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Development of Low-Voltage Load Models
for the Residential Load Sector

Adam J. Collin, Member, IEEE, George Tsagarakis, Student Member, IEEE, Aristides E. Kiprakis, Member, IEEE,
and Stephen McLaughlin, Fellow, IEEE

Abstract—A bottom-up modeling approach is presented that
uses a Markov chain Monte Carlo (MCMC) method to develop
demand profiles. The demand profiles are combined with the
electrical characteristics of the appliance to create detailed
time-varying models of residential loads suitable for the analysis
of smart grid applications and low-voltage (LV) demand-side man-
agement. The results obtained demonstrate significant temporal
variations in the electrical characteristics of LV customers that are
not captured by existing load profile or load model development
approaches. The software developed within this work is made
freely available for use by the community.

Index Terms—Load modelling, low-voltage (LV) network,
Markov processes, power demand, residential load sector.

I. INTRODUCTION

T HE influence of load characteristics on the operation and
performance of electrical power systems is widely recog-

nized. Accordingly, significant effort has been expended in de-
veloping load models for a range of power system studies, e.g.,
[1]–[3]. However, since the last major review of load models
in 1995 [1], there have been many changes in the operation of
the electrical power system and in the characteristics of loads,
resulting in a need to update existing load models and produce
new ones. This is reflected by a renewed interest in both industry
and academia [4].
One of the main areas where this is particularly evident is

in the modelling of the residential customers connected to the
low-voltage (LV) distribution network. Traditionally, these net-
works and loads would have been represented by bulk aggre-
gate load models for the analysis of medium and high-voltage
networks, e.g., [2], [5], [6], but there is a need for better repre-
sentation of these networks, and the connected load, to support
the growing number of research areas associated with the LV
networks, e.g., demand-side management (DSM) and electric
vehicle integration.
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Recent research on the modelling of residential customers has
focused on representing the influence of user behavior charac-
teristics on energy use patterns, e.g., [7]–[11], and the physical
components within the aggregate load, e.g., [12]–[15]. How-
ever, the correct representation of load in power system studies
requires both of these components: the load profile, which spec-
ifies how the power demand of the modelled load varies across
the specified time, and the electrical load model, which speci-
fies how the electrical characteristics of the load, i.e., how the
power is drawn from the supply system, change with respect
to time. Although the development of residential customer load
profiles and models of the individual load components are rela-
tively well represented in existing literature, there is still a lack
of publicly available load models which bring these together.
In this paper, the two research streams are combined to

present a methodology for developing LV load models of
the residential load sector. As the user behavior drives the
electrical power demand, the modelling philosophy starts from
the behavior of individual users which are represented using
a Markov chain Monte Carlo (MCMC) modelling approach.
The user activity profiles are then converted into active and
reactive power demand profiles and the corresponding load
models by using a large database of load statistics and a library
of detailed load models of the individual load components
which have been developed in previous research [16]–[20]. The
methodology is implemented using the U.K. residential load
sector as an example, and the various stages of the modelling
process are validated against available U.K. statistics.
The main contribution of this paper is the development of

LV load models which are able to retain the stochastic varia-
tions which characterize the residential load sector. The load
models are able to provide the expected temporal variations in
the load profile but also provide more detailed information on
the short-term and long-term variations of the electrical char-
acteristics of the load than currently available load models of
the residential load sector. Although any available load model
form of the individual load components may be incorporated
in the methodology, widely used static load model forms are
used in this paper to illustrate and compare the temporal changes
in load characteristics for three distinguishing system-loading
conditions: maximum, minimum, and year average demand. In-
cluding these variations will allow for a more accurate assess-
ment of the performance of LV networks, which is also demon-
strated in this paper.
The load modeling methodology is described in Section II

and is illustrated in Section III by the U.K. residential load sector
example, although the approach is more widely applicable. The
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Fig. 1. Load model development work flow.

developed load models are used to highlight differences in ac-
tive and reactive power flows in Section IV. The conclusions are
discussed in Section V. The developed software is made freely
available for use by the community at [21].

II. LOAD-MODEL DEVELOPMENT METHODOLOGY

In the residential load sector, power demand is driven by user
behavior. The advent of “smartly driven” appliances may alter
the time of use of certain loads, but the habitual patterns of
the user will still drive the main periods of activity within the
dwelling. For that reason, themodelling philosophy in this paper
starts from consideration of the user activities.
The power demand is intrinsically connected to a large

number of factors which are typically used when defining user
groups for modeling purposes, including: the characteristics
of the user [7], [9], the number of household (HH) occupants
[8], [11], the building type [9], and the time of year [9]. In
the research presented here, each household is defined by the
number of occupants in the household, which is hereafter
referred to as the household size, and the user type of each
occupant. Each household occupant is labeled as “working” or
“not working,” with children classified as “working” occupants.
Therefore, there are possible occupant combinations for
each household size, e.g., household size one can have zero
or one working occupant. More detailed user groups may be
formed in future, e.g., based on the age of occupants, if required
to analyze specific network scenarios.
The modeling approach developed in this paper is divided

into three stages:
1) user activity modeling;
2) conversion of user activities to electrical appliance use;
3) aggregation of the electrical appliances to build household
power demand profiles and load models.

These stages are presented in Fig. 1, which displays the infor-
mation flows in the modeling framework. The input variables
are configured by user-defined parameters which determine the
aggregate size, the aggregate composition, the day of the week,
and the month of the year. The simulation time step for user ac-
tivity modelling is 10 min, due to the available input data, and
is reduced to 1 min during the conversion to power demand to
more accurately capture the short-term variations in load use.

TABLE I
USER ACTIVITY STATE DEFINITIONS

A. User Activity Input Data

The most prominent publicly available data for user activity
information is in Time Use Surveys (TUS). The U.K. TUS
(available from [22]) was used as the main source of input data
for modeling the user activities in this study. Similar studies
are available for a large number of countries around the world
(an exhaustive TUS bibliography is available in [23]), to which
the method described in this paper can be applied.

B. User Activity Modelling

To simplify the analysis, 13 user activity states are defined.
The activity states include the main user activities which may
result in electrical appliance use and also acknowledges the
building occupancy, which is vital for the modelling of lighting
and heating loads. As electrical appliances may be shared within
multiple occupancy households, this functionality is also in-
cluded in the relevant activity states. Table I contains further
information on the defined user activity states.
Due to the high variability, probabilistic approaches are nor-

mally applied to model user behavior. For example: the work
in [7] utilizes probabilistic functions, while a Markov chain
(MC) approach is implemented in [10], and [8] combines the
two approaches. A thorough review of user-behavior modeling
research is available in [24]. A combined MCMC approach is
used to synthesize the user activity profiles in this paper.
The MC transition probabilities are calculated by

checking all transitions from state between time and
and the total number of transitions between state

and state between time and . The transition probability
calculation is given by

(1)

where is the transition probability from state to state
(which can include ) between time and , is the
number of transitions from state to state between and ,

is the total number of transitions from state between and
, and is the total number of activity states. In total, there

are 143 transition matrices each containing 13 13 elements
(for each household size and user type), i.e., one matrix for each
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Fig. 2. Device sharing implementation example for a two-person household
with two working occupants.

time step transition. The user activity state at is used to
define the probability distribution of initial conditions .
For multiple occupancy households, there is a probability

that certain appliances will be used by more than one occupant
at any given time. To calculate the device sharing probability,
empirical data from the U.K. TUS “with” variable is analyzed
to develop a probabilistic function. This variable has the fol-
lowing states: alone, with another person (household member),
and with another person (not household member). This is a suit-
able indicator for device sharing, as all electrical appliances
which can be shared will utilize at least one of the user’s senses
and are not expected to be used within the same room at the same
time. Therefore, if two or more users have the same activity state
and “with” variables at the same time step, it is assumed that the
electrical appliance is shared.
The device sharing probability is determined by com-

paring all household users activity state and “with” variables at
every time step. The is calculated by the ratio of users
having the same activity and “with” variable to the
users who have only the same activity , shown as follows:

(2)

where counter represents the number of occur-
rences of activity at time for household members of house-
hold size , is the number of occurrences of
activity at time which have the same “with” variable, and

is sharing probability of members of house-
hold size sharing activity at time .
This functionality is included in the modelling approach by

including an additional stage after the user activity time series’
have been synthesized. An algorithm identifies every time pe-
riod when multiple users have the same activity and compares
the against a randomly generated uniform number .
This is illustrated in Fig. 2 for a two-person household. The ac-
tivity state of the secondary user is set to 1 if the electrical

TABLE II
POLYNOMIAL LOAD MODEL COEFFICIENTS [16], [19]

device is shared, thus maintaining the correct household occu-
pancy characteristics:

(3)

where is the predetermined sharing probability
for activity at time and is the random number.

C. Conversion to Electrical Power Demand

In the next stage of the modelling process, the synthesized
user activity times series’ are converted into electrical loads
using a database containing device ownership, usage, operating
power range and standby power statistics [20]. The database
also includes representation of the different operating phases
of appliances, e.g., change in power demand during washing
machine operating cycle, which are maintained within the de-
veloped time-varying load models (with full details available in
[20]). These data are supplemented with the typical displace-
ment power factor value and the electrical load model, which
are presented in Table II in the following section.
The majority of the user activity states defined in Table I have

a direct conversion to an electrical appliance . For such activ-
ities, only the device ownership and statistical distributions
of operating power are required to convert the activity to elec-
trical power demand. However, for the activities which may or
may not require an electrical appliance, additional time of use
statistics are required. The user activity state at time is com-
bined with and probabilistic functions of use of elec-
trical appliance associated with user activity to convert to a
power demand profile for appliance

(4)

where is a random value for power of appliance (in watts),
with a probability distribution as described in [20].
The device use duration is selected from typical appliance

usage profiles and requires the simulation time step to be con-
verted to 1 min. This allows for the correct representation of
loads with use duration less than 10 min and is implemented
by randomly allocating the device start time within the 10-min
period. For certain appliances, the is updated after use to
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ensure that appliance usage maintains the expected consump-
tion characteristics. The total household demand is obtained by
summing the demand of all household appliances:

(5)

(6)

where and are the household active and (funda-
mental) reactive power demand, and is the active
power demand and displacement power factor of appliance
and is the total number of appliances.
Certain loads in the residential load sector should be mod-

eled using “physical” models, i.e. using environmental variables
as input parameters [15]. In the UK, the penetration of electric
heating, ventilation and air-conditioning (HVAC) systems is rel-
atively low (around 7% [25]) so the main seasonal variations are
a result of the lighting load, i.e., in response to seasonal changes
in solar irradiance . The physically based lighting model de-
veloped in [26] has been implemented in theMATLAB environ-
ment and integrated with the code developed in this paper. The
software can be extended in future work to include HVAC sys-
tems.

D. Electrical Load Model

For power system analysis, the developed load profiles must
be converted into a recognized load model form. Although any
model form can be used within the load modeling methodology,
only the active and reactive power demand characteristics, as
represented by the widely used exponential (7) and polyno-
mial/ZIP (8) load model forms, are used to illustrate the tem-
poral variations in load characteristics of the models developed
in this paper. All models are developed in ZIP form (as they
better represent modern nonlinear loads), but the characteristics
are then converted to the exponential model form using [4]

(7)

(8)

(9)

for a clearer description of the electrical characteristics, where
is the active power demand at supply voltage , is the rated
active power demand at nominal supply voltage , is the
exponential model active power coefficient and , and
are the constant impedance, constant current and constant power
coefficients of the polynomial model. Similar expressions exist
for reactive power.
To develop the household load model, a component-based

load modelling approach is implemented within the method-
ology. This simplifies the modelling process by reducing the
large number of loads in the residential sector to only a few load
components by grouping loads with similar characteristics. As
outlined in [16], the residential loads are grouped into the fol-
lowing components:

1) power electronics: mainly consumer electronics (CE) and
ICT loads. Variations exist depending on the power factor
correction (PFC) circuit included within the switch-mode
power supply (SMPS)

2) resistive loads: heating elements
3) lighting: including general incandescent lamps (GIL) and
compact fluorescent lamps (CFLs)

4) directly connected motors: used in white appliances and
water pumps. Variations exist based on the motor loading
characteristics and inclusion of a start/run capacitor

5) drive controlled motors: often used in HVAC systems.
The models of the individual load components are given in

Table II, with further details provided in [16] and [19].
From the data in Table II, the active power coefficients of

lighting loads are predominantly constant current load types,
while motor loads and power electronics load are approximately
constant power load types. The reactive power coefficients of
the main reactive load (induction motors) tend towards constant
impedance, while capacitive CFLs are constant current. How-
ever, it is the combination of these loads which will determine
the overall electrical characteristics of the household. At any
time instance, the load models of the individual components are
aggregated to produce a load model for the entire household
using a weighted summation, given, respectively, by

(10)

(11)

where , , , , , and are the real and
reactive components of the aggregate household ZIP model,
is the total number of household appliances, is the appliance
index, is the power demand of appliance , is the total
household power demand, , , , , , and and

are the real and reactive ZIP model components and dis-
placement power factor of appliance .

E. Network Simulation

The load profiles and load models of the individual load
models can be directly implemented for analysis of LV net-
works. Demographic statistics, e.g., [27], should be used to
select the correct proportion of different household size and
user types within the aggregate.

III. UK RESIDENTIAL LOAD SECTOR

Here, the proposed load modelling methodology is applied
to the U.K. residential load sector in order to validate the func-
tionality of the model and to highlight the temporal variations
in the load model characteristics. Although the modelling ap-
proach is able to reproduce the stochastic variations which char-
acterize individual households, the functionality of the model
developed in this paper is verified by checking the consumption
characteristics against U.K. data, which are only available for a
U.K.-wide aggregation. Therefore, a sample size of 10 000 in-
dividual household was selected and the aggregate composition
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TABLE III
U.K. POPULATION STATISTICS AS PERCENTAGE [27]

input to the model was configured to represent the overall UK
statistics, which are shown in Table III.

A. User Activity Modelling

The U.K. TUS data was processed to obtain a representative
set of input data of user activity states for every household size
and user-type combination. Although not considered in detail
in this paper, the weekday and weekend data was separated to
create distinct user behavioral models for each case. The largest
household size considered in the analysis is four occupants, re-
sulting in a total of 14 different household size and user com-
binations. This covers 95% of the U.K. population [27] and is
suitable for representing the overall characteristics of the total
population.
The U.K. TUS data was used to calculate the initial condition

probabilities, MC transition matrices, and device sharing prob-
abilities, which are implemented in MATLAB. The transition
path is determined by comparing a random number generated
from a set of random numbers, , against the transi-
tion probabilities given by (1) for each time step. The output is
a times-series of user activities with 10-min resolution.
A correlation coefficient is used to assess the accuracy of the

developed model by comparing the simulated activity time se-
ries with original TUS data for all household sizes. One example
is presented in Fig. 3(a)), where it is shown that the MCMC user
activity model is able to accurately replicate the behavioral char-
acteristics for the cooking activity. The correlation coefficient
value is greater than 0.99 for all user types and activity states,
confirming the accuracy of the developed MCMC user activity
model. is defined as

(12)

where and are the simulated and TUS data, and are
the variance of and , is the covariance between and
, and are the activity and time index, and and are the

mean value of and .

B. Conversion to Electrical Appliance Use

Fig. 3 illustrates the conversion of the “cooking” activity
state to electrical power demand for the aggregate group of
customers. The discrete probability functions of appliance
use are shown below the user behavior. For kettles and
microwaves, the power demand is assumed constant during
operation and selected from a uniform distribution (intervals
are defined as: kettle [2.0, 3.0] kW and microwave [0.6, 1.2]
kW, with device duration selected from a uniform distribution
between [2.0, 5.0] min. For electric ovens, the power demand
will vary based on the device duty cycle (5-min cycle)

Fig. 3. Conversion of cooking user activity to power demand.

Fig. 4. Comparison between load curve from the developed model and data in
[29] for maximum loading conditions.

within typical power ranges [0.0, 2.0] kW, with device duration
selected from a uniform distribution between [30, 90] min. The
fitting values for the cooking consumption are
and , which indicates that the developed model
is able to reproduce the expected demand.

C. Conversion to Electrical Power Demand

To thoroughly assess this stage in the load model develop-
ment process, the two prominent load features are verified:
the load profile shape and the contribution of each load to the
consumption. Fig. 4 compares the normalized aggregate output
for 10 000 household simulated profiles against the normalized
typical U.K. residential demand profile presented in [29] for
weekday winter loading conditions. This also includes the
simulated load profiles of the months which comprise winter
(Oct.–Feb. [29]). A comparison of the two curves confirms the
accuracy of the model, with a difference in daily consumption
of 2.2%, and . The developed
model has the same temporal characteristics with the measured
data as the morning and evening peaks, and night and midday
plateaux, coincide in time and magnitude.
Further validation of the model is achieved by calculating

the daily energy consumption of the individual loads within the
simulated aggregate and comparing with U.K.-wide statistics
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Fig. 5. Comparison between proposed model and data in [25] for load contri-
bution to daily U.K. residential energy consumption.

in [25]. These results are presented for the average household
daily energy consumption in Fig. 5. The maximum absolute per-
centage error is less than 5%, which further confirms the ability
of the presented modelling approach to represent the character-
istics of the residential load sector.

D. Electrical Load Model

The load profiles in Fig. 4 do not contain information on the
electrical characteristics of the load. The corresponding load
model values are obtained using the load profile data of the in-
dividual households and the load model aggregation procedure
(10) and (11) to create a separate ZIP model for each of the
10 000 households. The developed ZIP models are converted
to the exponential model form for a clearer description of the
electrical characteristics. Fig. 6 displays the mean and standard
deviation values of all simulated households for the three con-
sidered loading conditions, showing the evolution of the active
and reactive power parameters.
Due to the physical significance of the load model, there is

a clear correlation between the mean value of the parameter
and the active power demand profile. The value of is lowest
during the night and tends towards to constant real power char-
acteristics. This is because most loads are off, except the cold
loads which have approximately constant real power character-
istics (see Table II). The higher values coincide with the
peaks in the power demand profile and lie between constant
power and constant current load types. This is a result of the
aggregate effect of the large number of, relatively, lower power
lighting (constant current) and power electronics loads (constant
power) with a smaller number of higher rated power resistive
loads. Comparing the winter, summer, and year average values,
the effect of increased lighting load is clearly visible and is man-
ifested by the increased value of .
There is very little difference in the standard deviation of the

load model parameter for different loading conditions. The stan-
dard deviation will increase slightly during periods of high de-
mand, as a result of more loads being used. However, this effect
is less pronounced than in the mean value, as a result of load
aggregation. The value of standard deviation is generally com-
parable to the mean value of the load model coefficient which
highlights the large variation between households.

Fig. 6. Comparison between load model coefficients for characteristic loading
conditions.

TABLE IV
EXISTING RESIDENTIAL LOAD SECTOR MODELS

For the majority of the 24-h period, the coefficient is domi-
nated by motor loads and will tend towards constant impedance
load type. However, as more loads are used within the house-
hold, the value of will reduce as the contribution from other
loads with lower exponent values increases. The seasonal differ-
ence is negligible, but it is possible that this characteristic will
change as capacitive CFLs replace GILs.
The contribution of the research presented in this paper is

highlighted by comparing with existing residential load models,
such as those presented in Table IV. Although these models are
a valuable resource, they were developed from measurements
at the MV level, which are not widely available. However, as
demonstrated, the models presented in this paper can be ob-
tained using only publicly available datasets.
As previous research has focused on theMV level, the models

include the influence of MV/LV network components. While
this will provide accurate MV load models, they are not suit-
able for analysis of LV networks. The values of the developed
load models are generally lower than the values of the existing
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models. This can be attributed to the aggregation process in-
herent in the MV models, which will smooth out variations be-
tween individual households and the effect of the network, es-
pecially distribution transformers.

IV. NETWORK ANALYSIS

A. U.K. LV Network

A generic U.K. LV network is modelled as supplied by a
single 500-kVA, 11/0-4 kV step-down transformer supplying
384 residential customers through four feeders. The network is
balanced with 32 customers per phase per feeder. Each feeder
consists of 300-m three-phase cable, with customers evenly dis-
tributed along its length, i.e., at 94-m intervals, and connected
by 30 m of single-phase service cable to the three-phase supply.
Further details of the network are available in [30].

B. Simulation Approach

In the U.K., the LV network operates with a nominal voltage
of 230/400 V with a tolerance range of . As the
actual voltage magnitude will vary based on the conditions of
the LV network and the external network, the external network
is configured to give three characteristic voltage conditions:

transformer primary winding voltage at 1.0 p.u.;

last residential customer is not lower than
0.94 p.u.;

transformer primary winding voltage set to
1.1 p.u.

These scenarios are included in the network simulation by
setting the intial voltage on the 11-kV side of the 11/0.4-kV
transformer to 1.0 and 1.1 p.u. for the nominal and maximum
voltage conditions; for the minimum voltage condition, the ini-
tial voltage is set to ensure that the minimum voltage of the last
customer is not lower than 0.94 p.u. for the time of peak de-
mand. From the initial values, the voltage profile will change in
response to the demand of the connected load.
For each voltage setting, loads representing the winter

residential loading conditions (January weekday) are con-
nected. The loads have been randomly synthesized using the
methodology described in previous sections so as to be statis-
tically representative of the U.K. average. The network results
obtained using the load models developed in this paper are
compared against those using constant (voltage independent)
PQ load, which is still the most widely used static load model
[4], and the constant load model, which is a common
assumption when modelling the residential load sector if
more detailed load information is not available. Both constant
load models are implemented with a power factor of 0.95
(inductive).

C. Network Analysis Results and Discussion

As the supply voltage magnitude changes, the power demand
of the constant PQ loads will not change. There will be some
change in the power as seen from the bulk supply point as a
result of changing losses within the network, but the effect of
this is small compared to the total load demand. However, the

Fig. 7. Aggregate power demand for detailed model and constant PQ model
for maximum voltage conditions.

Fig. 8. Comparison between the calculated active power (top) and displace-
ment power factor (bottom) for the simulated network using the developed, the
PQ and the models.

power demand of the detailed load models will change. As a
general rule, the power demand will increase with an increase
in supply voltage magnitude and vice versa. This is illustrated
for maximum voltage conditions in Fig. 7.
In Fig. 7, the profile of the power supplied to the LV net-

work is very similar to the profile of the model. This is a
further validation of the electrical characteristics of the devel-
oped load model. It is shown that even for this small network,
the difference in calculated daily energy and instantaneous peak
power is quite significant when using the voltage dependent load
models, compared to the PQ model. At peak demand, the differ-
ence between the detailed model and the constant PQ and
models is around 10% and 2%, respectively. The largest dif-
ference is observed during the morning peak, where the differ-
ence between the detailed model and the constant PQ and
models is 12% and 3%. This also confirms that PQ models are
inadequate for analysis of LV networks.
This is further demonstrated by themean value results of mul-

tiple simulations summarized in Fig. 8. These values are calcu-
lated using the constant PQ load as the reference, therefore a
negative value indicates that the values are lower than the those
of the constant PQ load. Although there is no significant dif-
ference in the calculated mean and peak active power between
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the voltage dependent models, the power factor of the devel-
oped model is varying widely; for all voltage settings it reaches
a peak value close to 0.98 (lag) due to the capacitive lighting and
the electronic loads dominant during the evening hours, and has
a mean value that ranges from 0.9 (lag) for to 0.92 (lag)
for , as an effect of the inductive base load.

V. CONCLUSION

In order to support the growing interest in LV networks,
increased levels of modeling detail for all components within
the system are required. The work presented in this paper
contributes to the research area by presenting a load modeling
methodology which is able to reproduce both the load profile
and the detailed electrical characteristics of LV residential
customers. As such, the modeling approach is able to represent
the changes in the load characteristics due to system or user be-
havior modifications. These characteristics make it particularly
applicable to DSM and smart grid studies.
The methodology is illustrated by a case study of the U.K.

residential sector using U.K. TUS data to demonstrate the ef-
fects of supply voltage magnitude on power demand. However,
it should be noted that themodel is generic and can be developed
using appropriate TUS data [23] to generate synthesized de-
mand profiles and load models with any specific statistical and
qualitative characteristics. The U.K. case study highlighted the
temporal distribution of load parameters, which were displayed
using simple static load models widely used in both static and
dynamic power system analysis [4]. The presented load param-
eters are able to capture the short-term variations in load char-
acteristics which are hard to determine using traditional load
modeling techniques.
As the approach is divided into discrete stages, this allows for

themodification of user behavior (e.g., deferral of appliances for
peak-shaving) and addition (e.g., electric vehicles) or substitu-
tion (e.g., LED in place of incandescent and CFL lighting) of
loads to be easily integrated within the modelling framework.
Furthermore, the load model can be replaced by the more de-
tailed circuit based form to assess network power quality in
response to the previously mentioned changes. This flexibility
can be exploited in future research to investigate the impact of
specific DSM scenarios on the operation and performance of
wide-scale electrical power systems.
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