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Abstract: Visible Light Communications (VLC) is a promising new technology which could 

offer higher data transmission rates than existing broadband RF/microwave wireless 

technologies. In this paper, we show that a blend of semiconducting polymers can be used to 

make a broadband, balanced color converter with a very high modulation bandwidth to 

replace commercial phosphors in hybrid LEDs for visible light communications. The 

resulting color converter exploits partial Förster energy transfer in a blend of the highly 

fluorescent green emitter BBEHP-PPV and orange-red emitting MEH-PPV. We quantify the 

efficiency of the photoinduced energy transfer from BBEHP-PPV to MEH-PPV, and 

demonstrate modulation bandwidths (electrical-electrical) of ~ 200 MHz, which are 40 times 

higher than commercially available phosphor LEDs. Furthermore, the VLC data rate 

achieved with this blend using On-Off Keying (OOK) is many times (~ 35) higher than that 

measured with a commercially available phosphor color converter.  
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Increasing user demand for fast wireless data communications is placing pressure on the 

existing broadband RF/microwave wireless technologies, which have limited bandwidth 

(BW) and a congested spectrum. The application of advanced materials for solid-state 

lighting may offer a solution to this problem through the emergent field of Visible Light 
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Communications (VLC), which uses LEDs for both illumination and wireless data transfer.
1-4

 

The main motivations for this technology include the increasing use and performance of 

solid-state lighting, its potential for a dual use as a high data rate transmitter, and the ability 

to access 100s THz of additional unregulated bandwidth for wireless communications.
5
 While 

the spectral range of choice for optical fibre communications is in the near infrared at 1.5 µm 

(to match the transmission window of silica fibres) for free space data communications,  the 

use of visible light has inherent advantages for simple user alignment of the data link and 

secure knowledge of where the data has been transmitted. The most common efficient 

approach for LED illumination is to use phosphor converted white LEDs (pcLEDs).
6-7

 In this 

approach a blue InGaN LED is coated with a yellow phosphor so that a fraction of the blue 

light is absorbed and re-emitted at longer wavelengths to give a two-color white. While 

acceptable for illumination, the  phosphor materials in pcLEDs are a well-known bottle-neck 

for VLC.
2-3

 This is due to their long photoluminescence (PL) lifetime which limits the 

intrinsic system bandwidth to a few MHz. Even the introduction of a blue filter at the receiver 

which suppresses the yellow emission,
8
 or the use of pre-equalization techniques,

9
 only leads 

to modest improvements in the modulation bandwidth (~30 MHz).  To overcome this 

limitation, and permit ultra-high modulation bandwidths new materials for color converters  

are required which have shorter radiative lifetimes.  

Organic semiconductors are an exciting alternative candidate for VLC color converters 

due to their visible band gaps, high radiative rates and photoluminescence quantum yield 

(PLQY), and their scope for simple integration with nitride semiconductors.
10-14

 Organic 

down-coverter materials have previously been used with blue-emitting inorganic LEDs to 

generate white light. 
10, 12-15

 We recently demonstrated the use of a yellow-emitting organic 

semiconductor as a high bandwidth material for a two-color white VLC datalink.
10

  However 

this two-color cool white transmitter had a low color-rendering index (CRI) of only 53; to 
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combine high quality white color rendering with data transmission, better color converter 

materials with high brightness, short radiative lifetime and PL throughout the green and red 

regions are needed. Among the existing red-emitting organic materials, there are not suitable 

candidates that combine high PLQY with  very short (sub nanosecond) PL lifetime and strong 

absorption in the blue region. Therefore, a efficient green-emitting material is desirable which 

aborbs the blue light of the LED and transfers part of its energy to the red-emitting material.   

In this paper, we report a study of blends of highly fluorescent green emitting poly[2,5-

bis(2
/
,5

/
-bis(2

//
-ethylhexyloxy)phenyl)-p-phenylenevinylene) (BBEHP-PPV)

16
 and orange-red 

emitting poly[2-methoxy-5-(ʹǡ-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) as 

novel fast color-converters to replace commercial phosphors in hybrid LEDs for visible light 

communication. We found a partial Förster energy transfer from green-emitting BBEHP-PPV 

to orange-red emitting MEH-PPV and quantify this efficiency of the photoinduced energy 

transfer using PL lifetimes. Furthemore we demonstrate capabilities of this blend for VLC by 

measuring its modulation bandwidth  and  data rate. The achieved 3 dB modulation 

bandwidth (electrical-electrical) is 40 times higher than commercially available phosphor 

LEDs, and 5 times higher than previously reported red-emitting organic color converters.
11

  

Similarly the achieved VLC data transmission rate of 350 Mbits/s with this blend using On-

Off Keying (OOK) is significantly ( 35 times) higher than that measured with a commercially 

available phosphor color converter.  

BBEHP-PPV
16

 is a highly efficient fluorescent green polymer used previously for 

LEDs,
17 

lasers
16, 18

 and explosive sensors.
16, 19

 It absorbs strongly around 450 nm and is 

therefore an attractive candidate to be integrated with efficient blue emitting GaN LEDs.  

MEH-PPV is a prototypical orange-red emitting polymer widely used for organic LEDs 

(OLEDs),
20-23

 field effect transistors,
24

 photovoltaics,
25-30 

printed electronics
31-32

 and organic 
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lasers.
33-35

 MEH-PPV has a short PL lifetime (~ 400 ps), absorption overlapping with the 

emission spectrum of BBEHP-PPV, and PL in the orange-red region. 

  The photophysical properties of films of BBEHP-PPV, MEH-PPV and blends of the two 

were investigated by measuring UV-Vis absorption, photoluminescence (PL), PLQY and PL 

lifetime. Typical absorption and PL spectra of BBEHP-PPV, MEH-PPV and their blends are 

shown in Figure 1(b) and 1(c).  BBEH-PPV has a single broad absorption peak at 435 nm 

and two distinguishable  PL peaks at around 497 (0-0) and 532 nm (0-1) with a shoulder 

around 580 nm,
18

 while MEH-PPV has a absorption peak at 500 nm and emission peaks at 

587 nm (0-0) and 640 nm (0-1).  The solid-state PLQY was measured using excitation 

wavelengths of 450 and 500 nm; the values obtained are given in Table 1.  MEH-PPV has a 

PLQY of ~17%; the PLQY of BBEHP-PPV is ≥ 75%, making it one of the most highly 

efficient green-emitting semiconducting polymers.  The PL lifetimes of films were measured 

by exciting MEH-PPV at 470 nm and BBEHP-PPV at 379 nm, and the PL decay was 

measured using detection wavelengths of 496 and 595 nm for BBEHP-PPV and MEH-PPV 

respectively.  The resulting PL decays are shown in Figure 1(d) and 1(e). Lifetimes (to 1/e of 

the initial value) of  380 ps and 825 ps were obtained for neat films of MEH-PPV and 

BBEHP-PPV respectively. These lifetimes are much shorter than commercially available 

phosphors, recently reported red-emitting BODIPY color convertors,
11

 and other previously 

reported organic luminescent color converter materials.
15

 

We next blended the two materials in ratios of BBEHP-PPV: MEH-PPV (90:10, 75:25) 

and investigated the energy transfer from BBEHP-PPV to MEH-PPV. The absorption spectra 

of the blends (Figure 1(b)) in both cases have a strong peak around 435 nm (BBEHP-PPV) 

and a relatively weak peak around 535 nm (MEH-PPV).  The PL spectra of the blends are a 

combination of those of the two materials, and are very broad ranging from 470 to 800 nm 

(Figure 1(c)). In order to obtain more information about the energy transfer, we calculated the 
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relative contribution of the two materials in absorption and emission spectra.  We found that 

in the 90:10 blend, 18% of the 450 nm excitation light is absorbed by MEH-PPV, whereas 

52% of the photons are emitted from MEH-PPV (detail given in supplementary information). 

Similarly for the 75:25 blend, 37% light is absorbed and 66% is emitted by MEH-PPV 

(details given in supplementary information).  These indicate that an energy transfer process 

occurs between the materials. 

Confirmation of the energy transfer process was obtained by time-resolved 

measurements. The PL decays of BBEHP-PPV  (measured at 496 nm) for a neat film and for 

the blends are shown in Figure 1 (d).  The blends show a faster PL decay at 496 nm (1/e 

lifetime of 269  and 278 ps obtained for 75:25 and 90:10 blends) compared  to neat BBEHP-

PPV (~ 825 ps), confirming that there is a non-radiative energy transfer from BBEHP-PPV to 

MEH-PPV.  The emission of the blend  at 595 nm (due to MEH-PPV) is similar to neat 

MEH-PPV for the first few ns, and slighly longer-lived thereafter (see Figure 1(e)). In order 

to quantify the energy transfer, we calculated the energy transfer rate ݇௧ and efficiency ߟ௧  
by comparing the decays of neat BBEHP-PPV and BBEHP-PPV in the blend  (Figure 1 (d)) 

using equations 1 and 2 
36-38

  

݇௧ ൌ ͳ߬ୌିሺ      ሻ െ ͳ߬ୌିሺ    ሻ                    ሺͳሻ 

௧ߟ ൌ ͳ െ ߬ୌିሺ     ሻ߬ୌିሺ    ሻ                                ሺʹሻ 

where ߬ୌି ሺ    ሻ and ߬ୌିሺ     ሻ are measured lifetimes of neat BBEHP-

PPV and BBEHP-PPV in blend respectively.  The values of the energy transfer rate ݇௧ and 
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efficiency ߟ௧  for both blends are given in Table 1.  The energy transfer efficiency from 

BBEHP-PPV to MEH-PPV for both blends was  similar (Table 1).  This indicates that the 

increased red emission from the 25% MEH-PPV blend arises from a higher direct absorption 

in MEH-PPV. 

The significant absorption at 450 nm and broader PL emission than commercial LED 

phosphors (e.g. phosphor CL-840 (Intermatix ChromaLit
TM

), see Figure S2 in supplementary 

information) make the polymer blends an attractive candidate for generating high quality 

white light for VLC.  To assess their potential for white light generation, we calculated the 

CIE coordinates of the color converter blends (given in Table 1), which are plotted in Figure 

2. For comparison, we also plot CIE coordinates of neat BBEHP-PPV, neat MEH-PPV, 

previously reported Super Yellow (SY) color converter,
10 

a blue LED and the commercial 

phosphor (CL-840). The tricolor combination of LED, BBEHP-PPV and MEH-PPV provides 

a wide gamut suitable for good color rendering, and the 90:10 and 75:25 blends are very 

suitable for color conversion to generate white light. For example, when mixed with the 450 

nm peak emission from a nitride LED to generate white light (at a correlated color 

temperature of 6337 K) the color rendering index (CRI) would be 76, a value much higher 

than the CRI of 53 for the fast two-color white VLC transmitter in reference 10, and 

comparable with a CRI of 80 for the CL840 phosphor. The CRI value of the polymer blend is 

also similar to reported values for organic down-converters, but with significantly shorter PL 

lifetime.
15, 39

 

Indeed, the sub-nanosecond lifetime of the blend indicates the great potential of the 

material for a high modulation bandwidth. This is important for VLC because the capacity of 

a communication channel is proportional to its bandwidth
40

 and modulation bandwidth 

depends on excited state lifetime of the material. For experimental demonstration of the VLC 
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capabilities of the blends, color converter films were spin-coated on a glass substrate for 

BBEHP-PPV:MEH-PPV (100:0, 90:10 and 75:25) blend ratios.  The intrinsic modulation 

bandwidths of the films were determined following a similar experimental procedure to that 

reported previously,
11

 by measuring their response to a small signal modulation of the 

excitation. Figure 3 shows that the achieved bandwidth is more than 200 MHz for all three 

films, which is significantly higher than the commercial phosphor,
8-9

 previously reported 

organic semiconductors 
10-11

 and blue LEDs
41

 used in VLC.  

 A collimated-beam free space VLC data link was next tested using a laser diode 

excitation source with on-off keying (OOK) modulation.
4, 11

 For the receiver an avalanche 

photodiode (APD) was used. The inset of Figure 4 shows an eye diagram for the color 

converted data link operating at 250 Mb/s. The open eyes show that the difference between 

zero and one bits is clearly resolved at this data rate for each color converter blend. The 

recorded bit error rates (BER) using a stream of 10
5
 data bits, (randomly chosen 1 or 0), for 

different data rates are presented in Figure 4. The achieved data rates using a simple threshold 

detection (wihout any equaliser), are more than 350 Mb/s  over a proof-of-principle distance 

of 5 cm which is 3 times higher than previously reported for OOK with an oligofluorene-

BODIPY organic semiconductor.
11

 We also note that the data rates for the polymer blends is 

higher that for BBEHP-PPV alone (see Figure 4).   

To clearly demonstrate the advantage of the organic semiconductor color converters over 

conventional LED phosphors, the bandwidth and data rate of the commercial phosphor CL-

840
 
was also measured in the link, giving values of 5 MHz and ~ 10 Mbits/s respectively 

(Figure 3 and Figure 4). The polymer blend color converters therefore have a bandwidth of 

40 times that of the phosphor, and a data rate 35 times higher in this case. We note that the 

length of data pattern used in our measurement is too short to prove definitively error-free 
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communication, but nonetheless the results strongly demonstrate the considerable 

improvement of the blend over conventional phosphor color converter.  

In conclusion, we have demonstrated the use of organic semiconductors as a fast color-

converter in hybrid LEDs for visible light communications. We show that a blend of green 

and orange-red  semiconducting polymers is an attractive new material to replace commercial 

phosphors for VLC, due to its strong absorption at 450 nm and  broad PL emission covering 

the green to red region. Energy transfer between the polymers allows the both chromophores 

to be efficiently excited by the blue light source, while phase separation of the two allows 

control over the color balance. Alternative schemes that suppress energy transfer 
42-43

 can 

decouple excitation of the chromophores, but this places an additional constraint on the fast 

red emitter to have high absorption of the blue light. The great potential of this polymer blend 

can be seen through its short excited state PL lifetime (less than 1 ns) and associated much 

higher modulation bandwidth (> 200 MHz) and high data transmission rate (> 350 Mb/s 

using OOK). The measured modulation bandwidths and data transmission with the polymer 

blends are more than 35 times higher than those achieved with conventional LED phosphors.   

 

EXPERIMENTAL METHOD  

Material synthesis:  Poly[2-methoxy-5-(ʹǡ-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-

PPV) was purchased from Sigma-Aldrich (541443-1G). Poly[2,5-bis(2
/
,5

/
-bis(2

//
-

ethylhexyloxy)phenyl)-p-phenylenevinylene) (BBEHP-PPV) was synthesized following 

similar synthesis procedure reported previously.
18 

Material characterization: Solutions were prepared by mixing 10 mg of MEH-PPV and 

BBEHP-PPV in 1 ml of chlorobenzene. Films were made by spin coating the solution onto 

quartz substrates at 1200 rpm for 60 s inside a N2 glove box. The absorption and 

photoluminescence spectra were obtained using a Cary 300 UV-Vis spectrophotometer and 
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an Edinburgh Photonics Instrument FLS980 respectively. The PL spectra were obtained at 

excitation wavelengths of 430 and 500 nm for BBEHP-PPV and MEH-PPV respectively.  In 

the case of the blends, an excitation wavelength of 430 nm was selected to obtain PL spectra. 

PLQY was measured with a Hamamatsu integrating sphere C9920-02 luminescence 

measurement system using a range of excitation wavelengths (450, 500 nm). The 

fluorescence lifetimes of samples were measured by exciting films with PicoQuant 

picosecond pulsed lasers (470 nm for neat MEH-PPV and 379 nm for neat BBEHP-PPV and 

blend) and PL decay was measured at detection wavelengths of 496 and 595 nm using time 

correlated single photon counting (TCSPC).   

Bandwidth and data rate measurements: The experimental setup is shown in the inset of 

Figure 3. The excitation of the films used a modulated laser diode LD450 from Roithner 

LaserTechnik GmbH. The laser bias was a combination of a DC bias and AC modulation 

through a bias-T. For the DC bias an LDC205C - benchtop LD current controller from 

Thorlabs was used. The AC bias modulation was controlled by an Agilent network analyser 

4395A and ZHL-6A amplifier from Mini-Circuits. Finally, an APD S8890 from Hamamatsu 

Photonics was used as a receiver. A similar standard technique reported previously was used 

to measure the small signal modulation bandwidth and data rate.
11
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Figure 1:  (a) Molecular structure of BBEHP-PPV and MEH-PPV (b) UV-Vis absorption and (c) PL 

spectra of BBEHP-PPV (black line), MEH-PPV (red line), and different ratios of BBEHP-PPV and 

MEH-PPV (blue and dark yellow) For blend, the PL spectra were obtained at an excitation 

wavelength of 430 nm. (d) Photoluminescence decays at 496 nm and (e) 595 nm obtained at excitation 

wavelengths of 470 nm (for MEH-PPV) and 379 nm (for BBEHP-PPV and blends of BBEHP-

PPV+MEH-PPV). Black, blue and red lines in (d) and (e) correspond to 100:0, 90:10 and 75:25 

ratios of BBEHP-PPV and MEH-PPV respectively.  
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Figure 2: Plot of CIE coordinates of the color generated on CIE 1931 chromaticity diagram as ratio 

of MEH-PPV and BBEHP-PPV in blends is varied. For a comparison, measured colors of MEH-PPV, 

BBEHP-PPV, CL-840 and SY [8] are also plotted.  

 

 

 
 

Figure 3: Plot of attenuation vs frequency of small signal modulation. The dotted line corresponds to 

-3 dB level which defines the bandwidth of the system. The schematic in the inset represent the 

experimental setup used in the measurement. For comparison reasons the measurements were 

repeated for commercial phosphor plates.  
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Figure 4: Bit error rate versus data rate using On-Off keying modulation. The general accepted error 

floor for VLC is 1.2x10-3, which dashed line represents. In the inset the eye diagram at 250 Mb/s is 

presented (top eye diagram corresponds to BBEHP-PPV+MEH-PPV (25%), centre to BBEHP-

PPV+MEH-PPV (10%) and bottom eye diagram to BBEHP-PPV alone).    

 

 

Table 1: Summary of PLQY, energy transfer rate ݇௧ and efficiency ߟ௧ , CIE coordinates of MEH-

PPV, BBEHP-PPV and different ratios of MEH-PPV and BBEHP-PPV.  

 
Material PLQY(%)  

at Ȝex = 450 nm 

PLQY(%)  

at Ȝex = 500 nm 
Ket  

(109 s-1) 

 

еet 

(%) 

CIE  

coordinates 

Overall > 600nm Overall > 600nm 

MEH-PPV 17.0 15.1 17.0 14.9 - - 0.57, 0.43 

BBEHP-PPV 85.2 7.5 75.0 9.4 - - 0.25, 0.57 

BBEHP-PPV + 

MEH-PPV 

(90:10) 

28.0 15.3 20.8 14.9 2.5 67 0.4, 0.51 

BBEHP-PPV + 

MEH-PPV 

(75:25) 

25.0 15.8 20.8 15.4 2.4 66 0.45, 0.49 

 

 

  

0 100 200 300 400 500 600 700

10
-5

10
-4

10
-3

10
-2

10
-1

 

 

B
E

R

Data rate (Mb/s)

 CL-840

 BBEHP-PPV + MEH-PPV 25%

 BBEHP-PPV + MEH-PPV 10%

 BBEHP-PPV 



16 

 

For Table of Contents Use Only 
 

A novel fast color-converter for visible light communication using a blend 

of conjugated polymers 
 

Muhammad T. Sajjad
1
, Pavlos P. Manousiadis

1
, Hyunchae Chun

2
, Dimali A. Vithanage

1
, 

Sujan Rajbhandari
2
, Alexander L. Kanibolotsky

3, 4
, Graham Faulkner

2, Dominic O’Brien2
, 

Peter J. Skabara
3
, Ifor D. W. Samuel

1*
 and Graham A. Turnbull

1*    

 

E-mail: idws@st-andrews.ac.uk, gat@st-andrews.ac.uk
 

 

 

In this paper, a blend of semiconducting polymers is used to make a broadband color 

converter with a very high modulation bandwidth and potential for good colour rendering to 

replace commercial phosphors in hybrid LEDs for visible light data communications. The 

color converter exploits partial Förster energy transfer in a blend of the highly fluorescent 

green emitter BBEHP-PPV and orange-red emitting MEH-PPV. The modulation bandwith of 

the blend  is greater than 200 MHz, and is applied  in a free space datalink with a 

transmission rate > 350 Mb/s using on-off-keying.  
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