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Finding the Direction of Disturbance Propagation in a
Chemical Process Using Transfer Entropy
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Abstract—In continuous chemical processes, variations of
process variables usually travel along propagation paths in the di-
rection of the control path and process flow. This paper describes
a data-driven method for identifying the direction of propagation
of disturbances using historical process data. The novel concept is
the application of transfer entropy, a method based on the condi-
tional probability density functions that measures directionality
of variation. It is sensitive to directionality even in the absence of
an observable time delay. Its performance is studied in detail and
default settings for the parameters in the algorithm are derived so
that it can be applied in a large scale setting. Two industrial case
studies demonstrate the method.

Index Terms—Causal map, control loop performance, digraph,
fault diagnosis, kernel estimator, oscillation, plantwide distur-
bance, probability density function, process history, time series,
transfer entropy.

I. INTRODUCTION

COMMERCIAL control loop condition monitoring systems
are now being widely used in the process industries [1]–[4]

and are reducing running costs by successfully highlighting con-
trol loops that need attention. However, it remains a challenge to
determine the root cause of a disturbance that propagates widely
through a unit or plant causing secondary upsets in other mea-
surements and control loops. In such a case, many variables
and control loops may be identified as performing poorly even
though they are not the cause. Isolating and diagnosing the fault
is, therefore, an important task. This paper describes a solu-
tion through the application of transfer entropy, a method due
to Schreiber [5] that exploits conditional probabilities to deter-
mine cause and effect relationships in process data. The pos-
sibility of a transfer entropy test was introduced in an earlier
conference paper [6] which showed that it was possible to de-
termine causes and effects using the process measurements col-
lected during routine operation of a plant. The key advance in
this paper compared to [6], is the detailed description and opti-
mization of the method to give default parameters to facilitate
its application to a large-scale plant. A further contribution of
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this paper is to give fundamental insights into its operation and
to extend it to additional case studies.

The reviews by Venkatasubramanian et al. [7]–[9] made the
economic argument for the importance of fault detection and
diagnosis in the chemical process industries. They presented
a family tree of methods for analysis of process systems with
an emphasis on fault detection and diagnosis. Categories high-
lighted were as follows:

• quantitative and qualitative process history-based methods;
• quantitative and qualitative model-based methods.
Transfer entropy is a quantitative process history-based

method, and the outcome of the analysis is a qualitative process
model in the form of a digraph showing the causal relationships
between variables. The textbook by Chiang et al. [10] also
presented broad coverage of knowledge-based, data-driven,
and analytical techniques.

Propagation paths in case of normal operation and dis-
turbances have been previously investigated with statistical
methods based on probability density functions. Chiang and
Braatz [11] used the Kullback–Leibler information distance
to identify broken relationships when a fault was present. A
requirement for the identification, however, was the existence
of a causal map in the form of a digraph that had to be derived
from expert knowledge of the process. Signed digraphs were
extensively reviewed by Maurya et al. [12], [13], who discussed
graph-based approaches for safety analysis and fault diagnosis
of chemical process systems. They highlighted the difficulties
of the accurate capture of the graph representation pointing out
that it is a time consuming task and error-prone. By contrast,
in the work presented here, the causal map is derived from the
data.

This paper is organized as follows. In Section II, an overview
of data-driven methods for directionality is given together
with an outline of the concept of transfer entropy. The defi-
nition and implementation of entropy-based methods is given
in Section III, and implementation issues are addressed in
Section IV. Section V describes an automated method for or-
dering and pruning the causal relationships to generate a causal
map in the form of a digraph. Two case studies are introduced
in Section VI to show the use of transfer entropy for tracing
fault propagation paths. Settings for the parameters used in the
computation are also proposed and justified.

II. MEASURING DIRECTIONALITY AND CAUSALITY

A. Directionality and Dependency

In chemical processes, a persistent fault or disturbance often
appears in many places in the plant. Plantwide oscillations can
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originate from a variety of causes including instrumentation fail-
ures, tuning problems, and process inherent instabilities. Other
types of disturbances may be transient events or nonperiodic.
Examples are presented in the case studies of Section VI-B and
VI-C. Typically a disturbance originating at one location prop-
agates through the plant and causes secondary upsets in other
locations and the task is to distinguish the root cause from the
secondary upsets so that maintenance can be done. The signals
change as the disturbance travels in the process because of time
delays, attenuation, and the presence of noise and further dis-
turbances. The task of a directionality measure is to give a rep-
resentation of the direction in which the disturbance propagates
and to find cause and effect relationships.

One way of determining the cause-and-effect relationship is
to look for time delays, for instance by seeking the lag at which
the cross-correlation function between the time trends of two
measurements is maximized. However, time lags are not easy
to determine in an automated and unambiguous way when the
measurements are oscillatory or when they are noisy. More-
over, the time delay may be undetectable if it is smaller than the
sampling interval of the data historian. The information theory
measure of transfer entropy proposed by Schreiber [5], over-
comes these difficulties by quantifying the amount of informa-
tion transferred from one signal to the next and vice versa. By
measuring a functional relationship that is often described as
nonlinear coherence, transfer entropy identities the driver and
response variables of a system and the causality.

B. Information Theory Measures

Measures for quantifying dependency for bi- or multivariate
time series include the correlation coefficient, cross-correlation,
and mutual information [14]. Mutual information quantifies de-
pendencies from the joint probability density function of two
random variables. It measures the reduction of uncertainty of a
random variable after the knowledge of a second variable as fol-
lows:

(1)

These methods are symmetrical. They quantify the amount of
dependency but cannot measure its directionality or causality.

The information theory measure of transfer entropy proposed
in [5] takes the concept of mutual information a step further.
It examines the transition probabilities and

, where denotes the conditional relation-
ship, that is, the probability that has a certain value when
past values and are known. Here, is the value of ,
steps in the future from , and is referred to as the prediction
horizon. Full details are given in Section III-B. Refinements
have been introduced since the original work of Schreiber to
optimize the detection of directionality for specific applications
[15], [16]. In this paper, the original method is used and its pa-
rameters optimized for use with data from chemical processes.

The described directionality methods were developed theo-
retically for time trends caused by dynamics for which the in-
tensity of coupling is known. Common systems are the Hénon
map, the Lorentz attractor [17], and the Rössler system [18], for
all of which the coupling strength can be adjusted with sets of

parameters. Real-life measurements include physiological data,
such as heart and breath rate [5] or neuro-electrical signals [19],
[20], financial data [15], [16], and outputs of an electronic net-
work [21]. The nature of the data in these applications resem-
bles the measurements captured during process disturbances in
chemical processes because it is a superposition of determin-
istic behavior and stochastic noise, hence, the motivation of ap-
plying the methods to directionality analysis of fault propaga-
tion in chemical plants. A variety of related methods based on
a principle called generalized synchronization have also been
developed in the last decade [19], [20], [22]. The methods use
an embedded matrix whose columns are time-shifted measure-
ments. These also look promising for finding directionality in
process measurements and an initial exploration of their use
with process data is reported in [23].

III. METHODS

A. Transition Probability

To estimate the probability density functions (PDFs) and,
thus, the transition probabilities, two assumptions must be
made. First, enough relevant data points must be available to
estimate the probability density function. Second, the time
series must be stationary, that is, the expectation values of first
orders, mean, and variance, must not be a function of time [24],
[25].

Two discrete signals of length with continuous amplitude
axis are considered. That is, signals and are sampled at
time instances , , with

. The PDF of and is denoted by and
, respectively, while the joint PDF of and is .

An important property of two stochastic signals which will be
required later for the definition of transition probabilities is in-
dependence. Two variables are independent if the joint PDF is
the product of the PDFs of the variables, such that

(2)

Joint PDFs for two stationary variables sequential in time are de-
noted by with the same PDF for , because
of stationarity, that is, , where is the pre-
diction horizon of . The generalization of this joint PDF is
the joint PDF for variables giving , where

and
are embedded vectors. The parameters and are referred to
as the embedding dimension of and , respectively. A time
interval allows the scaling in time of the embedded vector.
The joint PDF , thus, captures time dynamics as well
as interactions between and . The transition probability is
defined after the Bayesian principle through joint PDFs

(3)

Here, denotes a conditional relationship, that is, the prob-
ability that future value has a certain value when past
values and are known. The term “transitional” as used by
Schreiber [5] indicates conditional in time, that is, the informa-
tion is transferred from past values to a value in the future

. If is independent of and , then the transition
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TABLE I
TYPES AND DIMENSIONS OF JOINT PDFs REQUIRED FOR

IMPLEMENTATION OF TRANSFER ENTROPY IN (4)

probability simplifies to using (2).
In that case, the knowledge of past values of and does not
change the PDF of . Another special case is when 0 and

, so that the transition probability measures the
causal relationship between and in the sense that can be
identified as the cause or driver of .

B. Transfer Entropy

The transition probabilities contain all information on
causality between two variables. As a function of
dimensions, this information is required to be represented by a
single measure. The measure of transfer entropy proposed by
Schreiber [5] extracts the amount of information transferred
from variable to as follows:

(4)

The sum symbol represents sums over all amplitude bins
of the discrete joint PDFs and transition probabilities. Table I
gives the types and dimensions of the joint PDFs required for the
transfer entropy computation. Even for small embedding dimen-
sions, for example, 1 and 2, a four-dimensional (4-D)
joint PDF over , , , and has to be constructed.
The numerator of the logarithmic term, describing the proba-
bility of if past values and are known, is compared to
the denominator, describing the probability of if only is
known. If 0, no information is transferred from to

. In terms of transition probability this is the case if is
independent of and since, using (2) and (3), the logarithm
of 1 is 0.

Transfer entropy is derived from the information measure of
entropy. Entropy was introduced by Shannon [14] as a mea-
sure of uncertainty, or unpredictability summing a weighed log-
arithm of the PDF. Shannon also introduced mutual information
to measure the mutual amount of information contained in two
signals as defined in (1). Mutual information is, however, by its
definition in (1) a symmetrical measure and, thus, cannot cap-
ture causality. Transfer entropy is chosen over mutual informa-
tion because of its asymmetrical property. A causality measure
is derived by comparing the influence of on with the influ-
ence of on

(5)

Positive values of then mean that causes , while nega-
tive values mean the reverse case. No causality is detected if both

and have a similar value and, as a consequence,
is close to zero.

C. Significance Level

Small values of transfer entropy suggest no causality
or direction of influence while large values do. To establish
a threshold above which is recognized as a valid result
Kantz and Schreiber suggest Monte Carlo methods using surro-
gate data. The threshold is referred to as significance or confi-
dence level. Monte Carlo methods are any methods that solve a
problem by generating suitable random numbers or sequences
and observing that a fraction of the random numbers obey some
property. Here, the problem is to verify or reject a null hypoth-
esis. In the case of the directionality estimation, the null hypoth-
esis is that the transfer entropy measure is small, that is,
it implies that does not influence by the result . If
a large value for is measured, the null hypothesis can be
rejected, that is, it implies that influences . Suitable random
numbers are values of the directionality measure that are gener-
ated by computing the measure from surrogate time series
such that with . For surrogate time se-
ries construction, the iterative amplitude adjusted Fourier trans-
form (iAAFT) method as described by Schreiber and Schmitz
[26], is used in all the following computations. The significance
level is then defined as

(6)

where and are mean and standard deviation of . A six-
sigma threshold for the significance level is chosen here to give
a robust decision rather than a two or three sigma test as in [27].
Since does not necessarily follow a Gaussian distribution
under the null hypothesis, however, it is not valid to assign a
three-in-one million confidence level to the 6-sigma test.

IV. IMPLEMENTATION

A. Replacing Transition Probabilities by Joint PDFs

Before calculating the causality value in (5) from transfer en-
tropy in (4), joint PDFs and transition probabilities have to be
constructed from time series. Replacing the transition proba-
bility by joint PDFs according to (3), gives the joint PDFs as
summarized in Table I required for the computation of .
Estimation of the PDF from time series and is most com-
monly done with histograms, see for example Scott [28], but due
to the high order of the joint PDFs (Table I), the number of sam-
ples required for the construction via histograms is extremely
large. Here, Kernel estimation is proposed for the implementa-
tion (see, e.g., Silverman, [29] ).

B. Kernel Estimator for PDF

The Kernel method gives a more precise estimation of the
PDF than histograms by considering the exact values of a time
series . A Kernel function is centered at every sample point
and summed to give an estimate

(7)



BAUER et al.: FINDING THE DIRECTION OF DISTURBANCE PROPAGATION IN A CHEMICAL PROCESS USING TRANSFER ENTROPY 15

Fig. 1. Construction of Kernel estimator p̂(x) (solid line) for a sine wave with
added noise using 15 samples of time trend. The dashed line is the analytical
PDF p(x).

Kernel function has to fulfill 1, its max-
imum value must be at 0 and the limit values for plus and
minus infinity are zero. Here, a Gaussian Kernel function is used
which satisfies all requirements

(8)

where is the estimator width which is adjusted to the number
of samples and the standard deviation of time series after
Silverman [29]. Fig. 1 shows the construction of an estimated
PDF using the Kernel method. Even for a small number
of samples, only 15 in this example, the Kernel method gives a
good estimation of the analytical PDF.

In [29], the amplitude axis is considered as continuous. For
implementation, however, it has to be discretized to allow com-
putation in a software code. A discrete value is introduced
that translates onto a discrete grid

(9)

where the function rounds to the nearest integer. The
number of amplitude bins is denoted by and can be set inde-
pendently. The PDF is constructed according to (7) with discrete
Kernel function

(10)

with . Due to
the finite length of , a scaling by factor

is required. For the discrete
Kernel, estimator width is replaced by the discrete Kernel
width . The optimal Kernel width is

with (11)

Here, is the standard deviation of time series . For a deriva-
tion of (see [29]). The translation from continuous to dis-
crete -axis for the PDF estimation is shown in Fig. 2. The total
number of bins is with .

C. Kernel Estimator for Joint PDF

The estimation of the joint PDF can be constructed in a sim-
ilar manner. The estimation of the joint PDF for and using

Fig. 2. Transformation from continuous to discrete amplitude axis according
to (9). The total number of bins is n + 2�.

the Kernel method is denoted by

(12)

The Kernel function for a Gaussian Kernel is then

(13)
For the discrete case of joint PDFs, simultaneous discretization
of amplitude axes and into amplitude bins has to be carried
out. Higher order joint PDFs can be constructed as an extension
to (12). Transition probabilities are decomposed into joint PDFs
according to (3).

D. Computational Effort

Computing speed and the finite number of samples limits
choice of embedding dimensions and . The estimation of the
computational effort is separated into two parts. First, the con-
struction of the PDF has to be considered and, second, the calcu-
lation of the transfer entropy value using (4). For each joint PDF
of dimension , summations are required. Con-
sidering the joint PDFs required listed in Table I, this adds up to

summations with as the length
of the Kernel. Equation (11) shows that increases with the
number of bins and with the number of samples . The com-
putation of transfer entropy requires summations.
Embedding dimensions and have to be chosen carefully for
two reasons. First, the number of computations increase with the
power of and . Second, also the number of samples required
to estimate the high-dimensional joint PDFs increases with the
power of and . Thus, and should be chosen as small as
possible. Schreiber suggests to set larger than to focus on
influencing rather than influencing . For lower embedding
dimension good results can be achieved by setting to zero. Set-
ting to 2 results in a maximum of three dimension of the joint
PDFs after Table I and can be dealt with if the number of sam-
ples available are in the order of 1000 when using the Kernel
method. For the choice of 0 and 2, which will be used
in the following, a total of
summations are required.

V. CAUSAL MAP

A. Prerequisites

For industrial applications, the relationship between several
measurements is considered, say measurements with

, and a representation of the results in a causal
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TABLE II
EXAMPLE FOR REORDERING OF VARIABLES x

map or digraph is desired. The causality measure of (5) is com-
puted for all combinations of variables , that is,
relationships. The results can be denoted in a causality matrix
as follows:

...
...

. . .
...

(14)

The rows represent cause variables, while the columns repre-
sent the effect variables. The task is to generate a causal map
that shows the relationships between all and in an au-
tomated way. Due to symmetry, negative causality measures are
ignored without loosing any information. All relationships with
a significance level larger than are accepted and treated
equally, while those below are ignored. This treatment gives
a matrix consisting of 1’s and 0’s in which the 1’s mean that
the column variable influences the row variable. A zero entry
indicates that no relationship exists. The top panel of Table II
shows an example. Using 1’s and 0’s removes information about
the sizes of the elements in (14). The numerical values are used,
however, to resolve conflicts between two options of fault prop-
agation paths as described in the following algorithm.

The automatic generation of a causal map from the causality
matrix is accomplished in two steps. First, the order of mea-
surements is rearranged to to bring a maximum number
of entries above the main diagonal. In the second step, the causal
map is constructed from . The automatic construction of a
causal map is shown here for a model example and later on in
the paper for the test case study.

Algorithm to Rearrange the Order of Variables

The new order of variables that maximizes the number of non-
zero entries above the main diagonal is found by the following
procedure.

• Step 1: Initial sorting. The measurements are sorted
by the number of non-zero entries in the th row to create
a new causality matrix whose first row has the least
number of zero entries. The new indices are . If there is a

tie then the number of non-zero entries in the th column
is used as a tie breaker. In case of a further tie, the order
remains unchanged.

• Step 2: Establishing rules. The entries above the main di-
agonal of are translated into inequality rules to ensure
that the element remains above the main diagonal when
further sorting. For example, the element in the second
row and third column of in Table II gives the inequality

.
• Step 3: Shifting elements above diagonal. A nonzero ele-

ment is below the diagonal in the th row and th column.
and can be exchanged if no previously established

rule is violated as a consequence of the exchange. If a rule
is violated, alternative positions with row index smaller
than for or larger than for can be explored in
the same way. In the case that no position change without
a rule violation can be found, the option with the highest
transfer entropy value, that is, the summed value for all
rules in question, is chosen. A new rule is established for
the exchanged variables.

Repeat Step 3 for all elements below the main diagonal. The
resulting matrix is the optimized causality matrix , the order
of the rows is denoted by .

The algorithm is illustrated using a model example in Table II.
The top table shows the example causality matrix for five
process variables . In the initial sorting step, the
variables are rearranged with and both with two en-
tries in each row and one entry. is excluded from fur-
ther analysis and the modified causality matrix is shown in the
middle table of Table II. Rules for the four elements above the
main diagonal are established in Step 2, that is, ,

, , and . The element below
the diagonal for and is dealt with by Step 3. and

can be exchanged since none of the established rules are
violated. Thus, the modified causality results as shown in the
bottom table of Table II.

Algorithm to Construct the Causal Map

Once the modified causality matrix is retrieved the con-
struction of a causal map is straightforward using the following
steps.

• Step 1: Initializing layout. To generate a basic structure,
are placed in a row according to new order . Variables

that were excluded from analysis in Step 1 can be omitted
since they have no causal connection with all other vari-
ables.

• Step 2: Inserting arcs. The relationships for all non-zero
entries in causality matrix can be represented by arcs
pointing from cause variable in the detected row to effect
variable in the corresponding column. These arcs are used
to represent the information flow.

• Step 3: Removing shortcuts. In some situations, if a vari-
able A causes a variable B and B in turn causes C, a further
dependency between A and C will be detected. This depen-
dency is only secondary and not of main interest. It can be
easily ignored by removing all shortcut arcs, that is, all arcs
from variable to variable for which two relation-
ships via a third variable exist.
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Fig. 3. Construction steps of causal map for examples in Table II. Step 1: initializing layout; Step 2: inserting arcs; Step 3: removing shortcuts.

The variables on the left of the causal map are then the sus-
pected root cause. The procedure is illustrated by the model ex-
ample in Fig. 3. In the left-hand plot representing Step 1, all
variables are laid out in the new row order . In Step 2, arcs
for all relationships are drawn representing non-zero entries of
causality matrix in Table II. In the right-hand plot of Fig. 3,
the third step is illustrated in which all shortcuts are removed.
For example, the shortcut from to is removed since a
way from to via exists. The resulting causal map
represents the process dependency detected with the transfer en-
tropy measure. is suspected to be the root cause of the in-
vestigated disturbance.

The main advantage of the algorithm is that it focuses on the
order of occurrence of events which is desired for fault propa-
gation and root cause analysis. The most important question of
which variable comes first and is followed by which other vari-
able is addressed. The situation of branches, that is, A influences
B and C, can also be represented by the automatically generated
causal map that are placed in the order A, B, C or A, C, B with
arcs drawn from A to B and A to C.

VI. PARAMETER OPTIMIZATION

A. Default Parameter Values

The calculation of transfer entropy requires a number of pa-
rameters to be set. It will be shown in the following that when
applied to chemical process data, the transfer entropy measure
is insensitive to the parameter setting within bounds. Parame-
ters will be optimized by applying them to data of a reference
case study. The reference case study is an industrial process in
which a disturbance occurs that travels along the fault propaga-
tion paths affecting a number of process variables. The direction
of cause and effect and the relationships between two measure-
ments is known in this case from first principles. The transfer
entropy parameters are optimized using these relationships. The
parameter settings are then applied to a test case study for which
the root cause was unknown prior to analysis. The causal map
is constructed and a suggestion of the root cause is made.

Fixed parameters are the embedding dimensions which are
set to 0 and 2 due to computational restraints as argued
above. The special case 0 means that only past values of

and not are regarded when estimating a future value of
so that for instance in (4) would be calculated using
past values of TI2 and the current value of TI1 while TI2 TI1
uses past values of TI1 and the current value of TI2. Adjustable
parameters are the time interval between past value of , such
that , and the prediction horizon of the future
value of , in (4). The optimal parameters of both time
interval and prediction horizon are a function of the process dy-
namics. If the process dynamics are known, the parameters can

Fig. 4. Process schematic of reference case study, industrial reaction process
at Eastman Chemical Company.

be set accordingly. If a dead time is detected between two mea-
surements the optimum values of both and are equal to the
dead time. This can be concluded from the definition of transfer
entropy in (4) which predicts a future value from the knowl-
edge of the past values which are separated by and time
steps. However, if the process dynamics are unknown, small
values of and such as should give good results
as the transfer entropy measure should be robust for parameter
changes. The minimum number of sample required for com-
putation is also investigated in the following.

B. Reference Case Study

A reaction process at Eastman Chemical Company was
chosen in which a disturbance from the upstream feed travels
along the process flow. The process schematic is shown in
Fig. 4. Five temperature measurements are taken at the top
part of the reactor above a point where heating fluid is pumped
through the tray structure to control the temperature. Additional
temperature measurements are taken at the bottom part of the
reactor and further downstream. The level at the bottom tray
of the reactor is a crucial variable that is closely observed. The
disturbance enters the process through the reactor feed and
affects, to some extent, all parts of the process. Fig. 5 shows
the normalized time trends of the measurements. The sampling
time of the data is 20 s. A disturbance with an average period
of oscillation of 60 samples or 20 min can be seen in Fig. 5
for most of the variables. Only 1000 samples are shown here,
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Fig. 5. Time trends of measurements in reference case study during period of
disturbance.

but altogether 4100 samples of a time period exhibiting the
disturbance are available.

Physical investigation of the process showed that the distur-
bance originated further upstream of the reactor, affecting TI1
first followed by TI2 to TI5 and then propagating further till TI7.
For parameter optimization, four relationships between TI1 and
TI2, TI2 and TI3, TI3 and TI4, TI4 and TI5 are selected. An-
other selected relationship is the one between LC1 and TI7 since
their time trends show the disturbance clearly. These five rela-
tionships were known to be significant from process knowledge.

1) Time Interval: In a first step, the time interval is
varied while the other parameters are fixed. Time interval

was defined for the transition probabilities in (3) which
uses embedded vectors and

. A change of the time interval
corresponds to subsampling of the data series with the ben-
efit of no data being disregarded. Adjusting the time interval
ensures that the dynamics of the underlying system are rep-
resented accurately. Fig. 6 shows transfer entropy values and
significance level for the five relationships of the reference
case study that were known to be significant from process
knowledge. The significance level is above the threshold of six
sigma for most time intervals which shows that transfer entropy
is robust. The maximum value of is at different values
of for the five plots, varying from 2 for
to 9 for . When summing all over the
five relationships the maximum lies at 4. Thus, the time
interval is set to 4 which gives a significance level well
above the threshold for all five relationships. With a sampling
rate of 20 s, time interval is equivalent to 80 s. In general,
time interval is dependent on the dynamics of the process.
However, Fig. 6 shows that the result is robust to variations in

so that a certain mismatch between process dynamics and
time intervals can still give good results. The computation of
the transfer entropy method with a standard PC is sufficiently
fast to evaluate results for a range of and values if desired.

2) Prediction Horizon: In the previous step, the prediction
horizon was set to the while optimizing time interval . It
is expected that the value of the prediction horizon lies in the
same range as the time interval since dynamics of the under-
lying system are also reflected by the prediction horizon. Fig. 7

Fig. 6. Optimizing time interval � for five dependencies; left-hand plots:
transfer entropy value t , right-hand plots: significance value s ; with
h = � and N =4100.

Fig. 7. Optimizing prediction horizon h for five dependencies; left hand plots:
transfer entropy value t , right hand plots: significance value s ; with
� =4 and N =4100.

shows transfer entropy and significance value as a function of .
The dependency of transfer entropy on is similar to the depen-
dency on as in Fig. 6. The values of and are robust
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Fig. 8. Finding minimum number of samples N for five dependencies;
left-hand plots: average of transfer entropy t , right-hand plots: standard
deviation of t ; with h = � =4.

against the choice of . The maximum value of varies for
the five relationships but the sum of all significance levels has its
maximum at 4. Thus, the prediction horizon is chosen to be
equal to the time interval. The data investigated in the reference
case study is cycling with a period of oscillation of 60 samples.
Setting time interval and prediction horizon to 4 corre-
sponds to subsampling by factor 4. Thus, the number of samples
per oscillation period are reduced to 15.

3) Minimum Number of Samples: For practical application
the number of samples to be considered for computation is a
crucial parameter. The question is how many samples are re-
quired to get a significant result, that is, the minimum number
of samples . The impact of the number of samples on the
transfer entropy measure is shown in Fig. 8. Average value
and standard deviation of are calculated using subsets of
the original data set of length . The subsets are overlapping
and delayed by 100 samples. For example, with the total length
being 4100 samples, 40 subsets are constructed for 200
consisting of samples 1 to 200, 101 to 300, 201 to 400, and so
on, down to two subsets for 4000. The left-hand plots of
Fig. 8 shows that the average value of does not vary sig-
nificantly when . However, the results of for the
subsets can vary as shown in the right-hand plots. The standard
deviation only levels out for approximately 2000 samples.

The recommendation is that the minimum number of samples
should be set to 2000 if possible. If, however, fewer than
2000 samples are available, it is still worthwhile to carry out
transfer entropy analysis down to 400 or 500 samples. The con-
fidence level in the result will then be lower as a consequence.

Fig. 9. Process schematic of test case study.

Fig. 10. Time trends of measurements in test case study.

C. Test Case Study

The test case study is part of a production process at Eastman
Chemical Company. The centerpiece of the process is a dis-
tillation column in which the product is refined. The distilla-
tion column operates under vacuum and the top of the column
is equipped with a total condenser and a reflux drum. The re-
flux drum level LC1 is controlled by manipulating the distillate
valve. Pressure is controlled by adjusting the flow of inert gas
to the top of the column. The temperature profile in the column
is maintained by controlling a temperature in the middle of the
column (TC1) through changes in the heat allowed to enter the
column. It is important to maintain this temperature to target
in order to achieve proper separation of impurities from the
product. Several other temperatures are provided for monitoring
of the temperature profile (TI1, TI2, TI3). A pressure and tem-
perature gradient can be observed along the column with pres-
sure and temperature being functionally related. The reboiler
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Fig. 11. Results of case study two. Left plot: significance level s , right
plot: transfer entropy values t for significance level above threshold of six.
k =0, l =2, N =8640, � = h =4.

TABLE III
GUIDELINES FOR PARAMETER SETTING AS RESULTS OF REFERENCE

CASE STUDY WITH A SAMPLING RATE OF 20 s

TABLE IV
CAUSALITY MATRIX OF TEST CASE STUDY AFTER REORDERING

Fig. 12. Causal map of test case study.

chest pressure and the inert gas pressure further on in the process
are monitored by PI1 and PI2, respectively.

The part of the process shown in Fig. 9 was selected because a
troublesome disturbance affected the measurements around the
column. The time trend of the disturbance is shown in Fig. 10
with 3000 samples taken every 10 s. Altogether, 8640 samples
were available. A common pattern can be seen in all time trends.
Sharp spikes occur around the same time in the level, pressure,
and temperature measurements although with some interrup-
tions and, thus, not necessarily regular. The root cause of the
disturbance was unknown prior to the analysis.

The causality measure was calculated from transfer en-
tropy of the time trends to find conclusions towards the root
cause of the disturbance. The significance level is shown in the
upper panel of Fig. 11. The parameters that were found to be the
best suited in the reference case study are listed in Table III and
are used for the test case study. The results are shown in form of
a bubble chart in which size of the bubble on the intersection of
the horizontal and vertical axis gives the significance level. For

example, the bubble on the intersection of row PI2 column TI1
is 13 which means that PI2 causes TI1. The lower plot shows all
transfer entropy values for which the significance level exceeds
the threshold of 6 [see (6)]. Rearranging the transfer entropy
matrix according to the first step described the reordering algo-
rithm in Section V with all elements above the main diagonal,
see Table IV.

The causality matrix is transferred into a causal map as de-
scribed above resulting in Fig. 12. Possible root causes sug-
gested by the causal map are both PC1 and PI2 which each affect
an equal number of following variables. Referring to the process
schematic in Fig. 9 shows that PC1 and PI2 are two pressures
connected with the inert gas flow. Further investigation showed
that the inert gas inflow into the condenser and the flash pot was
coming from the same pipe controlled by a split pressure con-
troller. Investigations revealed that the pressure controller had
an oversized control valve and caused the inert gas flow to be er-
ratic, thus, affecting the remaining process. The valve sizing was
corrected and a further data trend showed that the disturbance
went away. Thus, transfer entropy using the proposed settings
was able to identify the root cause correctly.

VII. CONCLUSION

Disturbances in chemical processes often spread from one
process variable to neighboring variables. It is of interest to mea-
sure the direction of propagation to locate the root cause of the
disturbance. The data-driven method of transfer entropy mea-
sures the causality between two time series and, thus, the di-
rection of propagation. The crucial parameters of transfer en-
tropy have been investigated and guidelines for its application
to chemical processes derived from experimental data were pro-
posed. The reference case study showed that a data ensemble of
2000 samples gave reliable results. Transfer entropy is based
on estimates of probability density functions which requires a
large amount of data. However, with the capacity of modern
data historians, historical process data is readily available. The
successful applications to a test case study highlights the use
of transfer entropy given the derived parameters. An automated
algorithm for constructing a causal map from the directionality
detected by the transfer entropy measure is applied to the test
case study.
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