s) + 2ε (h+ s− z) cotα− Π(h), (5.2)

where h, p, τ̃ (= H0τ / µU0) and s are the dimensionless film height, pressure,

constant surface tension gradient and topography function, respectively.

The new term in equation (5.1), 1
2
∂τ̃h2

∂x
, is discretised as follows:

τ̃

2

(
h2
i+1,j − h2

i−1,j

2∆

)
. (5.3)

Experimentally a heated substrate is used to induce the surface tension gradient. It

was observed that fluctuations in viscosity and density were small when compared

with changes in surface tension. Therefore, despite not taking thermo-viscosity or

thermally-dependent density into account, this model is deemed suitable for recre-

ating the conditions observed experimentally.

5.1.2 Results

5.1.2.1 Marangoni forces

The results presented below are for the case of the flow of a 100µm water film

(density ρ = 1000 kg m−3, viscosity 0.001 Pa s and surface tension σ0 = 0.07 N

m−1) on a substrate inclined at 65o to the horizontal, this gives Ca = 6.35 × 10−4
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and ε = 0.16. The precursor film thickness is taken to be h∗ = 0.01 (H∗ = 1 µm),

a value chosen to be consistent with the one used by Diez and Kondic (2001b), to

facilitate comparison between the results generated, lj and λ0,j were kept the same.

When topographies are present, they are restricted to simple square peak and trench

features with γ = 0.01; see expression (2.45) in Chapter 2.

The results shown in Figure 5.2 were obtained on a computational domain with

(lp, wp) = (200, 100); the adaptive multigrid method utilised five grid refinement

levels, 0 6 k 6 4, with the number of nodes on each level being nk = 278× 2k + 1

andmk = 139×2k+1 which equates to a finest mesh resolution of ∆ = 0.045. The

value of τ̃ is prescribed as indicated; surface tension gradients of similar magnitude

have been achieved in an experimental setting using heated substrates (Cazabat

et al., 1990).

Comparing the left, middle and right columns of free-surface colour maps reveals

the effect of the surface tension gradient, τ̃ , see equation (5.1), acting in the stream-

wise direction. The main difference is the length of the rivulets formed: a value

of τ̃ > 0 accelerates the lengthening of the rivulets with the spreading rate charac-

terised by an increase in the maximum film height of the capillary ridge at their tips;

for τ̃ < 0, the opposite effect is observed and there is a flattening/decrease in the

capillary ridge at the tips suppressing lengthening. At later times, see the bottom

row of colour maps, the difference in position and length is even more pronounced.

The merging of neighbouring rivulets is observed in Figure 5.2 and is clearly influ-

enced by the presence of a surface tension gradient. In Figure 5.2(d), where τ̃ < 0,

the merger of two rivulets has just occurred with their tips coalescing to form a

new, single rivulet; the retarded lengthening of these rivulets mean they interact at

an earlier stage and coalesce. The same rivulets in Figure 5.2 (e), τ̃ = 0, and (f),

τ̃ > 0, have yet to merge fully but have begun to do so from their common root;

they will eventually merge but at a later time. This is seen to have happened in Fig-

ure 5.2(h), for τ̃ = 0; however, with τ̃ = 0.25, Figure 5.2(i), the rivulet tips remain

distinct. The rivulet formed by the merging process, see Figure 5.2(g), has moved
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ahead of its neighbours due to the increase in capillary ridge height which accom-

panies merging and which in turn leads to accelerated lengthening of the combined

rivulet. A negative surface tension gradient promotes earlier merger of neighbour-

ing rivulets, whereas a positive one delays the time at which merger occurs.

FIGURE 5.1: Color maps of free-surface profile for a water film spreading on a planar
substrate inclined at 65o. The left profiles are for flow with no surface tension gradient, the
middle column is flow when τ̃ = −0.25 and the right hand side is when τ̃ = 0.25. The top

profiles are at t = 100 and the bottom profiles are at t = 200.
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FIGURE 5.2: Colour maps of the free-surface height, h + s, for gravity-driven flow over
a planar substrate, s0 = 0, and α = 65o: the rivulet pattern formed corresponds to t = 50
(top), t = 100 (middle) and t = 150 (bottom) when τ̃ = −0.25 (left), τ̃ = 0.0 (centre) and
τ̃ = 0.25 (right), respectively. The streamwise direction of flow is from top to bottom in

each sequence.
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FIGURE 5.3: Colour maps of the free-surface, h + s, showing rivulet formation for flow
over substrate containing different topographical heterogeneities, |s0| = 0.2 and θ = 65o;
top row t = 100, bottom row t = 258 (bottom). The substrate contains (from left to right)
no topography; two square trench topographies; two peak topographies (dashed outline);
and a square trench and a square peak topography. τ̃ = −0.25 in all cases. The streamwise

direction of flow is from top to bottom in each sequence.
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5.1.2.2 Topography

Similarly the presence of topography can, in addition, have a dramatic influence

on the formation of rivulet patterns. An example of this is shown in Figure 5.3 for

an advancing front moving down different planar substrates, one containing two

identical trenches, another with two identical peaks, a third containing equal but

opposite trench and peak topographies and one completely planar. The advancing

front starts from the same position upstream of the topographical features in each

case, at x = 10. All topographies have height/depth s0 = |0.2| and length and

width lt = wt = 10. The domain size for these solutions is (lp, wp) = (250, 50)

with, in this case, the number of nodes on level k given by nk = 348× 2k + 1 and

mk = 70 × 2k + 1, the surface tension gradient is τ̃ = −0.25; the case when no

topographical features are present is shown as a comparative solution.

The upper set of plots in Figure 5.3 shows the rivulet structures at t = 100; the var-

ious combinations of topographical features clearly affect the position and growth

of the rivulets differently. When twin trenches are present, Figure 5.3(b), the two

inner most rivulets formed are slightly longer and slightly more advanced relative to

their planar substrate counterparts, Figure 5.3(a). Figure 5.3(c), for the case of twin

peaks, shows a very different pattern emerging; the inner most rivulets have already

merged at an earlier time after being directed towards one another. Their merger

is accompanied by a sharp increase in the height of the capillary ridge at the tip of

the newly formed single rivulet which leads to an acceleration in the lengthening

process.

At later times, see the bottom set of colour maps at t = 258, the influence of the

topography persists. The inner most rivulets have merged in all cases apart from

that in which the front encountered twin trenches; this suggests that the increased

lengthening experienced in the latter case delays the merging of these rivulets. The

middle rivulet in Figure 5.3 (h) is skewed to the left slightly (towards the trench

topography side of the domain) compared to the ones in Figures 5.3 (e) and (g) due
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FIGURE 5.4: Top: Colour maps of free-surface film height for the case of a thin film
climbing up a vertically inclined substrate due to Marangoni stress, τ̃ = 1.6 in this case.
The direction gravity is acting is shown in (d) for clarity. Bottom: A typical evolution of a

Marangoni driven advancing front from the experiments of Cazabat et al. (1990).

to the predominant deflection effect of the peak. The centre rivulet in the twin peak

topography case, Figure 5.3 (g), results from the merging that occurred at much

earlier times so has the usual, elongated shape. The other newly formed, single,

centre rivulet, in Figures 5.3 (e) and (h), has a wider, V-shaped base due to it being

fed from the two combined sources of the now merged rivulets. As time progresses,

the increase in ridge height at the tip leads to an acceleration of the rivulet front

which elongates the structure.

5.1.2.3 Climbing films

By introducing a temperature gradient along the substrate a surface tension gradient

may be induced. If the Marangoni forces are larger than the opposing gravitational
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FIGURE 5.5: The position of the tip of the longest rivulet formed at the advancing front
of a 0.86µm thick film rising up a vertically aligned plate under the influence of a surface

tension gradient of τ̃ . The dashed line indicates the corresponding trough position.

τ , Nm−2 H0, µm L0, µm λ, µm λcaz, µm λ̃ = λ/L0

0.5 0.86 21.4 514 600 24
0.27 0.65 21.4 514 610 24
0.21 0.54 19.8 436 480 22
0.1 0.27 15.9 366 370 23

0.054 0.17 14.3 329 340 23
0.21 0.65 22.2 533 580 24
0.21 0.33 14.3 329 340 23

TABLE 5.1: Table of wavelength, λ, of the advancing front of a climbing film for a range
of parameters obtained from numerical solutions and compared with the experimentally

measured values in Cazabat et al. (1990), λcaz.
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effects then the advancing front of the thin film may begin to climb an inclined

substrate against gravity. A similar instability seen in gravity-driven flows occurs

and rivulets form. There have been a number of studies into this Marangoni driven

fingering phenomena such as that of Kataoka and Troian (1997) and Cazabat et al.

(1990).

Cazabat et al. (1990) considered the above problem using a light silicone oil poly-

dimethylsiloxane (PDMS) as a working fluid and film thicknesses between 0.17µm

and 0.86µm. A temperature gradient was applied to a vertically inclined plate which

had one end submerged in a bath of the fluid. Here the same range of parameters is

considered; the lubrication model described previously is modified in that the term

that encompasses the gravity term changes sign due to the reversal of perspective

(i.e. the positive x-direction now goes up), therefore equation (5.1) becomes:

∂h

∂t
=

∂

∂x

[
h3

3

(
∂p

∂x
+ 2

)
− τ̃h2

2

]
+

∂

∂y

[
h3

3

(
∂p

∂y

)]
. (5.4)

The advancing liquid front will only climb if the film is thin enough. By considering

the governing lubrication equations, equations (5.4) and (5.2), and comparing the

terms encompassing gravitational forces, 2h3/3, and those arising from the surface

tension gradient, τ̃h2/2, it can be shown that the film will only climb if:

2h3

3
− τ̃h2

2
< 0⇒ τ̃ >

4h

3
.

Substituting U0 = ρg sinα/2µ into the inequality and noting that the film thickness

is of the same order as H0 gives the condition for the advancing front to climb as:

τ >
2

3
ρgH0 sinα. (5.5)

Figure 5.4 shows the typical progression of the advancing front of a climbing film

as colour maps of film thickness; the case shown is for a film thickness 0.86µm

and an applied surface tension gradient of τ̃ = 2. As in the case of gravity-driven
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rivulet formation, the advancing front develops a capillary ridge, areas of thicker

fluid stretch out in front of the bulk of the fluid forming the rivulet pattern ob-

served; the predicted evolution of the pattern is compared with the corresponding

experimentally observed pattern presented by Cazabat et al. (1990) - their Figure 2

- which shows very good qualitative agreement.

The width of the rivulets depends on the surface tension gradient, τ̃ ; the larger the

magnitude of τ̃ the thinner and more elongated the rivulets are, as seen in gravity-

driven flow with increasing inclination angle. This is shown in Figure 5.5 where the

size of τ is varied and the positions of the tips of the rivulets and the corresponding

troughs are plotted. It shows that the finger lengthening is enhanced (indicated by

the gap between tip and trough) as τ increases.

The wavelength, λ, of the rivulet pattern is the distance between the tips of neigh-

bouring rivulets. Cazabat et al. (1990) find that the non-dimensional wavelength,

λ̃ = λ/L0, lie in the range from 22 to 27 (similar to values found in experiments

for gravity-driven flow Troian et al. (1989), Kondic and Diez (2001)). Here the

non-dimensional wavelength (taken as the average of λ̃ across the whole front) was

found to range from 22 to 24 for the range of parameters used by Cazabat et al.

(1990) showing good agreement with their experimental study and giving similar

results to that of gravity-driven rivulet growth, see Table 5.1.

5.2 Chemical heterogeneity

Substrates made up of different materials/chemicals or with varying surface prop-

erties may contain regions exhibiting differing wettability. Chemically striped sub-

strates have been shown to influence the wavelength of emerging rivulets in gravi-

tationally driven films (Kondic and Diez, 2002; Zhao and Marshall, 2006) as well

as in the case of thermally driven climbing films (Kataoka and Troian, 1997, 1999).

When a random pattern of heterogeneous patches with differing wettability is de-
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FIGURE 5.6: The low wettability patch pattern is shown in the top left figure. Free-surface
contour maps showing the progression of the contact line of a thin film flowing down an
inclined plane tilted at 30o onto a substrate with 5 equally spaced low wettability patches

of equilibrium contact angle θc = 10.0 and Sθc = 3.5.

fined on the substrate the wavelength that emerges is similar to the planar case;

however, there is a significantly higher variation of wavelength to the mean (Zhao

and Marshall, 2006).

In this section the formation of rivulets on a chemically heterogeneous substrate is

investigated by introducing areas of high/low wettability across the surface. The

influence with regard to the features observed in Chapter 4 are recorded and dis-

cussed.

5.2.1 Numerical results

5.2.1.1 Influence on rivulet formation

Figure 5.6 and 5.7 show the evolution of a 100µm thick water film on a substrate

inclined at 30o approaching three and five equally spaced low wetting patches on

the substrate. In the first case four rivulets are created by the spacing and these grow

unabated down the substrate. In the second case, as in the first, the spacing induces

the same number of rivulets as spaces between the patches (i.e. 4 in Figure 5.6 and
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FIGURE 5.7: Free-surface contour maps showing the progression of the contact line of thin
film flowing down an inclined plane tilted at 30o onto a substrate with 5 equally spaced low

wettability patches of equilibrium contact angle θc = 10.0 and Sθc = 3.5.
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6 in Figure 5.7). However, this time the narrower spacing causes the rivulets to

grow in closer proximity to one another - the rivulets then coalesce; this takes place

between neighbouring rivulets leaving only three rivulets after the merger process.

The spacing between the patches directly determines the number of rivulets formed;

one patch induces two rivulets, two induces three and so on. As the liquid front

meets the patches, fluid is channelled into the spaces between the patterns; this cre-

ates areas of thicker fluid, with a higher capillary ridge at the contact line, which

grow faster than the bulk flow thus exaggerating the instability. If the spacing be-

comes too small, smaller than λf as determined in Chapter 4, merging takes place

and can lead to fewer rivulets for a greater number of patches. These findings are

analogous to the finding of Kondic and Diez (2002) who introduced small trough

topographies ahead of an advancing front and found that if the spacing between

the troughs is larger than the critical wavelength, λf , then the number of rivulets

to emerge is the same as the number of troughs. If the spacing is smaller than the

critical value rivulets are formed that grow in close proximity to one another, this in

turn means - see Chapter 4 - that merging is promoted - the final wavelength after

merging is complete can then be larger than λf . Zhao and Marshall (2006) also

found this when the substrate was chemically striped (different wettability stripes).

Figure 5.8 (a) and (b) depicts the same case but with two different patterns of chem-

ically different patches. In (a), the three patches have a small spacing between them

so, although four rivulets are initially induced, the two centre rivulets merge leav-

ing two outer rivulets and one central rivulet. The central rivulet, created from the

merging of the two rivulets created by the spacing of patches, has formed directly

in the centre of the trajectories of it’s two ‘parent’ fingers. As the front then meets a

complex of four more patches, with the same spacing as the first set of patches, the

three rivulets are directed down fully wetting areas as they are repelled from the low

wetting area. The existing rivulets are squeezed in the spacing between patches, as

the spacing is smaller than the natural width of the fingers; this leads to an increase

in film thickness between the patches, as the fluid exits the spacing the rivulets re-
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FIGURE 5.8: Contact line plots of a thin water film flowing down an inclined plane tilted
at 30o on a substrate containing areas of low wettability, indicated by grey patches, where

θc = 10o and Sθc = 3.5.

lax and becomes wider again. In the area between patches where no rivulets are

directed the beginnings of two new rivulets can be seen, as they grow in close prox-

imity to the large central rivulet, with a spacing smaller than λf , they get drawn into

the side of the longer finger. This type of merging, where a smaller rivulet is drawn

into the side of a larger one, was observed in the planar case in Chapter 4. Three

rivulets then grow in the expected straight manner after the patches.

Now considering Figure 5.8 (b), the process is initially the same as (a), this time

however there are only three patches in the second set and they are wider than

their counterparts in (a) and the one nearest the y = 0 boundary is slightly thinner

than the other two. The central rivulet’s path directs it towards the middle, low

wetting patch. The rivulet is deflected down the left of the patch, due to it’s low

wetting nature, creating a slanted trajectory. Rivulets travel preferentially towards

the ‘easiest’ spreading route with most wettability and thus least resistance; due to

this, the rivulet at the top boundary is squeezed towards the top spanwise boundary.

The bottom rivulet is also deflected, there is also a new rivulet near the y = 0
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FIGURE 5.9: Three-dimensional free-surface plots to demonstrate the dramatic effect on
rivulet formation of large areas of substrate heterogeneity. The fluid is a 100µm thick water
film flowing down a substrate inclined at 65o with contact angle θc = 0o on the majority
of the substrate. The outline of the patches of low wettability are indicated with a white

dashed line; on the patches θc = 10o.
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spanwise boundary that is formed by the wetting patches. As the spacing between

these rivulets is small they merge while continuing on their slanted, deflected paths.

The asymmetry of the wetting patches introduces asymmetry to the advancing front

pattern.

A similar situation is encountered in the film thickness contours shown in Figure

5.9, with α = 65o. Instead of having a second row of low wetting patches, these

have been replaced by a single large patch. The location of the low wetting regions

are indicated by dashed white outlines. This means all four rivulets, seen in Fig-

ure 5.9 (b) and (c), resulting from the presence of three low wetting patches meet

another area, the large rectangular region downstream, of low wettability. The two

rivulets at the spanwise boundaries are deflected around the edges of the patch cre-

ating a curving rivulet, see Figure 5.9 (d) and (e). The two centre rivulets begin to

merge after the first set of patches, as the merger process begins the half-coalesced

structure meets the second region of low wettability, observed in Figure 5.9 (c) and

(d). The merging process continues and the tips are close to merging in Figure 5.9

(e) as the tips exit the low wetting region. The half merged base is advancing at a

faster rate as it is on the low wetting region and also due to the larger film thickness

caused by the merging, this in turn leads to the completion of merger as the base

catches the tips of the rivulets - Figure 5.9 (f). As the rivulet leaves the low wetting

area, it grows down the centre of the substrate, along with the two side rivulets in

Figure 5.9 (g).

The results show that surface heterogeneity can heavily influence the number of

rivulets that are formed. The film preferentially spreads along trajectories of least

resistance, that is, with highest wettability. This can lead to interesting dynamics

and patterns which may be induced by chemical heterogeneity or surface topogra-

phy including the merger of rivulets and the ‘squeezing’ of rivulets between surface

features.
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FIGURE 5.10: Rivulet formation and evolution for the flow of a thin film of ‘Fluid A’
on a vertically aligned substrate containing a variety of chemical heterogeneous patterned
regions. The plots show the outline of the contact line as it progresses with time. Grey areas

indicate areas where θc = 35o; the white areas denote fully wetting regions, θc = 0o.

5.2.1.2 Influence on rivulet growth

In this section the influence of surface chemical heterogeneity is considered on

rivulets that are already growing. The initial front is perturbed as in Chapter 4 so

the natural, expected wavelength will emerge if left unimpeded.

The developing contact line is depicted in Figure 5.10 and 5.11 for the same flow

as investigated in Figure 4.2 (d) (‘Fluid A’ on a vertically inclined substrate) on a

substrate with a variety of different heterogeneous patchwork scenarios; the grey

areas denote parts on the substrate where the liquid behaves as if partially wetting,

with θc = 35o, and the white areas indicate where it is fully wetting, θc = 0o. The

outline of the contact line is shown as it spreads along the substrate, this allows

for the visualisation of the evolution of the rivulet pattern without requiring many

contour plots.
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FIGURE 5.11: Rivulet formation and evolution for the flow of a thin film of ‘Fluid A’
on a vertically aligned substrate containing a variety of chemical heterogeneous patterned
regions. The plots show the outline of the contact line as it progresses with time. Grey areas

indicate areas where θc = 35o; the white areas denote fully wetting regions, θc = 0o.

FIGURE 5.12: Contact line outline plots for a thin film of ‘Fluid A’ spreading on a substrate
inclined at α = 36o to the horizontal. (a) shows the development of the film on a fully
wetting area before crossing onto an area of low wettability where the equilibrium contact

angle is θc = 30o (indicated by greyed areas); (b) shows the opposite arrangement.
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Five, thin patches near the top of the substrate are seen in Figure 5.10 (a); as the

flow evolves the film is channelled between the patches creating six equally spaced

rivulets. The emerging periodic rivulet pattern remains the same as it flows down

the rest of the substrate. In contrast, when there are no chemical heterogeneities

present, in Figure 5.10 (d), six rivulets are again formed. However, as the pattern

emerges from the random initial condition it is not completely periodic; due to

this two rivulets grow in close enough proximity to begin merging - this can be

seen in the final contact line outline in Figure 5.10 (d). Figure 5.10 (b) shows

how the contact line develops in the presence of two large heterogeneous patches;

the spacing causes the merger of two initial rivulets in the centre of the plot, two

rivulets grow down the domain boundaries and a single rivulet grows over each low

wetting region. Five, very thinly spaced patches are seen in Figure 5.10 (c) creating

four very thinly-spaced rivulets in the centre of the substrate and two rivulets by

the spanwise boundaries. Before these thinly-spaced rivulets can merge two more

patches are encountered forcing the middle two rivulets to merge and increasing the

wavelength as such that the other two rivulets enough space to grow independently.

Figure 5.11 (a) shows the case of a thin partially wetting patch located at the centre

of the substrate, initially ahead of the advancing front; it is clear that as the flow

evolves the front preferentially avoids this central section and flows onto the fully

wetting region. This has two consequences; the first is an increase in film thickness

around the edges of the low wetting patch, this causes an increase in the capillary

ridge height of the rivulets adjacent to the patch creating an enhanced lengthening

effect, the second is a repositioning of the rivulets whose edges overlap the patch

as they are redirected, marginally, away from the patch. This change in trajectory

can direct such a rivulet into the proximity of its neighbour, the two rivulets may

then coalesce, a process that would have not occurred had the substrate remained

uniformly homogeneous. In the contrasting case, when the wettability is reversed

and the central patch is fully wetting, see Figure 5.11 (b), the rivulets preferably

spread onto this region leading to faster and fuller coverage of the patch.
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The configuration demonstrated in Figure 5.11 (c), is for the case of an advancing

front that begins to evolve on a region of the substrate that is partially wetting before

spreading onto one that is fully wetting there-on in. As the advancing front crosses

onto the fully wetting region the rivulets widen. Rivulets that were sufficiently far

apart beforehand now grow in closer proximity to one another and so merge. The

number of rivulets on the fully wetting region in Figure 5.11 (c), once the merging

processes are complete, is five; this represents a reduction from the corresponding

partial wetting case where seven rivulets form. Interestingly, as shown in Figure

5.11 (d), if the advancing front develops on a fully wetting region before encoun-

tering an area of low wettability the rivulets do not increase/decrease in number as

their wavelength remains above the critical wavelength λf - as shown in Chapter 4,

wavelengths only increase due to merger, they do not decrease. The only alteration

is in the shape; as seen previously, when spreading on a low wetting substrate the

rivulets become much thinner.

The situations displayed in Figure 5.10 and 5.11 demonstrate how the rivulet pattern

can be forced to be completely periodic and thus grow the maximum number of

rivulets possible, similar to when the problem has a time-dependent inlet with a

wavelength the same as λf - see Section 4.1.4. If the spacing between chemical

heterogeneous areas is small then rivulets may be created that evolve close to one

another which leads to their merger. The film preferentially spreads onto areas of

high wettability, this results in the ability to direct the film into regions of choice;

see in Figure 5.11 (a) where the low wetting stripe is mostly uncovered or Figure

5.11 (b) where the patch is highly wetting and so is preferentially covered.

Should a film spread and rivulets form on a partially wetting substrate, 5.11 (d)

and 5.12 (b), initially before crossing onto a highly or fully wetting area then the

rivulets relax and widen as they spread onto the fully wetting area. The associated

critical wavelength, λf with the fully wetting region is larger than that associated

with the low wetting area, see equation (4.2), therefore merger is observed between

those rivulets evolving within this critical distance of each other. In the reverse
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situation, Figure 5.12 (b), the wavelength does not decrease as the film crosses

from a region of high wettability to low wettability as the associated λf decreases;

the rivulets merely become thinner with larger capillary ridge heights at the tips and

so lengthening is enhanced.

5.3 Summary

The approach taken for considering a planar inclined substrate is extended in this

chapter to include a number of new features including the influence of surface ten-

sion gradients, substrate topography and chemical heterogeneities on rivulet forma-

tion.

A surface tension gradient applied across the film is incorporated into the lubrica-

tion approximation and shown to be able to either enhance or suppress the progress

of rivulet formation. This can also delay or promote the onset of merger between

two rivulets. If the film is thin enough, the Marangoni stresses may be large enough,

if obeying equation (5.3), to force the liquid front to climb on a vertically aligned

plane. Numerical results presented in this chapter agree well with the experimental

observations of Cazabat et al. (1990) and exhibit the robustness of the method of

formulation, via the lubrication approximation, and method of solution, adaptive

multigrid, adopted to investigate thin film flows.

An approach to investigating rivulet flow on real surfaces was utilised by speci-

fying the presence of substrate topographies in the form of mounds and trenches.

These features were shown to influence the paths of the rivulets during formation

by both deflection and enhancement via the known free-surface deformations that

the topographies create. The surge that occurs after a trench topography was seen

to create an enhancement of rivulet length after the advancing front has passed due

to the increase in film thickness.

Finally, the effect that areas of differing wettability have on the advancing front
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instability is uncovered. Such regions have a direct influence on the number of

rivulets that form at the advancing front. The film front preferably flows down the

area with highest wettability thus creating areas of relatively thick film compared to

the film flowing over the low wetting areas. The patches of chemical heterogeneity

can have a significant influence on the pattern that emerges by inducing merging

between rivulets due to the small distance between evolving rivulets that can be en-

forced. This can also happen when the front moves from an area of low wettability

to high wettability as the critical wavelength, as uncovered in Chapter 4, associated

with the highly wetting region is larger than that of the low wetting region and so

neighbouring rivulets merge until at or above the critical value. If the liquid then

spreads back to an area of high wettability the wavelength will not decrease but

continue at this larger value as the critical wavelength has decreased again. The

number of rivulets may only decrease and not increase without physically inducing

new rivulets through means of topography or patterned differing wetting patches.
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6.1 Background

Realistically, in industrial, medical and natural processes, substrates of interest are

rarely flat planes. One complication that arises is the presence of topography or

chemical heterogeneity as dealt with in Chapter 5, the other is where the shape of

the substrate is non-planar and curved in one or more directions. In the context of

lubrication theory and non-planar, curvy geometry, some attention has been given

to free-surface flow on a arbitrarily curved substrate (Roy et al., 2002) but much

more emphasis has been placed on flow over a horizontally aligned cylinder, such

investigatory reports can be found in Duffy and Wilson (1999), Evans et al. (2004),

Takagi and Huppert (2010) and Leslie et al. (2011). In the work presented here, the

affect that the geometry of a vertically aligned cylinder has on rivulet formation is

explored.

The work presented in this chapter was inspired by a recent experimental study by

Smolka and SeGall (2011) who investigated the flow of thin films down the outer

surface of a vertically aligned cylinder. Comparisons with linear stability analysis

of the governing equations, a first order long-wave approximation reminiscent of

the equations of lubrication theory, were found to be favourable. The scenario is

reminiscent of liquid coating a fibre, see for example Kalliadasis and Chang (1994)

or Craster and Matar (2006), and the recent work of Takagi and Huppert (2010)

who considered flow on a sphere and a horizontally aligned cylinder.

Full three-dimensional numerical solutions are generated for a range of cylinder

radii using the parameters provided in Smolka and SeGall (2011). The disjoining

pressure model is incorporated into the derivation of the governing equations, which

differ from those presented in Chapter 2 due to the long-wave approach adopted,

and used to compare the results obtained for a fully wetting fluid (silicone oil) and a

partially wetting one (glycerin). The numerical solutions are also contrasted against

a recent numerical study by Mayo et al. (2013), which appeared as this thesis was

being written, who modelled the cylindrical case using the usual lubrication ap-
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FIGURE 6.1: Schematic view of thin film flow down a vertically inclined cylinder (circum-
ference, CR and length, LR). The film is fed by a constant inflow at the upstream boundary
and H0 denotes the asymptotic film thickness. The radius to any arbritary point in the Y

direction is denoted by R. Note: the film thickness is exaggerated for clarity.

proach; from their numerical data they concluded that the curvature of the substrate

was an insignificant factor in the formation of rivulets and asserted that the flow

behaved like that on an inverted, inclined substrate.

Furthermore, comparisons are drawn with the results of Chapter 4 and a regime

model suggested to predict wavelength; the model also predicts the cut off param-

eters that determine when the curvature of the cylinder becomes negligible, and so

the film acts as if on a vertical plane, and when the cylindrical surface area is so

small that only one rivulet is formed.

6.2 Governing equations of rivulet flow on a verti-

cally aligned cylinder

Consider the scenario of a thin film flowing down a smooth, vertically aligned cylin-

der of radius R0 and height LR, as shown schematically in Figures 6.1 and 6.2. The
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FIGURE 6.2: Schematic view, three-dimensional (left) and cross-sectional (right), of thin
film flow down a vertical cylinder (circumference, CR and length, LR). The film is fed by
a constant inflow at the upstream boundary and H0 denotes the asymptotic film thickness.

Note: the film thickness height has been exaggerated for the sake of clarity.

circumference of the cylinder is denoted by CR = 2πR0. The film is fed by a

constant inflow at the upstream boundary and the fully developed film thickness

is denoted by H0. Surface tension, σ, dynamic viscosity, µ, and density, ρ, are

considered to be constant.

By scaling the film thickness byH0 and substrate dimensions byR0, introducing the

non-dimensional variables into the cylindrical Navier-Stokes and continuity equa-

tions, as well as boundary conditions (2.3)-(2.6) together with the assumption that

εR = H0/R0 � 1, then the governing lubrication equations for the cylindrical flow

are:

(1 + εRh)
∂h

∂t
=

∂

∂z

[
εRh

3

3

(
∂p

∂z
− 1

εR
− h
)]

+
∂

∂θ

[
εRh

3

3

(
∂p

∂θ

)]
, (6.1)

p = − 1

BoR

(
h+∇2h

)
− Π(h), (6.2)

where BoR = ρgR2
0 / σ is the Bond number,∇ is

(
∂
∂θ
, ∂
∂z

)
and the non-dimensional

disjoining pressure, denoted by Π(h), in this case is given by:

Π(h) =
(1− cos θc) (n− 1) (m− 1)
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∗ (n−m)

[(
h∗

h

)n
−
(
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h

)m]
. (6.3)
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Terms without analogous forms in equations (2.23) and (2.24) represent conser-

vation of mass across the cross-sectional area of an angular ring. The spanwise

computational boundary conditions accounting for the nature of the problem are

taken as being periodic.

A more comprehensive derivation of the above is provided in Appendix B.

6.2.1 Cylindrical substrate LSA

A similar method to that used for the planar case enables the LSA equations for an

advancing front on a vertically aligned cylinder to be obtained. The fourth order

equation for a perturbation h1 of the solution is:

(1 + εRh0)
∂h1 (ξ, k, t)

∂t
=

(
h2

0h1p0ξ +
h3

0

3
p1ξ

)
ξ

− 1

3

(
3h2

0h1 + 4εRh
3
0h1

)
ξ

+ [Uw (1 + εRh0)h1]ξ +
εRk

2

3BoR

[(
1 + k2

)
h3

0h1 + 2h3
0h1ξξ + 3h2

0h1ξ

]
, (6.4)

which is solved as in the planar case, see Section 2.1.6 of Chapter 2. In the cylinder

case the wave speed is given by:

Uw =
1 + h∗ + h∗2 + εR (1 + h∗ + h∗2 + h∗3)

3
(
1 + εR

2
+ εRh∗

2

) , (6.5)

where ξ = z − Uwt.

Appendix C provides a thorough derivation of the LSA equations for both the planar

and cylindrical case.
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6.3 Results : Three-dimensional numerical solutions

6.3.1 Fully wetting fluid

Results are generated using two films of differing fluid properties taken from Smolka

and SeGall (2011). The fully wetting liquid is a silicone oil, density 986 kg m−3 and

surface tension 0.0219 Pa m; the partially wetting liquid is glycerin, density 1260kg

m−3 and surface tension 0.0584 Pa m. The contact angle for glycerin, although not

reported, is estimated, using the results within their paper and the findings in Chap-

ter 4, to be approximately 40o giving Sθc as 2.35. Other contact angles may be used

for comparison purposes, clearly stated for all of the cases considered. The film

thickness, H0, is taken to be 0.085cm as reported in the same set of experiments

(Smolka and SeGall, 2011). The inflow rate is kept constant for all radii of cylinder

employed.

Since the spanwise boundaries are clearly periodic, the computational boundary

conditions are written appropriately to include the continuous nature of the geome-

try.

A fully wetting film coating the surface of a vertically aligned cylinder is considered

first. In Figure 6.3 and 6.4 the progress of a thin silicone oil film spreading on a

cylinder of radius 1.27cm is revealed. The rivulets emerge to form a near periodic

pattern at the advancing front and grow length wise as time progresses.

Figure 6.5 shows a number of free-surface colour maps in the form of an unfolded

cylinder for ease of interpretation, Lθ denotes the distance around the circumference

calculated as Lθ = θR0. Their three-dimensional counterparts are shown in Figure

6.6 for visualisation purposes. As is clear, as the radius, and so circumference, of

the cylinder increases so does the number of rivulets that may form on the surface

as would be expected intuitively. If the circumference is small enough only one

rivulet forms, see Figure 6.6 (d), due to the restriction of the surface area compared

to the width of the rivulet. If two rivulets were to form in the confined space then
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FIGURE 6.3: Unfolded free-surface colour maps showing rivulet formation at the advanc-
ing front of a film of fully wetting silicone oil on the outside surface of a cylinder with

radius 1.27cm.



130

FIGURE 6.4: Free-surface colour maps showing rivulet formation at the advancing front of
a film of fully wetting silicone oil spreading down the outside surface of a cylinder of radius

1.27cm plotted on a three-dimensional representation of the cylinder.
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FIGURE 6.5: Unfolded free-surface colour maps - a three-dimensional representation - for
the flow of silicone oil down the surface of a cylinder with four different radii; (a) 3.5cm,

(b) 1.27cm, (c) 0.635cm and (d) 0.159cm. C.f. Figure 6.4.
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FIGURE 6.6: Free-surface colour maps of Figure 6.5 transferred onto the corresponding
cylinder for visualisation purposes.
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FIGURE 6.7: This figure shows dimensional rivulet length against scaled time for flow on
three different cylinders with radii R0 = 3.5, 1.27, and 0.635cm.

they would interact with one another and merge together to form a single rivulet.

The change in length of the rivulets is showcased in Figure 6.7 where the dimen-

sional length of the fingers is shown for R0 = 3.5, 1.27 and 0.635cm against time

T . The finger lengths stay reasonably consistent for all time for the range of R0

shown, this suggests that the curvature of the cylinder plays only a minor role with

respect to the inhibition of the lengthening of the rivulets.

As the curvature increases the rivulets ‘wrap’ around the cylinder, that is become

wider with respect to θ or cover a more significant proportion of the cylinder cir-

cumference; this can be seen in the cylinder plot in Figure 6.6. For the largest radius

the rivulets that form look like those on a flat plane. When growing on the smallest

radius it is observed that the rivulet covers half the circumference of the cylinder.

The surface tension of the fluid keeps the width of the rivulet consistent across the

cylinders. The capillary ridge height decreases slightly at smaller radii due to the

smaller wavelength meaning that the flux feeding each rivulet decreases slightly.

Although not immediately apparent from Figure 6.5 & 6.6, the cylindrical geom-

etry has a subtle influence on the wavelength of the pattern that emerges. The

wavelength associated with the maximum number of rivulets that may grow on the

cylinder surface is not always the wavelength that appears due to non-linearity and
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FIGURE 6.8: Wavelength of the rivulet pattern that emerges at the advancing front of a
silicone oil film. Also plotted are the findings of Huppert (Huppert, 1982) and the current
author for predicting the wavelength on a vertically inclined plane. Experimental data points

for silicone oil of Smolka and SeGall (Smolka and SeGall, 2011) are also provided.

FIGURE 6.9: Results of linear stability analysis for flow of silicone oil coating a cylinder
of radius 3.81cm performed for different values of precursor film thickness, h∗.
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FIGURE 6.10: Results of linear stability analysis for flow of silicone oil coating a cylinder
of radius 3.81cm and 1.27cm, the values of ε/BoR are indicated on the figure.

FIGURE 6.11: The average width of the rivulets for a range of εR/BoR plotted with the
experimental value of Smolka and SeGall (2011). Results here are for silicone oil (fully

wetting) and glycerin (partially wetting, Sθc = 2.35.
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the random perturbations applied at the contact line. The wavelength reported here

is the averaged wavelength over the rivulet pattern for a number of simulations; this

is done due to the random nature of the emerging instability meaning the number

of rivulets is not always the same. This observation is also seen within experiments

and can be explained by the interaction and amalgamation of rivulets that grow

within close proximity of one another. Figure 6.8 shows the wavelength, λ, of the

rivulet pattern emerging at the advancing front of a silicone oil film for a range of

cylinder radii. Also plotted is the prediction for the analogous scenario on a ver-

tically inclined plane calculated from the results of Huppert (1982) (as interpreted

by Troian et al. (1989)), 22H0/(6Ca)1/3 and equation (6.6), 20H0/(6Ca)0.4. The

wavelength is compared against the value of εR/BoR as this is a measure of the

importance of the curvature in the governing equations; a co-efficient analagous to

the gravitational parameter in the planar case - N = Ca1/3 cotα (Gaskell, Jimack,

Sellier, Thompson and Wilson, 2004) - that measures the relative importance of the

gravitational component. The results here are consistent with the observations of

Smolka and SeGall, following a similar trend, see Figure 6.8.

Below a certain critical value of εR/BoR the wavelength that emerges is consistent

with that observed on a flat plane, this value is approximately critθ = 5 × 10−3

or R̂ = 12.6 where R̂ = (ρg /σH0)
1
3 is the scaled radius as defined by Mayo et

al. Mayo et al. (2013). The value reported in Mayo et al. (2013) is R̂ = 2.56, a

smaller value, indicating that the cylinder must be much smaller before curvature

effects influence rivulet formation. Above the critical value, critθ, the wavelength

decreases as the value of εR/BoR increases. This effect of curvature is demonstrated

in Figure 6.5 (a); the white dashed line indicates the circumference of a 1.27cm

radius cylinder which is 7.98cm. The number of rivulets that grow per 7.98cm is

four in the larger radius (R0 = 3.5cm) case, whereas in the 1.27cm radius cylinder

case five rivulets grow per 7.98cm. As the radius decreases the circumference of

the cylinder becomes a counter-acting restrictive factor on the number of rivulets

formed, when the circumference is sufficiently small only one rivulet can develop
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- this happens at εR/BoR ≈ 0.06 or R̂ = 2.55 (the value in Mayo et al. (2013)

was given as 3.05). Due to the random nature of the initial condition in some

cases although more than one rivulet may grow only one emerges and survives

at longer times due to enforced merger of the neighbouring rivulets. The critical

value of cylinder circumference below which only one rivulet may grow occurs

approximately when CR . 3Wr, where Wr is the width of the rivulet.

A majority of work in the area of thin films considers linear stability analysis, see

for instance Troian et al. (1989); Bertozzi and Brenner (1997). For comparison a

linear stability analysis is performed with the highest growing wavenumber used

to calculate the predicted wavelength that will appear. Smolka and SeGall found

reasonable agreement between linear stability and experiments. A sample of stabil-

ity curves is plotted in Figure 6.9 for different values of the precursor film. As the

precursor film thickness decreases the most unstable wavenumber does not change

but the growth rate increases, a result first reported by Bertozzi and Brenner (1997)

for flow on a planar substrate. As the radius of the cylinder decreases so does the

band of unstable wavenumbers and growth rates, see Figure 6.10. The predicted

wavelength from LSA is plotted in Figure 6.8 and matches reasonably well with

both the numerical solutions and experiments. The under prediction at low values

of ε/BoR is due to the fact that LSA cannot take into account interactions and merg-

ing between rivulets which increases the wavelength. At larger values of ε/BoR

the stability calculations also does not take into account the restrictive size of the

geometry circumference and so under predicts somewhat the wavelength. It also

of note that in reality it is not necessarily just the most unstable wavelength that

becomes evident but an interplay between unstable modes which is why the pattern

observed is not exactly periodic.

The width of the rivulets,Wr, stays consistent for the range of cylinders investigated

here. There is some variation in width due to the non-periodic nature of the pattern

leading to varying degrees of flux feeding each rivulet, which also partly accounts

for rivulets of different length, but the results match well with the value reported by
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Smolka and SeGall (2011) which is also plotted.

6.3.2 Partially wetting

When a contact angle, θc, greater than zero is introduced into the problem, rep-

resenting the case of partial wetting, the value of the disjoining pressure Π(h)

becomes non-zero. A partially wetting fluid compared to a fully wetting one is

known to alter some of the observations at an advancing front (Silvi and Dus-

san, 1985). As in the case of rivulet formation on an inclined plane it is con-

venient to consider things in terms of a ‘non-dimensional spreading coefficient’,

Sθc = 6 (6Ca)−2/3 (1− cos θc) where Ca is the capillary number of the flow. In

Chapter 4 it was found that the long-time wavelength of the rivulet pattern on an

inclined plane, λf for a partially wetting fluid could be expressed as and well rep-

resented by:

λf =
20H0

(6Ca)0.4 − 1.51H0Sθc . (6.6)

The progress of a glycerin film coating a cylinder of radius R0 = 0.953cm is shown

as unfolded colour maps of the free-surface in Figure 6.12 (the three-dimensional

visualisations of the same are shown in Figure 6.13). The rivulets evolve in a near

periodic pattern with very straight-edges. The differences in flow pattern evolution

for fluids of different wettability can be observed in Figure 6.14 where results for

contact angles of 0o, 20o and 40o are shown (that is Sθc = 0.0, 0.6 and 2.35); the

radius of the cylinder in this case being 0.953cm. As the contact angle, and so Sθc ,

increases so does the magnitude of the effect on the rivulet formation process, the

rivulets becoming thinner and more straight edged. Due to a decrease in their width

the number of rivulets increases with a corresponding decrease in the wavelength.

Another feature of note is the increase in elongation with Sθc , the bulk of the fluid

spreads at a slower rate but the rivulets extend at a faster one which is associated

with the observed increase in capillary ridge height. This is demonstrated clearly in

Figure 6.16. The finger length increases at a much grater rate as Sθc increases.
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FIGURE 6.12: Unfolded free-surface colour maps visualising the formation of rivulets at
the contact line of a glycerin film flowing down the outer surface of a cylinder with radius

0.953cm plotted on a three-dimensional cylinder with Sθc = 2.35 (θc = 40o).
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FIGURE 6.13: Free-surface colour maps visualising the formation of rivulets at the contact
line of a glycerin film flowing down the outer surface of a cylinder with radius 0.953cm
plotted on a three-dimensional cylinder with Sθc = 2.35 (θc = 40o). Plotted on the cylinder

to visualise the reality of the flow.
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FIGURE 6.14: Unfolded free-surface colour maps for the flow of glycerin down the surface
of a cylinder with radius 0.953cm plotted on a three-dimensional cylinder. The flows are
identical except for the contact angle. The range of spreading coefficient is Sθc = (a) 0.0,

(b) 0.61 and (c) 2.35, corresponding to θc = 0o, 20o and 40o.
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FIGURE 6.15: Free-surface colour maps for the flow of glycerin down the surface of a
cylinder with radius 0.953cm plotted on a three-dimensional cylinder. The flows are iden-
tical except for the contact angle. The range of spreading coefficient is Sθc = (a) 0.0, (b)

0.61 and (c) 2.35, corresponding to θc = 0o, 20o and 40o. Flows plotted on the cylinder.
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FIGURE 6.16: Rivulet length against time for glycerin coating a cylinder of radius 0.953cm.
Four different non-dimensional spreading coefficients are compared with one fully wetting

and two partially wetting films - Sθc = 0.0, 0.61, and 2.35.

As the cylinder radius is decreased, as in Figures 6.17 and 6.18, with Sθc = 2.35,

the results obtained for the case of a fully wetting fluid, section 6.3.1, hold true

for a partially wetting one. The wavelength of rivulets for the flow of a glycerin

film over a range of cylinders of different radius is shown in Figure 6.19 for both

Sθc = 0.0 and Sθc = 2.35. Also plotted are the predictions for wavelength on an

inclined plane as given by equation (4.2). The critical value of ε/BoR at which the

wavelength becomes that for the equivalent planar case appears to be the same in

both the fully wetting and partially wetting case having a value of approximately

5 × 10−3. However, as the width of the rivulets is greater for a fully wetting fluid,

the critical value, critθ, of ε/BoR at which only one rivulet can grow is shifted to a

larger one, that is a smaller value of R0, for the partially wetting case - for the fully

wetting case the critical value is εR/BoR ≈ 0.06 or R̂ ≈ 2.55, and in the partially

wetting case εR/BoR ≈ 0.1 or R̂ ≈ 2.15. This is because the transition to a single

rivulet is dictated by the circumference of the geometry, CR, and less dependent on

the curvature or the value of εR/BoR.

The wavelength results correspond well to the experimental values reported by

Smolka and SeGall (2011). Mayo et al. (2013) also attempted to assess the crit-
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FIGURE 6.17: Unfolded free-surface visualisations of glycerin coating a cylinder with
varying radii but constant contact angle, 40o and Sθc = 2.35. The four radii shown are (a)

0.4cm, (b) 0.7cm, (c) 2cm and (d) 2.5cm respectively.
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FIGURE 6.18: Free-surface visualisations of glycerin coating a cylinder with varying radii
but constant contact angle, 40o and Sθc = 2.35. The four radii shown are (a) 0.4cm, (b)

0.7cm, (c) 2cm and (d) 2.5cm respectively.
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FIGURE 6.19: Wavelength of the rivulet pattern that emerges at the advancing front of
a glycerin film. Also plotted are the findings of Huppert (1982) and the current author
for predicting the wavelength on a vertically inclined plane. Experimental data points for

silicone oil of Smolka and SeGall (2011) are also provided.

ical values where curvature and circumference became important influences; their

findings do not correlate with those obtained here. The value of critθ they obtained

was larger than their value for a single rivulet to form, i.e. curvature only becomes

important once only a single rivulet is able to evolve. Their critical value above

which only one rivulet can form is also much smaller (at much larger radii) than the

one obtained in the current study. The differences in the reported results here and

those of Mayo et al. (2013) can be explained by the different approaches adopted in

formulating the governing equations; in the case here the equations contain higher

order terms that capture the curvature effects - these are discarded in Mayo et al.

(2013). The random nature of the initial condition and the averaging calculation

used to determine the wavelength may also account for disparities in both sets of

reported data.

The predicted width of the rivulets for a glycerin film with Sθc = 2.35 (estimated to

be approximately the physically representative value) are in reasonable agreement

with the value of Smolka and SeGall (2011), see Figure 6.11. As the curvature ef-

fects increase the surface tension forces at play are strong enough to resist spreading
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around the circumference of the cylinder and creating a wider rivulet.

6.3.3 Regime model for wavelength

From the results presented thus far it is evident that there are three regimes in

which the instability, that manifests as rivulets at the advancing front of a thin

film, evolves. There is the planar regime where the curvature of the cylinder has

little effect on the formation and growth of the rivulets and the wavelength is

identical to that for the equivalent flow on a planar surface. The critical value

of εR/BoR at which there is a transition to the next regime, critθ, appears to be

constant in all cases. This is because below this value indicates when the impor-

tance of the extra terms that appear in the governing equations due to the geo-

metric effect of the substrate becomes negligible, this critical value is found to be

critθ = εR/BoR ≈ 0.0005.

For values of εR/BoR above Ccritp the curvature of the geometry becomes an influ-

encing factor. The regime where the wavelength of the emerging pattern is smaller

than that seen on an inclined plane is named the cylinder regime. This happens

since the curvature of the cylinder acts against the capillary pressure allowing for

a larger curvature (steepness of rivulet edge) to appear between rivulets without

merging taking place. The rivulets are confined to this regime until the circumfer-

ence of the cylinder is approximately three times the width of the rivulets, 3Wr. At

this point transition is made into the single rivulet regime, where only one rivulet

is able to grow due to the restrictions of the size of the rivulet. If more than one

rivulet develops then they are forced to merge to form just a single rivulet.

A general regime model for the rivulet wavelength can then be written as:

λ =

λf −
2.47
R0

H0

6Ca0.4
if CR > 3Wr

2πR0 otherwise
(6.7)
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where λf is given by equation (4.2). The results of the regime model are plotted

against numerical solutions for both silicone oil, Figure 6.20 (a), glycerin when

fully wetting and glycerin when partially wetting, Figure 6.20 (b), as well as the

experimental points of Smolka and SeGall (2011). The model fits the numerical

data well and also fits with the trend of the experimental data (taking into account

the large error bars associated with experiments).

6.3.4 Flow down the inner surface of a vertically aligned cylin-

der

To complete the story, the flow down the inside surface of a vertically aligned cylin-

der is considered. It is simple to re-derive the governing equations for flow on the

inner surface of the cylinder, equation (6.1) becomes:

(1− εRh)
∂h

∂t
=

∂

∂z

[
εRh

3

3

(
∂p

∂z
− 1

εR
+ h

)]
+

∂

∂θ

[
εRh

3

3

(
∂p

∂θ

)]
, (6.8)

noting the change in sign of some of the terms.

Figures 6.22 and 6.23 show the developing flow for a fully wetting silicone oil on

the inner surface of a cylinder with radius 0.635cm and that of a film of glycerin

coating the inside of a cylinder of radius 2cm, respectively. The formation and

evolution of the rivulets are similar to that seen on the outer surface and on a plane

surface; the merger of neighbouring rivulets is observed in Figure 6.22, while the

partially wetting rivulets that form are straight-edged, thin and meander compared

with the corrugated saw-tooth pattern that emerges in the fully wetting case.

An example of how flow down the inside of a cylinder compares with its outer

surface counterpart is shown in Figure 6.24 for a fully wetting silicone oil fluid and

R0 = 1.27cm. The rivulets take on differing shapes; the rivulets that form on the

inner surface are less pointed, more square ended and have larger roots.

The width of the two cases, inner and outer, are quite similar however the inner
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FIGURE 6.20: Regime model plotted against numerical solutions for silicone oil (top) and
glycerin (bottom). Experimental points are provided for reference, and critical values of
εR/BoR are indicated by grey dashed lines. The regimes are indicated as ‘Planar’, ‘Cylin-

der’ and ‘Single’.
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outer

inner

FIGURE 6.21: Illustration of the curvature of the inner and outer surfaces of the cylinder
and how this affects the shape of the rivulet.

rivulets are very slightly wider. This has small implications on the wavelength of

the pattern and the critical value of ε/BoR at which only a single rivulet will emerge.

The differences in shape, the inner cylinder rivulets having a thicker front end, can

be explained in terms of the difference in surface curvature experienced by the flow.

The curvature of the inside of the cylinder supports the outer edge region of the

rivulets increasing their height, creating the square-ended shape - the appearance

is like a squashed, stretched tip of the outer surface rivulets. The curvature of the

outside of the cylinder encourages a more domed shape with a peak in the centre

of the finger. For clarity of this explanation please see the illustration shown in

Figure 6.21. As the curvature decreases, i.e. the radius of the cylinder increases,

the differences ease and both tend to the case of flow on a vertically inclined plane.

In the partially wetting scenario the differences are less pronounced. The tip of the

rivulet is less round and more square as in the fully wetting case, however the shape

and width of the rivulets are very similar. See Figure 6.25 which shows an example

of rivulets developing on the inside of a cylinder of radius 1.5cm at the advancing

front of a glycerin film with θc = 40o.
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FIGURE 6.22: Free-surface visualisations of fully wetting silicone oil coating the inside
surface of a cylinder of radius 0.635cm.
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FIGURE 6.23: Unfolded free-surface visualisations of partially wetting glycerin (Sθc =
2.35) coating the inside surface of a cylinder of radius 2.0cm.



153

FIGURE 6.24: Unfolded free-surface visualisations of fully wetting silicone oil coating the
outside (left) and inside (right) surface of a cylinder of radius 1.27cm.

FIGURE 6.25: Unfolded free-surface visualisations of a partially wetting (θc = 40o, Sθc =
2.35) glycerin film coating the outside (left) and inside (right) surface of a cylinder with

radius 1.5cm.
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6.4 Summary and Discussion

In this chapter lubrication models based on the long-wave approximation have been

used to explore gravity-driven thin film flow on the outer and inner surface of a ver-

tically aligned cylinder. The models, derived in a different manner to the usual lubri-

cation approach to rivulet formation in thin films (Kondic and Diez, 2001), retains

terms that embody the effect of the curvature of the cylinder. Three-dimensional nu-

merical solutions are achieved by solving the transient coupled governing equation

set via a state-of-the-art fully adaptive multigrid method taking advantage of local

mesh refinement, automatic error-controlled variable time-stepping and grid devo-

lution to efficiently achieve long-time solutions. These results, with comparison

made to corresponding experimental data and numerical results for flow on a planar

substrate, allow a regime model for wavelength to be developed that describes the

effect of curvature on the emerging wavelength pattern.

The results obtained prove to be consistent with the experimental observations of

Smolka and SeGall (2011). At larger enough cylinder radius, or small enough cur-

vature, the evolution of the rivulets is identical to that on an inclined plane with

width equivalent to the circumference of the cylinder. This happens when the value

of εR/BoR is small and the curvature terms become negligible - this regime occurs

for values of εR/BoR less than the critical value of 0.0005.

As R0 is decreased the wavelength of the emerging rivulet pattern reduces since

the curvature of the substrate opposes the surface tension forces of the free-surface

allowing for rivulets to grow in closer proximity to one another without interacting

and merging. This effect is opposed by the decreasing circumference of the cylin-

der; as the circumference decreases the number of rivulets that are able to form and

evolve also decreases. Eventually, the effect of the circumference prevails and only

one rivulet can form on the cylinder surface at CR ≈ 3Wr. From these observations

a regime model has been developed that accurately predicts the wavelength that will

occur at the advancing front.
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A linear stability analysis allows reasonable predictions on the wavelength of the

pattern when compared with numerical simulations and experimental data however

it fails to capture fully the effect of curvature and the restriction the circumference

of the cylinder has at smaller values of radius. The LSA predicted growth rate

decreases with cylinder radius suggesting the curvature inhibits the growth of the

instability.

By incorporating a disjoining pressure term into the mathematical formulation par-

tially wetting is introduced into the problem, allowing direct comparison with re-

sults for a fully wetting one. As in the planar case, as the contact angle increases

the width of the rivulets formed decreases and so does the wavelength. Although

this does not shift the critical value at which the planar regime persists, it does shift

the critical value at which only one rivulet can grow due to the decrease in width.

The recent work of Mayo et al. (2013) comes to similar conclusions concerning

fully wetting fluids (they did not consider a partially wetting liquid). The parameter

that determines which controls the effect of the curvature is essentially the same

for both sets of work, however there are some disparities between their work and

the results presented here. For instance, the critical values at which the regimes

become active are different, this could be due to the differing governing equations

and the terms that are neglected if derived via a usual lubrication approach which

define the impact of the surface curvature on the film. To pin point the critical

values is difficult to accurately define due to the random nature of the instabilities

that emerge and the interaction between neighbouring rivulets.

Flow down the inner surface of a cylinder is also considered. The reversal of the

curvature effects has an impact on the shape and width of the rivulets that form

particularly in the case of a fully wetting liquid. The differences are minimal and

only have small implications on the predicted behaviour from the outer surface flow,

the growth rate stays similar and the wavelength remains almost identical to that on

the outer surface.
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Mayo et al. (2013) assert that there is a critical value at which no rivulets grow.

This has not been observed in the present work, even for very small cylinder radii.

The capillary ridge associated with the instability is present for all radii indicating

instability at all values. In a physical sense, as the radius reaches small values the

rivulet that emerges fills more and more of the circumference and so eventually it

will appear as a single rivulet. This does not necessarily mean the flow is stable as

there are still modes of small enough wavelength that are associated with instability.

The restriction on observing these may well be theoretical as the derivation of the

governing equations depend on the restriction that H0/R0 � 1 which at very small

R0 is not necessarily the case, therefore a higher order model should be considered

when εR/BoR becomes of O(1).
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In this chapter numerical solutions of the full Navier-Stokes and continuity equa-

tions are sought via the method described in section 3.3 of Chapter 3. The problem

of interest being the inner flow structure present within the valleys of a wavy sub-

strate over which is flowing a continuous liquid film and the enhancement of ma-

terial transport from such valleys to the overlying flow as the film thickness varies

with time. The flow domain of interest is shown in Figure 7.1. Wavy or undulating

substrates are of particular interest due to their extensive use within industry, for

example in heat exchangers or evaporators (Szulczewska et al., 2003).

In practice the presence of isolated or repeating topographical features on a func-

tional substrate can lead to trapped debris and stagnant flow in the separated flow

regions which result in the formation of a closed eddy structure. Wierschem and

Aksel (2004) observed the transfer mechanism of material from such eddies to the

bulk flow; here the turnstile lobe mechanism, discussed in depth in Horner et al.

(2002), is investigated as the vehicle for this by pulsing the flow at the inlet creat-

ing a wave that induces material transport. The effect of the size of the pulse on

the transport of material is investigated, as well as the effect of the periodicity of

the pulses. Turnstile lobes are visualised by plotting the stable and unstable mani-

folds of the problem and material transport quantified by employing a fourth-order

Runge-Kutta method to track inert particles.

7.1 Turnstile lobes - transport enhancement

In their experiments of steady film flow over undulating substrate, Wierschem and

Aksel (2004) observed the transport of inert tracers from fluid in the valleys of a si-

nusoidal topography, when surface waves were present, enabled via a turnstile lobe

mechanism. Horner et al. (2002) present a comprehensive overview of this mecha-

nism for modulated flow over a square cavity and Wilson et al. (2006) investigated

the enhancement of transport and stirring between two rollers via lobe dynamics.
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FIGURE 7.1: Schematic diagram of the domain of interest, the wave topography is located
nearer the upstream inlet boundary to allow the pulse to pass downstream to the outlet

boundary condition. The domain is also subject to an inclination angle, α.
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FIGURE 7.2: (a) A schematic diagram of the unstable and stable invariant manifolds,
W u
A(t) and W s

B(t), of the upstream and downstream hyperbolic separation points, A and
B. The intersection of the manifolds, at points p, q, and r, create two lobes, Lpq and Lqr,
that facilitate the transport of material across the boundary between overlying bulk flow
and encapsulated eddy flow. (b) Steady-state schematic of the same flow showing the eddy

region separated from the overlying bulk flow by the separatrix.
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Figure 7.2 (a) shows an illustration of how a typical inner flow structure might look

at steady state; an eddy is present separated from the bulk flow by the separatrix

which is connected to the wall at points A and B. Considering Figure 7.2 (b), at a

time t there are two hyperbolic separation points at the upstream and downstream

boundary between the overlying flow, the eddy and the substrate - these are denoted

in the figure as A(t) (upstream) and B(t) (downstream). Physically, at these points

fluid separates off the wall and moves in a vertical direction away from it reminis-

cent of a saddle point seen in dynamical systems theory. Manifolds are invariant

curves meaning particles that start trajectories on these curves remain on them for

all time; hence no trajectories can cross them and thus they are barriers to material

transport. All points making up the stable (unstable) manifold approach the stable

(unstable) fixed point as time tends to∞ (−∞). Hyperbolic saddle points possess

both stable and unstable manifolds; when the flow is steady the unstable manifold

of A, denoted W u
A(t), and the stable manifold of B, denoted W s

B(t), coincide to

form the separatrix shown in Figure 7.2 (a).

When an appropriate forcing is applied to the flow, W u
A(t) and W s

B(t) separate and

intersect to create a tangle. Regions enclosed by portions of both the unstable and

stable manifolds are called lobes and determine transport between the bulk flow and

the entrapped flow in the topography. In Figure 7.2 (b) there are three intersection

points of the invariant manifolds, p, q and r; the regions enclosed between unstable

and stable manifold portions connected by these points, the lobes, are denoted Lpq

and Lqr. The time-dependent motion of the lobes determines the material transport

from the bulk region to the eddy region and vice versa.

Figure 7.3 is a diagrammatic sketch of how the exchange of material is achieved. At

time t = tn−1 the intersection of the manifolds, W s
B(tn−1) and W u

A(tn−1), creates

the lobes Ln−1
out and Ln−1

in , respectively; these are the turnstile lobes at t = tn−1.

The motion of the manifolds means that the material enclosed in Ln−1
out is moved

from Rn−1
e to Rn

b in the lobe Lnout; similarly the material encapsulated in Ln−1
in in

the bulk region, Rn−1
b , is moved into the eddy region Rn

e within lobe Lnin. Another
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FIGURE 7.3: A sketch to demonstrate the turnstile lobe mechanism between time tn−1 and
tn.

way to describe the motion is by defining the movement of the points in the flow

from position xn−1 to xn between t = tn−1 and t = tn via a mapping function fn−1;

therefore Lnout = fn−1(Ln−1
out ) and similarly for the other lobe. The motion of the

lobes through time is reminiscent of a turnstile rotating, hence the name.

Due to the invariance of the manifolds the only material that can be exchanged

across the boundary betweenRn−1
b andRn−1

e is that contained within the boundaries

of Ln−1
out and Ln−1

in under the motion of the mapping function fn−1. A rigorous over-

view of the rules governing the turnstile lobe material transport mechanism can be

found in Horner et al. (2002).

7.2 Flow visualisation

To visualise the flow structures within topographies a number of plotting tools are

utilised and parameters calculated.
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7.2.1 Streamlines

The instantaneous streamlines of the flow reveal the presence and shape of an eddy.

Streamlines are found by solving:

∇2Ψ =
∂u

∂y
− ∂v

∂x
, (7.1)

where Ψ is the stream function and is zero along the substrate boundaries. The

stream function equation is solved in weighted residual form, represented bi-quadratically

on the standard element.

7.2.2 Eddy centre

Eddy centres are found by sweeping the domain element by element and finding the

maximum and minimum values of velocity to determine whether an eddy centre lies

within the element. If it is determined that an eddy centre is present the correspond-

ing simultaneous equations in the local co-ordinates are solved to pinpoint exactly

the co-ordinates of the centre.

7.2.3 Particle tracking

Integral to the visualisation of transport in time-dependent flows are the trajectories

of passive tracer particles, which provide a means of observing fluid motion without

influencing the flow. The trajectory, x(t), of a tracer whose global position is x =

(x, z), is found by integrating the advection equation:

dx

dt
= u(x, t) (7.2)

which is achieved using a fourth-order RungeKutta scheme.
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7.2.4 Stable and unstable manifolds

The transport of material via the turnstile lobe mechanism can be visualised by

plotting the invariant manifolds, both stable and unstable. To do this, a new inert

tracer is inserted at a point on the relevant trajectory at each new time step and then

advected forward (for unstable) or backwards (for stable) in time to construct these

manifolds.

7.3 Results: material transport enhancement

A sketch of the domain of interest is shown in Figure 7.1; the usual approach to

model an undulating substrate is to consider one undulation and apply periodic

boundary conditions at the inlet and outlet of the computational domain, see for

example Scholle, Haas, Aksel, Thompson, Hewson and Gaskell (2009). In the

current work, the interest in pulsing the inlet flow requires a different approach -

here a longer domain is used with a single wave topography present. This is to

allow the free-surface wave that is induced to develop and travel along the domain,

passing over the topography and thus reveal the symmetry-breaking effects that are

induced.

Two-dimensional results are sought of the discretised Navier-Stokes and continuity

equations described in Chapter 3 using the freely available Multifrontal Massively

Parallel sparse direct solver (MUMPS) (Amestoy et al., 2000, 2001). Simulations

are run using 8GB of memory spread evenly across 8 processors using the memory

efficient method of storing matrix cofactors ‘out-of-core’ on the hard drive.

The number of elements making up the mesh utilised in the x-direction are 300 and

in the z-direction 150, a total of 45, 000. That is, the number of u/x-nodes nie =

190, 901, the number of p-nodes nje = 45, 451 and number of free-surface u/x-

nodes nke = 601. The total degrees of freedom (DOF) is given by 2× nie + nje + nke

and in this case is 407, 854. The mesh is constructed to have much higher resolution
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around the topography where the flow is re-circulating.

The non-dimensional parameters employed to generate results are: substrate length

in the x-direction defined as 110 + λt, Re = 0.5, Ca = 4× 10−4 and α = 45o. The

topography is defined via λt = 0.625 and At = 0.25.

The inlet condition is pulsed by amplifying the inlet velocity condition, i.e. u|x=0 =

Faz(2− z) where Fa is a scalar term controlling the amplitude of the pulse.

7.3.1 Inner flow structures

The non-perturbed flow streamlines around the topography are visualised in Figure

7.4. A symmetrical eddy is clear visible at the bottom of the wave topography.

The eddy is a geometrically induced structure (Scholle et al., 2008), meaning that it

persists at all values of global Reynolds number. An inertially induced eddy would

not exist at low Reynolds numbers but becomes visible as the Reynolds number is

increased. The eddy centre is very slightly skewed away from the centre line of

the topography due to the small effect of inertia and has co-ordinates (xc, zc) =

(−0.00024,−0.19637). The eddy depth, De, is defined as De = |zc|.

The inlet condition is pulsed to create a free-surface wave, the size of which de-

pends on the value of Fa and the time duration of the pulse, taken as ∆t = 0.5.

The wave dissipates as it travels down the substrate, becoming elongated with a

smaller amplitude. The maximum free-surface disturbance induced above the wave

topography centre line at x = 0 by the pulse depends on the value of Fa, as shown

in Figure 7.5.

As the wave traverses the topography, the shift in the film height disturbs the eddy,

separatrix and centre. To indicate the vertical shift in the eddy structure the depth of

the eddy relative to the bulk flow is considered by taking the modulus of the centre

vertical co-ordinate zc. The eddy increases in depth and decreases in size as the

pulse passes over before then decreasing in depth and increasing in size as the pulse



165

peaks and passes fully over to the downstream; this effect is shown in Figure 7.6

where both the eddy depth and film surface height at x = 0 is shown. The motion

of the eddy corresponds to the wave passing over the topography and an increase in

the local film thickness.

If Fa < 1 the motion is opposite, the eddy first decreasing in depth before increasing

in depth as the film height is lowered above the topography. To induce a large

change in local film thickness and create a large motion of the inner flow structure

by decreasing the flow rate, the inlet velocity must either be severely reduced or,

more realistically maybe, reduced for a longer period of time to get the same impact

as increasing the flow rate.

As the free-surface deforms there is also a shift in the longitudinal position, that is

the x-coordinate, see Figure 7.7 for the maximum shift during the time evolution

of the flow. If Fa > 1 the shift is in the negative direction, as seen in Scholle

et al. (2008) for increasing inertia. Similarly if Fa < 1 the shift is in the positive

direction towards the downstream edge. This motion is relatively small, even for

large Reynolds numbers; Scholle et al. (2008) found the shift to be at most 0.015.

The magnitude of the eddy depth shifts as the amplitude in the film height above

the topography changes - the thicker the film the larger the eddy and change in

eddy depth. Figure 7.8 shows how the minimum and maximum depth of the eddy

depth depends on the value of Fa and therefore the local film height above the wave

topography. These findings are consistent with that of Scholle et al. (2004, 2006,

2008), where the depth of the eddy was found to depend on a combination of geo-

metric (wavelength and amplitude of the topography) and inertial (global Reynolds

number) effects. By increasing the film thickness the eddy depth decreases (mov-

ing closer to the free-surface) before vanishing, and vice versa for decreasing film

thickness. Manipulation and creation of eddies could also be achieved by altering

the wavelength or amplitude of the substrate undulations (Scholle et al., 2008).
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FIGURE 7.4: Streamlines of the unperturbed flow depicting the eddy in the topography of
the substrate below the bulk flow.

FIGURE 7.5: Maximum free-surface disturbance above the centreline of the valley of the
topography with increasing strength of the pulsed inlet via an increase in Fa.
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FIGURE 7.6: The time evolution of the film height above the centre-line of the topography
and the change in associated eddy depth co-ordinate zc.
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FIGURE 7.7: The maximum shift in the eddy centre in the x-direction during the pulsed
flow.

FIGURE 7.8: The maximum and minimum eddy depth co-ordinate, De, as a pulse crosses
above the topography for a range of Fa.



169

7.3.2 Turnstile lobe transport: pulsed flow

The free-surface wave induced creates changes in the local film thickness over the

sinusoidal topography, the thickening and subsequent thinning of the film impact

on the underlying eddy structures, generating the turnstile lobe dynamics that drive

material exchange between the bulk flow that exits the domain and the re-circulating

region.

In Figure 7.9 inert particle trajectories are used to visualise the flow in the topog-

raphy. Here, Fa = 20 and there are two pulses - each last for ∆t = 0.5 at t = 15

and t = 50. At t = 15 the particles visualise the folding of the invariant manifolds

to form lobes. The entraining lobe pulls fluid into the eddy from the bulk flow, this

is pictured by the white swirl that appears in the eddy as time progresses. The lobe

that removes material from the eddy can be similarly visualised as the escaping par-

ticles that can be seen leaving the topography. The second pulse has a similar effect,

creating a new inner white swirl and further particles are released into the bulk flow.

The motion of the inner flow structures also induces mixing as can be seen from the

swirling pattern, and the particles swirl towards the centre. The trail of particles

near the substrate wall that are leaving the topography seemingly persist due to the

slow velocity near the walls, at very long times these tracers exit the topography; in

Figure 7.9 (j) the inner flow structures are back to steady state status even though

particles can be seen travelling out of the topography.

In Figure 7.10 the effect of increasing Fa to 40 is shown. The dynamics are the same

but the turnstile lobes have a larger area and thus the amount of material transported

is increased. The long-time particle positions are shown in Figure 7.12 for a range

of Fa. A larger magnitude of pulse leads to an increased flux of material in and out

of the re-circulation area.

The work of Wierschem and Aksel (2004) briefly discussed the feature of turnstile

lobe transport enhancement after observing the mechanism in process during their

experiments. Videos of the experiments in question were shared by these authors,
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the receipt of which is gratefully acknowledged by the candidate. A snapshot is

shown in Figure 7.11 of a fluid of Re = 15 flowing over a wavy topography. The

visual agreement with the particle tracking plots shown in Figures 7.9 and 7.10 is

excellent, even capturing the asymmetric shape of the lobes moving material in and

out of the eddy.

Portions of the stable and unstable manifolds are plotted in Figure 7.13 to depict

the turnstile lobes responsible for material transport. The intersection of the two

invariant manifolds, W u
A and W s

B, associated with the upstream and downstream

wall attachment points, A and B, create the lobe mechanism; the portions of W u
A

and W s
B between the intersection points p and q encapsulates the lobe Lout which

contains fluid that moves across the separatrix boundary into the bulk flow during

the evolution of the flow. Similarly the entraining lobe, Lin, is bordered by the

sections of manifolds between intersection points q and r. The material contained

within Lin is moved from the bulk flow into the separated flow region and can be

visualised in the particle track figures as the white swirl that evolves. The effect on

the size of the lobes by increasing Fa can be observed; lobe areas are noticeably

larger for an increase in amplitude of the impulse. For an example of how the

manifolds appear at longer times see Figure 7.18.

The percentage of particles remaining in the topography as time progresses is shown

in Figure 7.14, the time of the pulses are indicated using grey dashed lines. There

is a delay between the inlet pulse and the removal of particles, this delay is larger

for small Fa. It is clear that as Fa increases the number of particles removed also

increases due to the larger motion of the inner flow structures. The lines on Figure

7.14 are not completely smooth and appear to contain ‘steps’ due to the calculation

method; when the tracer’s x and or y position is not within the topography then it

is discounted, this means that although a stream will give a smooth line due to the

lobe structures ‘clumps’ of tracers leave over one time step. The area of the lobe

moving material out of the eddy is directly proportional to the number of particles

transferred into the bulk flow above the topography; the lobe size increases with Fa,
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FIGURE 7.9: Time evolution of particles entrapped within the eddy found in the valley
of the substrate geometry, showcasing the enhancement of transport of material into the
overlying flow. Here, the pulse strength is Fa = 20 and the inlet is pulsed at t = 15 and

t = 50.
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FIGURE 7.10: Time evolution of particles as in Figure 7.9 but with a stronger pulse, Fa =
40.
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FIGURE 7.11: A snapshot from the experiments of Wierschem and Aksel (2004) showing
the turnstile lobe mechanism for a film of liquid with Re = 15 flowing over a wavy topog-
raphy. The candidate gratefully acknowledges the generosity of Andreas Wierschem and

Markus Scholle in sharing the fascinating videos of their experimental work.
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FIGURE 7.12: Long-time particle positions, t = 145, after experiencing two pulses of the
same strength for a range of Fa; (a) 5, (b) 10, (c) 15, (d) 20 and (e) 40.

see Figure 7.16.

When Fa < 1 the motion is very small leading to very little fluid transport; by

increasing the time length of the pulse it is possible to induce a large enough surface

deformation to enhance the lobe area and hence the transport of material to the bulk

flow.

If the number of pulses is increased from two to five at t = 15, t = 25, t = 35 ,

t = 45 and t = 50 fluid transfer is enhanced. The percentage of particles present

within the valley of the wave topography when Fa = 20 for two and five pulses is

shown in Figure 7.15; there is a much larger movement of particles out of the eddy

when there are more pulses, in a more continuous fashion. The delay that occurs is

due to the travelling time of the pulse, the time for the lobe mechanism to transition

the particles and the time for the particles to travel out of the topography. The time-
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FIGURE 7.13: Portions of the unstable and stable manifolds demonstrating the turnstile
lobes that are formed by the pulsed inlet condition.

progressing particle positions are also shown in Figure 7.17 for multiple pulses, it

is possible to visualise the outline of the unstable manifold due to the swirls created

by the particles - the stable and unstable manifolds are shown in full in Figure 7.18

at t = 45, revealing the beginnings of mixing and swirling created by the first three

pulses.

The most effective way of enhancing material transport in a geometrically induced

eddy is to create large waves with large intervals between each pulse, this strips

large quantities of material out of the eddy via a turnstile lobe mechanism. The

changes in local film thickness induce changes in the inner flow structures and in-

variant manifolds to exchange material. Another option, to reduce the magnitude of

the free-surface disturbance created by the wave, is to pulse with small amplitude

but at much more frequent intervals or increase the inlet velocity at a smaller ampli-

tude but for a longer time period. By inducing the tangling of the stable and unsta-

ble manifolds associated with the upstream and downstream triple points, transport

enhancement can be achieved via a turnstile lobe mechanism.

Note, from the results of Scholle et al. (2008) and those seen here, it is not possible

to completely suppress the eddy region in a geometrically induced eddy using this
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FIGURE 7.14: Percentage of particles remaining in the topography as time evolves for a
range of strength of pulse (time of pulse indicated by dashed lines).

FIGURE 7.15: Percentage of particles remaining in the topography as time evolves when
Fa = 20 for two pulses and five pulses (time of pulse indicated by dashed line).
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FIGURE 7.16: Top: Number of particles removed via one pulse as the pulse strength in-
creases. The two examples visualised show the particle tracers been transported in lobes
for Fa = 10 and Fa = 30. Bottom: Estimated area of the outward moving turnstile lobe.
Visualised are portions of the stable and unstable manifolds forming lobes for Fa = 20.

The lobe area is shaded in green.
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method. This is because the eddy structure will always persist for a geometrically

induced eddy at all film thickness.

In a situation where the undulations and Reynolds number are such that no eddy is

present, one may be induced by surface waves created by a pulsed inlet (or instabil-

ity). This would create a local, temporary eddy in the topography inducing mixing

of particles in the flow, when the flow settles/stabilises these particles would be

released from the topography. This is illustrated in Figure 7.19 where a film with

Reynolds number Re = 10 flows over a wave topography with amplitude 0.2. The

substrate geometry and film inertia are such that no eddy is present. When the

film inlet is pulsed, with Fa = 5, a free-surface disturbance is created and an iner-

tially induced eddy is observed; the eddy increases in size and decreases in depth

- minimum depth |zc| = 0.144. The skewness of the eddy is a result of inertial

effects as Re = 10 (Wierschem and Aksel, 2004; Scholle et al., 2008). As the film

disturbance decreases in size the eddy is forced down towards the substrate before

disappearing as the pulse passes away downstream, see Figure 7.20. Note how there

is no eddy present until the free-surface disturbance reaches approximately 1.05 and

the eddy disappears at this level as the pulse passes over the topography. Note too,

the critical Reynolds number for the appearance of an eddy in the steady state anal-

ogous scenario is Re ≈ 26. For maximum mixing/stirring of the particles a longer

pulse is required to maintain separated, re-circulating flow for a longer period of

time.

7.3.2.1 Geometric effects

If the amplitude of the substrate topography is increased the eddy size (i.e. the sur-

face area of the eddy) increases although the eddy centre stays relatively stationary.

In this case if the film is pulsed the magnitude of motion of the eddy is the same;

this means that although the same amount of material will be transported in or out

of the separated flow area the proportion of material that is moved will decrease.
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FIGURE 7.17: Particle tracking showing the stirring and transport enhancement created by
pulsing the inlet condition multiple times.
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FIGURE 7.18: Unstable and stable manifolds for multiply pulsed situation demonstrating
the transport enhancement via turnstile lobe mechanism and the increased mixing.

FIGURE 7.19: Left: Streamlines of the steady flow of a film flowing over a wave topog-
raphy with Re = 10, no eddy is present at t = 10. Right: Streamlines at t = 16.3 as
the free-surface disturbance created by pulsing the inlet velocity with Fa = 5 reaches the

topography - an inertially induced eddy is created.

FIGURE 7.20: The free-surface height above the topography and the eddy height, De.
De = 0 indicates no eddy present.
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FIGURE 7.21: The relative eddy motion of the two eddies present in topography with (left)
At = 0.7 and (right) At = 1.

A nested sequence of eddies were found to be present by Moffatt (1964) in wedge

geometries, the number present being dependent on the specification of the geom-

etry. In the case of wave topography, if the ratio of depth to wavelength of the

topography increases to a large enough magnitude then a second eddy will form. In

this case there are two layers of separated flow. The motion of the deeper eddy is

less affected by the wave formed by the pulsed inlet condition as demonstrated in

Figure 7.21 which shows the relative eddy motion of the two eddies present (that

is the position relative to the steady state position). There are two sets of lobe dy-

namics induced; the usual motion between the overlying flow and the separated

flow. The other is between the two areas of separated flow. The deeper the eddy

the smaller the lobes that are formed meaning there is less transport between the

regions of separated flow than the overlying flow and top separated flow region. An

example of this is shown in Figure 7.22; note how the transport mechanism in the

deeper eddy is also suppressed by the near stagnant velocity of the fluid near the

bottom of the topography.
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FIGURE 7.22: Illustrative particle tracking showing the two areas of separated flow within
a topography of amplitude, At = 1.

7.3.3 Inertially induced eddy

In the previous section, manipulation and transport enhancement from an eddy in-

duced by the geometry of the substrate is considered. Inertially induced eddies

react the same as their geometrically induced counterparts when a deformation in

the free-surface is induced by pulsing the inlet flow.

As noted previously, it is impossible to completely remove trapped particles from

the separated flow caused by geometric factors due to the nature of the eddy. Fol-

lowing from this logic it is conceivable that this can be achieved when considering

the situation of an inertially induced eddy by temporarily reducing the film thick-

ness above the topography. In theory, if one pulses the inflow rate a suitable amount

for a long enough period of time the local reduction in film thickness will lead to

the temporary disappearance of the eddy. One can also justify this thought process

by considering the topographies that do not contain geometrically induced eddies;

those that have larger wavelength and smaller amplitude.

Similar to the previous scenario but with Reynolds number set to 30, the inflow rate

was reduced with Fa = 0.2. Streamlines for the flow in its ‘steady’ state are shown

in Figure 7.23. A small eddy is located near the base of the wave topography, the
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FIGURE 7.23: Left: Streamlines of the steady flow of a film flowing over a wave topog-
raphy with Re = 30, no eddy is present at t = 10. Right: Streamlines at t = 16.3 as
the free-surface disturbance created by pulsing the inlet velocity with Fa = 0.2 reaches the

topography - the eddy is suppressed.

skewed separated flow area is due to inertial effects. This hasn’t been seen, too

such an extent, in previous results due to the lower values of Re employed. After

the inlet condition is altered the separated flow is reconnected to the bulk flow, see

the streamlines in the second figure in Figure 7.23.

7.4 Summary

This chapter used a Bubnov-Galerkin finite element method to discretise the full,

time-dependent Navier-Stokes and continuity equations in two-dimensions to in-

vestigate flow over wavy topography. Within wavy topography an eddy, that is an

area of separated flow, can form trapping liquid in the topography valley.

By pulsing the inlet condition of velocity it is possible to induce a surface wave.

As the wave passes over the topography the increase in local film thickness induces
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a motion in the position of the eddy structure that forms. This motion creates a

transport of liquid across the separatrix via a turnstile lobe mechanism. The larger

the pulse the larger the amount of liquid that is transported. The lobes are visu-

alised using particle tracking calculations and by plotting the unstable and stable

manifolds.

An increase in the depth of the valley of the topography leads to an increase in the

size of the separated flow area. The proportion of liquid transported in and out of

the region is thus decreased. If the valley depth is increased a secondary eddy can

be induced. In this case the motion of the deeper eddy is damped so only a small

amount of liquid is transported between regions of separated flow.

It is shown that by using the knowledge of how eddies respond to changes in iner-

tia (Scholle et al., 2008) that an eddy can either be suppressed, briefly, or induced

where before there was no eddy. This is an interesting feature that could be ex-

ploited to either increase mixing of a fluid or release a majority of material that is

trapped within a separated flow region.

The results here match up with the theory developed by Scholle et al. (2008) and

form a preliminary investigation into the turnstile lobe mechanism in this free-

surface scenario. The main issue with the work conducted in this chapter is the

need for extensive computational resources to obtain solutions; should one wish to

extend the work to three-dimensions these requirements may become insurmount-

able.
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8.1 Conclusions of current study

The work presented within this thesis contributes to existing knowledge within the

field of gravity-driven thin films, in a number of areas:

1. The development of efficient numerical procedures, finite difference and fi-

nite element based, to solve different governing equation sets (a lubrication

model and the full Navier-Stokes equations) to enable the long-time investi-

gation of the flows of interest.

2. The addition of new and important understanding in relation to the rivulet in-

stability synonymous with an advancing liquid front from a number of differ-

ent stand points - the classical problem of flow down a planar substrate, wet-

ting properties, the presence of heterogeneities (chemical and/or topographi-

cal features) on the substrate, flow down curved substrates namely cylinders;

a key feature of the work is consideration of the phenomena of both complete

and partially wetting liquids.

3. The undertaking of the first numerical investigation of transport enhance-

ment via symmetry breaking of film flow over a wavy trench topography, and

exploration of the mechanism affecting the removal of fluid trapped within

closed eddies, located in valleys, by pulsing the flow.

The long-wave (lubrication) approximation facilitates the reduction of order of the

problem while still revealing important aspects of the flow, in particular the free-

surface disturbance and associated dynamics. The nature of the equations are par-

ticularly well suited to approximation via a finite-difference methodology and so-

lution using a multigrid technique. The addition of adaptive features, including

error-controlled local mesh refinement and automatic, variable time-stepping, in-

creases the efficiency of the latter further still. For the problem of rivulet flow

a new feature called grid devolution is introduced, which in conjunction with the

former refinements, allows for the rapid generation of long-time three-dimensional
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solutions; efficiency is found to be at worst of O(N) for N unknowns, with even

greater improvements in efficiency obtained with high levels of mesh adaptivity.

The Navier-Stokes equations are solved using a Bubnov-Galerkin finite element

approximation which involves mixed interpolation for the flow variables and free-

surface parametrisation based on the Arbitrary Lagrangian-Eulerian method of spines.

Unlike the lubrication equations, this approach is well suited to revealing simulta-

neously both the inner flow features and the shape of the unbounded free-surface.

Utilising parallel computational methods along with an out-of-core approach for

storing matrix cofactors on the hard drive, results are generated in the most mem-

ory efficient route possible.

The solutions obtained for rivulet formation on an inclined planar substrate are

compared with existing experimental data, revealing excellent agreement between

the two. The results obtained via a complementary linear stability analysis are also

found to agree well at high inclination angles but less so at lower inclination angles.

Long-time solutions reveal the merger of rivulets that evolve in close proximity to

each other, restricting the critical wavelength of the instability to a minimum size,

i.e. a maximum number of fingers per unit width of the substrate. Surface ten-

sion forces limit the possible curvature between rivulets (that is the steepness of

the sides of the rivulets directly effecting the width), if this limit is exceeded then

the rivulets will merge. The incorporation of wetting effects, via a disjoining pres-

sure model, unveils the impact low wettability has on the formation of rivulets; the

rate of elongation is increased and their width decreases which in turn leads to a

reduction in wavelength due to the possibility of more rivulets growing in close

proximity to one another. Plots of three-dimensional free-surface data reveal the

large differences that arise in the rivulet patterns formed for fully wetting and par-

tially wetting fluids. These differences become exaggerated as the wettability of the

fluid decreases, that is as the contact angle between the liquid film and the substrate.

By systematically generating a large data set, a new general model formula for

predicting the wavelength of rivulets formed on an inclined plane, incorporating
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the effects of partial wetting, has been developed. While the classical model of

Huppert predicts a linear proportionality between the wavelength and the capillary

length regardless of whether the liquid is fully or partially wetting, the new model

includes a slightly larger power for the capillary number while accounting for the

wetting characteristics; it is the first of its kind to do so.

While flow on a planar uniformly homogeneous surface is important from a general

engineering perspective, in practice surfaces tend to contain heterogeneities which

are topographical and/or chemical in nature. Rivulet flow over square trench and

peak topography is considered, revealing the subtle effects resulting from small

surface imperfections. A trench topography has previously been observed to create

a surge in the continuous film case; this surge effects rivulet flow by enhancing the

elongation of the rivulets directly downstream of the trench. A peak topography

can deflect a rivulet that meets it, altering its previous trajectory. These influences

can lead to merging as the rivulets are forced to evolve within a certain proximity

(the critical wavelength from Chapter 4) of one another.

Chemical heterogeneities are also found to influence the evolution of rivulets; they

can induce a rivulet instability. Should a flow of rivulets meet a set of patches the

rivulets travel preferentially along the highest wetting areas. This can lead to a

number of different scenarios; a deflection in the trajectory as the edge of a rivulet

is slowed by the low wetting region while the remainder of the rivulet flows freely

through the fully wetting area. A rivulet can also thin if the spacing between low

wetting regions is smaller than the rivulet width, the finger height increases as the

liquid is squeezed into a smaller area - once past the patches the rivulet relaxes

to its usual width. Two rivulets can be forced to merge due to alteration in their

trajectories as described above. The effect of the wetting regions can lead to a

decrease in the number of rivulets; if an evolving advancing front spreads from a

low wetting area onto a high wetting one the critical wavelength increases and so

neighbouring rivulets merge. In the opposite scenario the number of rivulets stays

constant but they become thinner. The number of rivulets can decrease but can



189

never increase without an external influence inducing more rivulets.

The influence of a surface tension gradient and accompanying Marangoni stresses

is also considered. A positive surface tension gradient promotes the elongation of

rivulets in gravity-driven rivulet flow, and the opposite effect is observed for a neg-

ative gradient. The decrease in elongation leads to an earlier onset of merging, and

an increase in elongation rate delays merger when compared to the corresponding

zero surface tension gradient case. Slowing the rate of rivulet growth could be of

practical use to facilitate more complete surface coverage. The same model is used

to explore climbing films, yielding reasonable qualitative agreement to experimen-

tal data. In the climbing film case, the Marangoni stresses counteract gravity to

pull the liquid up a vertical substrate. The size of the gradient controls the width

and wavelength - much the same as the size of inclination angle does in the gravity

driven case.

Continuing the above theme of modelling film flow over real surfaces, the problem

of flow down a vertically-aligned cylinder is investigated. The problem is formu-

lated using a long-wave approximation that is not based on the lubrication parameter

but a new parameter that measures the disparity between asymptotic film thickness

and the cylinder radius. By mapping the cylinder onto a rectangular computational

mesh it is possible to apply the same multigrid solution methodology used in the

plane case. Results are compared with recent experimental data and, again, show

very good agreement. The correlation of experimental data and numerical results

is good for both fully and partially wetting films with similar observations of the

differences between the two as in the inclined plane case. The findings of the nu-

merical investigation for a wide range of different sized cylinders reveal the subtle

interplay of curvature effects and the restriction of the cylinder circumference. At

large radii, i.e. small curvature, the behaviour of the instability mirrors that on a ver-

tical plane. As the radius of the cylinders is decreased curvature becomes increas-

ingly important in counteracting the capillary forces that limit the space between

rivulets and thus result in merging, leading to a decrease in wavelength compared
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to that observed in the equivalent plane case. As the radii is decreased further still,

the circumference becomes too small to accommodate more than one rivulet; if two

or more start to form they are forced to coalesce. These observations are captured

in an extension of the wavelength model developed for the plane case. By adding

an additional term based on the relative curvature of the cylinder to the term found

for wavelength in the planar case, it is possible to reproduce results of numerical

simulations and experiments.

The second, very different, problem considered in this thesis required the generation

of solutions to the full Navier-Stokes and continuity equations in order to visualise

the eddies/separated flow present within the valleys formed by a wavy topography

supporting the flow of a continuous liquid film. By pulsing the inlet condition, and

thus creating either a surface wave or depression, induces symmetry breaking of

the previously steady eddy centre, separatrix and size of separated flow region. The

motion of this inner flow exhibits a transport enhancement mechanism via turnstile

lobe structures. As the film thickness changes as the wave flows over the topog-

raphy, the eddy shrinks and becomes located deeper in the valley before enlarging

again, resuming eventually its steady position prior to the pulse. The motion that is

triggered is elucidated by seeding the region with tracer particles and then observing

their trajectories as the flow evolves. The lobes formed by the transient motion can

be visualised by either tracking inert particles in the flow or plotting the stable and

unstable manifolds associated with the wall attachment points. The transfer of fluid

from the eddy region is a function of the free-surface deformation. To increase the

transfer the pulse should be either large or, if a large deformation of the free-surface

is undesirable, applied for a longer time. Geometrically induced eddies persist at

all Reynolds numbers and so can’t be suppressed; however, for inertially induced

eddies it is possible to enforce a temporary disappearance of the separated flow -

leading to a large increase in transport of fluid to the bulk flow. If the topography is

such that no eddy is present, by increasing the local inertia by pulsing the inlet flow

an eddy can be temporarily induced. These findings are preliminary and should be
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extended to fully undulating substrates.

8.2 Suggested future work

The problem formulations, models and solution methodologies are adaptable and

can be extended to further investigations of rivulet flow. While a thorough inves-

tigation of gravity-driven rivulet formation has been conducted for both fully and

partially wetting fluids there are still other practical scenarios that require attention.

One such problem is that of spin coating; while there has been some research gar-

nered on such flow, the area would benefit from a similar investigation as conducted

here including partial wetting and substrate heterogeneities.

Extensions of the inclined plane case to reveal further the interplay of other phys-

ical effects with the advancing front instability would be of interest, for instance,

flow on a porous or flexible surface or the effect of an insoluble surfactant. As an

extension to the current work the implementation of an evaporation model along-

side the surface tension gradient model would certainly offer further insights. By

understanding the effects of these influences it may be possible to develop a real-

istic methodology to control the formation of rivulets or, further still, suppress the

instability completely.

Inertial effects on rivulet flow could also be explored via the Depth Average Form

(DAF) of the governing equations (Veremieiev et al., 2010). Le Grand-Piteira et al.

(2006) found that the meandering of a single rivulet could be explained via a bal-

ance between inertia and capillarity, it would be of interest to observe whether this

meandering occurs in a inertial regime for a spreading film. Obviously this has an

enormous effect on the efficiency of surface coverage.

An interesting related problem to flow on a cylindrical substrate relates to the flow

down the inner surface of such a tube like structure. The filling of tubes can be found

in a number of situations, for instance in the medical world, and so an investigation



192

into the optimal flow rate required for the tube to be filled with liquid would reveal

results of interest.

The continued investigation of the coating of real surfaces is required from an appli-

cation point of view. Flow on a cone for instance would be a fascinating extension

of the cylinder problem. The increasing size of the radius of the substrate would

introduce thinning into the problem. Whether this would affect the growth rate and

number of rivulets is still unknown. Such a scenario could be extended to simulate

the flow of lava on the side of a volcano amongst other situations.

The enhancement of transport within wavy topography has been carried out in a

two-dimensional framework. Shear-driven flow and flow over other shaped sub-

strates is also easily possible - the specification of the problem can be readily

adapted to the required application. These preliminary investigations for flow over a

half-period sinusoidal wave topography provide an insight into expected behaviour

in a full period sinusoidally undulating type substrate. The work will thus be ex-

tended to reveal the exchange of material within the eddies formed in the valleys

of an undulating substrate and the overlying bulk flow. Shear-driven flow may be

considered to separate the effects at work; in the free-surface case the film thick-

ness deforms inducing a motion in the eddy, by using a shear driven flow to induce

lobe dynamics this effect would be quelled. Transferring liquid trapped in eddies

between successive topographies could be of interest together with how the num-

ber of such topographical features effects the residence time of the liquid in the

substrate and would form a natural extension of the work. The results obtained

here provide an insight into the breadth of possible investigations; the desired final

outcome would be to develop a full three-dimensional model for a large domain

of undulating substrate. This would require the use of prohibitive computational

resources which can only be found at specialist facilities.

While the current study is carried out using numerical strategies due to the com-

plicated and difficult challenges facing an experimentalist, it is important to con-

firm the findings of numerical simulations where possible, as well as add important
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findings to challenge further numerical studies. An in depth study of the effect of

wettability on rivulet formation concentrating on the wetting properties of the fluid

would add much needed data and knowledge to the area, while also being a good

starting point of further experimental studies.
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The lubrication equations (2.23) and (2.24) can be thought of as a first-order long-

wave approximation of the non-dimensional Navier-Stokes equations, (2.50) and

(2.51), and boundary conditions (2.3) - (2.6). The long-wave approximation es-

sentially reduces the dimensionality of the problem by one (Oron et al., 1997) by

assuming that the long-wave ratio ε = H0/L0, that is the ratio of characteristic film

thickness and the associated length scale (in the lubrication approach this is the

capillary length), is small, i.e. ε� 1.

A.1 Governing equations

To formulate the Navier-Stokes and continuity equations for thin film flow under

gravity down a planar surface inclined at α to the horizontal as shown in Figure 2.1,

employing a Cartesian coordinate system, in terms of L0 the variables are shifted

via:

(x, y, lt, wt, t, p)→ (x, y, lt, wt, t, p) /ε, w → εw,

giving:

εRe

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂p

∂x
+ ε2

(
∂2u

∂x2
+
∂2u

∂y2

)
+
∂2u

∂z2
+ 2,

εRe

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −∂p

∂x
+ ε2

(
∂2v

∂x2
+
∂2v

∂y2

)
+
∂2v

∂z2
,

ε3Re

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
=

− ∂p

∂z
+ ε4

(
∂2w

∂x2
+
∂2w

∂y2

)
+ ε2

∂2w

∂z2
− 2ε cotα,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0.

The normal vector, tangential vector components, viscous stress tensor and free-

surface curvature terms (noting that fx represents the partial derivative of f with

respect to x, etc.);

n =
(−εfx,−εfy, 1)[
ε2
(
f 2
x + f 2

y

)
+ 1
] 1

2

, (A.1)
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tx =
(1, 0, εfx)

(1 + ε2f 2
x)

1
2

, (A.2)

ty =
(0, 1, εfy)(
1 + ε2f 2

y

) 1
2

, (A.3)

τ =


2εux ε (uy + vx) uz + ε2wx

ε (uy + vx) 2εvy vz + ε2wy

uz + ε2wx vz + ε2wy 2εwz

 (A.4)

κ = ε2
fxx + fyy + ε2

[
fxxf

2
y + fyyf

2
x − 2fxyfxfy

][
1 + ε2

(
f 2
x + f 2

y

) 3
2

] . (A.5)

The boundary conditions at z = f = h(x, y, t) + s(x, y) for the normal and tangen-

tial stress can then be written as:

− p+ 2ε2
[
−uzfx − vzfy + wz

1 + ε2f 2
x + ε2f 2

y

+ε2
(
uxf

2
x + uyf

2
y + (uy + vx) fxfy − wxfx − wyfy

)
1 + ε2f 2

x + ε2f 2
y

]
=

εκ

Ca
, (A.6)

uz + ε2 [fx (−uzfx − vzfy + 2wz)− 2uxfx − (uy + vx) fy

+wx − ε2 (wxfx + wyfy)
]

= 0, (A.7)

vz + ε2 [fy (−uzfx − vzfy + 2wz)− 2vyfy − (uy + vx) fx

+wy − ε2 (wxfx + wyfy)
]

= 0. (A.8)

If only leading order terms in ε are retained and boundary conditions applied, it
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follows that long-wave equations reduce to:

∂h

∂t
=

∂

∂x

[
h3

3

(
∂p

∂x
− 2

)]
+

∂

∂y

[
h3

3

(
∂p

∂y

)]
, (A.9)

p = − ε3

Ca
∇2(h+ s) + 2ε (h+ s− z) cotα, (A.10)

as given in Chapter 2.
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B.1 Long-wave approximation

Consider the case of a thin film flowing down a vertically aligned cylinder of radius

R0 and height LR, as shown schematically in Figure 6.1. The circumference of the

cylinder is denoted by CR = 2πR0. The film is fed by a constant inflow at the

upstream boundary, the fully developed film thickness is denoted by H0. Surface

tension, σ, dynamic viscosity, µ, and density, ρ, are assumed constant. In cylindrical

coordinates, any point has position (Y, θ, Z), the radius to the free-surface, R, is

given by RH = R0 + H (θ, Z, T ) where H is the film thickness and T is the time.

In the cylindrical co-ordinate system the fluid velocity is denoted by (U, V,W ).

Following Smolka and SeGall (2011), a long-wave model is derived based on the

assumption that εR = H0/R0 � 1. Non-dimensional variables are introduced in

a similar manner seen when deriving similar equations for thin film flow down a

inclined, flat substrate, namely;

(y, h, h∗) =
(Y,H,H∗)

εRR0

, (z, r, lr) =
Z,R, Lr
R0

, t =
T

T0

, κ = R0κ̃,

p =
P

ρgH0

, (u, v, w) =

(
U

εRU0

,
V

U0

,
W

U0

)
, T0 =

R0

U0

;

giving the non-dimensional radius as r = 1 + εRy.

Introducing the non-dimensional variables into the cylindrical Navier-Stokes and
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continuity equations leads to:

ε2RRe

(
εR
∂u

∂t
+ εRu

∂u

∂y
+ εR

v

r

∂u

∂θ
+ εRw

∂u

∂z
− v2

r

)
=

− ∂p

∂y
+ εR∆ru− ε3R

u

r2
− 2ε2R

r2

∂v

∂θ
,

ε2RRe

(
∂v

∂t
+ u

∂v

∂y
+
v

r

∂v

∂θ
+ w

∂v

∂z
+
εRuv

r

)
=

− εR
r

∂p

∂θ
+ ∆rv − ε2R

v

r2
+

2ε3R
r2

∂u

∂θ
,

ε2RRe

(
∂w

∂t
+ u

∂w

∂y
+
v

r

∂w

∂θ
+ w

∂w

∂z
+
εRuv

r

)
= −εR

∂p

∂z
+ ∆rv + 1,

1

r

∂ (ru)

∂y
+

1

r

∂v

∂θ
+
∂w

∂z
= 0,

where the Reynolds number is given byRe = ρRU0/µ; ∆r is the cylindrical version

of the usual Laplace second derivative operator calculated via:

∆r =
1

r

∂(r ∂
∂y

)

∂y
+
ε2R
r2

∂2

∂θ2
+ ε2R

∂2

∂z2
. (B.1)

As in Appendix A, the above equations are simplified by assuming higher order

terms are small and only terms larger than O(ε2RRe) are retained.

The usual no-slip condition is applied at the surface of the cylinder. At the free-

surface boundary, kinematic, tangential and normal stress conditions given by:

∂h

∂t
+ v

∂h

∂θ
+ w

∂h

∂z
= u, (B.2)

t ·
(
−pI + τ

)
· n = 0, (B.3)

n ·
(
−pI + τ

)
· n = σκ̃+ Π(h), (B.4)

are applied where τ represents the viscous stress tensor, n denotes the normal to

the free-surface and t is the tangential to the free-surface which can be split into
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two components, tθ and ty (Evans et al., 2004). In non-dimensionalised cylindrical

coordinates the normal to the free-surface (excluding terms of higher order) is:

n =

(
1,−εR

∂h

∂θ
,−εR

∂h

∂z

)
. (B.5)

Similarly, the two tangents to the free-surface are given by

tθ =

(
εR
∂h

∂θ
, 1, 0

)
, (B.6)

ty =

(
εR
∂h

∂z
, 0, 1

)
. (B.7)

An approximation to the free-surface, κ, is found via:

κ̃ = R0κ = R0∇ · n = 1− εRh− εR∇2h+O(ε2R), (B.8)

here ∇ denotes the dimensionless gradient operator in cylindrical terms, i.e. ∇ =(
∂
∂z
, ∂
∂θ

)
. Substituting it into the normal stress boundary condition and neglecting

higher order terms, it can be shown that at the free-surface:

−p = − κ̃

εRBoR
+ Π(h), (B.9)

where BoR = ρgR2
0/σ is the Bond number, closely linked to the Bond number

used in modelling gravity driven films on a flat, inclined substrate which is given

by Bo = ρgH2
0 /σ = ε2RBoR (Gaskell, Jimack, Sellier and Thompson, 2004).

The tangential stress and kinematic conditions are also reduced to

∂v

∂y
− εRv +O(ε2R) = 0, (B.10)

∂w

∂y
+O(ε2R) = 0, (B.11)

∂h

∂t
+
v

r

∂h

∂θ
+ w

∂h

∂z
= u, (B.12)
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respectively.

Terms for velocity are found via equations (B.9) - (B.12); at first order the relevant

velocity terms are:

u(0) (y, θ, z, t) =
(
u(0), v(0), w(0)

)
=

(
−1

2
y2∂h

∂z
, 0,−1

2
y2 + hy

)
, (B.13)

and at O(εR), u(1) = 0 and

v(1) =

(
y2

2
− hy

)
∂p

∂θ
, (B.14)

w(1) =

(
y2

2
− hy

)
∂p

∂z
+

1

6

(
y3 − 3y2h+ 3yh2

)
. (B.15)

Making use of the kinematic boundary condition (B.12), in combination with con-

servation of mass and the no-slip condition, the relationship representing the re-

quired governing equations is obtained as:

(1 + εRh)
∂h

∂t
+

∂

∂θ

∫ h

0

(
v(0) + εRv

(1)
)
dy

+
∂

∂z

∫ h

0

(1 + εRy)
(
w(0) + εRw

(1)
)
dy = 0. (B.16)

By substituting the velocity and pressure terms (B.9), (B.14) and (B.15), respec-

tively, into equation (B.16) and solving, a coupled set of governing lubrication

equations is obtained in terms of non-dimensional film thickness, h, and pressure,

p, for thin film flow down a vertically aligned cylinder:

(1 + εRh)
∂h

∂t
=

∂

∂z

[
εRh

3

3

(
∂p

∂z
− 1

εR
− h
)]

+
∂

∂θ

[
εRh

3

3

(
∂p

∂θ

)]
, (B.17)

p = − 1

BoR

(
h+∇2h

)
− Π(h). (B.18)

As only pressure gradients affect the flow the term (εRBoR)−1 is neglected. In
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addition, the disjoining pressure, Π(h) is calculated via the term

Π(h) =
(1− cos θc) (n− 1) (m− 1)

ε2RBoR (n−m)

[(
h∗

h

)n
−
(
h∗

h

)m]
. (B.19)

The spanwise boundary conditions are adjusted to account for the geometry, as such

they become periodic, namely:

h(0, z, t) = h(2π, z, t) p(0, z, t) = p(2π, z, t). (B.20)

The film height is specified as fully developed at the inlet, h(θ, 0, t) = 1, and to

be equal to the precursor film downstream of an advancing front extending to the

bottom end of the cylinder, h(θ, lr, t) = h∗.

The profile of the front is taken initially to be a flat front perturbed in the spanwise

direction with a superposition of M modes with random length, lj ∈ [−0.2, 0.2],

and differing wavelength, λ0,j = 2wp/j for j = 1, ..., N , in the same manner as in

Kondic and Diez (2001), given by the following equations:

h(θ, z, 0) = 0.5

{
1 + h∗ − (1− h∗) tanh

[
(x− xf (θ))

δ

]}
(B.21)

xf (θ) = xu −
M∑
j=1

lj cos (2πθ/λ0,j) (B.22)

with δ controlling the steepness, taken here to be 0.1, and xu is the position of the

unperturbed front (taken to be 30). Its subsequent evolution is independent of the

initial condition imposed provided M is sufficiently large.
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B.2 Discretisation

B.2.1 Spatial discretisation

Equations (B.17) and (B.18) are discretised via central-differencing Lee et al. (2007),

leading to second order accurate spatial analogues of the form:

(1 + εRh)
∂hi,j
∂t

=
1

∆2
cyl

[
εRh

3

3
|i+ 1

2
,j (pi+1,j − pi,j)−

εRh
3

3
|i− 1

2
,j (pi,j − pi−1,j)

+
εRh

3

3
|i,j+ 1

2
(pi,j+1 − pi,j)−

εRh
3

3
|i,j− 1

2
(pi,j − pi,j−1)

]
− 1

∆cyl

(
h3

3
|i+ 1

2
,j −

h3

3
|i− 1

2
,j +

εRh
4

3
|i+ 1

2
,j −

εRh
4

3
|i− 1

2
,j

)
, (B.23)

pi,j +
1

BoR∆2
cyl

[hi+1,j + hi−1,j + hi,j+1 + hi,j−1 − 4hi,j] +
hi,j
BoR

+ Π (hi,j) = 0,

(B.24)

for all points (i, j) in the computational domain, Ω = (0, lr) × (0, 2π); with ∆cyl

the size of the grid cells (for simplicity the discretisation using a square mesh is

shown). The curved surface of the cylinder is mapped to a square or rectangular

grid by considering the problem in terms of cylindrical co-ordinates; to map onto a

three-dimensional cylinder in Cartesian co-ordinates one can use:

x = h cos θ, (B.25)

y = h sin θ, (B.26)

z = z. (B.27)

The prefactors in equation (B.23) are obtained using linear interpolation between

neighbouring grid points and are given by, for example,

h3

3
|i+ 1

2
,j =

1

2

(
1

3
h3
i+1,j +

1

3
h3
i,j

)
,
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and similarly defined for the other prefactors.

B.2.2 Temporal discretisation

The temporal derivative in equation (B.17) is approximated using the implicit,

second-order accurate Crank-Nicolson method. Writing the spatial discretisation

as a function of hi,j, pi,j, hi±1,j and pi±1,j allows the discretised time-dependent

term for film height, h, to be expressed conveniently in the form:

(1 + εRh
n
i,j)

∂hi,j
∂t

= F
(
hni,j, p

n
i,j, h

n
i±1,j, p

n
i±1,j, h

n
i,j±1, p

n
i,j±1

)
, (B.28)

for all (i, j) ∈ Ω. Employing the Crank-Nicolson method yields an equation for

the variables h and p at t = tn+1 (denoted by superscript n + 1) in terms of the

calculated values at t = tn (denoted by superscript n) as:

hn+1
i,j −

∆tn+1

2(1 + εRh
n+1
i,j )

F
(
hn+1
i,j , pn+1

i,j , hn+1
i±1,j, p

n+1
i±1,j, h

n+1
i,j±1, p

n+1
i,j±1

)
= hni,j +

∆tn+1

2(1 + εRhni,j)
F
(
hni,j, p

n
i,j, h

n
i±1,j, p

n
i±1,j, h

n
i,j±1, p

n
i,j±1

)
, (B.29)

with ∆tn+1 = tn+1 − tn.
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C.1 Planar, inclined substrate

The linear hydrodynamic stability of the gravity-driven thin film flow has been ex-

plored by a number of authors, including Davis and Troian (2003), Troian et al.

(1989) and Kondic (2003); the traditional approach, as adopted here, determines

the travelling wave solution and the governing equation is then linearised to obtain

the associated eigenvalue problem (Craster and Matar, 2009). The equations are

also adapted to incorporate the effects of a non-zero equilibrium contact angle.

C.1.1 Travelling wave solution

The analysis proceeds by combining equations (2.23) and (2.24) to form a fourth

order partial differential equation in h:

∂h

∂t
=

∂

∂x

[
h3

3

(
−ε3

Ca

(
∂3h

∂x3
+

∂3h

∂xy2

)
+ 2ε

∂h

∂x
cotα− ∂Π(h)

∂x
− 2

)]
+

∂

∂y

[
h3

3

(
−ε3

Ca

(
∂3h

∂y3
+

∂3h

∂yx2

)
+ 2ε

∂h

∂y
cotα− ∂Π(h)

∂y

)]
. (C.1)

The base state is a travelling wave solution such that h (x, y, t) = h0 (x− Uwt)

(Troian et al. (1989)); substituting this into equation (C.1), with p0 = p(h0) (see

Equation (2.24)), and integrating once yields the governing equation for h0 (ξ) as

−Uwh0 +
2h3

0

3
− h3

0

3

∂p0

∂ξ
= c, (C.2)

where Uw is the travelling wave velocity and c is a constant of integration. These

constants are fixed by the condition that as ξ → −∞ the film thickness is fully

developed, i.e. h0 → 1. The other necessary condition is that the film height must

match onto the precursor film height h∗, so as ξ → ∞ then h0 → h∗. This returns

Uw and c as

Uw =
2

3

1− h∗3

1− h∗
, c = −2h∗

3

1− h∗2

1− h∗
. (C.3)
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C.1.2 Perturbation Analysis and Eigenvalue Problem

Consider a reference frame travelling with velocityUw of the travelling wave (Troian

et al., 1989), given above, and a perturbation ςh1 (ξ, y, t) applied to the front given

by the base state solution h0, where ς � 1, which gives p = p0 + ςp1 with

p1 = − ε3

Ca
∇2h1 + 2εh1 cotα − h1

∂Π(h0)
∂h

, where only the first term of the asso-

ciated Taylor expansion is kept. Substituting the perturbed solution into equation

(2.23) and keeping terms of O (ς) only, a fourth order equation for the perturbation

h1 emerges:

∂h1 (ξ, y, t)

∂t
= ∇

(
h2

0h1∇p0 +
h3

0

3
∇p1

)
−
(
2h2

0h1

)
ξ

+ Uwh1ξ. (C.4)

Note that subscripts of ξ denote the partial derivative of the same. Following

Bertozzi and Brenner (1997), as the travelling wave solution h0 does not depend

on y the Fourier transform of (C.4), h1 (ξ, y, t) =
∫ 0

−∞ h1 (ξ, k, t) eikydk, gives:

∂h1 (ξ, k, t)

∂t
=

(
h2

0h1p0ξ +
h3

0

3
p1ξ

)
ξ

−
(
2h2

0h1

)
ξ

+ Uwh1ξ −
k2h3

0

3
p1

+
k2ε3

Ca

[(
h3

0

3
h1ξ

)
ξ

− k2h3
0

3
h1

]
, (C.5)

where k is the wavenumber of the spanwise perturbation. The equation is subject to

decay conditions so that h1, h1ξ, h1ξξξ → 0 as ξ → ±∞. If the equation is discre-

tised spatially with central differences of second order then a system of equations

that determines the growth of the perturbation h1 is found, having the form:

∂h1

∂t
= A (ξ, k)h1, (C.6)

where A (ξ, k) is a linear autonomous matrix (Davis and Troian, 2003) acting on

h1, that is the discretised elements of the perturbation. The solution h1 (ξ, k, t) has

exponential dependence on t (Kondic, 2003) and so may be written in the form
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h1 (ξ, k, t) = φ (ξ) eω(k)t giving:

ω (k)φ = A (ξ, k)φ. (C.7)

This is an eigenvalue problem for the linear operator defined in A. The values of

ω that satisfy the problem are the eigenvalues which are the growth rates of the

corresponding eigenfunctions φ. If ω > 0 then the perturbations are unstable and

increase with time, if ω < 0 the perturbations are stable and decay with time.

C.2 Analysis of vertically aligned cylinder

The analysis for rivulet flow on a vertically aligned cylinder follows a very similar

route.

C.2.1 Travelling wave solution

Considering the governing equations for thin film flow down a vertical cylinder,

equations (B.17) and (B.18), and searching for a travelling wave solution h0 (ξ),

similarly to the planar substrate case, the governing equations are given by:

−Uw
(
h0 +

εRh
2
0

2

)
+

1

3

(
h3

0 + εRh
4
0

)
+
εRh

3
0

3

∂p0

∂ξ
= c. (C.8)

Applying the boundary conditions as above fixes the travelling wave velocity and

constant of integration. The wave velocity, Uw is given by:

Uw =
1 + h∗ + h∗2 + εR (1 + h∗ + h∗2 + h∗3)

3
(
1 + εR

2
+ εRh∗

2

) . (C.9)
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C.2.2 Perturbation Analysis

Applying a small perturbation via h = h0(ξ) + ςh1 (ξ, θ, t) and p = p0 + ςp1, the

perturbed pressure term is given by

p1 = − 1

BoR

(
h1 +∇2h1

)
− h1

∂Π(h0)

∂h
. (C.10)

Substituting (C.10) into equation (B.17) and only retaining terms of O(ς), a fourth

order equation in h1 is obtained as:

(1 + εRh0)
∂h1 (ξ, θ, t)

∂t
= ∇

(
h2

0h1∇p0 +
h3

0

3
∇p1

)
− 1

3

(
3h2

0h1 + 4εRh
3
0h1

)
ξ

+ [Uw (1 + εRh0)h1]ξ , (C.11)

here ∇ denotes the dimensionless gradient operator in cylindrical terms, i.e. ∇ =(
∂
∂z
, ∂
∂θ

)
.

Performing the same Fourier transform as previously shown, the stability equation

in terms of wavenumber k is:

(1 + εRh0)
∂h1 (ξ, k, t)

∂t
=

(
h2

0h1p0ξ +
h3

0

3
p1ξ

)
ξ

− 1

3

(
3h2

0h1 + 4εRh
3
0h1

)
ξ

+ [Uw (1 + εRh0)h1]ξ +
εRk

2

3BoR

[(
1 + k2

)
h3

0h1 + 2h3
0h1ξξ + 3h2

0h1ξ

]
, (C.12)

where k is the wavenumber in the θ-direction. The problem is solved, as in the

planar case, with the associated growth rates determining the stability of the pertur-

bation.
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In this section the efficiency of the multigrid method of solution described in Chap-

ter 3 is demonstrated which together with the concept of grid devolution is shown to

give an increase in efficiency compared to other multigrid strategies. Also shown is

a selection of relaxation methods that may be utilised in the smoothing procedure.

Numerical and analytical methods of determining the Jacobian associated with the

governing lubrication equations are compared in terms of accuracy and efficiency.

The results shaped which form of multigrid method was used in the results pre-

sented in Chapters 4 to 6, since in a detailed dynamic process like rivulet formation

computational efficiency is key.

D.1 Efficiency of multigrid procedure

The adaptive multigrid method described in Chapter 3 utilises local mesh refine-

ment and grid devolution to improve computational efficiency at each time step iter-

ation. Automatic, error-controlled variable time-stepping is employed additionally

to improve the efficiency still further when generating long-time solutions. Here

the difference in efficiency between multigrid methods with three different levels of

adaption are investigated, namely; non-adaptive multigrid (A), multigrid with local

mesh refinement (LMR) (B) and , finally, multigrid with both LMR and grid devo-

lution (C). Implementing mulitgridding strategies to solve the lubrication equations

has already been shown to be substantially preferential to the use of time-splitting

methods (Cowling et al., 2011).

The results generated and compared are for the case of film flow down a flat sub-

strate inclined at 60o to the horizontal with a constant inflow of ‘Fluid A’ (see

Chapter 4) having zero equilibrium contact angle. The coarsest grid, G0, consists of

257×65 nodes spanning a computational domain of (0, 400)×(0, 100). The choice

of grid level, D, on which to employ grid devolution depends on the resolution of

the coarsest mesh; in this case the coarsest mesh, G0, is suitably fine and provides a

reasonably accurate initial solution on which to base grid devolution.
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The number of active nodes on the refined grid with finest level K, at t = 50, is

shown in Figure D.1(a); the number of nodes reduces when using strategy B com-

pared to strategy A but stays similar when, additionally, grid devolution is activated,

strategy C. This is because the number of nodes removed from the hybrid-mesh is

small, as only nodes from the coarsest grid are removed; nevertheless the amount of

calculations and work performed on the coarse level during a full multigrid iteration

is reduced significantly with a corresponding reduction in the CPU time required.

The efficiency of introducing both local mesh refinement and grid devolution is

demonstrated in Figure D.1 (b), showing an example of the CPU time required for

a single time iteration at t = 50. The reduction in CPU time is large when local

mesh refinement and grid devolution are employed, compared to a non-adaptive

approach; in some cases as much as an order of magnitude difference is seen. The

saving from the LMR only case compared to strategy C appears less impressive;

however, over a long-time simulation these savings can be significant - as demon-

strated subsequently.

Essential to the incorporation of grid devolution is that the solution is not affected;

all solutions produced identical results with the same truncation error at each point.

To optimise the use of devolution, a range of values of TOLd were used (flow

conditions the same as above); if the number of nodes making up the finest grid

level, K, are equal for both adaptive multigrid strategies (strategies B and C) then

level of error in the solution is indicated to be the same. When TOLd is not too

large there are more nodes on level K as the truncation error is higher on the lower

grid levels due to the removal of nodes in areas of high film height/pressure gradient

on the coarse grid. These nodes do not then get refined and smoothed and thus the

truncation error is very high in the given area of the computational domain and so

more nodes are refined via local mesh refinement to the finest grid level. Figure D.2

shows how as TOLd decreases the number of nodes for strategy C approaches that

of strategy B and the optimal value of TOLd is found to be 0.0001; at this value,

areas of local mesh refinement and grid devolution do not intersect at any point, as
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FIGURE D.1: The number of nodes on the specified finest level,K, is shown in (a) for three
different variations of the multigrid method; strategies A,B and C. The corresponding CPU
time for each K is then presented in (b). This is for the case of a thin film of ‘Fluid A’ on a
substrate inclined at 60o where the coarsest grid is 257 × 65 nodes and the computational

domain is (0, 400)× (0, 100).
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FIGURE D.2: Plot to show how the number of nodes on the finest grid level, K, changes
with the tolerance value for grid devolution, TOLd.

FIGURE D.3: Graph showing the significant decrease in CPU time required when devolu-
tion is employed compared to when only mesh refinement is active in the multigrid algo-
rithm. The solution is for identical initial conditions of a film of ‘Fluid A’, considered as
fully wetting, flowing down a substrate inclined at 60o to the horizontal. The CPU time
increases per iteration as the number of nodes increases due to the growth of rivulets at the

advancing front area.
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required.

Figure D.3 shows the cumulative CPU time for the generation of the numerical so-

lution of the lubrication equations for the flow under consideration, up to t = 400.

Two multigrid strategies are considered, B and C, revealing the difference when

grid devolution is added to the algorithm. The overall improvement of efficiency

between the two strategies is clear; at t = 400 the total CPU time used is approx-

imately twice that when devolution is not employed than when it is utilised. This

large improvement in efficiency is very valuable when calculating transient, mem-

ory intensive processes such as rivulet formation; the method thus allows for the

efficient calculation of long-time solutions on large substrates which can then be

used for direct comparison with experimental data. Note that the increase in CPU

time is not linear due to the increase in the effective grid size since the rivulets, that

represent the domain of interest, are lengthening.

Examples of how the active, refined computational mesh evolves through the for-

mation of the rivulets is shown in Figures D.4 and D.5. In Figure D.4, free-surface

colour maps of the film thickness are shown alongside the corresponding computa-

tional mesh at three different times for flow on a wide substrate. Figure D.5 shows

a close-up of the same setup, with the contact line indicated in white. A grid gener-

ated without devolution is shown in Figure D.5 (a), demonstrating the disparity in

the number of nodes active when strategies B and C are employed. The dynamic,

evolving mesh is dense and refined only around the advancing front area, becoming

coarser further away until the point at which the film is flat, either fully developed

or equal to the precursor film thickness, where the appropriate value of h is assigned

and the nodes removed from subsequent calculations in the given time iteration.
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FIGURE D.4: Left hand side figures show colour maps of the free-surface profiles of the
advancing front of a water-glycerin film spreading on a substrate inclined at 60oat t =
50, 100 and 200. The associated composite, finest multigrid levels are shown on the right

hand side exhibiting grid refinement and coarse grid devolution.
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FIGURE D.5: The refined grid structure used in the multigrid solution of thin film flow
for a fully wetting liquid spreading on an inclined substrate with α = 60o when adaption
strategies B), shown in (a), and C), shown in (b), (c) and (d), are utilised. The contact line

is indicated in white and develops in (b), (c) and (d) which show subsequent times.
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D.2 Jacobian calculation: Numerical vs Analytical

When utilising the Newtonian method described in Appendix D.3 the Jacobian of

the equation set is required to compute corrections to the solution. There are two

ways of computing the required matrix, the first is analytical, the second numeri-

cal. The analytical method is the most accurate and so can reduce error and thus

computing time. However, the analytical approach requires the analytical form of

the Jacobian to be derived every time one or more new equations or new physics

are introduced into the problem. Evaluating the Jacobian numerically is much more

general and simple to implement via a finite difference method; however, due to the

approximate nature of the process more iterations of the smoothing method may be

required leading to a small increase in computing time - see Gaskell et al. (2010).

D.2.1 Numerical Jacobians

If equations (2.23) and (2.24) are written as a discretised vector function as in equa-

tion (3.7) then:

F
(
un+1
i,j

)
= Nun+1

i,j − f
(
uni,j
)

(D.1)

where uni,j =
(
hni,j, p

n
i,j

)
for all (i, j) ∈ Ω, the computational domain.

The numerical Jacobian at each computational node is then calculated as

Ji,j =
F
(
un+1
i,j + δ

)
− F

(
un+1
i,j

)
δ

.

D.2.2 Analytical form of the Jacobian

The Jacobian matrix of the discretised equations, expressed analytically, is:

Ji,j,k,l =

 ∂Nhi,j
∂hn+1

k,l

∂
Nhi,j
∂pn+1
k,l

∂N pi,j
∂hn+1

k,l

∂
N pi,j
∂pn+1
k,l

 (D.2)
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where

∂N h
i,j

∂hn+1
k,l

=

{
δi,kδj,l −

∆t

4∆2
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δi,kδj,lh
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n+12
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∂N p
i,j

∂hn+1
k,l

=
2ε3

Ca∆2
[δi+1,kδj,l + δi−1,kδj,l + δi,kδj+1,l + δi,kδj−1,l

−4δi,kδj,l]− 2δi,kδj,lε cotα,

∂N p
i,j

∂pn+1
k,l

= δi,kδj,l,

with Dirac-delta functions δi,k, δj,l equating to unity when the subscripts intersect,

and zero otherwise.

D.2.3 Comparison of the two approaches

Both methods of calculating the Jacobian (numerical and analytical) are compared

for the case of continuous thin film flow over a trench topography, where the to-

pography’s non-dimensional width and length are set as 0.01 and depth to 0.2.

The fluid properties are set to those of water, the asymptotic film thickness is

defined as 100µm and inclination angle 65o. The resulting free-surface colour

maps of the free-surface disturbance are shown in Figure D.6, the difference be-

tween them being indiscernible. The percentage difference, calculated via Err =



221

FIGURE D.6: Free-surface profiles for continuous thin film flow over a trench topography;
the left hand side is the profile found when using an analytical Jacobian, the right hand side
the corresponding profile when a numerical approach is utilised. Flow direction is from top

to bottom.

100|hanalyticali,j −hnumericali,j |/hanalyticali,j , is shown in Figure D.7, the maximum differ-

ence being 0.006% only. Therefore, either method can be utilised with confidence.

The CPU times for both methods are very similar. It was found that when a multi-

grid method employs only variable time-stepping as an adaptive feature the total

CPU time required for the solution to t = 10 is 78 seconds when the Jacobian is

calculated analytically while it is 79 seconds when the Jacobian is obtained nu-

merically. For a non-adaptive multigrid method, to complete 130, 000 time steps

the CPU time used is 56, 266 seconds and 56, 534 seconds for the analytical and

numerical approaches, respectively - a percentage difference of just 0.5% in CPU

time. Results are found to be similar for other solutions obtained with different

topographies.

The above findings suggest that the performance of the multigrid method of solution

when solving the Jacobian either numerically or analytically is incredibly similar in

terms of efficiency and accuracy. However, the simplicity of implementation of the

numerical scheme make it the more attractive prospect of the two.
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FIGURE D.7: Colour maps of the percentage change of film height between the two solu-
tions shown in Figure D.6 over the computational domain.

D.3 Relaxation schemes

In the course of obtaining the solutions presented in Chapters 4 to 7 a number of

different relaxation schemes were explored in relation to their efficiency for use

with the multigrid methodology.

D.3.1 Newtonian relaxation

Consider a non-linear function F (x) : RN → RN ; a solution vector x ∈ RN is

required such that F (x) = 0. From an approximate solution vector xn, the desire

is to find a step δx in order to achieve:

F (xn + δx) = 0. (D.3)

Expanding F in Taylor series gives:

F (xn + δx) = F (x) + J.δx +O
(
δx2
)
, (D.4)
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and thus setting F (xn + δx) = 0 and neglecting terms of order δx2 and higher

leads to the Newton step , δx, as:

δx = −J−1 · F, (D.5)

where J is the Jacobian matrix of F and J−1 its inverse.

A new solution vector is then obtained as xn+1 = xn + δx, this iterative process is

continued until satisfactory convergence is achieved.

In the context of the problem under consideration there are two residuals at each

node (i, j) for hi,j and pi,j . Thus the function considered is F (hi,j, pi,j) = 0.

However, in practice it may not be possible to find the zeroes of this function; so

instead the aim is to find the best possible approximate solution at the node. To do

this another function is considered,

f =
1

2
F · F

and its minimum is found as this gives the nearest approximation possible of F = 0.

The algorithm involves a line search in the direction of the Newton step. At first the

full Newton step is tested, if this does not meet the criteria for a sufficient decrease

in the function, f , then a backtracking algorithm is employed until the function

decreases a sufficient amount in the direction of the Newton step. This process is

repeated until F(hi,j, pi,j) is sufficiently small (< 1 × 10−8 for a two dimensional

problem).

This method is successful and efficient and is easily adapted to other problems. The

main problem that can occur is if the Jacobian becomes singular and thus the New-

ton step cannot be calculated. This did not prove a problem during tests within the

current work. Calculating the Newton step can also be computationally expensive

as it is a requirement to calculate the Jacobian matrix or an approximation to it, this

is especially true if F : RN → RN where N is large.
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The Newton method is presented and discussed in some depth by Gaskell et al.

(2010). Here, the benefits of using a general, globally convergent Newton solver

are demonstrated in full.

D.3.2 Broyden’s secant method

Secant methods use less computationally expensive approximations of the Jacobian

for zero finding or the Hessian matrix for minimisation. Broyden’s method is such

a method.

If the approximation to the Jacobian J of F is given by Bn then it is imposed that

the following equation,Kelley (2003), is satisfied:

Bn (xn − xn−1) = F (xn)− F (xn−1) , (D.6)

where xn is the current approximate solution vector and xn−1 the approximate so-

lution vector from the previous iterate.

The solution vector is updated via:

xn+1 = xn − λnB−1
n F (xn) , (D.7)

where λn is the step length in the Broyden direction dn = −B−1
n F.

After this update, the approximation to J, that is Bn, is updated (Press et al., 2002)

via:

Bn+1 = Bn +
((F (xn+1)− F (xn))−Bnλndn)λndn

(λndn)T (λndn)
. (D.8)

The main issue with Broyden’s method is that the search direction is not necessarily

a descent direction for F, as Bn is only an approximation. For this reason Newton-

Krylov methods are more popular, this is where a Krylov solver is used to find

a good approximation for the Newton step, and is especially useful for large N
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(Kelley, 2003).

D.3.3 Conjugate gradient method

The non-linear conjugate gradient method considered and utilised is a line search

descent method for solving the optimisation problem :

min
x∈RN

f (x) . (D.9)

The process creates a sequence of conjugate search directions via the Gram-Schmidt

process, each conjugate coming from the previous one, and a line search is carried

out in the direction generated to find a step length, α, in the search direction that

minimises f along this direction. In this case consider f , as in the Newtonian re-

laxation section, as f = F.F. The process generates a sequence of approximate

solution vectors xn, the starting vector is x0, a sequence of gradient vectors for

each xn namely gn and the search directions hn. The algorithm is as follows:

From a starting vector x0 the search direction vector h0 is set equal to −g0. Then

for iteration n:

• Perform a line minimisation to find α that minimises f in the search direction

hn.

• If f has suitably converged stop.

• Set xn+1 = xn + αhn, gn+1 set to the gradient vector at xn+1.

• Calculate γn = (gn+1−gn)gn+1

gTngn
- Polak-Riberie term.

• Generate a new search direction hn+1 = −gn+1 + γnhn.

The method is computationally cheap and relatively simple to apply. The area that

can be important for efficiency is the line search to minimise f in the direction of

hn. Two methods were investigated; one is a line search, used by Charalambous
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(Charalambous, 1992), the other Brent’s method (Press et al., 2002) that initially

brackets the minimum between three points and then uses bisection and the secant

method to find the minimum to within a prescribed tolerance (Press et al., 2002).

D.3.3.1 Line search

The line search, Charalambous (1992), is useful as one can specify how exact the

line search needs to be. If a function Φ (α) = f (xn + αhn) is introduced then the

line search will search for a value αmin such that Φ (α) has decreased sufficiently

from Φ (0).

The line search is continued until the Wolfe line search conditions are satisfied (Dai

and Yuan, 2002):

f (xn + αhn) 6 f (xn) + µαgTnhn, (D.10)

|gn+1hn| 6 −σgnhn, (D.11)

where 0 < µ < σ < 1. The gradient vector at the sequence of approximate solution

vectors xn is denoted by gn, recalling that xn+1 = xn + αhn.

The line search is as follows: Start at Φ (α) and take a positive step size ᾱ and

evaluate Φ (α + ᾱ), there are then four possibilities to describe the new location:

1. The conditions are satisfied and thus line search is complete.

2. Φ (α) 6 Φ (α + ᾱ) and the new point has negative gradient. The step ᾱ is

then too large, thus set ᾱ = 0.1ᾱ and repeat.

3. Φ (α) > Φ (α + ᾱ) and the new point has negative gradient. The step size

can then be considered too small so repeat with ᾱ = 10ᾱ.

4. The other possibility is to be at a point with positive slopes but still one or

both conditions are violated. In this case (α, α + ᾱ) brackets the minimum

αmin. At this point cubic interpolation is employed.
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Having bracketed the minimum, consider the cubic functionC (α) that passes through

(0,Φ (α)) and (ᾱ,Φ (α + ᾱ)) and has minimum ᾱc. At α the cubic has gradient:

hTn∇f (xn + αhn) ,

and at α + ᾱ

hTn∇f (xn + (α + ᾱ)hn) .

This allows one to perform simple cubic interpolation to find ᾱc. The next ᾱ is

chosen from:

ᾱ = max [ηᾱ,min (ᾱc, (1− η) ᾱ)] , (D.12)

to make sure that very small reductions to Φ are carried out.

The initial step size α is calculated from the minimum of the quadratic function

that passes through (0,Φ (0)) with gradient at α = 0 given by hngn and whose

minimum function value is (Φ (0)−∆f) where ∆f = f (xn−1) − f (xn). This

gives a minimum of the quadratic function, αq, as:

αq = − 2∆f

hngn
,

and to avoid a step size that is too small one applies:

α = max (αn−1, αq) ,

where αn−1 is the value of α from the previous line search.

D.3.3.2 Brent’s method

The following method is an adaptation of Brent’s method (Press et al., 2002). The

minimum of a function f is bracketed between three points, a, b and c, such that

a < b < c, f(a) > f(b) and f(c) > f(a). The method then follows the iterative

procedure:
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• The secant method is used with both a and c to find two step sizes d1 and

d2 via (a− b) db
db−da where db is the derivative of the function at b, similarly

using c. Two new coordinates are defined by u1 = b+ d1 and u2 = b+ d2, to

be acceptable they must be closer to b than the other coordinates are initially,

if both are acceptable then the smallest one is used as the step size, d.

• If neither are acceptable then bisection is used to find the step size d.

• Once the step size is determined then a new coordinate u = b+ d is tested, if

f(u) < f(b) then if u > b set a = b, else set c = b, and put b = u giving a

new bracketing triple.

• If f(u) > f(b) then bracket the minimum by setting a = u if u < b, otherwise

put c = u.

• Continue until a small movement from b in a downhill direction takes the

function value to a higher value.

The aim of any iterative procedure is to be as fast and efficient as possible, one way

to improve conjugate gradient methods is to precondition them. The idea of precon-

ditioning is explained in the next section and results show that it can dramatically

improve the performance of the conjugate gradient method.

D.3.3.3 Preconditioning

A preconditioning matrix transforms the problem in a manner to reduce the con-

vergence time of the conjugate gradient method (Hager and Zhang, 2006), in the

non-linear conjugate gradient method the ideal preconditioning matrix is the Hes-

sian matrix or a good approximation to the Hessian matrix (Pytlak and Tarnawski,

2006; Pytlak, 2009; Grossman et al., 2007; Al-Baali and Fletcher, 1996). Intro-

ducing this method gives the following algorithm for the Preconditioned Conjugate

Gradient (PCG) method:
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1. From a starting approximation solution vector x0 with gradient vector g0 set

• Preconditioning matrix M0 as the Hessian matrix of f (x0)

• Search direction h0 = −M−1
0 g0

2. At iteration n: Perform a line minimisation search to find α that minimises f

in the direction hn

3. If f is suitably converged then stop

4. Set xn+1 = xn + αhn, gn+1 set to the gradient vector at xn+1

5. Let Mn+1 be the Hessian matrix of f (xn+1)

6. Calculate γn =
(gn+1−gn)M−1

n+1gn+1

gTnM
−1
n gn

- Polak-Riberie term (Al-Baali and Fletcher,

1996).

7. Generate a new search direction hn+1 = −M−1
n+1gn+1 + γnhn, return to step

2.

As in this case N = 2 it is straight forward to calculate the exact Hessian and its

inverse for f without computational expense. IfN is large then it is computationally

expensive to calculate the Hessian and in some cases it may not be possible to

analytically calculate the Hessian. In this case just the diagonal elements may be

calculated and that matrix used as preconditioning matrix effectively.

D.4 Comparison of iterative smoother efficiency

D.4.1 Two-dimensional problem

The methods described above are used as the relaxation procedure used in the FAS

and FMG algorithm described in Chapter 3, time adaptivity and mesh adaptivity are

disabled. The lubrication equations for continuous flow over topography are solved
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in the same way as in Gaskell, Jimack, Sellier, Thompson and Wilson (2004). The

numerical simulations are run over 50 seconds and a time step of 0.01 seconds

employed. The coarsest grid has 9 nodes; there are 4 levels including the coarsest.

The tests were done over three different topographies described below. Variants of

the conjugate gradient method are tested, namely:

• Conjugate Gradient Method with Polak-Riberie update (CGPR)

• Conjugate Gradient Method with Fletcher-Reeves update (CGFR)

• Preconditioned Conjugate Gradient Method with Polak-Riberie update (PCGPR)

• Preconditioned Conjugate Gradient Method with Fletcher-Reeves update (PCGFR)

• Conjugate Gradient Method using Charalambous line search method (CGlnsrch)

• Broyden Secant Method (Broyden)

• Newton Method (Newt)

Another variation of the conjugate gradient method is to restart the iteration process

every N iterations (in our case every two), the reasoning behind this is that only N

conjugate directions can be created (even though each direction is conjugate to the

previous search direction) in an N -dimensional space. This is indicated in Table

D.1 under the column ’restart’.

Time Taken (secs)
Method Case 1 Restart Case 2 Restart Case 3 Restart
CGPR 127 138 134 132 - -
CGFR FAIL 443 FAIL 447 - -

PCGPR 56 60 61 62 60 60
PCGFR 56 60 61 62 59 61

Newt 49 - 54 - 49 -
Broyden 82 - 87 - - -
CGlnsrch 3178 - 2863 - - -

TABLE D.1: Time taken to complete a full numerical simulation involving 5002 time steps
for two-dimensional thin film flow over various topographies.
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Flow Parameters

Flow rate 2.85× 10−7m3/s
Viscosity, µ 0.001Pa.s
Density, ρ 1000kg/m3

Scaling height, H0 0.0001m
Scaling velocity, U0 0.004275 m/s
Capillarity number, Ca 6.10714× 10−5

Substrate length, L0 6.99× 10−4m = 0.5L0

TABLE D.2: Parameters of the numerical simulation of flow over topography.

Three trenches with differing length and depth are used as the topographies. Case

1 has length lt = 0.1 and depth |s0| = 0.1, Case 2 has lt = 1.1 and |s0| = 0.2

and Case 3 has lt = 10.0 and |s0| = 0.4. The various flow parameters and fluid

properties are displayed in Table D.2 and typical free-surface profiles produced are

shown in Figure D.8.

FIGURE D.8: Free-surface profiles for two-dimensional thin film flow over different span-
wise topographies.
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The results show a number of interesting features. The first point to make is the

apparent ineffectiveness of the Charalambous line search (CGlnsrch), this may be

due to the nature of the function being minimised and may not be suited to the

problem. The next observation is that restarting the conjugate gradient iteration has

little to no effect on the speed of the iterations; however, for CGFR it is necessary to

prevent failure at some point of the conjugate gradient method within the specified

number of maximum iterations.

Preconditioning is a very effective way of reducing convergence time as seen from

the results. Using the exact inverse of the Hessian matrix at each point, for Polak-

Riberie update it leads to a convergence rate that is more than twice as fast. This

reflects an incredible reduction in computation time especially for finer grids with

a significant number of nodes. An even greater improvement is seen with Fletcher-

Reeves update, reducing the time of convergence to that of the PCGPR, to over 7

times faster than when CGFR is implemented. These results indicate the vital com-

ponent that preconditioning is to iterative procedures. Should N be much larger it

is possible to use an estimate of the Hessian, or even just to calculate the diago-

nal elements and use this matrix as the preconditioning matrix. Broyden’s Secant

method results in faster iteration times than both the CGFR and CGPR; however, is

found to be slower than the preconditioned versions of these two methods.

The fastest method appears to be the Newtonian method, confirming Al-Baali and

Fletcher’s (Al-Baali and Fletcher, 1996) work where Newton’s method is shown

to be preferable to certain preconditioned versions of conjugate gradient methods.

However the difference in practice is very small, and further refinement of the line

search used by the conjugate gradient methods could lead to faster times when

utilised in conjunction with the preconditioning methods described.

The problem being solved also appears to have only a small effect on the time taken

for a full solution to be completed. As the size of the trench increases, and with it

the disturbance of the film surface, the time for a full solution to reach convergence

increases very slightly as would be expected.
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Other investigations were carried out, including how the number of nodes effects

the solution time and enabling time step adaptivity to effect the solution time. The

same pattern of results is observed, obviously with more nodes the run time is

significantly larger.

D.4.2 Three-dimensional flow

A similar investigation was carried out for three-dimensional film flow. In these

investigations time adaptivity and mesh adaptivity are enabled. The simulations are

run with an initial time step of 1×10−6 for a total of 1.5 seconds and a coarsest grid

with 17 nodes in both the x and y direction. Only PCGFR, PCGPR and Newtonian

smoothers are considered as they demonstrated the highest performance in the two

dimensional situation.

Time Taken (secs)
Method Case 1 Case 2 Case 3

PCGPR 127 101 145
PCGFR 127 108 149

Newt 121 103 134

TABLE D.3: Time taken to complete a full numerical simulation using a FMG and FAS
method with time and mesh adaptivity for three-dimensional thin film flow over various

topographies.

It is interesting to note that, although time and mesh adaptivity are enabled, the

number of time iterations performed are the same for all methods; this is due to the

same specified tolerance being used, showing that all methods achieve the tolerance

level in very similar time frames, see Table D.3. Two-dimensional tests completed

without time and mesh adaptation enabled have very similar running times whereas

there are much larger disparities when considering three-dimensional film flow; this

suggests that the two-dimensional problem is more suited to the conjugate gradient

relaxation than the three-dimensional problem is. For example, for Case 3 with

no adaptation, Newtonian relaxation takes 271 seconds, using PCGPR the solution
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takes 279 seconds.

FIGURE D.9: Free-surface profile of flow over three different trenches: Case 1,2 and 3,
which are ordered from top to bottom.

The three topographies used are specified as follows, in non-dimensional variables:

Case 1 has lt = 0.1, width wt = 0.1 and |s0| = 0.1. Case 2 has lt = 0.3, width

wt = 0.01 and |s0| = 0.2. Case 3 has lt = 0.2, width wt = 0.1 and |s0| = 0.05.

Each of the free-surface profiles formed at 1.5s are shown in Figure D.9.

Results reveal that, although the preconditioned conjugate gradient point smoother
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is a comparatively efficient method, over large domains the Newtonian smoother is

the most suitable and efficient iteration technique to employ as disparities in CPU

time are magnified when using larger numbers of grid points and many time steps

are being used. For this reason the Newtonian smoother is utilised in the multigrid

algorithm described in Chapter 3 and was throughout the thesis in generating results

based on solving the lubrication equations.
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