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Abstract

We introduce a new Boolean computing element related to the Boolean version of a
neural element. Instead of the sign function in the Boolean neural element (also known
as an LT element), it computes an arbitrary (with polynomialy many transitions) Boolean
function of the weighted sum of its inputs. We call the new computing element an LT M
element, which stands for Linear Threshold with Multiple transitions.

The paper consists of the following main contributions related to our study of LT M
circuits: (i) the characterization of the computing power of LT M relative to LT circuits,
(i) a proof that the area of the VLSI layout is reduced from O(n?) in LT circuits to O(n) in
LTM circuits, for n inputs symmetric Boolean functions, and (iii) the creation of efficient
designs of LT M circuits for the addition of a multiple number of integers and the product
of two integers. In particular, we show how to compute the addition of m integers with a
single layer of LT M elements.

Category : Theory, Complexity Theory.

1 Introduction

Human brains are by far superior to computers in solving hard problems like combinatorial
optimization and image and speech recognition, although their basic building blocks are several
orders of magnitude slower. This observation has boosted interest in the field of artificial neural
networks [Hopfield 82], [Rumelhart 82]. The latter are built by interconnecting artificial neurons
whose behavior is inspired by that of biological neurons. In this paper we consider the Boolean
version of an artificial neuron, namely, a Linear Threshold (LT) element, which computes a
neural-like Boolean function of n binary inputs [Muroga 71]. An LT element outputs the sign
of a weighted sum of its Boolean inputs. The main issues in the study of networks (circuits)
consisting of LT elements, called LT circuits, include the estimation of their computational
capabilities and limitations and the comparison of their properties with those of traditional
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Boolean logic circuits based on AND, OR and NOT gates (called AON circuits). For example,
there is a strong evidence that LT circuits are more efficient than AON circuits in implementing
a number of important functions including the addition, product and division of integers [Siu 94],
[Siu 93].

Motivated by our recent work on the VLSI implementation of LT elements [Bohossian 95b],
we introduce in this paper a more powerful computing element, a multiple threshold neuron,
which we call LT M, which stands for Linear Threshold with Multiple transitions. Instead of the
sign function in the LT element it computes an arbitrary (with polynomialy many transitions)
Boolean function of the weighted sum of its inputs.

The main issues in the study of LT M circuits (circuits consisting of LT M elements) include
the estimation of their computational capabilities and limitations and the comparison of their
properties to those of AON circuits. A natural approach in this study is first to understand the
relation between LT circuits and LT M circuits. Our main contributions in this paper are:

o We characterize the computing power of LT M relative to LT circuits.

e We show that LT M circuits are more amenable in implementation than LT circuits. In
particular, the area of the VLSI layout is reduced from O(n?) in LT circuits to O(n) in
LT M circuits, for n inputs symmetric Boolean functions.

e We demonstrate the power of LT M by deriving efficient designs of LT M circuits for the
addition of m integers and the product of two integers.

Next we describe the formal definitions of LT and LT M elements.

1.1 Definitions and Examples
Let us first define a linear threshold gate.

Definition 1 (LT)
A linear threshold gate computes a Boolean function of its binary inputs :

F(X) = sgn(wo + Y _ w;z;)

=1

where the w; are integers and sgn(.) outputs 1 if its argument is greater or equal to 0, and 0
otherwise.

Here follows the formal definition of LT M.

Definition 2 (LT M)
A function f is in LTM if there exists a set of weights w; € Z, 1 < i < n and a function
h:Z — {0,1} such that

f(X)= h(i w;z;) for all X € {0,1}"

1=1

The only constraint on h is that it undergoes polynomialy many transitions as its input scans
[= 200 Jwil, 205 Jwil].

Notice that without the constraint on the number of transitions, by setting w; = 2'~!, an
LT M gate is capable of computing any Boolean function.

As an example of a function in LT M consider the n-variable XOR which cannot be imple-
mented with a single LT element.



Figure 1: Relationship between Classes

Example 1 (XOR € LTM)

XOR(X) outputs 1 if | X|, the number of 1’s in X, is odd. Otherwise it outputs 0. To implement
it choose w; = 1 and h(k) = (1 — (—1)*) for 0 < k < n. Note that h(k) needs not be defined
for £ < 0 and k£ > n, and has polynomialy many transitions.

Another example is ADD(X,Y’), the sum of two n-bit integers X and Y.

Example 2 (ADD € LTM)
To implement addition we set

I
[(X,Y) = hz(z 2(z;i +yi))

where hy(k) = 1 for k € [2/,2 x 2! — 1]U[3 x 2!, 400). Defined thus, f; computes the m-th bit of
X+Y.

We use a hat to indicate small (polynomialy growing) weights, e.g. LT, ITM [Bohossian 95a],
[Siu 91], and a subscript to indicate the depth (number of layers) of the circuit of more than a
single layers. All the circuits we consider in this paper are of polynomial size (number of elements)
in n (number of inputs). For example, the class LT, consists of those Boolean functions that
can be implemented by a depth-2 polynomial size circuit of LT elements.

Figure 1 depicts the membership relations between five classes of Boolean functions, including,
LT, LT, LTM, LTM and LT,, along with the functions used to establish the separations.

1.2 Organization

The paper is organized as follows. In Section 2, we prove the characterization results of LT'M,
including, the inclusion relations, in particular LTM C LT,. In addition, we indicate which
inclusions are proper and exhibit functions to demonstrate the separations. In Section 3, we study
a number of applications as well as the VLSI implementations of LT M circuits. In particular,
we show how to compute the addition of m integers with a single layer of LT M elements.



2 Classification of LT M

In this section we will prove the relations illustrated by Figure 1. We first show the inclusion
relations. Then, we provide functions that demonstrate the separation between classes.

2.1 Inclusions

Most inclusion relations follow from the definitions : LT C LT C LTM and LT - LTM C LTM.
Only one requires a proof :

LTM C LT,

To show the above statement we use a result from [Goldman 93] : a single LT gate with arbitrary
weights can be realized by an LT, circuit. Furthermore the non-linearity in the second layer can
be removed without affecting the output of the circuit (a property called “l-approximability”,
[Hofmeister 96]). So, given f € LT, f(X) = 3% w;fi(X) where p is polynomial in n and f; € LT
for all i.

Now, consider the LT implementation of a function in LT M. It consists of a layer of identical
LT gates followed by a single gate with 1 and -1 weights and a -1 threshold. We substitute each
LT gate of the first layer by its equivalent layer of LT gates and weighted sum. We combine the
weighted sums, i.e. collapse the second and the third level. The resulting circuit is in LT,.

2.2 Separation

In Example 1 we saw that XOR € LTM and it is well known that XOR ¢ LT. On the other
hand COM P(X,Y), the comparison of two n-bit integers is in LT [Siu 91].

LA 1 fYy<X
coup(y) = s 2w ={ s,

2=1

Let us show that COM P ¢ LTM. For that we introduce the notion of entropy of a Boolean func-
tion. An equivalent definition based on communication complexity is developed in [Szegedy 89].

Definition 3 (Entropy)

Given a n-variable Boolean function, S a subset of those variables and s € {0,1}|S|, we call
fs(x1,..,2n_)5)) the function obtained by assigning the value s to S in f. The entropy of f is
defined as :

BIf) = max {7, : s € {0,151}

In words, the entropy is the mazimum number of subfunctions over n — |S| variables one can
produce by assigning to a set S of its n variables all possible 251 values. The mazimum is taken
over S.

Lemma 4 (Ezponential Entropy implies Exponential Weights)
Given a function f such that E[f] is exponential in n, its LT M implementation requires expo-
nential weights, i.e. Y | |w;| ezponential in n.

Proof : A subfunction can be written as

fa(@r, o tnojs) = f(X, S =s) =h( > wiz; + W)
i€EX—S



where W, = 3, w;s;. By the pigeonhole principle, and given that W is an integer, [{W, : s}|
must be greater than E[f]. If it is not, there will not be enough distinct values of Wy to map to
all E[f] distinct subfunctions. That in turn implies

n

E[f] < leil < Z|wi|

i€S =1

COMP ¢ LTM

Proof : We show that E[COM P] is exponential and use Lemma 4. Let
fs(x1,.,xn) =COMP(X,Y =5s)

There are 2™ such functions, let us show that they are all distinct. Given two distinct integers

s1 and sy choose Xg such that s; < Xg < so then f5,(Xo) # fs,(Xo). O
ADD € LTM but ADD ¢ LT ULTM

Proof : We already saw that ADD € LT M. The least significant bit of the sum is XOR

which is not in LT. On the other hand, E[ADD] is exponential by a proof similar to the one for

COM P, implying that ADD ¢ LT M. O
IP, € LTy but IP, ¢ LTM

Proof : Let IP(X,Y) =)} x;y;. Define the function IP(X,Y) =1iff IP >k, else IP, = 0.

We claim that P, ¢ LT M. Indeed, if I P, was in LT M then it could be implemented by a layer

of LT gates followed by a weighted sum [Goldman 93]. We could then combine the circuits for

k = 1..n to implement I P2 (Inner Product mod 2) in LT, which is known to be false [Hajnal 94].
0O

What remains to be shown in order to complete the classification picture is LT = LTNLTM.
We conjecture that this is true and we are in the process of completing the proof.

3 Applications

The theoretical results about LT M can be applied to the VLSI implementation of Boolean
functions. The idea of a gate with multiple thresholds came to us as we were looking for an
efficient VLSI implementation of symmetric Boolean functions. Even though a single LT gate
is not powerful enough to implement any symmetric function, a 2-layer LT circuit is, Figure 2.
Furthermore, it is well known that such a circuit performs much better than the traditional logic
circuit based on AND, OR and NOT gates. The latter has exponential size (or unbounded
depth) [Wegener 91]. Implementing a generalized symmetric function in LT, requires up to n
LT gates in the first layer. Those have the same weights w; except for the threshold wq. Instead
of laying out n times the same linear sum > | w;z; we do it once and compare the result to n
different thresholds The resulting circuit corresponds to a single LT M gate. Figure 2 shows the
advantage of LT M over LT for the implementation of a generalized symmetric function. Indeed,
the LTy layout is redundant, it has n copies of each weight, requiring area of at least O(n?). On
the other hand, LT M performs a single weighted sum, its area requirement is O(n).

We have fabricated a programmable generalized symmetric function on a 2y, analog chip
using the model described above. Floating gate technology is used to program the weights. We
store a weight on a single transistor by injecting and tunneling electrons on the floating gate
[Mead 95].

A single LT M gate can compute the addition of m n-bit integers M ADD. The only constraint
is that m be polynomial in n.
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Figure 2: VLSI layout with LT, (left), with LT M (right).

Example 3 (MADD € LTM)
M ADD returns an integer of at most n + logm bits. We need one LT M gate per bit. The least
significant bit is computed by a simple m-bit XOR. For all other bits we use

l m

XD, LX) =1 (320 )

to compute the [-th bit of the sum.

Example 4 (PRODUCT € PTM) By analogy with PT}, defined in [Bruck 90], in PT M, (or
simply PT M) we allow a polynomial rather than a linear sum :

f(X) = hMwyz1 + ... + wpzy + W(1,2)T1%2 + )

However we restrict the sum to have polynomialy many terms (else, any Boolean function could
be realized with a single gate). The product of two n-bit integers X and Y can be written as
PRODUCT(X,Y) = Y, z;Y. We use the construction of MADD in order to implement
PRODUCT.
PRODUCT(X,Y) = MADD(z1Y,z2Y,...,2,Y)
n l
ALY = (Y] 2'5ms)
=1 11=1
fi outputs the I-th bit of the product.

4 Conclusions

Our original goal was to use theoretical results in order to efficiently lay out a generalized sym-
metric function. During that process we came to the conclusion that the LT, implementation
is partially redundant, which lead to the definition of LT M, a new, more powerful computing
element. We characterized the power of LT M relative to LT. We showed how it can be used
to reduce the area of VLSI layouts from O(n?) to O(n) and derive efficient designs for multiple
addition and product. Interesting directions for future investigation are (i) to prove the conjec-
ture : LT = LT N LTM, (ii) to apply spectral techniques ([Bruck 90]) to the analysis of LT M,
in particular show how PT M fits into the classification picture (Figure 1).
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