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Abstract—The complex permittivity and resistivity of float-zone
high-resistivity silicon were measured at microwave frequencies
for temperatures from 10 up to 400 K employing dielectric-res-
onator and composite dielectric-resonator techniques. At temper-
atures below 25 K, where all free carriers are frozen out, loss-tan-
gent values of the order of 2 X 10~ were measured, suggesting the
existence of hopping conductivity or surface charge carrier con-
ductivity in this temperature range. Use of a composite dielectric-
resonator technique enabled the measurement of materials having
higher dielectric losses (or lower resistivities) with respect to the di-
electric-resonator technique. The real part of permittivity of silicon
proved to be frequency independent. Dielectric losses of high-resis-
tivity silicon at microwave frequencies are mainly associated with
conductivity and their behavior versus temperature can be satis-
factory described by dc conductivity models, except at very low
temperatures.

Index Terms—Conductivity measurement, dielectric losses,
dielectric resonators, permittivity measurement, silicon, semicon-
ductor materials measurements.

I. INTRODUCTION

VER THE past 50 years, there have been numerous at-
Otempts to measure the complex permittivity of semicon-
ductors at microwave frequencies employing waveguides, res-
onators, and broadband dispersive Fourier transform spectro-
scopic technique [1]-[7]. For the most accurate measurement
of the complex permittivity or conductivity of semiconductors
at microwave frequencies, it is essential that the sample under
test has no electrical contact with any metal part of the fix-
ture that is used for measurements. Some microwave techniques
offer the possibility of contactless measurements, e.g., cylin-
drical resonant cavities and waveguides operating in one of the
TE( modes (usually the dominant one) [3]-[5]. For such struc-
tures, currents have only circumferential component and, thus,
do not flow through the metal-semiconductor interface. Such a
situation also occurs when the sample under test is separated
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from all metal parts of the fixture, e.g., [2]. In general, the com-
plex permittivity of a semiconductor material is given by (1) as
follows:

€ =¢o (5,, —js: —j(}%{)) =ceoer(l —jtand) (1)

where tan ¢ is the effective dielectric loss tangent of the semi-
conductor given by (2) as follows:

tané = tan 64 + 7

@)
WEWE

where ¢, is the permittivity of the vacuum, ¢,. is the relative real

permittivity of the semiconductor, w is the angular frequency, o

is conductivity, and tan ¢4 is the dielectric loss tangent associ-

ated with pure dielectric loss mechanisms (e.g., electronic and

ionic polarization).

For doped semiconductors and for intrinsic semiconductors
having energy gaps smaller than 1 eV, the dominant loss mech-
anism is related to the conductivity associated with free charge
carriers up to high microwave frequencies and at temperatures
that exceed the activation energy of dopands. For such materials,
their dielectric loss tangent can be represented by the second
term on the right-hand side of (2). High-resistivity float-zone
silicon has found applications as a substrate material for var-
ious microwave devices such as transmission lines, filters, or
antennas, especially at millimeter-wave frequencies [8]-[10].
Over the last years, significant progress has been achieved in
growing silicon crystals with very large resistivities exceeding
10 k2 cm; however, it is difficult to find in the literature or from
manufacturers accurate measurement data of their complex per-
mittivity, in particular as a function of temperature. This data
is essential in the design of microwave devices. Such measure-
ments are reported in this paper.

II. MEASUREMENTS TECHNIQUES

Two measurement setups were used in this study and are
shown in Fig. 1. In the first setup [see Fig. 1(a)], the sample
under test was situated on a small single crystal quartz support
inside a cylindrical cavity and the whole structure was mounted
on the cold head of a closed cycle Gifford-McMahon cryo-
cooler for low-temperature measurements or in an oven for el-
evated temperature measurements. Adjustable coupling mech-
anisms were used to control coupling coefficients from both
ports of the resonator. The resonators were attached to the net-
work analyzer via semirigid coaxial cables. In the second setup
[see Fig. 1(b)], the same cylindrical cavity and single crystal
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Fig. 1. Sketch of measurement setups used in experiments. (a) Sample under test situated in cylindrical cavity. (b) Sample under test situated inside cylindrical

dielectric resonator.

quartz support from the first configuration has been used, but
the sample under test had a reduced diameter and was situated
inside a ceramic dielectric ring resonator. The purpose of using
a dielectric resonator configured in this way was to reduce the
electric energy filling factor in the sample and, therefore, in-
crease the () factor due to conductor losses in the silicon sample.

In the second measurement setup, the contribution to the @
factor due to losses in the sample increased by one order of mag-
nitude compared to the first measurement setup. This allows
measurements of dielectric loss tangents one order of magni-
tude larger than those that can be measured in the first setup.
High-resistivity silicon has dielectric loss tangents of the order
of 1072 = 102 at room temperature and microwave frequen-
cies. Therefore, techniques that have been used for measure-
ments of its complex permittivity were the same as that used
for dielectrics [11]-[14]. Most of the measurements were per-
formed using the quasi-TEg;; mode. This appears as the second
resonance in the first measurement setup or the first resonant
peak in the second. For some cryogenic measurements, other
higher order modes have also been employed. In order to find
the relationship between the measured resonant frequencies, )
factors the real part of the relative permittivity, and dielectric
loss tangent, it is necessary to rigorously solve Maxwell’s equa-
tions for the structure under test. This was done using rigorous
mode-matching and Rayleigh-Ritz techniques described in de-
tail in [11]. In this paper, only the most important aspects of
resonant techniques are explained. If the effective dielectric loss
tangent of the sample is smaller than 0.1, then the resonant fre-
quencies depend on the real part of the permittivity and the di-
mensions of the resonant structure. In such a case, the real part
of the permittivity can be evaluated from the measured resonant
frequency of a specific mode taking into account thermal ex-
pansion of the resonant structure and the sample under test. The
dielectric loss tangent of the sample can then be evaluated from

tand = (Q," — Q, ") /Pes 3)

where ), is the measured unloaded @) factor of specific mode
of resonator containing the sample under test, (), is the () factor
associated with parasitic losses in the cavity including metal
wall losses and dielectric losses in the dielectric resonator and
in the single crystal quartz support, and p. is the electric energy

filling factor for the sample under test (ratio of the electric en-
ergy stored in the sample to the electric energy stored in whole
resonator)

ff es|E[2dv

Vs
Pes = TIf (o) [EPdo “
Vit

where Vs is the volume of the sample, V't is the volume of the
whole resonant structure, €(v) is the spatially dependent permit-
tivity inside the whole resonant structure, and €4 is the permit-
tivity of the sample.

The @ factor due to parasitic losses can be found from the
following formulas:

Q' =Q; +Q! ®)

where Qd_l = ppr tan épr + pgs tan dgs, por (Pys) is the elec-
tric energy filling factors in dielectric resonator and in the single
crystal quartz support, respectively, tan dpg, (tan d,s) are the
dielectric loss tangents of the dielectric resonator and the single
crystal quartz support, respectively, and Q.. is the @ factor due
to conductor losses in metal cavity walls

Q.'=Rs/G (©6)

where Rg is the surface resistance of metal cavity walls at a
given frequency, G is the geometric factor, which is defined as

fvftfuo|H|2dv

G=w—i——
[T s

)

S is the internal surface of the cavity, and H is the component
of the magnetic field tangential to the internal surface of the
cavity.

The @ factor associated with parasitic losses can be evaluated
from measurements made of the unloaded () factors of the res-
onator without the silicon sample and of the empty cavity versus
temperature. These measurements allow assessment of the sur-
face resistance of the cavity walls and, in the second, experi-
mental setup of the losses in the dielectric resonator, as a func-
tion of temperature. Losses in the single crystal quartz support
are negligible due to the small electric energy filling factor value
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TABLE I
RESULTS OF ROOM-TEMPERATURE MEASUREMENTS. D¢ = 24.0 mm,
Le=16.12mm,d = 15.455 mm (*7.97 mm), h = 6.0 mm, Ls = 4.26 mm

Mode f(GHz) Qu Qp Pe tand

TEou 6.685 550 38950 0.9605 0.001866
HE 1 6.797 1134 18030 0.4346 0.001901
*TEo11 4.824 4036 16200 0.0885 0.002101

in it and the extremely low dielectric losses of quartz (below
2x107?). Once the material properties of metal cavity walls and
dielectric parts in the cavity are known, the geometric factor and
electric energy filling factors in the sample are numerically eval-
uated. It should be mentioned that, for high-resistivity silicon,
the parasitic losses in the measurement setups are much smaller
than losses in the silicon sample since effective dielectric loss
tangent of silicon is usually larger than 1073, except at very
low temperatures. In this case, the effective dielectric loss tan-
gent can be determined with approximately the same precision
as a Q-factor measurement, i.e., approximately 1%—-2%. When
dielectric loss tangent values in silicon samples are of the order
of 1077 or less (at very low temperatures), it is still possible to
measure them very precisely by employing modes having large
azimuthal mode indices, i.e., the so-called whispering-gallery
modes. By employing whispering-gallery-mode techniques, di-
electric loss tangents as low as 10~ have been measured on
high-purity single-crystal sapphire samples at cryogenic tem-
peratures [12].

The upper limit for loss-tangent measurements is associated
with the lowest (Q-factor values that can be effectively measured,
and the value of the electric energy filling factor. In our res-
onant cavity, the minimum value of the measurable () factor
was approximately 100. The electric energy filling factors for
the two measurement setups are shown in Table I, together with
room-temperature measurements results for the two samples.

As can be seen in Table I, the use of the quasi-HE;1; mode
enables the measurement of losses approximately twice as large
as that obtainable using the quasi-TE(1; mode. This is related to
an electric energy filling factor value for the HE;1; mode, which
is twice as high as that of the TE(;; mode. An electric energy
filling factor in the sample can be further reduced by employing
a dielectric ring resonator, as in the second measurement setup.
In this case, the electric energy filling factor in the sample is
reduced by an arbitrary number, which depends on the permit-
tivity and external diameter of the dielectric resonator. The last
row of Table I shows that, for the second measurement setup,
the electric energy filling factor has been reduced by a factor of
10.

III. RESULTS OF EXPERIMENTS

A. Measurements Employing Silicon Sample as the
Dielectric Resonator

Measurements at room temperature have been performed on
two bulk cylindrical p-type silicon samples having diameters
of 15.455 mm (Sample #1) and 15.457 mm (Sample #2) and
a height of 6.0 mm. The surfaces of the samples were mechan-
ically polished, but not to optical quality. The real part of the
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Fig. 2. Permittivity versus temperature for sample with d = 15.455 mm. Ex-
perimental data points include results extracted from measurements employing
quasi-TEg:; mode in two cavities (6.62 and 6.69 GHz) and the third TE; mode
(11.5 GHz) in the second cavity.

TT T T[T T T T[T T T T[T T T T[T T T T [T T T T [T TTT

discrepancy between
r heating up iand cooling down -

10 ~HE_: mode

N

o
o
o
L ° i
]
o
o

TE011 mode ]

TEarS- I T

0 50 100

11

150 200 250 300 350 400
T(K)

T T T N T A B

10°

Fig. 3. @ factors in the sample versus temperature for silicon sample #1 with
d = 15.455 mm measured at frequencies of approximately 6.8 GHz (HE11,
mode) and 6.62 GHz (TE(;; mode).

relative permittivity e, was extracted for both samples at dif-
ferent frequencies by employing higher order TEy modes. The
results of these measurements showed the relative permittivity
to be independent of frequency. In permittivity determination,
the thermal expansion of the silicon samples and copper cavities
were taken into account. Results of permittivity measurements
as a function of temperature are shown in Fig. 2.

Itis observed that results of experiments are very smooth with
experimental errors in the range of 0.1%. The experimental er-
rors predominantly depend on dimensional uncertainties of the
samples under test. Results of measurements of the () factor
and dielectric loss tangent versus temperature for bulk silicon
samples are presented in Figs. 3-6. In the temperature region of
100-250 K, losses are associated with conductivity due to free
holes. In this region, all Boron atoms are ionized, and the con-
ductivity, and therefore, the dielectric loss tangent, depends on
the mobility of the holes [16]. Measurements between 36—100 K
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on bulk silicon samples were not possible due to the )-factor
values being less than 100.

Hysteresis effects are observed in the sample. This is mani-
fested by measuring different () factors at the same temperature
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when the temperature is increasing compared to when it was
decreasing. The increase in losses at temperatures above 310 K
are related to the generation of free charge carriers through the
energy gap, and above 350 K, high-resistivity silicon becomes
essentially intrinsic. In the temperature range of 25-40-K, hole
freeze-out effects can be observed. It is not clear what the origin
of dielectric losses are below 25 K. To some extent, losses in this
temperature range may be attributed to hopping conductivity
[15], nonuniform dopand distribution in the sample, and accu-
mulation of charge carriers on the surface of samples or dielec-
tric losses. Additional measurements of losses at 10 K versus
frequency have been performed employing several higher order
modes. Results of these measurements are shown in Fig. 6 where
the first number in the description of the modes denotes an az-
imuthal mode index, while the second one, in parenthesis, de-
notes the sequence of the mode on the frequency scale. In other
words, both radial and axial mode indices are combined into one
as they are not integer numbers for our resonant structure. In the
literature, these indices are often denoted by Greek characters to
underline this feature, or alternatively, such modes are termed
“quasi.” It is seen that dielectric loss tangent values measured
with TEg modes decrease with increasing frequency. This re-
sult supports the assumption about conductive loss mechanisms
such as hopping conductivity. It should be mentioned that for
TE( modes, the electric field in the cavity (and sample) only
has an azimuthal component that is tangential to all sample sur-
faces. This is not true for measurements based on the hybrid
modes that have all three spatial components of the electric field,
some of them perpendicular to the sample surfaces. The spa-
tial distribution of the electric field for hybrid modes is compli-
cated and unique for each mode. If conductivity is nonuniform
or anisotropic in the sample volume, it may lead to different
values of measured dielectric losses for each mode, as seen in
Fig. 6.

It should also be noted that measurement errors employing
TEy modes at 10 K are small, around 2% or less, because all
resonances have () factors of the order of a few thousand, and
they are well separated in frequency and easily identified. Mea-
surements performed in the same cavity on a single-crystal MgO
sample aé 10 K had shown dielectric loss tangent values below
1 x107°.

B. Measurements Employing Composite
Dielectric-Resonator Technique

For these measurements, the diameter of sample #1 is reduced
creating sample #3. Sample #3 has a diameter of 7.97 mm and
a height of 6.00 mm. A cylindrical ring dielectric resonator was
manufactured from Ba(Zn;/3Tas;3)O03 (BZT) ceramic. It has
the same height as that of the silicon sample, an external di-
ameter of 16.14 mm, and an internal diameter of 8.00 mm. The
permittivity of the ceramic dielectric is 29.86 and the dielectric
loss tangent tan 6 is 5.9 x 10™° at 10 GHz.

For reference, measurements of parasitic losses versus tem-
perature when a PTFE sample was inserted instead of the silicon
sample were undertaken. The PTFE sample was used to keep the
BZT resonator in a fixed position. This was necessary due to the
vibrations of the close-cycle helium refrigerator. A room-tem-
perature measurement showed that the () factor and resonant
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Fig. 8. Effective dielectric loss tangent versus temperature for silicon sample
#3 at a frequency of approximately 4.98 GHz employing TE(; mode in com-
posite dielectric resonator.

frequency of the TE(;; mode for the composite resonator with a
PTFE sample is essentially the same as that without it. At cryo-
genic temperatures, PTFE losses are very low so that one can
treat the ()-factor values of the resonator with a PTFE sample
as being the same as the ()-factor values for an empty dielec-
tric resonator. Additionally, the @ factor of the empty cavity
without the BZT resonator and quartz support was measured in
order to evaluate the surface resistance changes of the silver-
plated cavity versus temperature. Results of ()-factor measure-
ments and loss tangent determination for sample #3 are shown in
Figs. 7 and 8. It is seen that by employing a composite dielectric
resonator, measurements are possible in the whole temperature
range using the quasi-THEy;; mode. The upper limit on measure-
ment temperature for the composite resonator is determined by
the resonator construction rather than by the dielectric losses in
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Fig. 9. Resistivity versus temperature extracted from measurements shown in
Fig. 8 for silicon sample #3 at a frequency of approximately 4.98 GHz. Pa-

rameters of silicon assumed in computations of theoretical curve are shown in
Table II.

TABLE II
PARAMETERS OF SILICON ASSUMED IN THEORETICAL
COMPUTATIONS OF RESISTIVITY

Acceptor ionization energy E,(eV) 0.045

(Boron)

Acceptor concentration N, (em®)  1.05 x10"
Electron mobility ve (cm*/(Vs)) 1430x(T/300) >

Hole mobility vi, (cm*/(Vs))
Energy gap E, (eV)

n; - intrinsic carrier concentration
at 300 K (cm-*)

470x(T/300) "™
1.1785-9.025x10°xT-3.05 x107'xT*
1.75x10"

silicon. For this structure, it is limited by the coaxial cables and
the use of a tin solder.

Dielectric loss tangent values for samples #1 and #3 that
are shown in Figs. 4 and 8 are similar when they are scaled
with frequency. Measurements of dielectric loss tangents larger
than 2 x 10~ are more accurate, employing the composite
dieletric-resonator technique, while measurements of loss
tangents smaller than 1 x 102 are more accurate when the
silicon sample stands alone as a dielectric resonator. In Fig. 9,
resistivity values extracted from measurements of the loss tan-
gents shown in Fig. 8 are presented. For comparison, we have
evaluated theoretical resistivity values from well-known silicon
resistivity models (e.g., see [15]). The best fit to experimental
data has been obtained assuming the parameters of silicon given
in Table II. It can be noticed that temperature dependence of re-
sistivity, or dielectric loss tangent, can be satisfactory explained
for temperatures larger than 25 K on the basis of well-under-
stood theories of semiconductors. At temperatures above 25 K,
thermal energy is sufficient for partial ionization of Boron
dopands, which become fully ionized at temperatures close to
45 K. At temperatures from 45 to 300 K, the number of free
carriers is approximately constant and conductivity decreases
predominantly due to decreasing hole mobility (in p-type
semiconductor). If the temperature increases to approximately
300 K, the number of additional free carriers generated through
the forbidden energy gap becomes comparable to the number
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of holes due to ionized acceptors, and at temperatures above
350 K, high-resistivity silicon becomes essentially intrinsic
with an approximately equal number of holes and electrons.

The origin of dielectric losses at temperatures below 25 K is
not yet clear and requires further investigations.

IV. CONCLUSIONS

The dielectric losses of float-zone high-resistivity silicon
have been measured between 10-400 K using two dielectric
resonator measurement techniques. Using a novel composite
dielectric-resonator configuration, measurements are possible
even for samples with very low () factors. The composite
dielectric-resonator technique can be easily adopted for mea-
surements of arbitrary semiconductors, even those having much
smaller resistivity than the high-resistivity silicon used here,
by the appropriate choice of dielectric-resonator dimensions.
Measurements at temperatures as high as 600 K will be possible
by using appropriate coaxial cables with welded connectors
and silica insulation.
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