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Abstract. This study examines whether the assimilation
of remotely sensed near-surface soil moisture observations
might benefit an operational hydrological model, specifically
Mét́eo-France’s SAFRAN-ISBA-MODCOU (SIM) model.
Soil moisture data derived from ASCAT backscatter obser-
vations are assimilated into SIM using a Simplified Extended
Kalman Filter (SEKF) over 3.5 years. The benefit of the as-
similation is tested by comparison to a delayed cut-off ver-
sion of SIM, in which the land surface is forced with more
accurate atmospheric analyses, due to the availability of ad-
ditional atmospheric observations after the near-real time
data cut-off. However, comparing the near-real time and
delayed cut-off SIM models revealed that the main differ-
ence between them is a dry bias in the near-real time pre-
cipitation forcing, which resulted in a dry bias in the root-
zone soil moisture and associated surface moisture flux fore-
casts. While assimilating the ASCAT data did reduce the
root-zone soil moisture dry bias (by nearly 50 %), this was
more likely due to a bias within the SEKF, than due to the
assimilation having accurately responded to the precipitation
errors. Several improvements to the assimilation are identi-
fied to address this, and a bias-aware strategy is suggested
for explicitly correcting the model bias. However, in this ex-
periment the moisture added by the SEKF was quickly lost
from the model surface due to the enhanced surface fluxes
(particularly drainage) induced by the wetter soil moisture
states. Consequently, by the end of each winter, during which
frozen conditions prevent the ASCAT data from being as-
similated, the model land surface had returned to its original
(dry-biased) climate. This highlights that it would be more
effective to address the precipitation bias directly, than to cor-
rect it by constraining the model soil moisture through data
assimilation.

Correspondence to:C. Draper
(clara.draper@nasa.gov)

1 Introduction

The last decade has seen considerable interest in the possi-
bility of improving hydrological and meteorological model
forecasts by assimilating remotely sensed near-surface soil
moisture data (Houser et al., 1998; Crow and Wood, 2003;
Reichle and Koster, 2005; Balsamo et al., 2007; Drusch,
2007). This interest has motivated recent advances in soil
moisture remote sensing, from both purpose designed L-
band sensors (Kerr et al., 2001; Entekhabi et al., 2004), and
preexisting suboptimal C- and X-band sensors (Wagner et al.,
1999; Owe et al., 2001). As a result remotely sensed near-
surface soil moisture data are available for the first time with
sufficient quality and legacy to be used in operational models,
and in particular EUMETSAT is now providing the first oper-
ationally supported remotely sensed near-surface soil mois-
ture product. This product, which is derived from Advanced
Scatterometer (ASCAT) microwave radiometer observations,
is now being assimilated into the UK Met Office’s opera-
tional NWP system (Dharssi et al., 2011), and will soon be
introduced into ECMWF’s system (de Rosnay et al., 2009).
At the Met Office, assimilating the ASCAT data has been
shown to improve both the model soil moisture analyses (rel-
ative to in situ soil moisture data over the US), and screen-
level temperature and humidity forecasts in some regions
(Dharssi et al., 2011).

This study seeks to determine whether an operational
hydrological model, specifically Ḿet́eo-France’s SAFRAN-
ISBA-MODCOU (SIM) model, might also benefit from the
assimilation of these ASCAT near-surface soil moisture ob-
servations. SIM is a three-part model, consisting of (i) a low-
level atmospheric analysis (the Système d’Analyse Four-
nissant des Renseignements Atmosphériques à la Neige;
SAFRAN), which provides the forcing for (ii) a land sur-
face model (Interactions between Surface, Biosphere, and
Atmosphere; ISBA), which in turn provides surface mois-
ture fluxes to (iii) a hydrogeological model (MODCOU),
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which provides forecasts of aquifer levels and streamflow.
SIM is run operationally at Ḿet́eo-France in near-real time,
with a three hour data cut-off, which allows observations
from approximately 1200 automatic weather stations to be
used in the SAFRAN atmospheric analysis. The output from
the near-real time SIM is used for water resource moni-
toring (e.g. seehttp://climat.meteofrance.com/chgtclimat2/
bilansclimatiques), and to provide the initial conditions for
an ensemble streamflow prediction system that will be used
for operational flood forecasting (Thirel et al., 2010).

In addition to the near-real time stream, SIM is also run
in delayed mode, using additional observations from 3000
climatological observing stations that report once-monthly.
Evaluation studies based on this delayed cut-off stream of
SIM have shown that the SAFRAN analysis provides accu-
rate meteorological variables for forcing the ISBA land sur-
face model (Quintana-Segúı et al., 2008; Vidal et al., 2010),
resulting in accurate forecasts of the spatial and temporal
variability of observed water fluxes and streamflow (Ha-
bets et al., 2008). However, the near-real time (operational)
SAFRAN analysis is known to be less accurate. To prevent
the near-real time SAFRAN errors from accumulating in the
model land surface, the ISBA state variables in the near-real
time SIM system are updated once a month with the corre-
sponding delayed cut-off ISBA states.

In this study, ASCAT surface soil moisture observations
from January 2007 to May 2010 are assimilated into a re-
search copy of the near-real time SIM model using a Simpli-
fied Extended Kalman Filter (SEKF). The potential benefit
of the assimilation is first tested by comparison to in situ soil
moisture observations from the SMOSMANIA monitoring
network in south France. However, an evaluation based on
in situ soil moisture only is limited by representativity dif-
ferences between the in situ and modeled soil moisture, and
so will only be informative of the temporal behaviour of the
modeled soil moisture. In situ soil moisture observations are
also greatly limited by their spatial coverage: for example
the SMOSMANIA monitoring network used here observes
at just 12 locations.

In response to these shortcomings,Crow et al.(2009) and
Bolten et al.(2010) instead evaluate the impact of assim-
ilating near-surface soil moisture by determining whether
the assimilation can correct the model soil moisture for er-
rors applied to the precipitation forcing. A similar approach
has been taken here, by evaluating the ASCAT assimilation
(into the near-real time SIM stream) against the delayed cut-
off stream, which is identical except for its more accurate
SAFRAN analysis. This allows the evaluation to be extended
to the full model domain, while also allowing variables other
than soil moisture to be assessed, including the surface mois-
ture fluxes which are typically of greatest interest to model
users. In contrast toCrow et al.(2009) and Bolten et al.
(2010), the best atmospheric data available to the near-real
time SIM model are used here, and the results are tested
against more accurate forcing that become available later on.

Consequently, the benchmark for evaluating success in this
experiment is set rather high, and the results directly measure
to the benefit of the assimilation to the operational model.

2 Data and methods

2.1 The SIM hydrological model

SIM (Habets et al., 2008) is run at approximately 0.07◦ res-
olution over France. The SAFRAN (Quintana-Segúı et al.,
2008) analyses of the low-level atmosphere are performed
every 6 h, and then the 6-hourly analyses are interpolated
onto hourly time-steps and used to force ISBA. ISBA (Noil-
han and Planton, 1989; Noilhan and Mahfouf, 1996) then
outputs hourly estimates of the land surface states, and the
exchanges of heat and moisture between the low-level at-
mosphere, vegetation, and soil. The three layer version of
ISBA (Boone et al., 1999) is used in SIM. Finally, MOD-
COU (Ledoux et al., 1989) is run once daily, to compute the
daily evolution of aquifer storages and three-hourly stream-
flow forecasts.

2.2 ASCAT remotely sensed soil moisture

ASCAT is a real aperture backscatter radar observing at
5.255 GHz (C-band), with approximately 25 km resolu-
tion. It orbits on EUMETSAT’s Meteorological Operational
(MetOp) satellite, which was launched in 2007 to replace the
ageing European Remote Sensing (ERS) satellites. MetOp
is in a sun-synchronous orbit, with equator crossing times of
approximately 09:30 (descending overpass) and 21:30 (as-
cending overpass) local time. ASCAT provides good spatial
coverage, observing approximately 80 % of the globe each
day.

Soil moisture estimates are derived from ASCAT radar
backscatter coefficients using the empirical change detection
approach developed at the Vienna University of Technology
(TU-Wien) byWagner et al.(1999). This approach is based
on the assumption that over a long data record, the highest
observed reflectivity can be equated to the maximum soil
moisture, while the lowest reflectivity can be equated to the
minimum soil moisture, and a linear relationship can be used
to interpolate the values in between. For full details refer to
Wagner et al.(1999) andNaeimi et al.(2009).

The output from the change detection method is an obser-
vation loosely referred to as the “surface degree of satura-
tion” (SDS), and defined by:

SDS= (wsfc−wmin)/(wmax−wmin) (1)

wherewsfc is the moisture in the near-surface soil layer, and
wmin andwmax are the minimum and maximumwsfc occur-
ring at that location. C-band microwave observations are
sensitive to soil moisture in a thin surface layer, of up to
1 cm depth, hence the SDS relates only to this thin surface
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layer. The SDS is reported exclusively in percentage units
here, to avoid confusion with volumetric (m3 m−3) measures
of soil moisture. Note that the SDS is localised, in that equiv-
alent values at different locations do not necessarily indicate
equivalent soil moisture, due to spatial differences in the soil
moisture bounds.

In response to differences in the ERS and ASCAT ob-
serving behaviour, the change detection model parameters
used in the ASCAT retrieval algorithm were recently updated
(Wagner et al., 2010) to use parameters derived from the AS-
CAT data record, rather than the ERS values that were ini-
tially adopted for ASCAT (Naeimi et al., 2009). This up-
date has further improved the soil moisture observations re-
trieved from ASCAT, resulting in excellent agreement with
other soil moisture estimates. For example,Brocca et al.
(2010b) found correlations and anomaly correlations of 0.67
and 0.58 against in situ data in Italy (one site, 13 months)
and of 0.75 and 0.60 against modeled estimates (six sites,
13 months), whileBrocca et al.(2010a) calculated a mean
correlation of 0.65 against in situ data throughout Europe
(14 sites, 2 years at most locations) and 0.76 against mod-
eled estimates (20 sites, 2 years).

The ASCAT level 2 surface degree of saturation (SM
OBS1) product supplied by TU-Wien has been used here.
This product includes the aforementioned update to the
change detection model parameters. Since there is some ev-
idence that scatterometer observations taken in the evening
are less accurate than early morning observations (Wagner
et al., 1999; Albergel et al., 2009), and since there is a spuri-
ous relationship in ISBA between the near-surface and root-
zone soil moisture after periods of active evapotranspiration
(Draper et al., 2011), only the descending overpass ASCAT
observations have been used here.

Observations of densely vegetated regions have been re-
moved, based on an ASCAT estimated soil moisture error
(provided with the ASCAT data) threshold of 20 %. Ad-
ditionally, observations with an urban fraction greater than
15 % in the ECOCLIMAP database (Masson et al., 2003)
have been removed, as have observations with a topographic
complexity flag (provided with the ASCAT data) greater than
15 %, and/or a wetland fraction (provided with the ASCAT
data) greater than 5 %.

The remaining data were projected from the 0.125◦ Dis-
crete Global Grid used by TU-Wien to the∼0.07◦ SIM grid
using a nearest neighbour approach. Observations of frozen
surface conditions, temporary surface water, or snow-cover
were initially identified based on the probabilistic surface
state flag provided with the ASCAT data. However an initial
investigation revealed that this probabilistic method did not
reliably remove the occurrence of surface freezing. Frozen
surface conditions manifest in the data as anomalously low
soil moisture observations, which can have a significant
detrimental impact on the assimilation. Consequently, an ad-
ditional screening for frozen surface conditions has been ap-
plied, by excluding the ASCAT data whenever SIM forecasts

nonzero frozen near-surface soil moisture. Where the above
data processing resulted in less than 100 observations for a
model grid cell (less than 10 % coverage over the 3.5 year
study period) the remaining data have not been used.

The ASCAT data were initially converted to volumetric
soil moisture by inverting Eq. (1), using the soil moisture
bounds from the near-real time SIM model. However, even
though this scaled the ASCAT data to match the SIMw1
range, there were still substantial differences between the
ASCAT and SIM soil moisture values, due to differences in
the shape of their distributions. For the 3.5 year study pe-
riod, the mean across the domain of the absolute difference
at each grid cell was 0.016 m3 m−3. On average, ASCAT
was drier than SIM, with a mean (and standard deviation) of
0.229 m3 m−3 (0.070 m3 m−3), compared to 0.236 m3 m−3

(0.073 m3 m−3) for SIM. Consequently, the ASCAT data
were rescaled to better match the near-real time SIM cli-
matology prior to the assimilation, using the CDF-matching
technique ofReichle and Koster(2004). This effectively re-
moved the differences in the mean and standard deviation of
the ASCAT and SIM soil moisture, and the resulting values
for the rescaled ASCATw1 are the same as reported above
for SIM.

2.3 The SMOSMANIA in situ observations

The SMOSMANIA network (Calvet et al., 2007; Albergel
et al., 2008) consists of 12 soil monitoring stations, span-
ning between the Mediterranean and Atlantic coasts in south-
west France, and spaced approximately 45 km apart. At
each SMOSMANIA site the near-surface soil moisture is ob-
served at 5 cm below the surface. In the comparisons be-
low, the near-surface SMOSMANIA observations have been
compared to the ASCAT and SIM near-surface soil moisture
time series, both of which relate the approximately the up-
permost 1cm of soil. Time series of near-surface soil mois-
ture from SMOSMANIA and from ASCAT and SIM show
similar scales of temporal variability, indicating that despite
the difference in their depths, they can be reasonably inter-
compared. In contrast, the deepest soil moisture sensors at
the SMOSMANIA sites observe at 30 cm, much shallower
than the root-zone soil moisture depths used in ISBA (ap-
proximately 1 m), and the time series from each are qualita-
tively very different. Consequently, the SMOSMANIA data
has been compared to the SIM (and ASCAT) near-surface
soil moisture only.

2.4 The simplified extended Kalman filter

he SEKF was initially formulated byBalsamo et al.(2004)
andMahfouf et al.(2009) for use in NWP. The equations for
the i-th model state forecast and update, occurring at timeti
(in hours), are:

xb(ti) =Mi−1[xa(ti−1)] (2)
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and

xa(ti) = xb(ti)+K i

(
yo(ti +24)−Hi[xb(ti)]

)
(3)

wherex indicates the model state, andy is the observation
vector. The superscriptsa, b, ando indicate the analysis,
background, and observations, respectively.M is the non-
linear state forecast model, and,H is the nonlinear obser-
vation operator. For each model grid cell, ISBA partitions
soil moisture into three variables: the near-surface soil mois-
ture (w1; defined over the depth of bare soil evaporation), the
root-zone soil moisture (w2; defined over the depth of tran-
spiration), and the deep-layer soil moisture (w3; representing
long term surface moisture storage). In these experiments the
state update vector consisted ofw1 andw2. The observations
occurred 24 h after the analysis time, andH was a 24-h inte-
gration of the forecast model, followed by conversion to the
observation equivalent variable (w1). The impact ofw2 on
w1 increases with time, and a 24-h forecast length was cho-
sen for the observation operator, as a compromise between a
long enough forecast thatw2 has a reasonable impact onw1,
and short enough that the forecast can be linearised without
significant loss of accuracy.

K is the Kalman gain, given by:

K i = PHT
i

(
HiPHT

i +Ri

)−1
(4)

whereH is the linearisation ofH, obtained by finite differ-
ences, andP andR are the covariance matrices of the model
background and observation errors, respectively.

The traditional EKF evolves the background error covari-
ance matrix through a forecast and analysis cycle, while
for the simplified EKF P is instead assumed to have a con-
stant value at the start of each assimilation cycle. However,
some temporal evolution ofP is obtained by the inclusion
of a model integration inH, and consequentlyDraper et al.
(2009) found that for assimilating near-surface soil moisture
into ISBA, the analysed soil moisture generated by the EKF
and the SEKF are not substantially different. Hence the sim-
plified EKF was used here, since it is easier to implement.
Finally, the assimilation is performed as an individual 1-D
assimilation at each model grid, since ISBA does not model
horizontal exchanges.

2.5 The assimilation experiment

Three simulations of SIM from January 2007 to May 2010
are compared in this paper, and each is summarised in Ta-
ble 1. For the assimilation of the ASCAT data, referred to
as SIMASCAT, ISBA was forced with the near-real time
(NRT) SAFRAN analysis. The performance of SIMASCAT
is bench-marked against the performance of an ISBA open-
loop forced with the NRT SAFRAN analysis, and referred
to as SIMNRT. In Sect.3.3, the assimilation is evaluated
by comparison to an open-loop ISBA simulation generated
with the more accurate delayed cut-off (DEL) SAFRAN

Table 1. Details of each SIM simulation.

SAFRAN Assimilated
forcing data

SIM DEL DEL none
SIM NRT NRT none
SIM ASCAT NRT ASCAT SDS

analysis, referred to as SIMDEL. For the SIMASCAT
and SIMNRT experiments, ISBA was initialised and forced
with archived fields from Ḿet́eo-France’s near-real time SIM
chain, while the SIMDEL ISBA output was extracted di-
rectly from Mét́eo-France’s archives.

For the SIMASCAT assimilation, the observation error
variances were based on the (temporally variable) error es-
timates provided with the ASCAT SDS data, which are ob-
tained by calculating the sensitivity of the change detection
model to noise in the ASCAT backscatter observations and
model parameters. This is the first study to make use of
these error estimates, and an initial investigation confirmed
that they have some skill in detecting errors in the ASCAT
soil moisture.

The ASCAT estimated errors are provided in SDS units
and are relative to the ASCAT soil moisture climatology.
Consequently, they were linearly rescaled to be consistent
with the model soil moisture climatology, by multiplica-
tion by the ratio of the standard deviations of the SIMNRT
w1 and the ASCAT SDS. The original ASCAT SDS er-
ror estimates ranged between 3.5 and 20 % (since observa-
tions with an error greater than 20 % were screened out),
with a median value of 9.0 %. The rescaled error estimates
ranged between 0.02 and 0.20 m3 m−3, with a median value
of 0.05 m3 m−3. This median value is consistent with errors
typically expected for remotely sensed soil moisture, and is
slightly higher than the average root mean square difference
of 0.04 m3 m−3 between the assimilated ASCAT data and the
SMOSMANIA near-surface soil moisture observations de-
scribed in Sect.2.3.

The background error covariance matrix was based on that
used byDraper et al.(2011) to assimilate AMSR-E near-
surface soil moisture observations into a two-layer version
of ISBA: P was assumed diagonal, and thew1 andw2 er-
ror standard deviations were set at 0.5× (wfc − wwilt ) and
0.2× (wfc − wwilt ), wherewfc andwwilt are the soil mois-
ture at field capacity and wilting, respectively. These values
generate mean error standard deviations close to 0.04 and
0.02 m3 m−3, for w1 andw2, respectively.

3 Results and discussion

Before presenting the assimilation results, the tempo-
ral agreement between the ASCAT SDS and the SIM
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Fig. 1. Maps of(a) absolute correlation and(b) anomaly correla-
tion between (near-real time) SIMw1 and ASCAT SDS from Jan-
uary 2007 to May 2010.

near-surface soil moisture is checked in Sect.3.1. Then the
results of assimilating the ASCAT data are compared against
the SMOSMANIA in situ data in Sect.3.2, and against the
delayed cut-off SIM model output in Sect.3.3.

3.1 Preliminary comparison of ASCAT and SIM near-
surface soil moisture

Figure1 shows maps of the correlation (rabs) and anomaly
correlation (ranm; with anomalies defined as the difference
from the 31 day moving average) between the SIMNRT w1
and ASCAT SDS time series at each grid cell. Both maps
show a strong association between the two soil moisture esti-
mates, with consistently very high correlations across nearly
all of the SIM domain. Forrabs, the mean value across France
was 0.68, and 81 % of the grid cells had a value greater than
0.60, while forranm, the mean was 0.62, and 68 % of the grid
cells had a value greater than 0.60. Both maps show simi-
lar spatial patterns, in terms of the regions of relatively high

Table 2. Absolute (rabs) and anomaly (ranm) correlations be-
tween the in situ observations from SMOSMANIA, andw1 from
each of SIMNRT, SIM ASCAT, and SIMDEL, from May 2007 to
April 2010. All correlations are significant at 1 %.

SIM NRT SIM ASCAT SIM DEL

rabs ranm rabs ranm rabs ranm

SBR 0.77 0.65 0.78 0.65 0.80 0.68
URG 0.64 0.66 0.67 0.67 0.71 0.69
CRD 0.70 0.56 0.73 0.57 0.72 0.57
PRG 0.68 0.46 0.70 0.47 0.71 0.47
CDM 0.76 0.55 0.72 0.54 0.71 0.54
LHS 0.65 0.45 0.65 0.45 0.71 0.47
SVN 0.63 0.53 0.64 0.53 0.68 0.52
MNT 0.55 0.52 0.56 0.52 0.64 0.54
SFL 0.67 0.45 0.67 0.46 0.72 0.48
MTM 0.50 0.41 0.55 0.46 0.60 0.47
LZC 0.71 0.62 0.72 0.62 0.74 0.62
NBN 0.67 0.49 0.67 0.49 0.66 0.48

and low values, including several locations with low corre-
lations (<0.3) in regions of mountainous terrain. In each
case these were adjacent to locations where the ASCAT data
were screened out due to complex terrain and/or vegetation
cover, suggesting that the low correlations were associated
with ASCAT errors, and the parameters used to screen-out
the ASCAT data were insufficiently rigorous.

Since the SIM and ASCAT soil moisture are derived us-
ing totally independent methods, this strong temporal agree-
ment between them is extremely encouraging. It both con-
firms the viability of assimilating the ASCAT data into SIM,
while also confirming that both SIM and ASCAT are accu-
rately estimating near-surface soil moisture dynamics over
nearly all of France. The SIMNRTw1 was used in the above
comparison, however similar results were obtained using the
SIM DEL w1 also. Using the latter die not result in visible
differences in the correlation maps, while the mean correla-
tions between ASCAT and SIM were very slightly increased
(by 0.01 in each case).

3.2 Evaluation against SMOSMANIA in situ
observations

Consistent with previous studies comparing ASCAT soil
moisture to in situ observations (Albergel et al., 2009; Brocca
et al., 2010a), there is a strong agreement between the
ASCAT SDS data and the SMOSMANIA in situ obser-
vations. Prior to the assimilation, the ASCAT data had
higher anomaly correlations to the in situ data than SIMNRT
did for 10 of the 12 SMOSMANIA stations, giving mean
anomaly correlations across the 12 stations of 0.62 for AS-
CAT and 0.57 for SIMNRT (based on the SIMNRT w1
sampled at the same times as the ASCAT observations).
However, the absolute correlations to the SMOSMANIA
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Fig. 2. Net bias from May 2007 to April 2010 between SIMNRT
and SIMDEL for (a) w1 (mm), (b) w2 (mm), and(c) precipitation
forcing (mm yr−1).

data were more evenly spread, and ASCAT had a slightly
lower mean correlation (0.70) than SIMNRT (0.71).

Table 2 shows the correlation statistics comparing the
near-surface soil moisture from each of the SIM experiments
to the SMOSMANIA in situ data. While assimilating the
ASCAT data did improve the SIMNRT correlations at most
of the sites (only CDM was degraded), these improvements
were very small (<0.01 in some instances), and generated
only a very small improvement in the meanrabs (ranm) to
0.67 (0.54) for SIMASCAT, compared to 0.66 (0.53) for
SIM NRT. While the consistency of the higher correlations
for SIM ASCAT is encouraging, these very small improve-
ments are far from statistically (or practically) significant.

The limited impact of the assimilation against the SMOS-
MANIA data is likely a consequence of the comparison hav-
ing been based on near-surface soil moisture. The ISBAw1
variable is strongly determined by the atmospheric forcing,
and is less affected by the analyses updates thanw2 (as will
be demonstrated in Sect.3.3.2).

Additionally, it is interesting to note that in Table2,
SIM DEL consistently had higher correlations with the
SMOSMANIA time series than SIMNRT did, giving higher
meanrabs (ranm) for SIM DEL of 0.70 (0.59). This supports
the assumption in the following section that the SIMDEL
soil moisture is more accurate than that of SIMNRT, while
also indicating that the SMOSMANIA observations are suffi-
ciently accurate to detect the difference in accuracy between
SIM NRT and SIMDEL.

3.3 Evaluation against the delayed cut-off SIM forecasts

3.3.1 SIM NRT and SIM DEL

Before comparing the ASCAT assimilation results to
SIM DEL, SIM NRT and SIMDEL are first compared to
each other to establish the impact of the NRT SAFRAN er-
rors on the ISBA model output. Since there is a strong sea-
sonal cycle in the impact of the assimilation, all statistics
from this point forward are calculated from three complete
years of data, from May 2007 to April 2010 (using the full
3.5 year period does not change the relative performance of
each simulation).

The temporal behaviour of the SIMNRT and SIMDEL
soil moisture forecasts was very similar. Forw1, rabs aver-
aged across the domain for the three years from May 2007
was 0.95, and 98 % of the grid cells had a value above 0.90.
Likewiseranmhad a mean of 0.95, with 96 % of the grid cells
above 0.90. Forw2, the meanrabs was 0.95, with 88 % of
the grid cells above 0.90, while the meanranm was 0.94,
with 87 % of the grid cells above 0.90. The lower mean
correlations forw2 were caused by lower values in moun-
tainous regions, where the variable terrain increases the spa-
tial variability in the near-surface atmosphere, emphasising
the impact of the enhanced observation density in the DEL
SAFRAN analysis.

It is extremely unlikely, and also unnecessary, for the as-
similation to correct the small errors in the temporal be-
haviour between SIMNRT and SIMDEL. However, while
their temporal variability was similar, there were substan-
tial differences between the absolute soil moisture sim-
ulated by SIMDEL and SIMNRT, particularly for w2.
For w1, the spatial mean of the temporal Root Mean
Square Error (RMSE) between SIMNRT and SIMDEL was
0.028 m3 m−3 (−0.28 mm, compared to a spatial mean tem-
poral standard deviation of 0.8 mm), while forw2 the mean
RMSE was 0.010 m3 m−3 (16.6 mm, compared to a mean
temporal standard deviation of 47.0 mm). The main con-
tributor to these large RMSE values was a substantial dry
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Fig. 3. Monthly water balance in mm month−1 for SIM DEL (black), SIM NRT (red), and SIMASCAT (blue). Each panel shows(a) pre-
cipitation,(b) runoff, (c) drainage,(d) evapotranspiration,(e)change in surface moisture storage (all soil layers, liquid plus solid), and(f) the
analysis increments (for SIMASCAT).

bias in the SIMNRT soil moisture. Figure2 shows maps
of the mean difference inw1 andw2 between the two simu-
lations, demonstrating that SIMNRT was on average drier
than SIMDEL across nearly all of France. Relative to
SIM DEL, the mean temporal bias in the SIMNRT w1 was
−0.011 m3 m−3 (or 0.11 mm), while forw2 the mean bias
was−0.009 m3 m−3 (or −12.1 mm).

This dry bias in the NRT soil moisture was caused by a dry
bias in the NRT SAFRAN precipitation analysis. Figure2c
shows that the NRT precipitation is also biased low (com-
pared to the DEL precipitation) across nearly all of France,
with the bias reaching 200 mm yr−1 at some locations. Addi-
tionally, there is a reasonably strong spatial correspondence
between the precipitation and soil moisture biases in Fig.2,
including the same isolated regions of positive bias. The
precipitation bias is thought to be due to the underestima-
tion of precipitation by automatic weather station rain gauges
(Canellas, 2005), and the tendency for the sparser observa-
tion network to detect fewer rain events.

Figure3 shows time series of the monthly mean surface
water balance terms, from SIMDEL and SIMNRT, while
Fig. 4 shows time series of the monthly mean difference
between the SIMDEL and SIMNRT forecasts. Precipi-
tation is generated by SAFRAN, while the remaining sur-
face water balance terms are generated by ISBA. Figure4a
shows that the dry SIMNRT precipitation bias occurred per-
sistently throughout the year, with a tendency for larger bi-
ases around winter, generating a large mean monthly bias of
−10.0 mm month−1 for the three years from May 2007. Fig-

ure5 shows the temporal evolution of the spatially averaged
w2, demonstrating that the precipitation bias induced aw2
bias of−10 to−20 mm throughout the year.

In ISBA, drainage and runoff are triggered when soil mois-
ture exceeds saturation, so that both reach their maxima dur-
ing winter, coinciding with the soil moisture maxima. In
response to the dry biased soil moisture in SIMNRT both
of these terms are biased low, with the greatest biases oc-
curring in winter. Since the drainage itself is much larger
than the runoff, the mean monthly drainage SIMNRT bias
(−5.8 mm month−1) was much larger than the mean monthly
runoff bias (−1.6 mm month−1). In fact the drainage bias ac-
counted for over half of the dry SIMNRT precipitation bias.

Evapotranspiration has the opposite seasonal cycle with
maxima in summer, coinciding with maximum insolation.
In each year the SIMNRT evapotranspiration was biased
low in late summer, when surface drying causes transpira-
tion to become moisture limited. This negative evaporation
bias during summer (larger than−5 mm month−1) was off-
set by a small positive bias during the wetter months (of
approximately 1 mm month−1), generating a mean bias of
just −2.4 mm month−1. This is relatively small given that
evapotranspiration is the largest water balance term after
precipitation.

The seasonal behaviour of the monthly change in surface
moisture storage is less consistent than the other terms, with
periods of positive and negative errors offsetting each other
to give a very small net change over multi-annual time peri-
ods. Since the applied precipitation bias is almost completely
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balanced by the resultant biases (over annual time scales) in
drainage, runoff, and evapotranspiration, the mean bias in the
change in moisture storage is just−0.1 mm month−1. The
very small bias in the SIMNRT 1S/1t demonstrates how
the dry-biased NRT precipitation caused ISBA to shift to an
alternative biased climate (rather than continue to dry down
in response to the underestimated precipitation).

Finally, to demonstrate the practical relevance of these er-
rors, the drainage and runoff forecasts from SIMNRT and

Fig. 6. Discharge (m3 day−1) from SIM DEL (black), SIM NRT
(red), SIM ASCAT (blue), for the River Seine at Poses.

SIM DEL have been routed through the surface river net-
work with the MODCOU model, and an example hydro-
graph is shown in Fig.6. SIM NRT simulated the tim-
ing of flood events from SIMDEL very well, while con-
sistently underestimating the magnitude of the peak flows,
resulting in a discharge ratio relative to SIMDEL (fore-
cast discharge/SIMDEL discharge) of 0.76, while the Nash-
Sutcliffe Efficiency (E) relative to SIMDEL was 0.74. These
statistics are representative of the streamflow forecasts across
France, and the mean discharge ratio relative to SIMDEL
across the 907 stations modeled by MODCOU was 0.68,
while the mean Nash-Sutcliffe efficiency was 0.62.

When considered in the context of the SIMDEL model, it
is apparent that the SIMNRT model used in this study was
biased, and yet a bias-blind assimilation has been used here,
with the ASCAT observations rescaled to match the biased
SIM NRT (as is standard practice in soil moisture assimi-
lation). Since Sects.3.1 and 3.2 showed that the ASCAT
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Fig. 7. Time series of the spatial mean volume of moisture
(mm day−1) added to the surface (w1 plus w2) through assimila-
tion of the ASCAT SDS.

observations are reasonably accurate, we will proceed to
compare SIMASCAT against SIMDEL in the hope that,
even after being rescaled to match the mean SIMNRT (over
the full data record), the ASCAT observations have still de-
tected the occurrence of underestimated or absent precipita-
tion events. While in a nonlinear model, a bias blind assim-
ilation would not be expected to affect a bias, land surface
models are highly nonlinear, and it is not uncommon to see
change in the mean soil moisture from assimilation of unbi-
ased (relative to the model) observations (e.g.Muñoz Sabater
et al., 2007).

3.3.2 SIM ASCAT and SIM DEL

Despite the assimilated ASCAT observations being unbi-
ased relative to the model, the assimilation had a strong ten-
dency to add moisture tow2, with a mean net increment of
0.1 mm day−1. Figure 7 shows time series of the average
volume of moisture added across France each day. Very little
moisture was added or subtracted during the winter months,
due to the widespread occurrence of frozen surface condi-
tions, as well as the reduced vertical soil moisture coupling
in ISBA during winter.

Spatially, the assimilation added net moisture at nearly all
model grid cells, with only a handful of isolated occurrences
of net moisture removal. These locations do not correspond
to the locations of positive precipitation and soil moisture
biases in Fig.2. Nor do the regions of strongest moisture
addition correspond to the regions of strongest precipitation
and soil moisture biases, although this could be due to any
number of confounding factors.

Figure 8 shows maps of the soil moisture bias between
SIM ASCAT and SIMDEL, while Fig.9 shows maps of the
reduction in the RMSE, relative to SIMDEL, generated by
assimilating the ASCAT soil moisture. Comparing Fig.8 to
Fig. 2 shows that the positive soil moisture increments added
by SIM ASCAT reduced the negative SIMNRT soil mois-
ture biases. Forw1, there were very small reductions in the
net bias at most grid cells (at 78 % of cells across the domain,
and at 94 % of the cells which have ASCAT observations),
with slightly larger reductions of approximately 0.02 mm in
the north of France. Overall, the mean bias for the three years
from May 2007 was slightly reduced to−0.09 mm (from
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Fig. 8. Net bias from May 2007 to April 2010 (in mm) between
SIM ASCAT and SIMDEL for (a) w1, and(b) w2.

−0.11 mm for SIMNRT). This reduced the RMSE also: at
59 % of the grid cells (and at 71 % of cells with ASCAT data),
although the reductions were extremely small, and the mean
RMSE was unchanged from 0.28 mm for both SIMNRT and
SIM ASCAT.

Sincew2 has a much longer memory, the impact of the
assimilation onw2 was much greater. While the magnitude
of the negativew2 bias was reduced across most of France, a
small positive bias was introduced in the northeast and south-
west in Fig.8 (in the northeast this caused a relatively large
increase in the RMSE in Fig.9). Overall, the assimilation
reduced the mean bias forw2 to −5.6 mm (from−12.1 mm),
while the absolute bias was reduced at 73 % of the grid cells
(and at 89 % of the cells with ASCAT data). Consequently,
the w2 RMSE was reduced at 57 % of the model grid cells
(and at 69 % of cells with ASCAT data), decreasing the mean
w2 RMSE to 15.8 mm (from 16.6 mm for SIMNRT).

Temporally, the assimilation reduced the magnitude of the
negativew2 biases in the time series in Fig.5, with the great-
est reductions (of around 10 mm) occurring through the sum-
mer, and persisting into early winter, before being lost in late
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to April 2010.

winter. The assimilation also reduced the spatial RMSE be-
tween the simulatedw2 and SIMDEL (by up to 5 mm) on
most days.

While the reduced soil moisture bias is consistent with the
assimilation having correctly updated the model in response
to the underestimated NRT SAFRAN precipitation, an inves-
tigation of the assimilation system and model physics indi-
cated that there are additional reasons for the net addition
of moisture. The Kalman gain for updatingw2 (K2) had a
strong tendency to be higher when the observation departure
was more positive. For example, averaged across the whole
experiment, the meanK2 for positive observation departures
was 0.063 m3 m−3, while for negative observation departures
it was 0.030 m3 m−3.

The main cause of the asymmetric behaviour inK2 was
the observation operator, which was a 24 h integration of the
forecast model (SIM), followed by conversion to the obser-
vation equivalent variable (w1). That is, foryo

= w1 andx =

[w1,w2]
T , H = [δw1(t+24)/δw1(t),δw1(t+24)/δw2(t)]

T .
During precipitation events,H 2 = δw1(t +24)/δw2(t) is re-

duced, since the signal ofw2 in w1 is overwhelmed by the
precipitation. As a result,H2 and consequentlyK2 tends to
be smaller when the model forecastw1 is wetter. The ob-
servation error variances used inR, which were temporally
variable estimates provided with the ASCAT data, had an ad-
ditional (although lesser) influence onK2. Scatterplots of
the observation error variances at individual locations (not
shown) show that the error variances generally decrease as
the ASCAT observations become wetter (within the range of
the ASCAT data used here), resulting in largerK2 for wetter
yo. In combination these two factors (smallerK2 for wet-
terw1, and largerK2 for wetteryo) produced a tendency for
largerK2 when the observation departure (yo

−w1) was more
positive, giving the assimilation a bias towards adding posi-
tive soil moisture analysis increments.

Several adjustments to the EKF could help to address this
bias in the SEKF. The monotonic relationship between the
ASCAT observations and their error variances would be most
easily addressed by reverting to a constantR, as is more of-
ten used in soil moisture assimilation. ForH2, sincew1 is
not influenced byw2 during precipitation, this tendency to
decrease is physically sensible. However, the model fore-
cast error variances should also be larger during precipita-
tion, to reflect the uncertainty in the SAFRAN precipitation
analysis (recall from Sect.3.3.1that the timing of precipita-
tion events is reasonable, while the volume is less certain).
This cannot be easily accounted for in the simplified EKF,
and a more sophisticated assimilation strategy, such as an en-
semble Kalman filter could better address this. Alternatively,
adopting an additive forecast error term (Q) parameterised
to depend on the precipitation forcing in the (nonsimplified)
EKF could help provide a more symmetric relationship be-
tweenK2 and forecastw1. Work is under way to incorporate
a rainfall-dependentQ into the EKF for use in NWP (Mah-
fouf, 2010) that could be adapted for SIM.

Even though the ASCAT assimilation is not thought to
have accurately responded to the NRT SAFRAN errors, the
impact of the assimilation on the surface moisture fluxes is
examined below to demonstrate how the model responded
to the reducedw2 biases induced by the assimilation. The
monthly mean water balance terms for SIMASCAT are in-
cluded in Figs.3 and4. As discussed previously the analy-
sis increments tended to be positive, giving a mean monthly
increment of+4.2 mm month−1. The wetter soil moisture
in SIM ASCAT then led to reductions in the magnitude of
the negative biases in the resultant moisture flux forecasts,
to −4.1 mm month−1 for drainage (a reduction of 1.7 mm),
−1.4 mm month−1 for runoff (a reduction of 0.2 mm), and
−0.2 mm month−1 for evaporation (a reduction of 2.2 mm).
Since the addition of soil moisture by the assimilation was
balanced by reductions in the drainage, runoff, and evapo-
transpiration biases, there was no net change in the bias (over
annual time periods) in the monthly change in moisture stor-
age of 0.1 mm month−1. Hence in Fig.5, the SIM ASCAT
and SIMNRT w2 time series converge during winter when
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the assimilation is less active, due largely to the enhanced
SIM ASCAT drainage forecasts.

Note that the assimilation had the greatest (absolute) im-
pact on the drainage forecasts, and just over 40 % of the soil
moisture increments were subsequently lost from the surface
as additional drainage forecasts. This demonstrates the po-
tential for improved soil moisture to have a significant impact
on hydrological forecasting applications. A similar result
was obtained byvan den Hurk et al.(2008) from a soil mois-
ture analysis in the ECMWF IFS model, in that at many (non-
Mediterranean) locations the majority of the analysis incre-
ments added to the soil were translated into drainage/runoff,
rather than changes in soil moisture storage or evapotranspi-
ration.

As expected, the increased drainage and runoff forecast
from SIM ASCAT increased the forecast peak streamflows
in Fig. 6, increasing the discharge ratio relative to SIMDEL
to 0.78 (from 0.76 for SIMNRT), and increasing the Nash-
Sutcliffe Efficiency to 0.77 (from 0.74 for SIMNRT). Sim-
ilar results were obtained across the majority of the gaug-
ing stations modeled by MODCOU. SIMASCAT reduced
the absolute error in the discharge ratio (i.e. difference from
unity) at 88 % of the gauging stations, increasing the mean
discharge ratio relative to SIMDEL to 0.76 (from 0.68
for SIM NRT). Additionally, the Nash-Sutcliffe Efficiency,
which is more sensitive to the accuracy of the timing (and
magnitude) of the peak flows, increased at 82 % of the sta-
tions, increasing the mean to 0.68 (from 0.62 for SIMNRT).

4 Summary and conclusions

This study sought to investigate whether the assimilation
of ASCAT surface degree of saturation data might benefit
Mét́eo-France’s SAFRAN-ISBA-MODCOU (SIM) hydro-
logical model. SIM is run operationally at Ḿet́eo-France in
near-real time to provide output for use in ensemble stream-
flow prediction and flood forecasting systems. The benefit
of the ASCAT data was tested by assimilating it from Jan-
uary 2007–May 2010 into a research copy of the near-real
time operational SIM model with a simplified EKF.

The ASCAT surface degree of saturation data were shown
to be accurate, with good absolute and anomaly correla-
tions with in situ data from the SMOSMANIA monitoring
network, and also with (completely independent) SIM near-
surface soil moisture forecasts across nearly all of the France.
Assimilating the ASCAT observations into the near-real time
SIM model generated very small improvements in the model
near-surface soil moisture, compared to the SMOSMANIA
in situ observations, although these improvements were not
sufficient to be practically or statistically significant.

The potential for the ASCAT assimilation to correct for
errors in the near-real time SIM forcing was then tested by
comparison against the more accurate delayed cut-off SIM
stream. However, comparing the SIMNRT and SIMDEL

model output revealed that the most significant difference be-
tween them is a substantial dry bias in the near-real time pre-
cipitation. This caused a dry bias in the SIMNRT soil mois-
ture and resultant surface moisture flux forecasts, including
streamflow (of most importance to operational users of SIM).

This dry bias in the near-real time SIM model (revealed by
comparison to the delayed cut-off stream) represents a bias
in the forecast model that has been used in the ASCAT as-
similation experiments. A bias in the forecast model (or as-
similated observations) invalidates key assumptions of (bias-
blind) data assimilation, leading to sub-optimal filter perfor-
mance (Dee, 2005). However, since the true soil moisture
climatology is unknown at large spatial scales (Reichle et al.,
2004), it is common in soil moisture assimilation to at least
ensure that the model and observations are unbiased relative
to each other. In theory, eliminating the bias between the
forecast model and the observations will allow the assimila-
tion to correct for other errors in the model, as was possibly
indicated by the very small increase in correlations against
the in situ SMOSMANIA data obtained here.

While a bias-blind assimilation of the ASCAT data was
not expected to address the SIMNRT forecast model biases,
it did in fact reduce the model bias. However, this was likely
due to a bias in the assimilation system, rather than the assim-
ilation having accurately responded to the NRT precipitation
errors, and so this is not regarded as a successful outcome for
these experiments.

The obvious alternative to the bias-blind assimilation strat-
egy used here is to implement a bias-aware assimilation (e.g.
De Lannoy et al., 2007). However, the success of a bias
aware assimilation is strongly dependent on the method used
to estimate the forecast model biases, to the extent thatDee
(2005) recommends foregoing a bias-aware assimilation un-
less the biases can be confidently estimated. For the oper-
ational SIM model, a model for predicting the biases could
potentially be based on the SIMDEL model (which was set
aside for evaluation in this study). However, when the SEKF
added moisture to the surface in this experiment, this resulted
in enhanced surface flux forecasts (particularly for drainage
which accounted for 40 % of the analysis increments). As a
result the model had a strong tendency to dry back to its orig-
inal biased climatology, as dictated by the precipitation forc-
ing. Consequently, even with a perfectly functioning bias-
aware assimilation, in instances when vegetation, frozen con-
ditions, or some other cause prevents observations from be-
ing assimilated, the model will quickly return to its preferred
(biased) climatology.

This highlights that in general it is better to address the
cause of a model bias, rather than rely on an assimilation to
correct it. Accordingly, work is under way to address the
dry bias in the near-real time SAFRAN precipitation analy-
sis. This bias is not consistent in time, and is difficult to treat
with a bias-correction scheme. Consequently, the possibil-
ity of replacing the current SAFRAN precipitation analysis
with one based on the CANARI OI scheme (Taillefer, 2002)
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is currently being investigated. However, even with the pre-
cipitation bias accounted for, other errors will persist in the
model soil moisture (e.g.Berg and Famiglietti, 2003), and ul-
timately SIM will likely benefit from a combination of a soil
moisture analysis scheme and improved precipitation forc-
ing. For example (while precipitation bias is not explicitly
addressed)Liu et al. (2011) showed that assimilating near-
surface soil moisture and applying a rain-gauge based correc-
tion to precipitation forcing generated greater improvements
in modeled soil moisture skill than applying either of these
techniques separately.
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