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Abstract. The proposed development is an attempt to en- The algorithm is designed to retrieve complete aerosol
hance aerosol retrieval by emphasizing statistical optimizajproperties globally. Over land, the algorithm retrieves the pa-
tion in inversion of advanced satellite observations. This op-rameters of underlying surface simultaneously with aerosol.
timization concept improves retrieval accuracy relying on theln all situations, the approach is anticipated to achieve a ro-
knowledge of measurement error distribution. Efficient ap-bust retrieval of complete aerosol properties including infor-
plication of such optimization requires pronounced data re-mation about aerosol particle sizes, shape, absorption and
dundancy (excess of the measurements number over nuntomposition (refractive index). In order to achieve reliable
ber of unknowns) that is not common in satellite observa-retrieval from PARASOL observations even over very reflec-
tions. The POLDER imager on board the PARASOL micro- tive desert surfaces, the algorithm was designed as simultane-
satellite registers spectral polarimetric characteristics of theous inversion of a large group of pixels within one or several
reflected atmospheric radiation at up to 16 viewing directionsimages. Such multi-pixel retrieval regime takes advantage of
over each observed pixel. The completeness of such observ&nown limitations on spatial and temporal variability in both
tions is notably higher than for most currently operating pas-aerosol and surface properties. Specifically the variations
sive satellite aerosol sensors. This provides an opportunityf the retrieved parameters horizontally from pixel-to-pixel
for profound utilization of statistical optimization principles and/or temporary from day-to-day are enforced to be smooth
in satellite data inversion. The proposed retrieval scheme iy additional a priori constraints. This concept is expected to
designed as statistically optimized multi-variable fitting of provide satellite retrieval of higher consistency, because the
all available angular observations obtained by the POLDERretrieval over each single pixel will be benefiting from coin-
sensor in the window spectral channels where absorption bgident aerosol information from neighboring pixels, as well,
gas is minimal. The total number of such observations byfrom the information about surface reflectance (over land)
PARASOL always exceeds a hundred over each pixel anabtained in preceding and consequent observations over the
the statistical optimization concept promises to be efficientsame pixel.

even if the algorithm retrieves several tens of aerosol param- The paper provides in depth description of the proposed
eters. Based on this idea, the proposed algorithm uses a largeversion concept, illustrates the algorithm performance by a
number of unknowns and is aimed at retrieval of extended seseries of numerical tests and presents the examples of prelim-
of parameters affecting measured radiation. inary retrieval results obtained from actual PARASOL ob-
servations. It should be noted that many aspects of the de-
scribed algorithm design considerably benefited from expe-
rience accumulated in the preceding effort on developments
of currently operating AERONET and PARASOL retrievals,
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1 Introduction the required comprehensive look-up tables of such obser-
vations may have larger dimensions and thus be less suit-
The research presented in this paper aims to develop able for operational use. As a result, most look-up table
new retrieval algorithm optimized for deriving maximum based algorithms rely only on the selected sub-sets of the ob-
information content using the data redundancy availableservations with highest sensitivity to the aerosol parameters
from advanced satellite observations, such as those fronand retrieve reduced set of characteristics. For example, the
POLDER/PARASOL observations.  The design of the current POLDER/PARASOL operational retrieval algorithm
POLDER imager allows collecting rather comprehensiveover ocean (Herman et al., 2005) uses measurements of to-
characterization of angular distribution of both total and po-tal and polarized reflectances only at two spectral channels
larized components of solar radiation reflected to space. Th¢0.67 and 0.87 pum) . The look-up table algorithm works ef-
observations in window channels where the effect of absorpficiently for these two channels because they are sensitive to
tion by atmospheric gases are minimal are usually used fothe scattering of both fine and coarse mode aerosols. At the
aerosol retrievals. The complete set of such observationsame time, observations at these two channels are insensitive
collected operationally by POLDER/PARASOL over each to vertical variability of aerosol and not strongly affected by
pixel includes angular measurements of both total radiancesvater-leaving radiation. The POLDER/PARASOL retrieval
and linear polarization at 0.49, 0.675 and 0.87 pm and anguever land (Deug et al., 2001) uses only polarized measure-
lar measurements of only total radiances at 0.44, 0.565 an¢hents of reflected light at the same two channels. Such strat-
1.02pm. The number of viewing directions is similar for egy is used because the contribution of aerosol into polarized
all spectral channels and varies from 14 to 16 depending omeflectance generally dominates over the contribution of the
observed geographical location. The completeness of sucland reflectance, while contribution of land surface into total
observations is significantly higher comparing to any cur-reflected radiation is usually comparable or stronger than that
rently operating passive satellite aerosol sensors. In additionf aerosol. Therefore, as discussed by [Eearzal. (2001),
PARASOL provides nearly global coverage every 2 days.utilization of only polarized observations allows one to de-
Therefore, such complete set of PARASOL observations porive aerosol properties and to avoid challenging issue of sep-
tentially provides very valuable basis for enhanced characaration of surface and aerosol contributions into the total re-
terization of global aerosol. flectance. Although this algorithm has successfully provided
However, rigorous interpretation of redundant satellite ob-valuable aerosol retrievals from POLDER observations, sev-
servation is a very challenging task. Indeed, the optimizederal shortcomings were identified in the POLDER aerosol
inversion requires applying complex multi-variable inversion products. First, PARASOL retrieval over land provides in-
algorithms. Such methods are time-consuming and challengformation only about fine aerosol particles, because the con-
ing for implementation. This is why the rigorous methods of tribution of large aerosol (predominantly non-spherical dust)
inversion optimization are not generally used for processingover land to the polarized reflectances often is small. In ad-
very large data sets provided by satellite aerosol imagers. Indition, the correct interpretation of PARASOL observations
stead, most satellite aerosol retrievals use look-up tables off desert dust even over ocean surface is challenging due
simulated satellite signals pre-computed for some limited seto difficulties to model appropriately the light scattering by
lected scenarios of aerosol and underlying surface combinaaon-spherical particles of desert duste¢@rd et al., 2005).
tions. The modeled scenario that provides the best match oddecond, since the PARASOL algorithm, both over land and
the observed radiances is accepted as the retrieved solutioncean, relies on the observations of only two spectral chan-
With some modification, this strategy is adopted in most of nels, the retrieved aerosol spectral properties are not always
aerosol satellite retrievals because it allows rapid operationafully consistent with the observations at other channels.
processing of satellite images. For example, it is success- The retrieval algorithm proposed here fits the complete
fully employed in retrievals of single-view AVHHR (Stowe set of PARASOL observation in all spectral channels (with
et al., 1997; Mishchenko et al., 1999; Higurashi and Naka-the exception of the channels dominated by gaseous absorp-
jima, 1999), TOMS (Torres et al., 1998), MODIS (Kaufman tion such as 0.763, 0.765 and 0.910 um) and including both
etal., 1997; Tar&etal., 1997; Remer et al., 2005), etc. Atthe measurements of total radiances and linear polarization (if
same time, applying the same methodology for processingvailable). Based on this strategy, the algorithm is driven
observations from imagers with multi-viewing capabilities, by larger number of unknown parameters and aimed on re-
such as MISR (Diner et al., 1998; Martonchik et al., 1998; trieval of an extended set of parameters affecting measured
Kahn et al., 2007, 2009), SEVIRI (Govaerts et al., 2010; radiation. For example, the approach allows the retrieval of
Wagner et al., 2010; Carrer et al., 2010), or POLDER ([2euz both the optical properties of aerosol and underlying surface
et al., 2001; Herman et al., 2005; Téret al., 2011), reveals from PARASOL observations over land. Also, comparing
some deficiencies of the look-up table retrievals. The multi-to the current operational PARASOL retrieval, the proposed
directional observations have notably higher sensitivity to thealgorithm is designed to provide more detailed information
details of aerosol and surface properties, and the retrieval cibout aerosol properties including the particle size distri-
larger number of parameters is expected. Correspondinglyhution, complex refractive index, parameters characterizing
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aerosol particle shape and vertical distribution. This setup okpectral multi-angle polarimetric observations. Indeed, the
the aerosol retrieval algorithm is based on accumulated exPOLDER retrieval algorithm by Deézet al. (2001) oriented
perience and current understanding of the high potential obn rapid operational processing uses polarized reflectance at
using spectral multi-angular polarimetric observations fromtwo visible spectral channels. Therefore, the positive po-
space for improving global aerosol monitoring. Diverse as-larimetric information from other spectral channels, as well
pects of aerosol retrieval improvements by using advance@s any information from total reflectance observation, was
satellite observations have been already demonstrated anbt used. Waquet et al. (2007) demonstrated that using po-
outlined in numerous previous studies (e.g. see Kokhanovskjarimetric observations over a wider spectral range is essen-
and de Leeuw, 2009). For example, the studies by Kahn etial for aerosol retrieval over land from polarimetry obser-
al. (2007, 2009), Kalashnikova et al. (2005), Kalashnikovavations. Waquet et al. (2007, 2009a,b) followed Deet

and Kahn (2006) demonstrated the possibility of deriving notal. (2001) approach and used only polarized reflectances. At
only aerosol loading but also some information about aerosothe same time, the Waquet et al. (2007, 2009a,b) algorithm
particle size, morphology and shape from observations fromwas driven by a large number of unknowns and was of sig-
the MISR imager that provides multiple view observations of nificantly higher complexity than the POLDER algorithm.
total reflectance in 9 directions in 4 spectral channels (0.44An algorithm of such level of complexity has never been ap-
0.55, 0.67 and 0.87 um). These studies have suggested a higiied to POLDER/PARASOL observations. In addition, one
importance of using multi-angular observation geometry forcould expect that including total reflectance into such an en-
deriving more detailed aerosol information. However, mosthanced retrieval scheme could result in additional improve-
of the known comparisons of the aerosol parameters derivethents of the aerosol retrieval. Indeed, the spectral angular
from multi-viewing images (such as MISR and POLDER) measurements of total reflectance are shown to provide valu-
with the aerosol products of single view satellite sensors daable aerosol information even over land surfaces (e.g. Mar-
not indicate clear advantage of multi-viewing observation fortonchik et al., 2004; Liu et al., 2004; Kahn et al., 2005; Diner
aerosol monitoring. For example, Kokhanovsky et al. (2007)et al., 2005; etc.). In addition, rigorous sensitivity studies
compared the aerosol retrievals obtained from different satelsuggest high importance of using observations of both to-
lite platforms over land with ground-based AERONET ob- tal and polarized reflectances for reliable aerosol retrieval
servations and indicated significant differences in currently(Mishchenko and Travis, 1997a,b; Hasekamp and Landgraf,
available satellite products and did not reveal any notable2005b, 2007). That is why the retrieval concept described in
advantage of one particular satellite sensor. The study sughis paper pursues inversion of both total radiances and lin-
gested that retrieval indeterminacies are likely part of theear polarization measurments and includes implementations
observed discrepancies, and their reduction will likely beof several important algorithm refinements. The realization
aided by new missions incorporating spectral multi-angularof this concept is expected to result in enhancement of com-
polarimeters. Indeed, sensitivity analysis of Mishchenko andpleteness and accuracy of POLDER aerosol retrieval.

Travis (1997a,b) related the possibility of potential important The presented algorithm developments essentially rely on
improvements of satellite aerosol retrievals with use of specthe available positive research heritage from previous re-
tral multi-angular polarization as well as intensity of reflected mote sensing aerosol retrieval developments, in particular
sunlight. Later studies by Chowdhary et al. (2002, 2005)those from the POLDER and AERONET retrieval activities.
demonstrated the possibility of retrieving the detailed aerosolThe general inversion scheme will be designed as multi-term
properties from spectral multi-angular Research Scannind SM fitting by Dubovik and King (2000). Such an inver-
airborne Polarimeter (RSP) over water. This polarimeter ission strategy allows for the use of a continuous space of so-
an aircraft-based prototype of the APS instrument projectedutions instead of a limited set of predetermined solutions as
to be part of the future NASA Glory mission (Mishchenko used in look-up table based algorithms. During more than a
et al., 2004, 2007). The analysis of RSP observations ovedecade the algorithm developed by Dubovik and King (2000)
land by Waquet et al. (2007, 2009a,b) illustrated the possiwas successfully employed for processing observation of
bility of reliable aerosol retrievals over reflective land sur- AERONET of ground-based sun/sky-radiometers (Holben et
faces. It should be noted here that Kokhanovsky et al. (2007al., 1998). During this period the algorithm has passed no-
did not identify any superiority of POLDER results (in- table evolution and several useful modifications were added
cluded into the comparisons) over other satellite imagersinto the inversion procedure. The modifications of that al-
This fact has several probable explanations. First, althougtyorithm were effectively applied for interpretation of coin-
POLDER sensor has multi-viewing polarimetric capabilities, cident up and down-looking remote sensing observations.
the spectral range of POLDER observation is notably nar-For example, Sinyuk et al. (2007) conducted the retrieval of
rower that spectral coverage of some single viewing senboth atmospheric aerosol and land surface properties from
sors, such as a MODIS. Similar remark is valid for com- a combination of AERONET data with coincident MISR or
parisons on multi-viewing MISR satellite instrument. Sec- POLDER satellite observations. Gatebe et al. (2010) im-
ond, the algorithm processing POLDER observations waplemented the joint retrieval of detailed properties of multi-
not designed to take full advantage of positive redundancy ofayered aerosol and underlying surface reflectance from a
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combination of AERONET data and airborne measurementsvas used in studies by Lyapustin et al. (2008) and Lyapustin
by NASA's Cloud-Absorption Radiometer. The main details and Wang (2009), who used the limited time variability of
of the resulting fine-tuned numerical inversion scheme ardand surface for screening cloud-contaminated data or the
discussed by Dubovik (2004) and below in Sect. 3 of thelimited space variability of aerosol properties for constrain-
current paper. The modeling of PARASOL observed re-ing aerosol retrieval from MODIS observations. Tempo-
flectances is implemented using approaches and computeal smoothness constraints on surface reflectance variability
codes developed previously for accurate radiative transfewere used by Quaife and Lewis (2010) in the method for in-
equation solutions and for modeling aerosol single scatteringzerting linear bi-directional surface reflectance models from
and surface reflectance properties. Specifically, the multipleMODIS observations. Here, the satellite retrieval is designed
solar light interactions with the atmosphere and underlyingas a statistically optimized simultaneous fitting of the obser-
surface are accounted for using the successive order of scarations over a group of pixels implemented under additional
tering radiative transfer code by Lenoble et al. (2007). Thisinter-pixel constraints. Specifically, the variations of the re-
approach and actual computer code have been used and reieved parameters horizontally from pixel-to-pixel or tem-
fined in POLDER-1, POLDER-2 and POLDER/PARASOL porary from day-to-day over the same pixel are limited by
data analysis. The land surface reflectance of total solar radithe additional a priori constraints, in a similar manner to how
ance is approximated by the model of Rahman et al. (1993}t is applied in inverse modeling by Dubovik et al. (2008).
that has already been successfully used for interpretation ofhe inclusion of these additional constraints is expected to
MISR (e.g. Martonchik et al., 1998), SEVIRI (e.g. Govaerts provide retrieval of higher consistency for aerosol retrievals
et al.,, 2010) and RSP (e.g. Litvinov et al., 2010) observa-from satellites, because the retrieval over each single pixel
tions. The reflectance of polarized radiation by land surfacewill be benefiting from coincident aerosol information from
is approximated by using the models developed by Nadal angieighboring pixels, in addition to the information about sur-
Bréon (1999) and Maignan et al. (2009) from the observa-face reflectance (over land) obtained in preceding and conse-
tions by POLDER. These models were also validated by RSRjuent observations over the same pixel.
observations (Litvinov et al., 2011). The modeling of aerosol It should be noted that this paper focuses on detailed im-
single scattering properties is adopted from AERONET de-plementation of core ideas for a new PARASOL retrieval al-
velopments. This scattering model seems rather suitable fogorithm, however it does not address many aspects of an op-
applying to multi-angular polarimetric observations, since erational implementation of the algorithm. For example, is-
this model was demonstrated to accurately reproduce the olsues such as cloud-screening, retrieval time requirements and
servations by ground-based radiometers that have high sensither important aspects of algorithm implementation for op-
tivity to the fine features of angular and spectral aerosol scaterational processing are to be addressed in follow-on studies.
tering. For example, the software developed by Dubovik et
al. (2006) for AERONET allows for very fast simulations of
scattering by non-spherical aerosol particles. As discusse@ General structure of the algorithm
by Herman et al. (2005) andé&gard et al. (2005), the ade-
quate modeling of scattering by non-spherical aerosol parti-The general structure of the algorithm is shown in Fig. 1. In
cles is critical for analysis of PARASOL observations. order to make the algorithm more flexible it is divided into
In addition, as a part of the PARASOL aerosol algorithm several interacting but rather independent modules. Each
improvement, a new aspect has been introduced into the cormodule has rather particular function. The interactions be-
cept of satellite data inversion. Specifically, in order to over-tween the modules are minimized for a straightforward ex-
come some difficulties related to the limited information of change of a very limited set of parameters. The “Forward
the PARASOL observations over a single pixel, the retrievalModel” and “Numerical Inversion” are the two most com-
is organized as a simultaneous inversion of a large group oplex and elaborated modules in the developed algorithm. The
pixels within one or several images. For example, derivationorganization of the algorithm by modules enhances the flex-
of aerosol properties over bright land is known to be an ex-ibility in algorithm utilization. For example, the “Numeri-
tremely difficult task. The multi-pixel retrieval regime takes cal Inversion” module implements quite universal operations
advantages from known limitations on spatial and temporalthat have no particular relation to the physical nature of the
variability in both aerosol and surfaces properties. Similarinverted observations. This module can, in principle, be used
ideas have already been used in different forms for improvingn any other application not related to atmospheric remote
satellite retrievals. For example, Martonchik et al. (1998) de-sensing. The “Forward Model” module does not have such
rive the surface reflectance properties from a group of nearuniversal applicability as the “Numerical Inversion” module.
by MISR pixels in a 16< 16 km region by relying on the Nonetheless, the “Forward Model” module is developed in
similarity of aerosol properties over this area. Govaerts eta quite universal way allowing modeling quite a broad va-
al. (2010) have built the SEVIRI aerosol and surface retrievalriety of atmospheric remote sensing problems. As a result
concept assuming rather limited time variability of the land of such organization of the algorithm, it can equally be ap-
surface reflectance properties. Even more explicitly the ideglied (with minimal changes) to inverting observations from
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General structure of inversion algorithm

Observation definition Forward model:

\ 4

Simulates observations f(a®) for a
given set of parameters a?

A
aP flar), etc.
. . o2e N
Observation definition: 4
Viewing geometry, spectral f* | Numerical inversion: Inversion settings:
characteristics; coordinates, etc. ?| Stat. optimized fitting of f*by [ - description of error Af*;
Observations: f* flaP) under a priori constraints - a priori constraints
ar- final
Retrieved parameters:

aP—describes optical properties
of aerosol and surface

Fig. 1. The general structure of the retrieval algorithm.

other satellite sensors or from the ground. In addition, such Zenith
an algorithm structure was helpful in adapting physical mod- Sun
els and computer routine fragments inherited from previous
AERONET and POLDER developments.

The following several Sections of the paper provide a full POLDER
description of the “Forward Model” and “Numerical Inver- 9
sion” algorithm modules. A number of optional adjustments < > N
are suggested for setting both aerosol physical model and re-
trieval scheme. Although the algorithm is tuned for inverting g
PARASOL observations, some aspects of aerosol parameter- o,
ization and inversion implementation (in particular a priori /
constraint settings) can be modified and adjusted for optimiz-
ing the algorithm performance if it is applied to other remote Fig. 2. The iIIustrati_on of the angular convention used for POLDER
sensing observations. For example, two alternative strate?Pservation modeling.
gies are suggested for implementing numerical inversion of
satellite image observations: conventional pixel-by-pixel in-
version and a new multi-pixel inversion strategy. According

to this new multi-pixel approach, the retrieval developed as ; . . .
simultaneous inversion of a large group of pixels within one of the atmosphere is only linearly polarized. In the polarized

or several images. Such a retrieval regime takes advantage Spantnels, b%&dt(;s tr;? tEtal reflectecti radla(;‘lzme ][neazu:e-
known limitations of spatial and temporal variability in both ments provi de' Ie odes pc'TlralTetgsaln | re e_(rjr_e (i
aerosol and surface properties, axes perpendicular and parallel to the local meridian plane,

i.e. Q=1Ipco82x) and U = I sin(2) where I is the po-
larized component of reflected radiance anis the angle

3 Forward model of POLDER/PARASOL observations  Petween the meridian plane and the polarization direction.
Let I=(I, Q, U, V)T and Eq=(Ep, 0, 0, 0)T stand,
The aerosol retrieval algorithm is designed to invert respectively, for the Stokes’ vectors of the observed elec-
the POLDER/PARASOL observations acquired in window tromagnetic radiation and of the incident unpolarized so-
channels shown in Table 1, thatis: the total radiance in 6 windar radiation; the subscriptT™ denotes transposition and
dow channels: 0.44, 0.49, 0.565, 0.675, 0.87 and 1.02umy is assumed to be negligible. The Stokes' vector
and the linear polarization in 3 of these channels: 0.49,1=(I, Q, U, V)T =1(uo; u1; vo; ¢1; ) depends on the
0.675 and 0.87 um, reflected by a ground pixel. In each chansolar zenith angl&g (1o =cos(p)), the observation zenith
nel, observations of the same pixel are performed nearly siangle®; (u1=c0s (1)), the solar and observation azimuth
multaneously in up to 16 viewing directions (Deschamps etanglesgg and ¢1, and wavelength.. Figure 2 illustrates

%

al., 1994). It is assumed that the light observed at the top
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Table 1. List of measured and retrieved characteristics considered in POLDER/PARASOL algorithm.

POLDER/PARASOL measurements

MESUREMENT TYPE:
1 (Ho: My: 00; 01: 4i) =1(©; 1) — 1 reflected total radiances
0 (Mo: Ma: 90; 01: 4i) = (03 A;) — 0 component of the Stokes vector
U (Mo: Ma: 90; 01: Ai) =U (®;: A;) — U component of the Stokes vector
OBSERVATION SPECIFICATIONS:
ANGULAR:
1(9;; %), 0(®; &;) andU (®; A;) measured in up to 16 viewing directions, that may
cover the range of scattering angefrom ~ 80° to 18C°.
SPECTRAL:

1(©;; ;) measured in 6 window channels=0.44, 0.49, 0.565, 0.675, 0.87, and 1.02 um

0(9j; 4;) andU (®;; A;) measured in 3 window channels=0.49, 0.675 and 0.87 um

Retrieved characteristics

AEROSOL PARAMETERS:

Cv — total volume concentration of aerosol (fipm?)

dV(r;)/dInr — (=1, ...,Ny) values of volume size distribution iN; size bins;, normalized byCy

Csph — faction of spherical particles

n(i;) — (=1, ...,N, =6) the real part of the refractive index at everyof the POLDER/PARASOL sensor

k(A) — (=1, ...,N, =6) the imaginary part of the refractive index at evyyf the POLDER/PARASOL sensor
ho — mean height of aerosol layer.

Option: algorithm allows the retrieval of multi-component aerosol. In that case, all above parameters are retrieved
for each aerosol component

SURFACE REFLECTION PARAMETERS:
Rahman et al. (1993) MODEL:

po(A;) — (=1, ...,N, =6) first RPV BRDF parameter (characterizes intensity of reflectance)

k(Xi) — (=1, ...,N, =6) second RPV BRDF parameter (characterizes anisotropy of reflectance)

o(A) — (=1, ...,N, =6) third RPV BRDF parameter (characterizes forward/backscattering contributions)
ho(A) — (=1, ...,N, =6) fourth RPV BRDF parameter (characterizes hot spot effect)

NOTE: hg(2) is retrieved only for the observation conditions7.5° close to backscattering. In other situations,
itis fixed as related tag(A) = pg(1).
Maignan et al. (2009) MODEL:
B(A;) — (=1, ...,N, =6) free parameter;
Option: algorithm allows using alternative surface models: Ross-Li model for BRDF and Nadal-Breon model for BPDF.

the angular convention adapted for storage and processinylscat (®; 1) = (2)
POLDER data. This convention is used in present algorithm.
The reflected radiance may be written:

_ IJO —mTi— —mAT; wé ()
I (Hoi Haiwoi 913 2) = O = i i_ZN<€ P e o Pi(Es A)>’

= L [Mscat(®; ) + Mrefiec (Ho; My: @0; @15 A)] Eo + mult. scat,

where the termi sca:andM refiec COrrespond to the light re- where Az; is the optical thickness of thith atmospheric
flected as a result of single interaction of incident solar light,/ayer ¢=1, ..., N numbered from the top to the bottom of
respectively, with the atmosphere and surface. In Eq. (1) it ifhe atmosphere) and is the optical depth of the bottom of
assumed that polarized light is referred to axes perpendiculd@yeri (i.e. =3, ;Aw); Pi(©;2) andwy denote the
and parallel to the scattering and reflection planes (here, botRhase matrix and single scattering albedo of ittle atmo-
formed by the solar and viewing directions); and the mdtrix SPheric layern = 1/uo+1/u1.
transforms the Stokes’ vector into the plane of observations The optical properties;, P; (®; 1) anda)g of each atmo-
(details are given in Lenoble et al., 2007). spheric layer include the contributions of aerosol (character-
Under assumption of plane parallel multi-layered atmo-ized ini-th layer by Az; 4, “’3,1' andP? (®; 1)), molecular

sphere, the single scattering terMgca; at the top of the scattering (characterized inth layer by At; mo, wg‘?'=1

atmosphere can be expressed as: and P§“°' (®; 1)) and atmospheric gases (characterized in

i-th layer by At; gas and wg; =0). The resulting single
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scattering albedo)g and phase matriR; (®; A) of thei-th Forward Model
atmospheric layer are:
i wgi A Tia + A Timol (3) Vector of retrieved parameters :
wgy = : ’ (oo
0 A Tia + A Ti.mol + A Ti,gas af = a..ﬂ ] - aerosol parameters
\ a* - surface parameters
and acer auf
B (©; 3) = W3A 7,2 P2 (©; 3) + A Tmol PM (©; 1) @
’ - ) . . ’ ing ing : Surface reflectance :
! Atia+ ATimol + A Tigas Aerosol single scatterin
and the extinction optical thicknesgsof the atmosphere is Provides: {4), w,(4), P,(%,0) Provides: M, (u;u;9,9.%)
the sum of the corresponding components: vy Pi) BROR, BPDF
T = Ta+ Tmol + T 5
2 me gas ( ) Vector radiative transfer model
The properties of atmospheric molecular scattetig and Calculates detailed distribution of atmospheric
Pl (@; i) are well known and can be calculated with suf- radiation properties:  |(u;; s, ;i)

ficient accuracy. The absorption of atmospheric gaggs

has rather minor contributions in the POLDER/PARASOL \
window channels and can be accounted for using known cli- Simulated _satellite
matologies, as well as using available information from an- observations: f(a?)
cillary observations. For example, the present development
uses the same procedure as used in the operational algorithm
by Deuz et al. (2001). That procedure corrects the water va-ig. 3. The organization of the forward calculations of atmospheric
por absorption using PARASOL measurements in 0.910 pntadiance measured from a satellite.

spectral band. The minor absorption from ozone,,N@d

O are accounted using the climatology data. Thus, the most

challenging part in modeling single scattering properties ofequation. Thus, the forward model of reflected radiances
the atmosphere is the modeling of aerosol contribution, i.e Measured by POLDER/PARASOL contains three main com-
aerosol extinctiorr,, single scattering albedo? and phase ~ Ponents: (i) aerosol single scattering, (ii) surface reflection
matrix P2 (®; A). These properties depend on aerosol mi- and (iii) solving vector radiative transfer equation for ac-
crophysics: particle size, shape and composition (refractivecounting for multiple scattering. The following parts of this
index). All these characteristics are driven by the parameter§ection will describe each of these components in detail.
included in the vector of unknowns and correspondingly they It should be noted that the forward model for repro-

are retrieved from the observations. dUCing POLDER/PARASOL observations is designed by
The single reflectioM refiec at the top of atmosphere can Means of adapting the atmospheric modeling strategies and
be calculated as: computer routines developed within previous POLDER and

Ho i AERONET activities. At the same time, several important
Mrefiec (Mo Ha: ¢0; ¢1: 4) = —e¢" R (Mos bas wos ¢154) (6)  modifications required for optimizing the forward modeling
performance have been implemented in the present PARA-
SOL algorithm. Specifically, the models of land surface
=1 | ) Tteflectance have been introduced into the radiative transfer
lar and viewing directions. For the ocean surface the reg o jations, the number of aerosol parameters driving the
flection R (105 pu1; wo; ¢1; 2) is mainly governed by the o6 has been reduced, the different regimes of the radia-

wind speed at sea level as suggested by the Cox-Munk mode} e ansfer calculations have been designed for allowing

(Cox and Munk, 1954) employed in th? currently operation.al faster but less accurate calculations. These and other forward
POLDER algorithm (Deuzet al., 2001; Herman el al., 2005; ) ,qe| modification allowed the performance of the devel-

Tané et al., 2011). In contrast, the reflection matrix of the oped “on-line” inversion procedure to attain the standards re-

land surface may differ very strongly from location to loca- ¢ ,ireq for operational processing (achieving sufficient speed
tion. Therefore, in the present algorithm, the key properties computations, etc.).

of the land surface reflectance are included in the set of un- Figure 3 shows the data flow within the

knowns and retrieved from the observations. block of the algorithm. Three main complementary efforts

As follows from Eq. (1), once the single scattering terms 5y jnyolved in modeling the atmospheric radiation field ob-
M scatandM refiec are defined one needs to account for multi- served by the POLDER sensor:

ple interactions of scattered light with atmosphere and sur-
face. In the present algorithm these interactions are ac- — Modeling of single scattering properties of the atmo-
counted for by rigorously solving vector radiative transfer spheric aerosol.

where reflection matriR (o; ©1; @o; @1; A) describes the
surface reflection properties in the plane formed by the so

“Forward model”
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— Modeling of the surface reflectance properties.

— Accounting for multiple scattering effects using full ra- & “ma dN (&) dN (r)
diative transfer model. cs (A ks nyrse) dinedInr (8)
ding dinr
. . . min €min
These aspects are described in detail below. . Z Z o ke o AN &) dV ()
3.1 Aerosol single scattering properties I o A S dine dinr

The modeling of the aerosol scattering matrices has been imwhere
plemented following the ideas employed in AERONET re-

. . ) . O KEL (A k;on; s = 9
trieval algorithm by Dubovik and King (2000) and Dubovik & ( GRORD ©)
etal. (2002b, 2006) Inri4+Alnr Ineg+Alne e

In order to account for aerosol non-sphericity, the atmo-— Ch e By dinediny

spheric aerosol is modeled as an ensemble of randomly ori- .. A, e 2 aine v(r)

ented spheroids. Specifically, AERONET operational re-

trievals use the concept developed by Dubovik et al. (2006where v(r) is the volume of particle,dd‘fé:) :v(r)% is

and model the particles for each size bin as a mixture ofthe volume particle size distributiod; (¢) and B; (r) are
spherical and non-spherical aerosol components. The northe functions providing correspondingly the interpolation of
spherical component was modeled by ensembles of ranshape distribution between the selected paiptand the in-
domly oriented spheroids (ellipsoids of revolution). Accord- terpolation of size distribution over selected points In

ing to this concept, aerosol particles of non-spherical com-studies by Dubovik et al. (2002b, 2006), the coefficients
ponent have size-independent distribution of shapes and tha; (¢) for integrating over axis ratio were assumed as rectan-

modeling of the total aerosol optical thicknessof non- gular functionsAy (¢) = const. For approximating size distri-

spherical aerosol can be written as the following: bution between the used size binsthe trapezoidal approxi-
mation was chosen by Dubovik and King (2000). Such kinds
T() = @) of interpolation are traditionally applied in aerosol applica-
Fmax Emax tions (e.g. see Twomey, 1977), where the functi®s(r)
_ / ¢ G ks s 1 6) AN (©) AN (1) 1 are defined as isosceles triangles.
oo ding dinr It should be noted that in Eq. (8) the integral over size is

approximated by a sum using values of volume size distri-
wherect (1; k; n; r; ¢) denotes the extinction cross-sections bution dV(r)/dInr (in place of the number size distribution
of spherical particle and randomly oriented spheraid- dN(r)/dInr) defined in logarithmically equidistant points
wavelength,n andk — real and imaginary parts of the re- Ultilization of both the volume size distribution and logarithm
fractive index,e spheroid axis ratiog(=a/b, a — axis of  of radius was chosen for the convenience of the algorithm
spheroid rotational symmetr, — axis perpendicular to the implementation. In principle, the particle number distribu-
axis of spheroid rotational symmetry) radius of volume-  tionsdN(r)/dInr or dN(r)/dr could be equally used in Eq. (8)
equivalent sphere. Correspondingly the mixture of spheroide.g. see King et al., 1978; King, 1982). At the same time,
includes the flattened oblate spheroigls:(1), spheress(=1) the usage of both the volume of the particle (instead of num-
and elongated prolate spheroids>(1). The characteristics ber) and logarithmic scale in binning of the size distribution
r ande are used here for describing size and shape of thénelps to optimize the approximation given by Eq. (8). First,
ensemble of spheroids. Analogously to the combination ofthese choices help to improve the accuracy of this approx-
a andb, the combination of ande¢ allows unique defini- imation (a smaller number of points, provides appropri-
tion of the spheroid shape. As discussed by Mishchenkate accuracy). Second, under this representation, the ker-
et al. (1997), the usage of and ¢ is convenient for sep- nelsKg,; (A; k; n; r;; &) for different pointsr; are closer
arating the effect of particle shape and size in analysis ofin values. This is one of the favorable conditions for im-
aerosol mixture light scattering. Then the functicﬂjﬁ(’% plementing inversion. Therefore, volume size distribution

and %Nlrg_i) denote the number particle size and the number_dV(r)/dmr is often used as retrieved aerosol characteristic

particle shape (axis ratio) distributions accordingly. in the algorithms applied to invert the optical data of high
For performing fast and accurate calculations of aerosof€nsitivity to aerosol particle size. For example, a similar

and shape integration can be approximated by the doubl®akajima et al. (1983, 1996) for retrieving aerosol proper-
sum, e.g. ties from ground-based sky-radiometers. In the AERONET

retrieval, Dubovik and King (2000) represented volume size
distribution dV(r)/dInr by N;=22 pointsr;. These points
are equidistant in logarithmic space and cover the size range
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from 0.05 to 15 um. This size range was chosen following theK 321 (A; k; n; r;) = (10c)
sensitivity analysis by Dubovik et al. (2000), which showed

that the aerosol particles of smaller and larger sizes produce nsi+a inr emax

negligible contribution to AERONET radiometer observa- = B (r) (/ Cext (%3 k( ;1 i E) jj\llrfa) din g) dinr,
tions. This range of aerosol particle sizes is slightly wider i -ainr min o ‘

than the one used in earlier studies by Nakajima et al. (1996).
As discussed later in this paper, the size range of aerosoihereCsph is the fraction of the spherical particles. Note,
is modified for retrieving aerosol from PARASOL observa- that while the preparation of the core look-up tables
tions. Kest~ (A; k; n; r;) required several years of computations,
Using the approximation given by Egs. (8)—(9), Dubovik the resulting software allows very fast simulations of scat-
et al. (2006) developed a numerical tool for fast calculationstering by non-spherical aerosol particles. The calculation
of scattering properties of spheroid mixture. The quadraturdakes a fraction of a second for any realistic combination of
coefficientsK &, (A; k; n; r;; ) for the extinction, as well ~ aerosol size distribution and complex refractive index. At
as for absorption cross-sections and scattering matrices haygesent, it is probably the only approach that can calculate
been calculated and stored into the look-up tables for a widescattering matrices for non-spherical particles as part of the
range ofn andk (1.3<n <1.7; 0.0005< k <0.5). The cal- retrieval without relying on look-up tables of scattering ma-
culations were done for spheroids with axis raticanging  trices. Once the forward model in AERONET retrieval was
from ~0.3 (flattened oblate spheroids) 8.0 (elongated updated with non-spherical aerosol light scattering modeling
prolate spheroids) and for 41 narrow size bins covering thecapabilities by Dubovik et al. (2006) (as shown in Eq. 10) the
size-parameter range from0.012 to~625. The look-up fraction Cspnhwas included in the set of retrieved parameters
tables were arranged into a software package allowing fastalong with the concentrations for 22 bins of size distribution.
accurate, and flexible modeling of scattering by randomly It is noteworthy that the spheroid model developed by
oriented spheroids with different size and shape distribu-Dubovik et al. (2002b, 2006) appeared to be rather useful
tions. In addition, Dubovik et al. (2006) used the developedfor AERONET and other aerosol remote sensing applica-
software and showed that spheroids can closely reproducgons. First, the utilization of this model has significantly im-
single-scattering matrices of mineral dust measured in thg@roved the AERONET operational retrieval of aerosol with
laboratory by Volten et al. (2001). It was shown that scatter-pronounced coarse mode fraction (e.g. see Reid et al., 2003;
ing matrices have rather limited sensitivity to the minor de- Eck et al., 2005; Dubovik et al., 2006). The same model has
tails of axis ratio distributio N (8" . Therefore, Dubovik et  been shown to reproduce adequately the ground-based po-
al. (2006) have suggested and demonstrated that AERONETarimetric observations of non-spherical desert dust. Specifi-
retrieval may rely on rather simple assumption that shapecally, the efficient application of the model to the polarimet-
(axis ratio) d|str|but|onM in the non-spherical fraction ric observations has been done by Dubovik et al. (2006) for
of any tropospheric aerosol is the same. Based on this coma case study and Li et al. (2009) for an extended series of ob-
clusion the aerosol scattering model was set in AERONETservations. In addition, it was shown that the spheroid model
retrieval as a mixture o$phericaland non-sphericalfrac- allows qualitative reproduction of the main characteristic fea-
tions, and% obtained by Dubovik et al. (2006) from tures of lidar observations of non-spherical desert dust. For
fitting Volten et al. (2001) observations was employed asexample, the increase of extinction-to-backscattering lidar
shape distribution fonon-sphericaffraction. Based on this ratio and a high depolarization of signal regularly observed
assumption, the integration overin Eq. (7) can be done in lidar observations of desert dust, and traditionally associ-
once and for all for each size bin, and, therefore, modelingated with aerosol particle non-sphericity, can be adequately
of aerosol optical properties{ (1), w§ andP? (©; 1)) in reproduced using a spheroid-based model (see discussion by
AERONET retrieval is implemented in a particularly conve- Dubovik et al., 2006). Cattrall at al. (2005) showed that
nient form. For example, for modeling (1) one can write:  lidar ratios calculated from aerosol properties derived from
AERONET observations using a spheroid model agree well

Ta (1) = Tsph (M) + Tnons () (102) " \ith known lidar observations of desert dust. Furthermore,
-y (CsthZ'i{’ G i s ) + (L= Cop) KO0 o ks s m) dv <r1-.). Veseloyskn etal. (2010) haye used the approach suggested by
i=1 o Ny diny Dubovik et al. (2006) and incorporated the spheroid model

into the algorithm retrieving aerosol properties from lidar ob-

where servations. That is, probably, one of the first attempts to in-
Zﬁth ;s kyn;yr) = (10b) terpret quantitatively the sensitivity of the lidar observations
n vt Al to particle r?on—spherici.ty. The don—spherical coarse eerosol
' ngth O ks onsr) models derived from c!lmatologles df AERONET retrievals
= TBk (rydinr, had been successfully incorporated into MODIS and SEVIRI
Inr —Anr satellite retrievals (Levy et al., 2007a,b; Govaerts et al., 2010;

Wagner et al., 2010). The AERONET retrievals are being
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Trapezium Approximation Approximation by Log-Normals
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Fig. 4. The illustration of modeling aerosol size distribution by fivg € 5) triangular (left) or log-normal (right) size bins.

used for making accurate calculations of atmospheric broadebservations can be achieved if the shape of each single bin is
band fluxes and aerosol radiative forcing. These calculationsptimized. Specifically, utilizations of log-normally shaped
were shown to agree very reasonably with available coinci-bins provided notable improvementsif, <10. The con-
dent ground-based flux observations in desert regions (Derducted small series of calculations suggested some advan-
imian et al., 2008) and globally (Garcia et al., 2008). De- tages of modeling aerosol size distribution as superposition
rimian et al. (2008) demonstrated that the neglect of deserbf the log-normal functions with fixed parameters:

dust non-sphericity in climatic assessment leads-1® %

systematic overestimation of cooling of the atmosphere bydV (r) _ Z v, exp | — (Inr —In 7\/,1‘)2 (11a)
desert dust aerosol on the top of the atmosphere. dinr . _{ ~ N V2o 207
The retrieval algorithm developed here for POLDER/ '
PARASOL uses the same modeling strategy as described dv; (r)
above. Correspondingly, a solution is sought in continuous - Z ‘N
space of aerosol size distribution parameters, aerosol parti- =L .. N
cle shape and complex refractive indices (see Table 1). How; o
ever, due to differences in information content of AERONET
and POLDER measurements, the retrieved size distributiorr; = ¢y ; and (11b)
is represented by a smaller number of bivis Instead of
Ny =22, retrieved by AERONET, herd, is reduced to 16 dv; (r) 1 (In r —In rv’,»)z
and even significantly smaller numbers. In order to assure dinr N exp _2—01.2 .

that the aerosol model remains adequate and its accuracy

is acceptable even if n_umber of aerosol bins is small, ther, example, Fig. 4 illustrates that a small number of log-
performance of Dubovik et al. (2006) software was ana-normal bins retains the realistically smooth shape of atmo-
lyzed for situations corresponding to POLDER/PARASOL gpheric aerosol size distribution, while applying triangular
measurements with reduced number of aerosol bins. Iy rapezium approximation leads to appearance of inade-
was found that the accuracy of the calculations remaingyate features (apparent triangle tops) in the size distribution.
practically unchanged if the aerosol size bins correspond-rhus, the new option allowing the usage of log-normally
ing to very small and very large particles have been e"m'shaped bins was included in Dubovik et al. (2006).

inated, i.e.N; =16 covers size range frompjn=0.07 um

to rmax=10pm. The contribution of smaller and larger 3.2 Modeling surface reflectance

particles into POLDER/PARASOL observations is negligi-

ble. Nonetheless, the need for optimizing the softwareThe reflective properties of ocean surface are modeled anal-
of Dubovik et al. (2006) by using even smaller number ogously to the currently operational POLDER algorithm
of aerosol binsN; <10, was identified. It was found (Deuz etal., 2001; Herman et al., 2005; Tarmt al., 2011).
that sufficiently accurate modeling of POLDER/PARASOL The Fresnel’s reflection on the agitated sea surface is taken
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into account using the Cox and Munk model (Cox and Munk, G = |tar? 91 +tar? 9, — 2 tan®; tand, cos ((p1—(p2)]l/2. (12d)
1954). The water leaving radiance is nearly isotropic (Voss
etal., 2007) and modeling shows that its polarization is neg-This model provides bi-directional reflectance as a function
ligible (e.g. Chami et al., 2001; Chowdhary et al., 2006; Otaof four empirical parameterso, (1) characterizes intensity
etal., 2010). This term and the white cap reflection are takerof reflectance« (1) characterizes anisotropy of reflectance,
into account by Lambertian unpolarized reflectances. The (1) characterizes forward/backscattering contributions in
whitecap reflectance is driven by the wind speed at sea suttotal reflectancekg (1) is a “hot spot” parameter. All these
face according to the Koepke (1984) model. The seawater reparameters are considered as unknowns and included in the
flectance at short wavelengths is not negligible and dependset of retrieved parameters (see Table 1).
on the properties of oceanic waters. Thus, in present model, The available airborne and satellite polarimetric observa-
the wind speed and the magnitude of seawater reflectance &@bns in the visible and infrared showed that the Bidirectional
short wavelengths need to be known a priori or retrieved to-Polarization Distribution Function (BPDF) of land surface
gether with aerosol. tends to have rather small values (compared to BPDF) with
The modeling of the reflectance by the land sur- no spectral dependence (e.g., Rondeaux and Herman, 1991;
faces has been adjusted to the needs of newly developedadal and Beon, 1999; Maignan et al., 2004, 2009; Wa-
POLDER/PARASOL retrieval. The aerosol retrieval algo- quet et al., 2009a,b; Litvinov et al., 2010, 2011). Most theo-
rithm by Deuz et al. (2001) over land relies only on the retical models developed for approximating observed BPDF
PARASOL measurements of polarized reflectance and, corare based on the Fresnel equations of light reflection from
respondingly, it does not consider the detailed directionalthe surface. For example, Nadal andeBn (1999) have
scattering properties of total reflectance by land surfaceproposed simple two-parameter non-linear function of the
Therefore, the “forward model” was modified to account ad- Fresnel reflection for characterization of atmospheric aerosol
equately for both total and polarized properties of surface reover land surfaces based on POLDER observations of land
flectance. surface reflectance. Recently, Maignan et al. (2009) have in-
In remote sensing applications the effects of directional-troduced a new linear BPDF model with only one free pa-
ity of land surface reflectance are often accounted for byrameter and demonstrated that this simple model allows a
semi-empirical models driven by a small number of internal similar fit to the POLDER measurements as more complex
parameters. For example, the Ross-Li model (Ross, 1981ion-linear model by Nadal and &n (1999). This model
Li and Strahler, 1992; Wanner et al., 1995) is employed forhas been used in the present POLDER/PARASOL retrieval
characterization of directional properties of land surface re-algorithm as a primary model of polarized reflectance of land
flectance derived from MODIS observation (Justice et al.,surface.
1998). The Rahman-Pinty-Verstraete (RPV) model (Rahman The model by Maignan et al. (2009) describes the polar-
etal., 1993) is successfully used for the analysis of MISR ob-jzed reflectance as:
servations by Martonchik et al. (1998) and SEVIRI by Gov-
aerts et al. (2010) and Wagner et al. (2010). The comparisonss (?1; ¢1; ¥2; ¢2) = PMaignan F12 (@, n), (13a)
of the models with satellite (Maignan et al., 2004, 2009) and o _ . )
aircraft (Litvinov et al., 2010, 2011) data showed that, gener-Vhere BPDF is given as a linear function of polarized com-
ally, both Ross-Li and RPV models are comparably capable?@NentF1z («;, n) of the Fresnel reflection matrix (depen-
of reproducing the multi-angle observations of land surfacesd€nt on incident angle; and refractive index) multiplied
Since the RPV model was applied more extensively to inter-PY an empirical coefficient:
pretation of multi-directional images (e.g. MISR, SEVIRI), B exp (—tan (a;)) exp (—v)
it has been retained in the present POLDER/PARASOL al-PMaignan (15 ¢1; ¥2; ¢2) = 2 (o + 1)
gorithm as a primary formulation for modeling Bidirec-
tional Reflectance Distribution Function (BRDF). Rahman et The attenuation term exp-z) reflects the observed tendency

. (13b)

al. (1993) describe BRDF as: of decreasing polarized reflectance with increasing vegeta-
tion cover, where is the Normalized Difference Vegetation
PRPV (V13 913 92; ¢2) = (128)  |ndex (NDVI). The NDVI valuez was obtained from the
1 1 reflectance measurements concomitant with the polarization
cog~1 91 cod—1y, 1—hp . .
= po 1 F @ |1+ , observationsp is a free parameter that should be chosen to
(Cosdy + cosvz) 1+6 fit the observed BPDF angular dependence.

1_ 92 Thus, in the present algorithm the land surface reflectance

F (g) = e (12b) properties are modeled using Egs. (12) and (13) for simulat-
[1+ 62 —260cos(r — a))]” ing BRDF and BPDF accordingly. However, since these for-
mulations are semi-empirical and derived completely inde-

COSa; = COSV1 COSP2 — Siny sindz cos (g1 — ¢2), (12€)  pendently, one needs to exclude physically unrealistic com-
binations of BRDF and BPDF. Therefore, in order to assure
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that the surface reflectance of polarized radiation in any geor either BRDF or BPDF models. For example, in the
ometry does not exceed the reflectance of total radiation, th@resent algorithm version, the BRDF can be simulated using
reflectance matriR (wo; w1; @o; ¢1; A) of the land surface  the Ross-Li model and BPDF can be modeled using Nadal-
is represented as a sum of two surface reflection phenomen&réon (1999) formulation. Nonetheless, the utilizations of

these secondary BRDF or BPDF models will not be dis-
R (lJO’ H1§<PO;<P1§)») = Rugirr + Rspee (143) cussed in detail.

where the matrix for diffuse unpolarized reflectafg; is

modeled using Eq. (12): 3.3 Full forward radiative model

1000 Accounting for multiple scattering effects in the atmosphere

0000 isimplemented by the successive order of scattering radiative
Ruitf (Ho: Ha: ¢0: 913 ) = PRPV ooool’ (14b)  transfer code (Lenoble et al., 2007) that was used in PARA-

0000 SOL operational retrievals (Deézt al., 2001; Herman el al.,

) ) 2005; Tane et al., 2011). The code provides full information
and the matrix for specular reflectan@@pec is mod-  apoyt the atmospheric radiation field under the assumption of
eled as matrix of Fresnel reflectanée(w;, n) scaled by  the plane parallel atmosphere. In order to reduce calculation
PMaignan (915 ¢1; ¥2; ¢2) empirical coefficient: time for inverting PARASOL observations, tirecomponent
in the Stokes vector has been neglected. Hansen (1971) has
demonstrated that the radiation properties measured by pas-
where the Fresnel matrik («;, n) defined for Stokes pa- sive remote sensing exhibit negligible circular polarization of
rameters referred to directions parallel and perpendicular tdhe electromagnetic field. The developed version of succes-
the reflection plane can be written as (e.g. see Lenoble et alsive order of scattering radiative transfer code allows calcula-
2007): tions of atmospheric radiances for seve¥alaerosol compo-

nents. Each aerosol component can be described by defined
vertical profile of spectral extinctiokext x (%2, A) and altitude
(15a) independent phase matri, (®, 1) and single scattering
0 0 2nn albedowf (). In the present set up of the aerosol retrieval
0 0 0 2nn code these optical properties are detremined based on mi-

The Fresnel matri («;, n) depends on incident angie crophysical model of atmospheric aerosol. Correspondingly,

and refractive index. The coefficients, andr are defined  ©nly parameters describing aerosol microphysics are directly
as included in the set of retrieved parameters listed in Table 1.

sin (@ — ;) tan (o — ;) Specifically, the vertically invariai, (®, A) anda)’g (1) are
- = ——1 " (15b) driven by: the shape of the size distributid¥ (r;)/dInr giv-

sin (ar + o) tan (or + ai) ing the aerosol particle volume in the total atmospheric col-
where the refraction angle, is related tow; through the — umn per unit of surface area (in the unites ofyjm¥); the
Snell-Descartes refraction law given as: realn; (1) and imaginaryy () parts of the complex refrac-
tive index; and the fraction of the spherical partic@®sspn
The spectral dependence of optical thicknessi) /i (A;)

The straightforward analysis of the above equations showdS @0 vertically invariant and defined by these parameters,
that the definition oR (u0; 11; o: ¢1; A) given by Eq. (14) while the absolute value af; (A)_addltlonally depgnds on
secures the physically correct ratio between polarized and tot€ total volume of the aerosol in the atmospheric column:
tal radiation componentsR{; < R11) for any combination of  Cik,v=>_;_1 ("—Zf%). In order to account for vertical
PRrPV and pmaignan variability of the aerosol extinctiokexx (2, 1), the addi-

Thus, in the present algorithm, the BRDF and BPDF prop-tional characteristie; (h) was added. The functios, (k)
erties are driven by four free spectral parameters of RPVdefines the vertical distribution of aerosol concentration and
model (oo (1), ¥ (1), 6 (1), ho (1)) and one free (generally the optical thickness of-th aerosol component in each of
spectrally dependent) parametr(x). All these parame- j-th atmospheric layer is defined as:
ters have been added into the retrieved vector of unknowns
as shown in Table 1.

It should be noted, however, that the Rahman et al. (1993 Tix (A) = & (A) [ ¢k (h) dh. (16a)
and Maignan et al. (2009) formulations, chosen as primary
models for BRDF and BPDF in the present algorithm, have i . )
limited accuracy (e.g. see Litvinov et al., 2010, 2011). There-1h€ aerosol concentration profitg (k) is assumed as a
fore both the forward model and inversion module of the Gaussian function normalized to unity, i.e.:
present algorithm have an assumed option of changing both

Rspec (P1; 915 D25 92; ) = pmaignanF (@i, n), (14c)

r|2 + "r2 rl2 — rlr2 0

0
2 _ 2,2, 2
F(Oli,n)=% -t e 0 8

rr =

sin (o) = n sin (ar). (15¢)

hi

hit1

Atmos. Meas. Tech., 4, 973618 2011 www.atmos-meas-tech.net/4/975/2011/



O. Dubovik et al.: Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties 987

(h — hk,0)2 "o relies on analytical single scattering approximation for cal-
c (h) ~ exp| ———= and [ ¢ () dh =1, (16b)  cylations of derivatives. The possibility of using this trade-
g hgoa off in POLDER retrieval algorithm was tested. It has been

wherehgoa — Bottom Of the Atmosphere (BOA) height and concluded that using single scattering approximation is not
htoa — Top Of the Atmosphere (TOA) height. In the re- sufficient for conducting retrieval from satellite observations.
trieval, the standard deviation characterizing the width of thelNonetheless, it has been found that the Jacobians estimated

aerosol layer is fixed te; =0.75km. Therefore, only one numerically as finite differences on basis of the full radiative

parameter characterizing aerosol vertical distribution is in-ransfer calculations implemented with significantly reduced
cluded into the retrievalii; o — the mean altitude of the values ofM andN provide fast and accurate retrievals. This

k-th aerosol component layer. The present version of the#PProach is used in the present algorithm.
POLDER/PARASOL retrieval code is set to retrieve onlyone  The utilization of linearized radiative transfer code
aerosol component. The algorithm derives single values of€.g. see Hasekamp and Landgraf, 2005a) that provides all
complex refractive index and fraction of spherical particles derivatives with respect to aerosol and surface properties in a
for particles of all sizes. Such retrieval assumption is basecsingle run would be alternative and promising strategy of ac-
on the earlier AERONET sensitivity studies by Dubovik et celerating satellite observation inversion. This strategy was
al. (2000, 2006) that indicated major limitations in discrimi- not used in the present study because the linearization of ra-
nating between refractive indices and shapes of aerosol pagliative transfer code is a rather complex effort that requires
ticles of fine and coarse modes. At the same time, the possisignificant time investments. The possibility of using this ap-
bility of retrieving several aerosol components with different proach will be considered in future studies. At the same time,
complex refractive indices and vertical distributions is also a retrieval algorithm relying on the numerical calculation of
assumed (see Table 1) and sensitivity of polarimetric obserthe first derivatives is probably more flexible in practical ap-

vations to multi-component aerosols is planned to be verifiedlications. Indeed, in the present POLDER/PARASOL algo-
in future studes. rithm the set of retrieved aerosol or/and surface parameters

In addition, in order to harmonize the radiative trans- can be changed with no modifications in the calculations of
fer code with the structure and needs of general inverthe first derivatives. If the derivatives are calculated analyti-
sion approach, several modifications have been implemente@ally, achieving such flexibility could be more difficult.
Specifically, the modifications were aimed to increase the
speed of calculations by allowing admissible decrease of th& 3.2  Truncation of the phase matrix
accuracy of modeling. The three possible tradeoffs permit-
ting reduction of computation time without any significant

: . . X The truncation of the phase function is a technique whereby
loss of retrieval accuracy were identified and implemented.

the scattering effects from the sharply increasing forward
peak of the phase function are calculated separately from
those of the rest of the phase function, which permits the
accurate but much faster modeling of diffuse radiation. For
example, the AERONET aerosol operational retrieval by
The accuracy of radiative transfer calculations strongly de-Pubovik and King (2000) employs the discrete ordinate ra-
pends on the number of termg used in the expansion of diative transfer code by Nakajima and Tanaka (1988) that
the phase matrix into Legendre polynomials and number ofises the efficient procedure of the phase function trunca-
terms N used in Gaussian quadrature for zenithal integra-tion and provides very fast and accurate calculation of down-
tion. The values should satisfy the inequalitf4-1> 2 M welling diffuse radiation in moderately thick atmospheres.
to retain conservation of energy in the successive order off he detailed discussion of different methods of implement-
scattering integration. The valugg and N should be suf- INg the phase matrix truncation and their comparison are
ficiently large to provide accurate calculation. However, thegiven in the recent paper by Rozanov and Lyapustin (2010).
largerM andN the longer the calculation time. At the same  Following the ideas of Nakajima and Tanaka (1988) the
time, the high accuracy of the modeling is not always re-truncation of the phase matrix has been implemented in the
quired during the retrieval. For example, studies by Duboviksuccessive order of scattering code as a part of present stud-
and King (2000) showed that when observations of ground-es. In the developed version of the PARASOL algorithm the
based radiometers are inverted, the successful retrieval camse of truncation is optional but recommended. The utiliza-
be achieved using the approximate and quick calculationgion of the phase matrix truncation allows for decreasing the
of the first derivatives. Correspondingly, the retrieval time number of termsV in the expansion of the truncated phase
can be significantly decreased because the calculations déinction andN in the Gaussian quadrature for azimuth inte-
the first derivatives is the most time consuming componentgration. According to the results of the conducted tests, accu-
of Newtonian’s retrieval algorithms. Following this strat- rate PARASOL retrievals can be achieved with the following
egy, the operational retrieval of aerosol from AERONET datarecommended valuest =21 andN =10 — for calculating

3.3.1 Adjustable number of terms in the expansion of
the phase matrix and in the quadrature of
directional integration
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the fit to PARASOL observationsyf =15 andN =7 — for not suggest the reader sufficient explanations as to which

calculating Jacobian matrices. method and why should be chosen for a particular applica-
tion. The approach used here is focused on clarifying the

3.3.3 Flexible angular representation in the phase connection between different inversion methods established
function in atmospheric optics and unifying the key ideas of these

methods into a single inversion procedure. It follows the de-
The successive order of scattering radiative transfer codeelopments by Dubovik and King (2000), Dubovik (2004),
uses the phase function valuesMing angles correspond- Dubovik et al. (2008). The methodology has several orig-
ing to the points of Gaussian quadrature. These values arial (compare to standard inverse methods) features opti-
provided to the radiative transfer code from the Dubovik etmized for remote sensing applications. As shown in de-
al. (2006) software generating aerosol single scattering proptailed description by Dubovik (2004), the methodology ad-
erties. The software provides the phase function for thedresses such important aspects of inversion optimization
set of fixed scattering angles allowing sufficiently accurateas accounting for errors in the satellite observations, in-
modeling of angular variability of scattering. For example, version of multi-source data with different levels of ac-
in AERONET retrieval the phase function is calculated atcuracy, accounting for a priori and ancillary information,
83 Gaussian points. At the same time, the speed of aeros@stimating retrieval errors, clarifying potential of employ-
single scattering modeling depends on the number of théng different mathematical inverse operations (e.g. com-
scattering angles used. In order to enhance the flexibility ofparing iterative versus matrix inversion methods), accel-
the retrieval code the possibility of using the phase functionerating iterative convergence, etc. The concept uses the
at nearly arbitrary set of scattering angels has been impleprinciples of statistical estimation and suggests a general-
mented, with the values of the phase function at the requiredzed multi-term Least Squaretype formulation that com-
Gaussian points derived from the software data by conveplementarily unites advantages of a variety of practical in-
nient interpolation. The results of the series of the numericalversion approaches, suchRsillips-Tikhonov-Twomegon-
tests have shown that POLDER/PARASOL observations carstrained inversion (Phillips, 1962; Tikhonov, 1963; Twomey,
be adequately modeled using set\yfng= 35 selected scat- 1963), Kalman filter (Kalman, 1960),Newton-Gaussand
tering angles. Levenberg-Marquarditerations, etc. This approach pro-
vides significant transparency and flexibility in development
of remote sensing algorithms for deriving such continuous
4 Numerical inversion characteristics as vertical profiles, size distributions, spec-
tral dependencies of some parameters, etc. For example,
In contrast to the majority of existing satellite retrieval algo- compared to the popular “Optimal Estimation” equations
rithms, this effort is one of the first attempts to develop an(Rodgers, 2000), the multi-term Least Square type formu-
aerosol satellite retrieval using statistically optimized multi- lation allows harmonious utilization of not only a priori esti-
variable fitting. Such strategy does not rely on the pre-mate term butinstead, or in addition, using a priori terms lim-
assumed classes of potential solutions. Instead the solutioiting derivatives of the solution (see discussion by Dubovik,
is sought in a continuous space of solutions under statisti2004 and Dubovik et al., 2008). This methodology has re-
cally formulated criteria optimizing the error distribution of sulted from the multi-year efforts on developing inversion
the retrieved parameters. The implementation of some elealgorithms for retrieving comprehensive aerosol properties
ments of such a strategy was pursued in the earlier develogfrom AERONET ground-based observations.
ments of satellite retrieval algorithms. For example, the sta- Two alternative scenarios are proposed for inverting satel-
tistical optimization of the retrieval solutions was used for in- lite observationssingle-pixelretrieval andnultiple-pixelre-
version of MISR observations by Martonchik et al. (1998), in trieval. Thesingle-pixelretrieval is a conventional approach
the retrieval algorithms proposed by Chowdhary et al. (2002when observations of the satellite instrument over each single
2005) and by Waquet et al. (2007, 2009a) for inverting antic-pixel (e.g. in the case of POLDER/PARASOL the pixel size
ipated GLORY/APS observations and applied to RSP datais 5.3 kmx 6.2 km at nadir) are inverted completely indepen-
in the retrieval approach suggested by Hasekamp and Landdently. Themultiple-pixelretrieval is a newly suggested ap-
graf (2005b, 2007) for applying to multiple-viewing-angle proach when the observations of the satellite instrument over
intensity and polarization measurements and the retrieval ala group of pixels are inverted simultaneously and extra a pri-
gorithm developed by Govaerts et al. (2010) for processingori constraints on the inter-pixel variability of the retrieved
SEVIRI/ MSG observations. parameters is applied. It is expected that applying such con-
Detailed descriptions of inversion methods can be foundstraints will help to improve reliability of the retrieval.
in various textbooks (Tikhonov and Arsenin, 1977; Twomey,
1977; Tarantola, 1987; Press et al., 1992; Rodgers, 2000;
Doicu, 2010). However, the textbooks generally provide
the reviews of well-established inversion procedures and do
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4.1 Single-pixel retrieval The statistically optimized solution of Eq. (17) defined on

the base of Maximum Likelihood Method corresponds to the
This part of the inverse procedure is adopted, with someminimum of the following quadratic form:
modifications, from the AERONET (Dubovik and King,

2000) inversion algorithm. There are two key aspects in the¥ (aP) = ¥ (aP) + W, (aP) + Vg (aP) (18a)
algorithm organization: the genemaganization of observa-
tion fitting and the a priori data representation. _ 1 <( fp)T (W )_1 A fP+ ya @) QaP

2 f

4.1.1 Single-pixel observation fitting ;

_ S _ + 7a(a® — )" W3t (@ - a%)).
Formally, the retrieval algorithm is designed as a multi-term
sets of observations and a priori constraints under assumgne following iterative procedure:

tion of normally distributed uncertainties (detailed discussion

is given by Dubovik, 2004). It provides the solution of the aP*! = aP — 1, A aP, (18b)

following system of equations: ) ) ) o
where AaP is a solution of the p-th so-called, in statistical

ff=rf@+Af estimation formalismiNormal System
0" = (Aa)* = Sa + A (Aa) . 17)
a* = a + Aa* ApAaP =V U (aP). (18c)

Here,f* is a vector of the PARASOL measurementsf is The matrix in the left side of Eq. (18C) is also known as
a vector of measurement uncertaintiess a vector of un-  Fisher MatrixAp and the right side of Eq. (18c) represents
knowns. The second line in Eq. (17) represents the a prithe gradienV W (aP) of quadratic form (aP) in vicinity of
ori smoothness assumptions used to constrain variability oft™:
size distribution and spectral dependencies of the real an
imaginary parts of the refractive index as well as the spec- P
tral dependencies of parameters of surface reflectance model, p
The matrix S includes the coefficients for calculating- v (a®) = (18e)
th differences (numerical equivalent of the derivatives) of
dV(rj)/dInr, l’l()»j), k ()\j), Po (A.j), K ()\j), 0 ()‘j); 0* — vec-
tor of zeros andA gAfz) — vector o_f the uncertainties char- where A fP= f (aP) — f*, Kp — Jacobi matrix of the first
acterizing the deviations of the differences from the zeros. " "~ =~ = o _
Formally, this equation states that all theseh differences ~ derivatives —7—. It should be noted thaFisher Ma-
are equal to zeros within the uncertaintie§Aa). The third trix Ap can be considered as so-called Hessian matrix of
line in Eq. (17) includes the vector of a priori estimates ~ second-order partial derivatives of the quadratic fdrmP)
and Aa* is the vector of the uncertainties in a priori esti- (€.9. see Bevington, 1969; Tarantola, 1987). Correspond-
mates. ingly, Eq. (18c) can be also written as follows:

In order to account for the non-negative character of
the observed radiances and retrieved aeragul(£;)/dInr,
n (A)), k (1)) and surface reflectanced (1)) parameters, \here vv7w (aP) is the matrix with the elements
the assumption of log-normal error distribution was used.{vvr\p (ap)} _ 0% @
The noise distribution is apparently the most appropriate for ji ajdai |g_gp’ )
the positively defined values. The log-normal noise distribu- N the present inversion strategy, all equations are ex-
tion implies that the logarithms of the observed positively de-Pressed viaV — weighting matrices that defined by dividing
fined values are normally distributed. Thus, for conveniencelh€ corresponding covariance mat(ixby its first diagonal
of formulating the statistically optimized solution of Eq. (17) elements?, i.e.W = (1/¢?)C. This formal transformation of
the logarithmic transformation is used for both measufed the inversion equauops.allows rather transparent interpreta-
and retrieveds; parameters (see detailed discussions on vafion of Lagrange multipliers — parameters determining the
lidity of applying this transformation in the publications by contributions of a priori terms into solution. Following the
Dubovik and King, 2000, Dubovik, 2004). Correspondingly, oncept proposed by Dubovik and King (2000) the Lagrange
the errorsA f, A (Aa), andAa* are assumed normally dis- Multipliersya andy, are defined as:
tributed. Table 2 shows the exact definitions of each element 2,2 2,2
of the vectorsf* anda. In addition, Table 2 shows the vari- ¥ = *f /& andya = ef /3, (192)

ability ranges allowed for each retrieved parameter. wheres?, £3 ande2 are the first diagonal elements of corre-
sponding covariance matric€, Cx andC,. Note, that if

= Ky Wit Kp + ya  + yaWot, (18d)

= KgW*l AfP+yaRa® + yaWyt (a — a¥),

(VV W (aP)) Aa® = VU (aP). (18f)
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Table 2. Definition of the measurement vectgi* and the vector of unknowns

f* — vector of measurements:
{f1},=In(1(®;; %)), wherel (©; 4;) is total radiance observed by POLDER/PARASOL

{fp}i=In(P(©;: 4;)), whereP (©;; 4;) = V(e '}z‘(g:if/)(@j; %))

obtained from POLDER/PARASOL observations

is degree of linear polarization

a — vector of unknowns

Notation  Definition Variability limits
AEROSOL parameters:

ay (avh =In (G ), i =1, ..., Nr 0.00001< 4V 2)

ave ave =IN(Cy) 0.001<Cy <5.0 (pm3/pm2)
dsph asph=In(Cspp) 0.001<Csph<1.0

an {an}i=In(n(2)),i=1, ..,N, 1.33<n(2;) <16

a {ag}; =In(k(2;)), i =1, ...,Ny, 0.0005<k(%;) <0.1

Surface BRDF and BPDF parameters:

aprdi1  {aprdr1); =N(eo(Ai)), i=1,...,N;,  0.001< po(1;) <0.7
aprdt2  {aprar2}; =Nk (), i =1, ...,Ny 0.1<k(;) <10
aprdf.3 {aprata}; =INA+6()),i=1,..,N, —05<6(};) <05
aprdta  {abrara); =N(ho(Ai),i=1,..,N;  0.001<hg(r;) <0.7
appdf {abpdf}i =In(B(%;)),i=1,...,Ny 0.01<B(x;) <10.0

one can assume a simplified situation when the POLDER obsensing observations inevitably results in a decrease of the
servationsf™, a priori estimates of differencé@aa)* and a  accuracy of each single measurement in this observation set.
priori estimates of parametea§ are independent and have For example, if a satellite sensor takes one single observa-
the same accuracy, i.€;=e?l (nxnp), Ca =2l (NaxNa) tion, the expected variance of measurement erroﬁs If

and Ca=¢2l (v,xn,), then corresponding weighting matri- the same sensor mak@g space- and/or time- coordinated
ces are simply equal to the unity matriced/s =1 (v, x ;). observations the variance of the error in each single obser-
Wa =l vyxny) andWa =1y x vy - vation increases by the factok, i.e. ef N NfEf 1- Thisin-

In addition, as discussed by Dubovik (2004), straightfor- crease can be explained by the fact that the consistency of
ward increasing ofV; by adding redundant very similar ob- the Nt coordinated observations should be assured by con-
servations is not necessarily beneficial for the retrieval. Fortrolling Nt relations between th&; observations. The con-
example, from a practical viewpoint, adding many observa-trol of each of those relationships introduces a random error
tions with identical or nearly identical observation conditions &7 v correspondingly the error variance of a single measure-
does not bring new information and does not improve the acment in Ny dimensional observation increasesNptimes.
curacy of the solution. However, formally even such addition ~ The coefficient;, <1 in Eq. (18b) is adjusted to provide
of observations artificially increases the impact of the mea-monotonic decrease & (aP), i.e.

surement term on the solution compare to a priori second an 1
third terms in Eq. (18). Therefore,F:he Lagrgnge multipliersqy (ap+ ) =V (ap). (202)
y are scaled as: If all assumptions are correct, the minimum value of the
above quadratic form can be theoretically estimated as fol-
N &? Ni &f lows:
YA = VAo andy,; = NoeZ (19b) ,
A a W (a) ~ (Nt + Na + Ng — Np) &1 (20b)

As suggested by Dubovik (2004) such scaling reflects the inNote that the minimum value oF (aP) relates tos because
evitable decrease of accuracy of single observaetforﬁ the the weighting matrices were used instead of usmg directly
number of observatiotV; increases excessively. The above the covariance matrices. Once the value of measurement er-
equation is written under an assumption that increasing theor is knownefz, Eq. (20b) can be used to verify the consis-
number of measurements in the coordinated set of remotéency of the retrieval. Specifically, the inability to achieve
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the above minimum can indicate the presence of unidentified Thus, the inversion procedure described above is driven

biases or inadequacy in the assumptions made. by the limited set of the input characteristics that includes
It should be noted that the control of “measurement resid-the weighting matrice®/  and corresponding variances.

ual” ¥; (aP) (the first term of quadratic form in Eq. (18a)) The vector of POLDER/PARASOL measurements includes

is a very useful tool for diagnostics of the retrieval dynam- 2 components:

ics. Specifically, the final value of; (aP) should be close .

to the level of the expected measurement noise. Indeed, iff* — (fjk>, (21a)

the algorithm has found the right solution the value of the Ip

total residual (a”) should be rather small and determined \yhere index “I” denotes total reflectance observations and

mainly by the random errors of observations. The contri-jyqey “p” denotes the observations of the degree of linear po-

butions of the a priori residual terms in Eq. (182) should |grzation (see Table 2). Since the total radiance and degree

not be significant, because generally the weights of a pri¢ |inear polarization are measured with different accuracy,

ori terms W, (aP) and W (aP) are minor compared to the  yhe covariance matrix assumed for logarithms of measure-
weight of the “measurement residual” tenn (aP). How- mentsf* has the array structure:

ever, at early iterations when the solution approximation is

very far from the solutionys (aP) is dominated by lineariza- C 0 e|2 I, O
tion errors and has the value much higher than the level ofo - ( 0 Cp) - ( 0 e,% Ip)’
the expected measurement noise. Therefore, since accuracé/ ] o o i

of a priori data is independent of the iteration, the weight of Correspondingly, the weighting matri¥s is defined as:

the a priori term should be increased. Correspondingly, this <|| 0 )

(21b)

additional enhancement of the a priori data impact on the soWr = (21c)
lution improves the convergence of non-linear fitting. For

example, in developed POLDER/PARASOL algorithm, fol- wherel ... denote the unity matrices of corresponding dimen-
lowing Dubovik and King (2000) and Dubovik (2004), the sion andyp is a ratio of the total and polarized reflectance
strength of a priori constraints is adjusted dynamically as avariances:

function of the measurement residual (a):

Wt (aP)
)~ - v

Owlp

Yo = e5/ef. (21d)

(20c) The variance of the errors in measurements of total re-

flectance is expected at the level of 2 % relative to the mag-
wherews (aP) reflects the accuracy of the POLDER observa- nitde of observed radiande i.e. & = A (In1)~ £ =0.02.
tion _f|t at Fhe p-th iteration and prowc_ies an indication of hoW e variance of the errors in measurements of the degree of
the iterations converge to the solution. For example, at thginear polarization is expected at the absolute level of 1%,
Iast. iteration, V\{hgn the solution estlmal_féast isexpectedto ;o Ap=001 andtp= A (InP) ~ % — 0.791_ Equation (21b)
be in a small vicinity of the actual solution, the value of the 555mes the simplest structure of the covariance matrix when
residual¥s (a) of the measurement fit can be estimated as: jnensity and polarization observations are equally accurate
W (aPes) ~ (Nf — Na) szl (20d) for a]l spgctral chgnnels and ang!es of obse.rvgtions.. If more
detailed information about covariance matrix is available it
Using e? (aP) Eqg. (20c) adjusts the values of the Lagrange can be trivially integrated into Eq. (21).
multipliers ya andya in Eq. (18) and enhances the contri-  In contrast to the numerous remote sensing algorithm re-
bution of a priori constraints at the earlier iterations. As lying on a priori estimates as suggested by Rodgers (2000),
suggested by Dubovik (2004), this dynamic determinationthe a priori estimates* were not used at all, i.e3 — oo
of a priori constraints improves convergence of non-linear it-(although in practical application of the algorthm to satellite
erations analogously to Levenberg-Marquardt formulations.observation the using of, at least for land surface parameters,
At the same time, in contrast to the original Levenberg-the climatological values* with adequately estimated vari-
Marquardt method, the idea of enhancing constraints orancese2 can be beneficial). Thus, in contrast to the method-
the solutions at earlier iterations in the formulations by 0logy by Rodgers (2000), the retrieval was constrained here
Dubovik (2004) is included harmoniously within the frame- using exclusively the a priori smoothness constraints as dis-
work of united statistical estimation approach. For exam-cussed in the follow on Section.
ple, if no smoothness constraints are used (i.e. the smooth- o o .
ness terms in the right sides of Egs. (17) and (18) are elimi-1.2 A priori smoothness constraints in single pixel
nated) and no a priori estimat@$are available, then one can fitting
assumer* =aP, Eq. (18) become equivalent to Levenberg-

Marquardt formulations (see details in Dubovik, 2004). The vectow includes several components:

T
a = (ay a, ax asphave an Abrdf,1 Abrdf,2 Aordt,3 bpdf) » (22)
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Q 0 0 000 O 0 0 0
whereay, a,, ax, aspndenote the components of the veator S 2 0 000 0 0 0 0
corresponding to thdV(r;)/dInr, n (A;), k (A;) andC, anis g 8 m%m%%% % % % %
equal to the logarithm of mean altitude of the aerosol layer o 0 0 0 000 o0 0 0 o | (23b)
ha. The elemend is the logarithm of total volume concen- 7"~ 8 8 g 888 0 00 Oo 00

. . . . Va4 Q24
tratlon,_ whileay includes logarithms of_valued\/_(r)/dln_r_ 0 p 0 000 0 yass 0 0
normalized by total volume concentration. This modifica- 0 0 0 000 O 0 ya6Q O
0 0 0 000 O 0 0 ya797

tion (compare to AERONET algorithm) allows decoupling
the retrieval of the total amount of aerosol from the shape _lw-la L . .
of the size distribution. This decoupling of the size distri- where@; =S; W, S; uses the derivative matricé (i = 1,

bution parameter is essential for satellite imager algorithm -+ 1) Sy, S, S, Sordt 1, Soart,2, Sorat3, Sopa. I it is assumed

. . . . . that the covariance matrices of errdxg Aa) have the struc-
since it allows applying different constraints on the shape OftureC —p2 | for each components @fva)*
size distribution and aerosol loading. The three components A0 A (Na i X Na i) P ’

. .e. weighting matrices aM/ z ; =l (n, ;xn, ;- Correspond-
@brdf.1, @brdt.2 @Ndaprar3 that are related to the logarithms ingly, the quadratic formb» (aP) in Eq. (18) can be written
of spectrally dependent parametexs(r), « (1) andé (1) as the following sum-
of employed RPV model. Note, that here the “hot spot” pa- g '

rametero (1) thatis presentin Eq. (12) is notincluded in the 5 N (ap) = ya (ap)T QaP— (24)
vectora, because itis not retrieved near-backscattering direc-
tion nor observed (it is significant only in a narrow range of o\ T p

. . L = 2V, (aP) = i (a7) R a;.
scattering angles around the backscattering direction). At the ile: . a.i (@) 1212: . va.i(ai) @i a;

same timejg (1) is retrieved if the “hot spot” is observed.

In such situation it is included in the retrieval similarly to wherey, ; :gfz/gi -
other BRDF parametergg (1), « () andé (1)). The vec- The utilization of the smoothness constraints for a sin-
tor appdr includes the logarithms of the spectrally dependentg|e retrieved functiony(x;) was originated in the papers by
free parameteB (1) of the employed Maignan et al. (2009) phjliips (1962), Tikhonov (1963) and Twomey (1963). Al-
model. The detail description of each element of the vectokhough application of the smoothness constraints is usually
a is given in Table 2. considered to be an implicit constraint on derivatives, in these

The a priori smoothness constraints are applied in theyriginal papers and most of follow-on studies the soluion
POLDER/PARASOL algorithm on several different compo- \yas constrained by minimizing-th differencesa™ of the

nents of the vectar differently. For example, foa given by  yectora components:
Eq. (22), the matrids has the following array structure:

§,00000 0 0 0 O a Al =aiy - @i (m= 1), (25a)
v
008000 0 0 o o] M2 =y — 2 + i (m = 2)
000000 O 0 0 o0 dsph A . A R
Sa = 000000 0 0 0 0 ai/pc (23a) 3 = ai+3 - 3ai+2 + 3ai+l — a;, (m = 3)
~“|loo0o0000 O 0 0 o0 an |’ _
000000%e1 O O O brdt 1 The corresponding “smoothness” matfde (S 7 (S) was
000000 O a2 O O abrdt,2 defined usingS,, matrices of m-th differences S,
000000 0 0 "8 g \ ks (.. A7 =Sy ). For exampleS (m=2) is:
where the corresponding matric8s have different dimen- é_i ; 20
sions and represent differences of different order (3 for size_, 0 0 a . O o5,
distribution, 1 forn (1), 2 for k (1), 2 for pg (1) 1 for « (1), S = - RV (25b)
6 () andB (). The lines in Eq. (23) corresponding 4, 0 1 _2 1

ave andasph contain only zeros because no smoothness con-

straint can be applied. It should be noted that for makingThe present development follows the concept of Dubovik
formulations more transparent only one coefficigaitwas  and King (2000) and Dubovik (2004) that considers smooth-
shown in Eq. (18). However, the actual algorithm uses 7 (orness constraints explicitly as a priori estimates of the deriva-
even 8 ifho (1;) is retrieved) multipliersya ;. The errors  tives of the retrieved characteristio:;). The values ofn-th
A (Aa) are assumed independent for different componentsjerivativesg,, of the functiony(x) characterize the degree of
of the vector(Aa)* and the smoothness matrix in Eq. (18) its non-linearity and, therefore, can be used as a measure of
has the following array structure: y(x) smoothness. For example, smooth functigas), such
as, a constant, straight line, parabola, etc. can be identified
by them-th derivatives as follows:
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g1(x) =dy(x)/dx =0= y1 (x) = C; (26) In difference with Eqg. (25), Eq. (26) allows for apply-
5 5 ing smoothness constraints in more general situations when
g2 (x) =d%y (x)/dx* =0= y2(x) = Bx + C; A1 (x;) #const. For example, in present algorithm there is

a number of spectral parameters that are functiors arfd

the algorithm deals with their values defined for each spec-
tral channel; . Obviously the §;+1— ;) # const and using
standard definition of differences by Eq. (25) for smoothing
spectral parameters (e/g(A), po(A) etc.) is not completely

g3(x) = d% (x)/dx® =0 = y3(x) = Ax?>+ Bx + C.

These derivativeg,, can be approximated by differences be-
tween values of the functiam = y(x;) in N discrete points

% as: correct. Applying the limitations on the derivatives defined
dy (x;) Aly (x) y (xi + Axi) — y(x;) by Eq. (27) is more rigorous if no significant changes of
i ALx A1 X; (278)  gerivatives ofy(x) are expected for different ordinates.
Although using Eg. (27) leads to a loose of transparency in
oy (xig1) — y(xi) definitions of matriceS,,), generating those matrices on al-
- A1 x; ’ gorithmic level is rather straightforward and defining of La-
) ) grange parameters, is more logical. Therefore, in present
7y (i) A%y (i) algorithm, the smoothness constraints are applied to limit di-
dx? Ao (x;) rectly the numerical equivalents of-thderivatives given by
1 1 Eqg. (25), by a priori assumption thai-th derivatives are
_ ATy(it1) /A1 (i) — A%y () /Ag (xi) — . equal to zeros with some uncertaingE 0* =0+ Ag).
(Arx; + A1xi41)/2 In order to estimate correctly the strength of a priori con-
3 3 straints Dubovik and King (2000) and Dubovik (2004) sug-
d>yxpm) A% y(xi) gested to relate the strength of a priori smoothness con-
dx3 Az (xi) straints (i.e. the uncertainty , in a priori known deviations
) ) of derivatives from zeros in second line of Eq. (17) to the
_ A%y (xit1) /A2 (xiv1) — ATy (i) /A2 (xi) - . integral norm of the derivatives defined as:
Ao (x;) + A2 (xi41))/2 ’
( ( l) ( i+ ))/ b /Xmax <dm yi (X))zdx (28)
where ' i dmx '
Ar(xi) = Xip1—xi; whereb; characterizes the smoothness of the physical contin-
uous functiony; (x): the closerb; to zero the more smooth
Ag(xi) = (A1(xi) +A1(xi11)) /2 the functiony; (x). Indeed, there is a direct relation of this
integral to the quadratic form&, ; (aP) in Eq. (24) to the
Az(xi) = (Az(xi)+A1(xi41)) /2 integral norm of the derivatives given by Eq. (28). Namely, if

the values of function; (x) are known atV; discrete points

* * 1)/ x;, one can estimate the norm of theth derivatives:

xir = xi+(A1(x;)+ A2 (-xi))/Z; Xmax [/ JM . 2
b = / (dyT(x)) dx ~ (29)
xim = X +(A1(x;) + A2 (x;) + Az (x)) /2. min *
. 2
The corresponding matrix ofu-th derivatives S, ) o i A" i (), (1) = (@) 2. a
(i.e. g™ =S, (m) a) can easily be defined using Eq. (25). For L\ Bn(x)) " i s o

exampleS, o) (m=2) is:
where Q, ; :(Sg,i)T W;lsg,,», S,,; are the matrices of the

Se.2) = (27b)  coefficient for estimating derivativeg,,; (x;) as shown
2 _ 2 0 in Eq. (27),W; is diagonal weighting matrix with the el-
A1 (A1 + A2) (A1 A2) A2 (A1 + A2) .= . . iAli
_ 0 e <A§22Aa) wa (2) - ementsz{WZ,}”. 1/(Am,_l (_x]_)). Therefo_re, the multiplier
0 0 A GiTAy  Gaan  miaaTan O YA,i =& /_8A,i in the minimized quadratic form of Eq. (24)
can be directly related to the known valuesphs follows:
where A; = A1 (x;))=x;41—x;. One can see thd, (» gfz
has significantly more complex structure than the convent2.i = (bm)maX’ (30)
tional definition of smoothing matrix by Eq. (25). At the !
same time for the special case of uniformly spaced ordinate¥/here
A = A =const the matriceS, () andS,, have straightfor- max Tmax /™M Y15 (x)\ 2
ward relation:S, ) = A~"S,,). @)™ = [x . (T) d (31)
min
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Numerical Inversion
(single pixel scenario) @ ______________________
e 4
B ]
’ Input : observations f* }L) Calculations of: |
a° fla®) - modeled observations :
Forward model K, - Jacobians, Af°=f(a?)f* |
fler), K, !
fla®), K, :
I
- . l
Description of error Af*: w | Normal system: A, Aa® = VP |
C; - matrix of covariances o7 :
W =C,/G,2- weighting matrix A - Fisher matrix; V¥ - gradient of ‘¥(a?); ‘P(aP) - residual |
. R ]
A priori constraints: e |A  =KWIK+yQ+ W2 I
- Smoothness of V(r), n(2), k(2) | VPP = KpTW‘1 Af+ yAQpaP+ yawa'l(ap-a*) :
and s(4) (-surf. BRDF, BPDF); Q 0, W, i -
- Aprioriestimates: a*, y W_=C /o2 P 2 (af) = (AP)YW AP+, (ap)TQpap +7, (aP-a*)"W,(aP-a*) :
)
)
)
ar+i= gr- t AaP n-o;

t=t/2

Fig. 5. The general structure of the numerical inversion data flow implemented for the retrieval of aerosol over single pixel.

Here y!*(x) denotes most unsmooth real function(x). shows the orders of the derivatives used for smoothness con-
Based on this definition, the smoothness a priori conditionstraints and the corresponding values of Lagrange multipli-
imposed by the second line in Eq. (17) allows any functionersy, ;. The general structure of the numerical inversion
yi(x) to be solution that has norm ei-th derivativesb!" data flow implemented for the retrieval of aerosol over single
smaller than(b/")™™. In the framework of used here sta- pixel is summarized in Fig. 5.

tistical approach this definition means the second system in

Eq. (17) defines the derivatives equal zerg$:=07 =0+ 4.2 Multiple-pixel retrieval

Ajg. The errorsA, are assumed independent for ea¢h

(=1, 2, ..., 7) component of vectaer(see Eq. 22) have the In contrast with most satellite retrievals, the algorithm de-
following diagonal covariance matrix with the elements of veloped here does not implement the measurement fitting for
the diagonal defined a:ng,,-}j =e§’i (Am,i (xj)). Thisas-  each single pixel independently. Instead, the fitting is imple-
sumes that the deviation of estimaggs; (x,) from zerohas ~mented for a group of pixels and is constrained by the extra a
variancee;l./(Am,i (Xj))- This variance is chosen inversely Prior limitations on inter-pixel variability of aerosol and/or

proportional to the coefficient,, ; (x;) calculated as shown surface reflectance properties. This approach improves the
by Eq. (27). This inverse proborti'onality @, (x;) re- stability of satellite data inversions because the information

flects the fact that the deviations gf, ; (x,) from zeros can content of the reflected radiation from single pixels is some-

be stronger at smaller scales. This is essential in general cadines insufficient for a unique retrieval of all retrieved param-
whenAj (x;) # const. Thus, following this consideration we eters. For example, deriving aerosol properties over bright

define the strength of a priori constraint applied on each reland is known as an extremely difficult task. On the other

trieved function AV(r/dinr, n (1), k (), po (L), k (1), 6 (1) hand, if the surface reflectance and aerosol properties happen
and B (1) by calculating values O(bm)max using most un- to be the same for a certain time period or over some area,
L

smooth (variable) examples of corresponding physical func-On€ can 'triviallly achi.eve highgr redundancy in thg retrieval
tions, i.e. most unsmooth size distributions, spectral depenPY @PPlying single pixel algorithm to the observations col-

dencies of refractive indices and BRDF parameters. Table 3¢ctéd from such multiple pixels. This fundamental tendency
can be formulated as a priori known statistical limitations that
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Table 3. The finite differences used for smoothness constrains and4'2'1 Multiple-pixel observation fitting

the correspondent values of Lagrange multipliets; . .
P grang PIELS In order to make the equations more compact Eq. (17) de-

Order of finite  Values of fined fori-th single pixel can be denoted as follows:
differences YA fi=fi @+ Af
AEROSOL: 0f =Sa+AAa) = fi=fi(a)+Af. (32a)
AV(r)ldinF (i =1, ..., Ny) 3 0.005 4 =ait A
n() (i=1,..,Ny) 1 0.1 Then, the inversion of multi-pixel observations can be con-
k(ri) (i=1,..,Ny) 2 0.01 sidered as a solution to the following combined system of
Surface BRDF: equations:
pohi) (i =1, .., Ny) 3 0.005 fi=Ffi1(a) +Afy
k() (=1, .., Ny) 1 0.1 f5=fa(a2) + A f;
00) (i=1,...,Ny) 1 0.1 f3=fz@3) + A f3
ho(r) (i=1, ...,Ny) 2 0.01 , (32b)
Surface BPDF: Oy = Sva+ A (Aca)
0; =Sya+ A(Aya)
B(;) (i=1,...,N;) 1 0.1 0 =Sa+A(Aa)

where index " (i =1, 2, 3, ...) denotes the number of each

single pixel. Correspondingly, the total vector of unknowns
can serve as an extra constraint making multi-pixel retrievale is composed from the vectors of unknownsof eachi-th
more robust and reliable. Dubovik et al. (2008) discussed usPixel:
ing this concept in a frame of statistical estimation formalism

a
for improving global aerosol inverse modeling retrievals. In a;
principle, this approach allows for applying smoothness ona = | (33)

4-D (temporal and spatiak-y-z) variability of the retrieved

characteristics, while for inverting POLDER/PARASOL im-

ager observations only 3-D constraints (temporal and horThe matricesS,, S, and S, include the coefficients for
izontal: x —y) are used. Methodologically quite similar calculatingm-th differences (numerical equivalent of m-th
concept was used by Quaife and Lewis (2010) for imposingderivatives) of spatial(—/y—) or temporal {-) inter-pixel
temporal (1-D) smoothness constraints on surface reflectancéariability for each retrieved parametey characterizing
variability for inverting linear kernel-driven BRDF models dV(rj)/dInr, n (A;), k (A;), po (1), k (&;), € (A;); O, CF,
from MODIS observations. It should be noted that applica-0; — vectors of zeros and (A;a), A (Aya) andA (Aa)

tion of the multi-pixel approach is discussed here only as a— vectors of the uncertainties characterizing the deviations of
tool for applying extra spatial and temporal constraints on thethe differences from the zeros.

retrieved aerosol and surface parameters. At the same time, The solution of the multi-pixel system can be implemented
this approach when a group of pixels is inverted together isusing formally the same sequence of the operations as shown
also convenient for rigorous accounting for cross-pixel cou-in the single pixel case. However, the minimized quadratic
pling in this forward modeling of reflected radiances. This form ¥ (aP), its gradientV¥ (aP) and Fisher MatrixAp
coupling appears due to the multiple light scattering effectsformulated for inversion of combined multi-pixel Eq. (32b)
and it introduces some dependence of reflected radiancegould be defined via corresponding single-pixel terms:

over observed pixel on the properties of surface and aerosol ,
Nplxels

ing 3-D radiative calculations that are difficult to adapt to the
requirement of the operational satellite retrieval algorithms. V Uy af’v)

over neighboring pixels. In satellite remote sensing this is Py _ 0 1 07 o p

known as adjacency effect that may introduce some addi-” (a?) = P Wi (@) | + 2 (a?)" Sinera®,  (342)

tional errors in the aerosol retrieval. This effect is significant B

for high-resolution observations and becomes negligible for Aip 0 .. 0

satellite images with resolution2 km and larger (e.g., see 0 Agp.. O

Tani et al., 1981; Kaufman, 1982; Lyapustin and Kaufman,A» = || =" | + Sinter |, (34b)

2001). Since POLDER/PARASOL observations have single 0 0 ..Anp

pixel resolution of~5.3kmx 6.2 km, the adjacency effect '

was not accounted for in our algorithm. In addition, accurate vV ¥q (az)

accounting for this effect requires complex and time consum v (ap) _ | V¥ (‘12) + Qerd® | (34¢)
(
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Table 4. The types of the finite differences and the correspondent values of Lagrange mulialietgsed in the algorithm for applying
inter-pixel smoothness constrains.

Order of finite differences Values ofy ;
horizontal ¢, y) temporal () horizontal ¢, y) temporal )
continuity continuity continuity continuity
AEROSOL:
Cy 2 - 0.01 -
dVv(rpldinr (i =1, ...,Ny) 1 - 0.1 -
Csph 1 - 0.1 -
ha 1 - 0.1 -
n(A;) (=1, ...,Ny) 1 - 0.1 -
k) (=1, ...,Ny) 1 - 0.1 -
Surface BRDF:
po(ri) (i=1,...,N;) - 3 - 01
K()‘i) (l':l,...,N)\) - 1 - 0.1
o) (i=1,... ,Ny) - 1 - 0.1
hoA) (=1, ...,Ny) - 2 - 0.1
Surface BPDF:
B(x) (i=1,...N;) - 1 - 0.1

whereVW; (aP), V¥; (aP) andA, p are defined fotV single  order can be used in each single constraint. This strategy is
pixels. The smoothing inter-pixel matrRiner is defined as:  fully implemented in the current algorithm.

T T T Table 4 outlines the details of the inter-pixel constraints
Qiner = xS, Sk + WS, Sy +r § S (34d) employed in the developed algorithm. Figure 6 shows the
It is easy to observe that if inter-pixel mat¥ner is elimi- design of multi-pixel inversion algorithm as a rather straight-

nated the solution of the multi-pixel system &fpixels can ~ forward generalization of single-pixel inversion.
be considered as solution 8findependent single pixel sys- ~ The diagram in Fig. 7 emphasizes the similarity of multi-
tems. However, the matriginter has non-zero non_diagona' pixel inversion Witthixe| Sing|e-pixe| retrievals. The dif-
elements andv¥ (aP) is not equal to a simple sum of ference is only in the additions of the inter-pixel smoothing
V; (aP). Therefore, the solution of the multi-pixel system €rms into theVpixel pixels jointNormal SystemThe matrix
of N pixels is not equivalent to the solution &findependent ~ inter defining the inter-pixel smoothing terms is very sparse
single pixel systems. At the same time, as shown in the Ap-2nd transparent (see Appendix A), therefore computer time
pendix A the inter-pixel smoothness mat@4cer is sparse required for definition of these smoothing terms is insignif-
and contains many zeros. This fact allows multi-pixel con- icant compare to other calculations performed in the inver-
straints without a significant increase of computation time. Sion. Another difference is that the multi-pixel approach re-
Also, the values of Lagrange parametgysy, andy; are quires solving_theNpiXa pi)fels jointNormal Sys_terthat can
defined using similar concepts to those discussed for applybave rather high dimension. At the same time, the Fisher
ing smoothness constraints on variability of aerosol and surMatrix Ap of this system is also very sparse and a number of
face parameters in single pixel inversion scenario as showmumerical tools are available for optimizing the solution of
in Eq. (29). The only difference is that in Eq. (29) the func- linear system with such structure.
tion y; (x) denotes the variability of each single parameter of
aerosol or surface over-, y- or r-coordinates. Note, that 4.2.2 Inter-connection between neighboring groups in
while Eq. (34) suggests the same strength of all constraints multiple-pixel fitting
(that is done for clarity of formulation), the variability limi-
tations can be very different for each single parameter. ThisThe previous Section described the simultaneous inversion
is achieved by rather straightforward re-scaling of smoothingof a group of pixels. The proposed multi-pixel strat-
matrices corresponding to each single limitation (i.e. smooth-egy uses expected continuity in pixel-to-pixel variability
ing variability of eachy; over each ok-, y- or r-coordinates  of aerosol and land surface properties as an additional re-
can be different). Also differences/derivatives of different trieval constraint. At the same time pixel group has limited
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that sequential pixel parcel-by-parcel retrieval with the inter-
The concept of multi-pixel retrieval parcel continuity constraints should produce the extended
fields of the retrieved parameters. The high consistency of
those fields are enforced by unified inter-pixel constraints.

It is worthwhile mentioning the analogy of the sequen-
tial parcel-by-parcel retrieval with thKalman Filter type
retrieval sequences. For example, if the “edge” inter-pixel
constraints are implemented using only first differences, and
if they were applied only in the time dimension (when
(tixiy) the retrieved values of unknowns in the given time are
used to constrain the solution in consequent time moment),
then the technique described above in this Section becomes
full equivalent of knownKalman Filter retrieval technique

LI o (Kalman, 1960).

(tyx;y)

)
©
R
@9?})@“
\Q p
N Time-Variability Constraints
\\

&
S

X-Variability Constraints

4.2.3 Assuming common parameters for several

. . . . ifferent pixels in the retrieval
Fig. 6. The diagram illustrates the approach for retrieval aerosol different pixels € retrieva

from a multiple pixels of POLDER/PARASOL. . . .
pep The multi-pixel retrieval scheme suggested in the above Sec-

tions takes advantage of the limited spatial variability of

aerosol or land surface reflectance for different pixels or tem-
size: N, x Ny x N;. One can naturally expect the conti- porary for the same pixel. However, there are some situa-
nuity/similarity of aerosol and surface properties observedtions when it is reasonable to assume that some parameters
the edges of this pixel group and with the properties in thedo not change at all from pixel to pixel. For example, in
pixels-neighbors located just outside of thg x N, x N; the retrieval algorithms developed for geostationary observa-
pixel group. These additional constraints enforcing continu-tions, the land surface reflectance parameters and most of the
ity of retrieved properties between different inverted groupsaerosol parameters are assumed diurnally constant (e.g. Gov-
of pixels can be rather logically added to the inversion for- aerts et al., 2010). Moreover, even in the retrievals of aerosol
mulations described in the preceding Sections. As showrirom polar-orbiting observations (e.g. POLDER, MODIS),
by detailed derivation in Appendix B, the additional condi- neglecting surface property variations on small time scales
tions of continuity of aerosol and surface properties with thecan be a reasonable assumption. Therefore, a possibility of
values of corresponding parameter in the neighborhood ofissuming the inter-pixel invariant parameters can be a useful
the inverted pixel group can be implemented by adding ex-option for constraining the retrieval and verifying the impor-
tra terms in Eqg. (34). Specifically, the minimized quadratic tance of neglected variations.
form ¥ (aP), its gradientVW¥ (aP) and Fisher MatrixAp Inclusion of such assumptions, in principle, can be imple-
will include the extra-termsleqge (aP), VWedge (aP) and mented by a significant increase of the corresponding La-
(Ap)edgeaccordingly. As demonstrated in Appendix B, these grange multiplier in Egs. (34) and (B17) (in Appendix B).
additional terms are rather transparent and can be calculatethis would enforce very high correlation between corre-
with very minor computational effort. At the same time, this sponding retrieved parameters and make them practically
way of equation organization provides rather powerful addi-equal. However, such enforcement of the full dependence of
tional tools constraining the retrieval. Indeed, the inversionthe retrieved parameters has serious deficiencies. Indeed, the
of satellite observations over large geographical areas and exacrease of; would result in a strong increase in the smooth-
tended time periods cannot be implemented simultaneousiness matrice€inter and Reqge into the totalFisher matrix
due to natural limitations of computer resources. Instead, thén Eqgs. (34) and (B18) (in Appendix B). Correspondently,
large records of satellite observations can be inverted sequemnaking contributions 0Rinter and Redge dominant would
tially by small pixel parcels/groups of limited, x N, x N; doubtlessly produce degeneratddrmal systems There-
size. Adding intergroup constraints makes such sequentidiore, if one can expect that properties of aerosol or surface
retrieval nearly equivalent to simultaneous inversion of allin different pixels do not change, the retrieval of a single
data. The only difference is that the retrieval for each smallgroup of those constant parameters for many pixels seems
pixel group would not benefit from the information contained more logical than the retrieval of several groups of param-
in the observations over the pixels inverted in subsequent reeters (one group per each pixel) forced by the enhanced
trieval acts. At the same time, the retrieval would fully bene- smoothness constraints to have very close values in differ-
fit from all preceding retrievals. Thus, taking into account ent pixels. For example, this retrieval approach leads to a
that spatial and temporal correlations of both aerosol andsignificantly smaller number of simultaneously retrieved pa-
surface properties have rather limited range, one can expecameters that essentially simplifies the numerical inversion.
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Numerical Inversion o
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Fig. 7. The diagram illustrating the numerical inversion data flow implemented for the simultaneous retrieval of aerosol properties over
multiple pixels.

However, if the algorithm is based on this straightforward the retrieved parameters. Direct realization such reduction of

strategy it looses flexibility, because practical implementa-the retrieved set of parameters requires significant changes in

tion of the algorithm allowing easy increase or decrease inthe algorithm. However, analyzing structure of the equations

the number of fixed parameters is logistically very challeng-we noted that th&isher matrixandgradientfor the reduced

ing. Therefore, here we suggest another approach. The aet of parameters can be obtained trivially from Higher

proach uses the general formulation of the inversion strategynatrix and gradient calculated for original extended set of

via inter-pixel smoothness constraints even for retrieval scefetrieved parameters. Specifically, we can implement the re-

narios when some derived parameters are fixed to be the santéeval simply by decreasing the dimensions of Higher ma-

for different observations (e.g. assuming that some parametrix andgradientby summing up: + 1 of lines and columns

ters of BRDF are intra-day independent over the same pixelpf the equal parameters. As a result the solution can be ob-

or even for one set of observation (e.g. assuming that som&ined by solving modifiedNormal systenwith Fisher ma-

parameters of BRDF are spectrally independent in any singlérix A= andgradient V&V~ of smaller dimensions:

pixel). (N —n) x (N —n) and (N —n) correspondingly. The de-
The approach is the following. First, tidormal system tails are shown in Appendix C. It is important to note that

is built under the assumption that every single parameter thathe described reorganization of theermal systenis rather

drives the forward model is retrieved. Then, as shown instraightforward and is not time consuming.

Appendix C, fixing several parameters equal in the inversion

can be achieved by rather simple modification ofXtwgmal

systenwithout any other changes in the inversion algorithm. 5  Algorithm functionality and sensitivity tests

Assume one has defined tRisher matrixA") and gradient

v for deriving N parameters;. Then if we assume that  The algorithm is designed to retrieve a rather extended set of

n+1 parameters are equal, i®.=a;, (k=1, ...,n+1), we  parameters describing the atmospheric aerosol and underly-

should decrease number of the retrieved parameters and r@g surface reflectance. The list of the parameters is given

calculateFisher matrixandgradientfor new decreased set of in Table 1. The algorithm derives basically the same group
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of aerosol parameters in both scenarios of observation over For surface reflectance (within each single pixel):
ocean or land. At the same time, there is some flexibility in
setting the representation of the aerosol size distribution. The

size distribution can be modeled using different number of _ « () andé () are assumed strongly spectrally smooth

— po (1) is assumed moderately spectrally smooth.

size binsV;: (i) large number of the size bind/{ > 10) mod- (nearly constant).
eled as tri-angle functions; (ii) small number of the size bins _ . _
(N; < 10) modeled as log-normal size functions with differ-  — (if retrieved )z, (1) is assumed moderately spectrally

ent assumed width. The smaller number of bins can be set ~ smooth.
for reducing retrieval implementation time. The retrieval of
large numbers of size bins can be a preferable option in sit-
uations where observations are more sensitive to details of
aerosol properties. For example, contribution of the atmo- For surface reflectance (between pixels):
spheric aerosol dominates the POLDER observations over
the dark ocean surface. The modeling of ocean surface re-
flection fully follows the approach the currently operational
POLDER algorithm (Dewz et al., 2001; Herman el al., 2005, _ No constraints are applied at spatial variability of the
Tan@ et al.,, 2011). The only difference assumed in the de-  parameters.

veloped algorithm is a possibility to retrieve the values of the

Lambertian reflectance linked to the seawater reflectance at Table 5 summarizes the above assumptions and Tables 3
short wavelengths (0.44 and 0.49 um) and to the whitecap@nd 4 show the Lagrange parameters used for applying
reflectance properties. The details of algorithm performancémoothness constraints on the size or spectral dependencies
in this situation have not been tested yet. We plan to pro-of the retrieved aerosol and surface properties in each single
vide analysis and illustrations of the retrieval algorithm per- Pixel and on the spatial and temporal variability of the any
formance over ocean in future publications. single retrieved parameter between different pixels.

The design of the inversion algorithm allows two comple- A series of sensitivity tests has been performed to verify
mentary inversion scenarios. The conventicBaigle-Pixel ~ the performance and potential of the developed algorithm.
Inversionis designed to retrieve all above aerosol and surfacel he tests have been designed to provide rather compact and
parameters for each single pixel of observation. Whati- conclusive illustration of capabilities and limitations of the
Pixel Retrievalimplements the simultaneous inversion of algorithm to derive full set of aerosol and surface reflectance
satellite observations over a group of the neighboring pixelsdarameters from POLDER type satellite observations. The
obtained during the limited time period (e.g. several weeks)discussion below will be focused on the satellite observa-
This strategy allows applying rather diverse constraints orfions over land surfaces. The tests verifying the performance
variability of every retrieved parameter in space and time. [tOf the algorithm over dark surfaces are not discussed in this
also allows the assumption of time or space pixel indepenpaper. Nonetheless such tests were also performed and they
dence of any Sing|e parameter or a group of the retrieved paShOWGd rather robust retrieval of all aerosol parameters in
rameters. Based on the known experience in aerosol and lar@ost tested situations. Some results of such tests have been
surface retrieval developments, and on general understandinghown in the paper by Kokhanovsky et al. (2010) that dis-
of limitations of the information content (checked in sensitiv- cusses the outcome of the series of aerosol retrieval “blind
ity tests) the following combination of assumptions has beentest”. In the framework of this study the observations of
chosen for applying to POLDER/PARASOL observations. aerosol over dark surfaces by different satellites were sim-

— B ();) is assumed strongly to moderately spectrally
smooth.

— All parameters of surface reflectance are assumed con-
stant during~7 days.

For aerosol (within each single pixel): ulated for a single chosen undisclosed aerosol model. These
. S observations were distributed to different research groups in-
— The aerosol size distribution is assumed smooth. volved in aerosol retrieval developments. The groups willing

to participate in such tests have derived the aerosol proper-
ties from the obtained synthetic observations and returned
the obtained aerosol retrieval results to the distributor of the
For aerosol (between pixels): data. Once all retrieval results were collected, the assumed
aerosol model was disclosed and compared with the collected
— The moderate spatial variability is assumed for all retrieval results. Based on the analysis of the “blind test”
aerosol parameters with the exception of aerosol loadputcome the present algorithm (mentioned in the paper by
ing (driven by aerosol total concentration). Kokhanovsky et al., 2010, as “LOA-2") was rated among
the algorithms providing the most comprehensive and ac-
curate results. The retrieval results provided for studies by
Kokhanovsky et al. (2010) were obtained using conventional
pixel-by-pixel retrieval approach.

— The spectral dependencemafr;) andk(};) is assumed
smooth.

— Significant spatial variability of aerosol loading (total
concentration) is allowed.
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Table 5. Summary of the a priori assumptions applied for constraining of each element of the vector of unknowns.

AEROSOL:
Parameter: Single—Pixel Inter—Pixel
constraints constraints
Cy no t —no; X —mild; Y — mild
dV(rp)/dInr  weak size smoothness t — constant during 7 dayX-Y (horizontal)- mild
n(i;) strong spectral smoothnesst — constant during 7 dayX—Y (horizontal}- mild
k(%) mild spectral smoothness ¢ — constant during 7 dayX-Y (horizontal}- mild

SURFACE REFLECTANCE:

Parameter: Single—Pixel Inter—Pixel

constraints constraints
po(Ai) weak spectral smoothness ¢ — constant during 7 day¥-Y (horizontal)}- mild
Kk(A) strong spectral smoothnesst — constant during 7 dayX-Y (horizontal}- mild
0(Ai) strong spectral smoothnesst — constant during 7 dayX-Y (horizontal}- mild
ho(A;) weak spectral smoothness ¢ — constant during 7 day¥-Y (horizontal}- mild
B(A;) strong spectral smoothnesst — constant during 7 day¥-Y (horizontal)}- mild

The sensitivity tests for retrieval over land surface were particles strongly polarize the scatted light, while the polar-
aimed to verify the performance of the retrieval approach un-ization by coarse non-spherical desert dust particles is weak
der conditions maximally reproducing the real environment.(e.g. Volten et al., 2001; Dubovik et al., 2006, etc.). The
With that purpose, the POLDER observation geometry andwo series of tests were conducted: (i) when desert dust
the aerosol and surface characteristics have been assumedwas dominating and (ii) when biomass burning was dom-
mimic closely the observations over two AERONET (Hol- inating. The sensitivity tests were carried out for a wide
ben et al., 1998) observation sites, Banizoumbou (Niger) andange of aerosol loadings. The 16 test scenarios were de-
Mongu (Zambia). The properties of both aerosol and sur-signed to cover the range from(0.44 um)=0.01 ta (0.44
face reflectance were extensively studied and discussed ipm)=4. The size distributions for both biomass and desert
the scientific literature. For example, the observations ovedust aerosol models were adapted from original observa-
Banizoumbou were discussed in a number of papers (Rajations over Banizoumbou and Mongu AERONET sites. The
et al., 2008, Formenti et al., 2008; Johnson et al., 200922 AERONET size distribution bins were used for generating
Sow et al., 2009, etc.), and the observations over Monguwsynthetic observations. Since the size distributions were
were discussed in many studies (Dubovik et al., 2002a; Eckadapted from actual AERONET observations, they did not
et al.,, 2003; Schmid et al., 2003; Haywood et al., 2003; have perfect multi-modal shape. This fact makes the tests
Pilewskie et al., 2003; Lyapustin et al., 2006; Sinyuk et al., more challenging but more realistic. The values of complex
2007, etc.). Two rather distinct aerosol types dominate therefractive index fora =0.44, 0.67, 0.87 and 1.02 um were
aerosol over AERONET sites: desert dust and biomass burnadapted from actual AERONET observations. The values
ing. Mongu is highly affected by biomass burning aerosol. for intermediate spectral channéls 0.49 and 0.55 um were
The aerosol over Banizoumbou site is strongly impacted byobtained by the interpolation. At the same time it should be
desert dust outbreaks with notable seasonal contributiongoted that values chosen for both the size distribution and
of smoke. Biomass burning is known to be dominated bycomplex refractive index are generally close to the values re-
fine absorbing spherical particles. All optical properties of ported from AERONET retrieval climatology for dust and
biomass burning aerosol (extinction, single scattering albedobiomass burning by Dubovik et al. (2002a).
etc.) generally have distinctly decreasing spectral depen- The random noise at the level of 1% for intensity and
dence (e.g. Eck et al., 1999; Dubovik et al., 2002a; Reid0.5% for degree of linear polarization of PARASOL signal
et al., 2005, etc.). In contrast, desert dust is dominated byhave been added to the simulated “synthetic” PARASOL ob-
coarse non-spherical and weakly absorbing particles. Thereservations. These synthetic observations were inverted by the
fore, the extinction of desert dust is generally spectrally flatpresent algorithm using two retrieval scenarios: conventional
(e.g. Eck et al., 1999; Holben et al., 2001, etc.). Dust parti-pixel-by-pixel and multi-pixel retrieval. In the first scenario
cles generally are nearly non-absorbing in visible with someall synthetic observations were inverted fully independently.
moderate absorption appearing-#.5 pm and increasing to-  For multi-pixel retrieval, the “synthetic” PARASOL observa-
wards UV spectral range (e.g. Kaufman et al., 2001; Duboviktions were assumed to be observed durirgweek in four
et al., 2002a; Lafon et al., 2006, etc.). Biomass fine aerosotonsequent observations (with time difference of 1 to 2 days).
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Table 6. Definition of “ the initial guess” for the vector of unknowns.

Aerosol Properties Surface Reflectance

Cy = Cg (corresponding to the value ofer(0.44)~0.05); po(2;)=0.05(G =1, ...,Ny,)
dV(r)ldinr =0.1; ( =1, ...,Ny) k(Aj)=075G=1,...Ny)
Csph=0.7 0(r)=—01(G=1,..,N,)
n(i)=1401=1,..N)) ho(Ai) = po(2;) (i =1, ...,N;)
k(A;)=0.005¢=1,...,Ny) B(x;)=0.03(=1,...,.N;)
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Fig. 8. Retrieval of biomass burning optical thickness over Mongu for 16 different aerosol loadings f(@4 um)=0.01 to 4.0: (left
panel) single-pixel retrieval with no noise added; (center panel) single-pixel retrieval with the random noise added; (right panel) multi-pixel
retrieval with the random noise added.

It was assumed that the four neighboring pixels were ob-and surface reflectance respectively. Each figure shows the
served at each observation time. For example, Fig. 6 showsetrieval results for three situations. Left part of each figure
situation, when 9 (& 3, whereN, =3 andN, = 3) pixels ob-  shows the results of the retrieval for the case with no noise
served during 3 consequent observations. One can imaginadded. It should be noted however, that some discrepancies
similar case when 4 (2 2, whereN, =2 andN, =2) pixels ~ were present even in this case since the size distribution is
observed during 4 consequent observations. The constraintrodeled using 22 logarithmically equidistant size bins cov-
were applied on the inter-pixel variability of the retrieved ering range of particle radii from 0.05 to 15 pm, while re-
aerosol and surface properties as described above in this Setrieval uses only 16 size bins covering radii from 0.1 to 7
tion and summarized in Tables 2-5. Specifically, the proper{um. The central and the right parts of each figure show the
ties of the surface reflectance were assumed constant duringsults of the retrieval with no noise added at the level of 1 %
the week for the same pixels. No constraints were applied orfor total radiances and 0.5 % for degree of linear polariza-
either temporal or horizontal variability of aerosol concentra-tion. Both the left and central parts show the results obtained
tion and for all other aerosol parameters only weak horizontalusing conventional pixel-to-pixel retrieval approach, while
variability was allowed during the same day (i.e. observed bythe right part of each figure shows results obtained using the
the same PARASOL image). All retrievals in the tests weremulti-pixel retrieval strategy. Figures 12—15 are analogous to
conducted using most detailed size distribution representaFigs. 8—11 with the difference that they illustrate the retrieval
tion: 16 logarithmically equidistant size bins covering the results of desert dust over Banizoumbou (Niger).
range of aerosol particle radii from 0.1 to 7um. The same The analysis of the results shows that in situations where
initial guess was used for the unknown parameters in everyno noise is added, all aerosol characteristics are retrieved
pixel. It is described in Table 6. rather accurately. Some notable deviations are seen for sin-
Figures 8-11 show the results of the sensitivity test for re-gle scattering albedo and size distribution in situations with
trieving biomass burning aerosol over Mongu. The illustra- very low aerosol loading when (0.44 um)< 0.2. The de-
tions demonstrate the retrieved normalized size distributionyiations are particularly notable for the size distribution re-
7 (0.44 um)w, (1) and spectral albedo of the surface calcu- trievals of the coarse size particles and for single scatter-
lated using the retrieved parameters of aerosol microphysicgg albedo of biomass burning at long wavelengths. These
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deviations can be explained by the fact that at such lowcan see the significant complications in the retrieval of shape
aerosol loadings the aerosol contribution into radiation ob-of aerosol size distribution, in particular for larger particle
served by satellite is negligible compare to the contributionsizes. The size distribution retrieved for desert dust (see
of land surface reflectance. Therefore even minor perturbaFig. 13) becomes much wider and the maximum shifts to-
tions of the observation may significantly affect the retrieval wards smaller sizes. In retrievals of biomass burning size dis-
results. In contrast, in situations with very high aerosol load-tributions (Fig. 9) there are also significant complications for
ing T (0.44 um)> ~2-2.5, the contribution of aerosol dom- the large radii. This difficulty can be explained by the well-
inates in the observed reflected radiation and the reflectanckenown fact (e.g. see Bohren and Huffman, 1983) of strongly
properties of the underlying land surface become nearly in-decreasing scattering efficiency (per unit of particle vol-
visible for satellite. Correspondingly, the retrievals of surfaceume, i.e kexi(1,r)/v(r)) for particles with sizes much larger
reflectance become unstable, as it is seen for retrieved suthan the wavelength of observations. Therefore retrieving
face reflectance values at short wavelengths. All these tenaccurate shape of size distribution for ragi~3 um from
dencies become pronounced once the random noise is addelOLDER/PARASOL observations appears to be very diffi-
As one can see from central parts of Figs. 8-15, the sizeult. The retrieval of aerosol optical thicknesg0.44 pm)
distribution and single scattering albedo retrieved by con-seems to be rather reliable in situations when random noise is
ventional pixel-by-pixel approach deteriorate in most of the added with the exception of cases of very high aerosol load-
cases including the situations with moderate and even higlting = (0.44 um)> ~3 where the retrieval errors reach the val-
aerosol loading witlr (0.44 pm) reaching 0.4 and even 0.8 ues of 0.5 or even larger (see Fig. 8). These high errors can
(for single scattering albedo in particular). In addition one be explained by the fact that in such situations the reflected
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radiances are dominated by the multiple scattering of verythe same or similar aerosol properties over several pixels
high orders and some of fine agular features of reflected lightvith somewhat different conditions of observations (geom-
distribution are smoothed out. Correspondingly, deriving etry, surface reflectance, aerosol loading).

detailed aerosol and surface properties becomes more dif- |t should be noted that such retrieved parameters as aerosol
ficult. The analysis of the right parts of Figs. 8-15 shows mean height, fraction of spherical particles, detailed param-
that using multi-pixel approach significantly improves the eters of BRDF and BPDF are not shown in Figs. 8-15. All
retrievals of all aerosol and surface parameters. This tenthese parameters have been included in the tests. The re-
dency is not surprising because added constraints allow propsyts are shown only for most significant aerosol and surface
agation and consolidation of useful information from differ- parameters Comm0n|y discussed in remote Sensing retrieval
ent observational situations. For example, in the Situation%nab/sis_ In a future study’ it is planned to imp'ement the
with low aerosol loading the satellite observes mainly sur-comprehensive sensitivity analysis of the retrieval approach
face reflectance properties. Correspondingly, once the consyggested here. The sensitivity studies shown in the present
straints limiting time variability of the surface reflectance are paper are aimed to provide insightful but preliminary outlook
applied, this information is supplied into the interpretations at the expected performance of the retrieval. Nonetheless, it
of observations corresponding to moderate and high aerosg possible to state here that the tests have shown reasonably
loading over the same pixel. Similarly, the constraints of ropust retrieval of all sought parameters. Figures 11 and 15
horizontal variability of aerosol properties help to improve show the retrieval of surface albedo. The retrievals of the
the retrieval of aerosol by benefiting from observations of getailed BRDF and BPDF parameters generally demonstrate
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Fig. 16. Statistics of the retrieval errors of biomass burning optical thickness over Mongu in the series of the numerical tests for 100 different
realizations of random noise added (multi-pixel retrieval): (left panel) 0.44 um; (right panel) 1.02 um.

the same trends. In pixel-by-pixel retrieval scenario all pa-A=0.44 and 1.02 um. All retrievals were conducted using
rameters were retrieved rather accurately in situations withmost robust multi-pixel retrieval scenario. Table 7 provides
low and moderate aerosol loading. Using multi-pixel re- a brief summary of the test outcome. It provides the stan-
trieval helped to achieve stable retrieval of all surface re-dard deviations A/, (1) of the relative errors calculated us-
flectance parameters in all situations including the casedng the retrievals obtained with 100 different realizations of
with high aerosol loading. In contrast, the retrieval of the added random errors as follows:
mean altitude of the aerosol laykeg was retrieved robustly

T = J N Zi:l

when aerosol loading was moderate or high. When pixel-
by-pixel retrieval scenario was uselth was retrieved with
accuracy better than 1 km far (0.44 um)> ~0.5 and bet-

ter than 0.5 km fott (0.44 um)> ~1.0. Once the multi-pixel and
scenario was applied,; was retrieved with accuracy better 1 ; 2
than 0.5km forr (0.44um)>~0.5 and better than 0.3km %Awo = \/ﬁ Zi:l N (‘”O,retrieved_ “)Q”“e) - (35D)

for  (0.44 um)> ~1.0. The retrieval of the spherical particle _

fraction was rather successful for desert dust aerosol, wherzhese estlma_tes can be considered as reference values for the
the coarse mode is dominant. When pixel-by-pixel retrievalEXPected retrieval errors. It should be noted that the real er-

scenario was usedsphWwas retrieved with the accuracy of rors in actual POLDER/PARASOL. obser_vations (Fougnie et
50% in situation withr (0.44um)>~1.0. In multi-pixel re- al., 2007) are likely to have 2 to 3 times hlgher levels than the
trieval scenario it was retrieved with the accuracy-@0 % errors modeled. Thgrefore, the actual retneval_ errors should
in situations witht (0.44 um )}> ~0.2 and better than 10 % be expected to be higher than the numbers given in the Ta-
for 7 (0.44 um)> ~1.0. ble 7 by a fgctor of 2 or 3. Inany case, the;g 'estlmates., areto
be verified in a more comprehensive sensitivity analysis.

Ttrue

. 2
rrletrieved — Ttrue
v ( x 100(%) (35a)

Finally, Figs. 16—19 summarize the performance of the re-
trieval in an extended series of numerical tests with added
random noise. The series were composed by the tests anad-  Algorithm applications to real POLDER/PARASOL
ogous to those illustrated in Figs. 8-15, with the difference  gpservations
that each test was repeated 100 times with different realiza-
tions of the generated noise. The random noise was added &ts a final stage of this study the developed algorithm
the level of standard deviatien=1 % for total radiances and was applied to actual observations by POLDER/PARASOL.
o =0.5% for degree of linear polarization. Thus Figs. 16— For consistency with the sensitivity test, the algorithm was
19 show the results of 3200 inversions=2006x 2 (100  used to process the full 2009 year of POLDER/PARASOL
— number of tests with different realizatios of modeled data over Banizoumbou (Niger) and Mongu (Zambia)
rundom noise; 16 — aerosol loading covering0.44um)  AERONET sites. Specifically, the algorithm was applied
from 0.01 to 4.0; 2 — number of observational sites: Ban-to 4 POLDER/PARASOL pixels surrounding the exact lo-
izoumbou and Mongu) and the differences: (fetrieved) cations of the sites. The multi-pixel inversion scenario was
— 7 (“true”)/t(“true’) and wq (retrieved) —ww(“true”) for employed in the retrieval. Since the current studies did not
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Fig. 17. Statistics of the retrieval errors of biomass burning single scattering albedo over Mongu in the series of the numerical tests for
100 different realizations of random noise added (multi-pixel retrieval): (left panel) 0.44 pm; (right panel) 1.02 um.
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Fig. 18. Statistics of the retrieval errors of desert dust optical thickness over Banizoumbou in the series of the numerical tests for 100 different
realizations of random noise added (multi-pixel retrieval): (left panel) 0.44 um; (right panel) 1.02 um.

address the cloud-screening of the satellite data, the algallustrative applications of the algorithm. Such a decision
rithm was applied to PARASOL data identified as cloud-free was also made with the idea to benefit from unique informa-
by the current operational POLDER algorithm (Déwgt al.,  tion content of the observations at the shortest wavelength.
2001; Herman el al., 2005; Tamet al., 2011). In addition, Indeed, the optical thickness of aerosol is generally higher at
the retrieval outliers with the fitting residual higher than 5% 0.443 um compare to other PARASOL spectral bands, while
were eliminated from the final results. the land surface reflectance is generally lower at 0.443 um
It should be noted that the algorithm has been develope¢ompare to other bands. In order to minimize the possible
here for utilization of complete set of POLDER/PARASOL effect of the higher uncertainty at 0.443 um spectral band, we
observations as shown in Table 1. However, the analysigiave introduced the coefficient for correcting observations at
of PARASOL in-flight calibration and performance studies this wavelength. Specifically, the data were inverted using
performed by Fougnie et al. (2007) indicate that PARASOL a set of different correction coefficients that could increase
0.443 um band does not meet to the mission requirementgr decrease the measured radiances at 0.443 um up to 10 %.
due to unidentified stray light problem and, therefore, it is The coefficient corresponding to the best fit of corrected ob-
not recommended for use. Nonetheless for consistency witgervations by the theoretical model was used in the illustra-
the sensitivity tests performed in Section 5, we have de-ions below. Such strategy for correction of PARASOL ob-
cided to use PARASOL measurements at 0.443 um in thesgervation is in agreement with evaluation of possible effect of
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Table 7. The summary of the sensitivity tests for aerosol retrievals from simulations mimicking POLDER observations over Mongu (Zambia)
and over Banizoumbou (Niger) with the added random noise at the level of standard deviatithb for total radiances and = 0.5% for
the degree of linear polarization.

Biomass over Mongu (Zambia)

Desert dust over Banizoumbou (Niger)

% (0.44)‘ 1(0.44)>~01 1(044>~05 1(044>~01 1(0.44>~05
<~20% <~15% <~ 25% <~20%
|Awg(0.44)| 1(0.449>~05 1(044>~10 1(0449H>~05 11(044>~10
<~0.02 <~0.01 <~0.02 <~0.015
%(1.02)‘ t(1.02>~01 1(1.02>~03 1(1.02>~01 1(044>~0.5
<~25% <~20% <~25% <~20%
|[Awg(1.02)] 1(1.02>~0.1 <1(1.02>~01 <(1.02>~05 <(044>~10
<~0.04 <~0.02 <~0.01 <~0.005

Retrieval of SSA (0.44 um) Retrieval of SSA (1.02 um)

0.1 T T 0.1
§ 0.05+ § 0.05f
o o
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Fig. 19. Statistics of the retrieval errors of desert dust single scattering albedo over Banizoumbou in the series of the numerical tests for
100 different realizations of random noise added (multi-pixel retrieval): (left panel) 0.44 pm; (right panel) 1.02 um.

stray light contamination (B. Fougnie, personal communica-from PARASOL and from AERONET did not exceed 0.03-
tion, 2011). In future studies we plan to investigate compre-0.05 for the cases when (0.44 um)> ~0.5. It also should
hensively the propagation of the PARASOL 0.443 um bandbe noted that the retrieval with different correction coeffi-
errors to the aerosol retrieval results. We hope to identifycients did not exhibit dramatic changes in the retrieval. For
the best strategy for addressing this uncertainty in the operexample, the differences in retrieval 0f(0.44 pm) andog
ational application of the current algorithm of using the cor- (0.44 um) due to changes in the correction coefficient had
rected 0.443 um data (e.g. as it is done here) or eliminatinggenerally smaller magnitudes than mean differences between
them completely from the aerosol retrieval. PARASOL and AERONET results.

Thet (0.44 um) andv, (0.44 um) calculated using the set  Figures 20-21 illustrate the comparison of POLDER/
of retrieved aerosol parameters (Table 2) were compared witfPARASOL retrievals with the AERONET observations dur-
available AERONET data. The comparisons showed ratheing 2 months over Banizoumbou and Mongu. These particu-
robust performance of the algorithm. The retrieved valuedar periods were chosen for the illustrations because they cor-
of aerosol optical thickness closely followed the AERONET responded to the most complete and continuous AERONET
observations with a correlation coefficient-©0.9 for Ban-  data records during the seasons with the presence of high
izoumbou and~0.87 for Mongu. The values of aerosol aerosol loadings. As can be seen from the illustrations, the
single scattering albedo also agreed reasonably well withaerosol loading trends retrieved from PARASOL agree well
AERONET data for observations with high aerosol loading. with the AERONET observations. The values of aerosol sin-
The differences between the valueswgf(0.44 um) obtained gle scattering albedo are also in reasonable agreement with
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Fig. 20. The comparison of (0.44 um) andog (0.44 um) retrieved from POLDER/PARASOL during August—September 2009 over Mongu
with the corresponding values provided by AERONET.
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Fig. 21. The comparison of (0.44 um) andog (0.44 um) retrieved from POLDER/PARASOL during January—February 2009 over Bani-
zoumbou with the corresponding values provided by AERONET.

AERONET values when (0.44 um)~0.5 or larger. Atthe more pronounced spectral dependence of aerosol properties,
same time, one can identify some notable differences bewhile the aerosol properties retrieved for biomass burning
tween AERONET data and PARASOL retrievals in some tend to have smaller spectral dependence than observed from
single points. Nonetheless, our analysis showed that usuallAERONET. As follows from the sensitivity tests and our gen-
these points correspond to days when AERONET data indieral understanding, this is likely due to very low sensitivity
cate the partial cloudiness during the day as identified by thef satellite observations to the shape of the aerosol size dis-
Smirnov et al. (2000) cloud-screening procedure. Thereforefribution for large particles. Indeed, the contribution of very
such outliers can probably be explained by some sky inhomotarge particles/( > 3 um) into radiation reflected to space is
geneities in one or all PARASOL observed pixels that coversignificantly smaller than from fine particles, while the spec-
an area of 1% 12 km around the AERONET site. It should tral variability of aerosol properties is very sensitive to the
be also noted that comparisons of AERONET observationgresence of such large particles. Therefore, deriving fully
and PARASOL retrieval results showed that the retrievalsadequate spectral dependence of aerosol optical properties
tend to underestimate the spectral dependence of retrievefiiom satellite observations appears to be a harder task than
aerosol properties. The desert dust retrievals tend to showleriving aerosol loading especially over bright land surfaces
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ponsidered in present tes_t. Apart from this relativgly minorTable 8. Abbreviations.
issue, the present analysis showed very encouraging perfor-
mance of the developed algorithm over bright land surfaces,

AERONET  AErosol RObothic NETwork

i.e. in conditions that are considered traditionally the most aps Aerosol Polarimetry Sensor
difficult for retrieval of aerosol from satellites. This resultis  AVHRR Advanced Very High Resolution Radiometer

; f ; ; P BRDF Bidirectional Reflectance Distribution Function
pam.CUIarly encouragmg because the al.gonthm IS deSIQned to BPDF Bidirectional Polarization Distribution Function
provide rather extensive set of the retrieved parameters pro- | gy Least Square Method
viding detailed characterization of the properties of aerosol MERIS Medium Resolution Imaging Spectrometer Instrument
and the underlying surface. Both the results of numerical MISR Multiangle Imaging SpectroRadiometer

L d th btained It f tual PARA MODIS Moderate Resolution Imaging Spectroradiometer
sensitivity tests and the obtained results of actua - MSG Meteosat Second Generation
SOL data inversion suggest that the processing the PARA- PARASOL  Polarization and Anisotropy of Reflectances for Atmospheric
SOL with developed algorithm can provide global products Science coupled with Observations from a Lidar

f total | optical thick d sinal tteri lbed POLDER POLarization and Directionality of the Earth’s Reflectances
of total aerosol optical thickness and singie scattering albedo RSP Research Scanning airborne Polarimeter

rather consistent with the accuracy requirements formulated seviri Spinning Enhanced Visible and InfraRed Imager
by Mishchenko et al. (2004, 2007). However, some limita- TOMS Total Ozone Mapping Spectrometer
tions in accuracy and scope of the aerosol information de-
rived by presented algorithm should be noted. For example,
the present approach does not discriminate between optical
properties of aerosol fine and coarse modes (see Sect. 3.3]Jeviations in an effort to fit observations by theoretical model
Such retrieval assumption is consistent with the resutls ofunder conditions where the amount of observations exceeds
limited tests conducted in scope of this study for POLDER the number of retrieved parameters. The set of observations
type imager. In addition, analyzing the standard deviationsprovided by modern enhanced spectral multi-viewing spec-
oar/z(2) resulted of retrieval tests with synthetic PARASOL tral polarimeters allows applying such optimization. The
observations perturbed of random noise and shown in Table @lgorithm described in this paper was adapted for applying
one can see that errors in the retrieved total aerosol opticalo observations of POLDER/PARASOL imager that regis-
thicknesst (1) (especially for high values of) could ex-  ters reflected atmospheric radiation at six wavelengths in up
ceed the value of 0.04 suggested by Mishchenko et al. (2004p 16 directions. The algorithm fits total radiance and lin-
2007) as APS retrieval uncertainty expected over land forear pollarization observed in all directions in all available
optical thickness of both fine and coarse modes of aerosolspectral channels using generalized multi-t&east Square
At the same time, the results presented here are preliminaryype numerical inversion formulation. That formulation al-
Further testing, verification and tuning of the presented algolows fitting several sets of both observations and a priori data.
rithm are planned. In addition, the efforts are also plannedThe concept complementarily unites advantages of a variety
for the acceleration of the developed algorithm. In the cur-of practical inversion approaches, suctPadllips-Tikhonov-
rent state of the algorithm the implementation of the retrievalTwomeyconstrained inversiorKalman filter Newton-Gauss
for a single PARASOL pixel (5.% 6.2 km) required in av- andLevenberg-Marquarditerations, etc. This methodology
erage of~10s of computer time. This time should be de- has resulted from a multi-year effort at developing inver-
creased in 50 to 100 times, in order to reprocess existing dataion algorithms for retrieving comprehensive aerosol prop-
archive of PARASOL observations in reasonable time frame-erties from AERONET ground-based observations. The al-
work. Such acceleration of the algorithm is expected to begorithm is driven by a large nhumber of unknowns and de-
achieved by reengineering and optimizing the algorithm, forsigned as a retrieval of extended set of parameters affecting
example, using parallel programming and implementing themeasured radiation. For example, over land the algorithm is
retrievals at several computers in parallel. set to retrieve parameters of the land surface reflectance to-
gether with detailed information about aerosol sizes, shape,
absorption and composition (refractive index) and aerosol
7 Conclusions layer elevation.
In addition, the algorithm is developed as simultaneous in-
The paper has discussed in detail a concept for a new staterersion of a large group of pixels within one or several im-
of-the-art algorithm developed for deriving detailed proper- ages. Such, multi-pixel retrieval regime takes advantage of
ties of atmospheric aerosol from satellite observations. Theknown limitations on spatial and temporal variability in both
proposed retrieval does not use precalculated look-up taaerosol and surface properties. Specifically the pixel-to-pixel
bles commonly utilized in satellite retrievals for fitting ob- and/or day-to-day variations of the retrieved parameters are
servations. Instead, a more general approach is applied thanforced to be smooth by additional appropriately set a priori
searches in continuous space for the solutions and optimizesonstraints. This concept is aimed to achieve higher consis-
the statistical properties of the obtained retrieval. Such optency in satellite retrievals because in such an approach the
timization can be achieved by adjusting the structure of thesolution over each single pixel is benefiting from information
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contained in coincident observations over neighboring pix-of unknownsa is composed of vectorg; of eachi-th pixel
els, as well as from information about surface reflectanceas:
(over land) obtained in preceding and consequent observa-

tions over the same pixels. The paper provided detailed de- a (xlf L 1)
scription of full set of formulations necessary for realizing @ (x2: y1; 1)
this concept. a (x1; y2; 11)

. a (x2; y2; 1)

The performance of the developed algorithm has beem = a (e v 1) | (A1)

demonstrated by application to both synthetically generated a (x 2i ylf 1)
and real POLDER/PARASOL observations. First, a series a (x1f yzf )
of sensitivity tests was conducted by applying the algorithm a (xzf yzi 1)

to the synthetic POLDER/PARASOL observations over veg-

etated and desert surfaces. The simulations were designerhe spatial and temporal smoothness constraints are applied
to mimic satellite observations over well-studied AERONET separately along corresponding coordinates, i.e. constraints
network sites in Mongu (Zambia) and Banizoumbou (Niger). of variability overx; — coordinates are applied only to the
The synthetic POLDER/PARASOL signals were perturbedvectors with the same values gfands;; constraints of vari-

by random noise prior to applying the retrieval algorithm. ability over y; — coordinates are applied only to the vectors
Both the conventional pixel-by-pixel and newly suggestedwith the same values of; and# and constraints of vari-
multi-pixel retrieval approaches were tested. The results ofbility overs; — coordinates are applied only to the vectors
the tests showed that the complete set of aerosol parameteyith the same values af andy;. Therefore, ifAx =x; 1 —

can be robustly derived with acceptable accuracy in both situx; = const, Ay = y; .1 — y; = const andAr =11 —; = const,
ations over both vegetated and desert surfaces. The summafyr the vectora defined by Eq. (A1) the corresponding ma-
of the error analysis is provided. In addition, the algorithm trices of first differences are defined as:

was applied to one year of PARASOL observations over both

Mongu and Banizoumbou AERONET sites. The compari- a9l e900 PPN .

son of the derived aerosol properties with available observa® = | g 0 0 0 1-10 0 SS=1000 0 10-1 0 :(A2)
tions by AERONET ground-based sun/sky-radiometers indi- 000000 1-1 000 0010-1
cated encouraging consistency of PARASOL derived optical

thickness and single scattering albedo with those obtained by 10-1 0000 0

AERONET. At the same time, the presented tests and anal- S, = 8(1, g 701 (i%f]l g

ysis of the retrieval from actual PARASOL observation had 000 0010-1

somewhat limited character and were aimed to provide an in-

troduction and some limited illustration of the proposed re- Correspondingly the terms of matriinter can be written in
trieval algorithm. More comprehensive studies for testingthe form of the following array matrices:

and tuning the developed algorithm are planned in future ef-

forts. Such important aspects of algorithm implementation <D O) (°0> ('dﬂ "’H) (00)
s, obp) \oo - dor 1y 00 (A3)
for operational processing as cloud-screening and retrieva S = (o o) (D o) Sy (o o) (Idn |d12) :
time requirements are to be addressed in follow-on studies. 00/ \0D 00 Ty, 1oy
It should be noted that the research efforts described in this la. 0\ (la, 0
paper considerably relied on the accumulated experience and T — ( 0 Idu) ( 0 lo
many aspects of the retrieval, as well as actual computer tools T (Id21 0 ) (ldzz 0
that were inherited from precedent efforts on development L VAN
of currently. operatmg_ AERONET retrieval and PARASOL where the smoothness matfixis defined as:
aerosol retrieval algorithms.
_(dudi2\ _ o1 _ (1-1
B <d21d22 =S5={_11) (A%)
Appendix A where$; is the matrix of first differences. The matriy; is
a diagonal matrix of dimensioNy x Na (N3 is dlmenS|on of
Matrices of multi-pixel smoothness constraints corresponding vectar;) with the all elements on the diago-
nal equal to corresponding elemeft of matrixD, i.e.:
In order to determine the index of pixels we will follow first la, = dij | (Nax No- (A5)

the changes of; — coordinatesi(= 1, ..., N,) thany; — coor-
dinates{=1, ...,N,) ands; —time coordinates ¢ 1, ..., N;). The definition ofRiner can be generalized for situations with
For the simple case wheM, = N, = N; =2, the total vector  a larger number of pixels. For example, for the case similar
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to above but fotv, = N, =N, =3, Eq. (A3) are transformed generally significantly smaller than all the element€2gfier

to the following: and thusRinter is essentially a sparse matrix.

DO O 000 000 It s_hould be not_ed t_hat aII_ of _the above fgrmulanons

0D 0 000 000 are given for the idealized situation wherex; =x;;1 —

00D 000 000 x; =const,Ay; =y;+1—y; =const,At; =t;41 —1t; =const and
Ny =N, =N;. In reality, none of these conditions are as-

Is 8 8 8 g g 8 8 8 8 . (A6) sured and the algorithm should be able to handle the more
xoe ’ general situation wheraAx; # Ay; # At; #const as well as
000 00D 000 !
000 000 Do g Ny # N, # N;. In such general situations, the above equa-
000 000 0D O tions describing the matri®iter loose some of their simplic-
000 000 00D ity and transparency. Nonetheless, the general sparse struc-
ture of the matrix®inier is always conserved. Also, even the
Loy Vs lasa 000 000 equations loose some transparency, the realization of inter-
(Id21 l a5, |d23) (0 00 000 pixel smoothness constrainner is always rather simple
L, | d32 das 000 000 on the algorithmic level and the most general case has been
ldyy ldyo ldt 000 - . - .
s, = 0 0 o |di mZ Idz 000 : realized in the algorithm described here.
i 000 ldgy lday ldas 000
000 000 Ly Vo lis
000 000 Ly oy s Appendix B
000 000 [P PO P
Constraining multiple-pixel retrieval by available
lag, O O la, O O lgs O O . LS : : .
0 lg, O 0 lg, O 0 lg, O information in the neighborhood of the inverted pixel
0 0 lgy 0 0 lgp, 0 0 lgy group
. lgy O O lgy 0 O lgs O O
S S = 0 lgy O 0 la, O 0l O [ f. If the values ofa}y, parameters in the pixels neighboring
0 Oleny 0 0 le) A 00 los h d pixel Kk then the basic syst
lg, 0 0 lg, 0 0 lg, 0 O the inverted pixel group are known, en the basic system
0 lg, O 0 lg, O 0 lgy O Eg. (32) can be complemented by the additional equations:
0 0 lgy 0 0 lg 0 0 lggy
, , . _ ff=f@+Af
where the_dlagona_l matriceg,; are defined according _to 0; yi=Swyia+ A(Aa)
Eqg. (A5) with the differences that the smoothness mdxix x cdge = Sv.edged + A (Ava) | (B1)

is generated as the base of the matrix of f8stor second

. a+ A(Aya
differencesS, for N, =N, =N, =3 as: V edge = Sy.edge (8ya)

t.edge = Siedgea + A (A; a)

D=5'S = _11 21 _Ol . or (A7) wheresS; edge Sy.edge S1.edge@rl® maitrices containing the co-

0 -1 1 efficients defining then-th finite differences of parameters
a describing the properties of the inverted pixel group with

1 -2 1 a;.. These matrices can be trivially derived frdgy ma-

D= Sg S,=1-24-2}|. trices (cf. Eq. 25b). For example, in the simple case where
1 -2 1 N, =3,N,=1andN; =1, one can write:

The two examples given above show a clear pattern in defin- a (x1; y1; 11) aj

ing the matrixinter for Ny = Ny = N; =2 and 3 that can eas- a (x2; y1; t1) a;

ily be generalized to the situation with higher dimensions. It a (x3; y1; 11) aj

can be observed from this pattern tiS3hr always retains @} ciore a (x4 y1; 1) aa

the sparse array structure. Specifically, the dimension of th a = |la@s yt1) | = |as|. (B2)

matrix inter iS: @hfier a (xe; y1; 1) ag

a (x7; yi; t a
(Na x Ny x Ny x N;) x (Na x Ny x Ny x N;), (A8) u Ex;; ii’ IB ag
while the number of non-zero elements does not exceed the a (xg; y1; 1) ag

following value: If Eq. (B1) uses the second differences, continuity with

(Na x Ny x Ny x N;) x 2xm+ 1), (A9)  @feroreCAN be expressed using the following formulations:

wherem is the order of the differences/derivatives used for {o; =a} —2a} +as+ M (B3)
0*

inter-pixel smoothing. Obviously, the value of Eq. (A9) is »=al —2as +as + Ay’
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In matrix form this equation can be expressed as: Based on the additional equations shown in Eq. (B1), the
of 01-2 1 00\ /a* A consFr.aining of the.mL_JIti-pier system solution by additioqal
(Oi) — <0 01 .21 0)( b‘elfore> + <Al)‘ (B4) conditions of continuity of aerosol and surface properties
2 2 with values in the neighborhood of the inverted pixel group
Then it can be transformed as can be implemented by adding extra terms in the Eq. (20).
o 012 100 AL The guadratic formb (ap),. its grgdientV\IJ (qp) andFi;hgr
# -
<0%> = <0 01 )abefore + (_2 1 0)“ + (A2> (B5) Matrix Ap formulated for inversion of combined multi-pixel

Eqg. (26) should be modified as follows:

and one can write:
Npixels

1 T
st,=Swa+ A(Aya), (B6) WV (aP) = Z Wi (aP) | + > (a®)" RQinera®  (B15)
i=1
where
. 01-2\ , 100 + Wedge (aP),
Sy = — 00 1 abeforeandsxsb = -210/) (B7)
where
Analogously, the continuity witla};. can be expressed as T
follows: 2 Wedge (aP) = (Sedgeap - Snge) <Sedgeap - s;dge> (B16)
O =a5 — 2ag + a3 + A3
{ 0% =as — 2a7 + a§7 + Ag -’ (B8) V)fi/z Sy edge in/i Sx,edge
. . . . _ Sedge = | ¥3/° Sy.edge | ANdsiage = Vyl/zsy,edge .(B17)
In matrix form this equation can be written as: v?'S, eige V% 5, edge
0% 01-2 100 a A3 ! . . .
3| — .
(OZ) = (0 01 -21 0) (ather) + <A4)' (B9) TheFisher MatrixAp is modified as:
Then it can be transformed as A(l),p AO 8
<0§) (0 1_2> + < 10 O) * +<A3> (B10) Ap = 2P + Rinter + Ledge|. (B18)
: ] = a A4
0, 001 —210) "aner Ag 0 0 ..Axp
and one can write whereeqgeis equal to the edge smoothing inter-pixel matrix
s¥a=Siaa + A (A a), (B11) determined as
where Qedge = S)Yc-,edgesx,EUQe"" SyT,edgeS)',Edge"' SZ:edgeSt,Edge (B19)
B . D e g
S = 100 ands® , = — 01-2 e (B12) and the gradienv ¥ (aP) is given by
’ -210 s 00 1 after 0
V ¥y (ay)
Finally, using Egs. (30) and (34), we can defifggeand ¢y (a”) = V U3 (a3) - Qinerd® + V Wegge (a) | . (B20)
S; edgeused in Eq. (B1) as follows: o
V Uy (ay)
sy Scb
sﬁ,edge = (sf;t;) andS; edge = (Sx,a> . (B13) where
Py — gl p_ g%
Thus, the derivations shown by Egs. (B1)—(B11) demonstrate’ Vedge (af) = edge (Se“ge“ sedge)' (B21)

t_he prmmple of dgfmmg the copstra!nts that enforpes the €Ot should be noted that the illustrative derivations shown
tinuity of the retrieved properties with those obtained for the .

. . : ) . in Egs. (B3)-(B12) are given for the idealized situation
pixels neighboring the inverted pixel group. Analogously the _ _ o .

. . N - where Ax; =x; 41— x; =const andN, =N;=1. In reality,
constraints can be included for continuity over coordinates i . 4

. . the edge continuity can be applied over all three coordinates

and¢. In the general case of a large inverted pixel group one d

. o x,y,tand the algorithm should be enabled to handle the most

can use rather large numbers of equations similar to those

of Egs. (B3) and (B8). The maximum number of such edgegerleral situation whea.x; # Ay; 7& Ati_;éconst as well as
S . A ) N: # Ny # N;. In such general situations, the above equa-
continuity equations can be estimated as:

tions describing the matriReqge loose their simplicity and
Nax (N x Ny + Ny x Ni + Ny x N;) x (2 x m), (B14) transparency. Nonetheless, the general sparse structure of

_ _ o the matrixQeqge iS always conserved. Also, even the equa-
wherem is the order of the differences/derivatives used for tions loose some transparency, the realization of inter-pixe|

inter-pixel smoothing. smoothness edge constraifigigeis always rather simple on
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the algorithmic level and it takes negligible computer time to
implement.

The values of the Lagrange parametgrsy, andy; used
for applying the “edge” inter-pixel constraints are exactly

for enhanced retrieval of aerosol properties 1013

These relationships can be easily generalized. Let us as-
sume that we have defined tRisher matrixA®Y) andgra-
dient V@™ for deriving N different parameters;. Then
it was decided (or discovered) that- 1 of those initially

the same as those used in Sect. 4.2.1 describing inter-pixaifferent N parameters represent the same single parameter,
smoothness constraints application in the simultaneous ink.e.a; =qa;, (k=1, ...,n +1). In this situation, the newisher

version of a group of pixels.

matrix A= andgradientv W ¥~ can be obtained as fol-
lows:

Appendix C AV =AY = 3 AN — non-diagonal elements(C8)
k=1,..,,n
Assumption of inter-pixels constant parameters in _ )
the retrieval AV N =Y Y~ AL | —diagonal elements(C9)
p=L1.,n \k=1,...n
The general idea of this technique of imposing an extra assyy ¢ ®™V-n) _— Z \V/ \I,;kN) (C10)
sumption of equal parameters can be demonstrated using the k=1..n

following simple illustration. Assuming, Eq. (17) is repre-
sented by the following simple system

Ua = f*+ A f, (C1)
correspondingNormal system\a = VW (a) is defined as
Uf'ua = UT f*. (C2)

If two parametersi; anday are retrieved from one single
observationf;, then one can write:

a1
az |’

For such situation thEisher matrixA andgradientvVV¥ (a)

are

N3=WU=( )
ug ff)

uz fi )

If only it is assumed that; =a» and only one parameter re-

U= (w2 f*= () a= ( (C3)

u% Ui u
U Uy u%

’

(C4)

trieved, then the definitions given by Eq. (C3) should be re-

placed by:

U= 1+ u2); f*= (1) a = (a).

Correspondingly, th&isher matrixA andgradient V¥ (a)
become

(C5)

AD = UTU = (u1 + up)?; (C6)
Ve = U =+ ou) fr

Comparing Egs. (C4) and (C5) one can note the following
trivial relation betweeln @, V@D andA®@, vy @:

A® = (AR +AR) + (AT +AD): €

ved = ve? + ved.
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The resulting matrixA¥—" has reduced dimensiomV(—
n) x (N —n).

Thus, Egs. (C8)—(C10) allow significant flexibility in de-
signing the retrieval. The option is fully implemented in the
algorithm presented here.
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