'\ Universidad
t¥ § Carlos 1T de Madrid = r C VO

Institutional Repository

This document is published in:

International Journal of Systems Science (2014). 45(4), 741-755.
DOI: http://dx.doi.org/10.1080/00207721.2013.795632

© 2013 Taylor & Francis

http://dx.doi.org/10.1080/00207721.2013.795632
http://e-archivo.uc3m.es/

A practical approach for active camera coordination based on a fusion-
driven multi-agent system

Alvaro Luis Bustamante®, José M. Molina and Miguel A. Patricio

Applied Artificial Intelligence Group, Universid Carlos IlI de Madrid, Avda. Universidad Carlos III, 22. 28270 Colmenarejo. Madrid,
Spain. Madrid 28270, Spain

*Corresponding author. Email: aluis@inf.uc3m.es

Abstract: In this paper, we propose a multi-agent system architecture to manage spatially distributed active (or
pan-tilt-zoom) cameras. Traditional video surveillance algorithms are of no use for active cameras, and we have
to look at different approaches. Such multi-sensor surveillance systems have to be designed to solve two
related problems: data fusion and coordinated sensor-task management. Generally, architectures proposed
for the coordinated operation of multiple cameras are based on the centralisation of management decisions at
the fusion centre. However, the existence of intelligent sensors capable of decision making brings with it the
possibility of conceiving alternative decentralised architectures. This problem is approached by means of a
MAS, integrating data fusion as an integral part of the architecture for distributed coordination purposes.
This paper presents the MAS architecture and system agents.

Keywords: active cameras; PTZ; MAS; multi-agent systems

1. Introduction

Nowadays, surveillance systems are evolving towards com-
plex information systems that are able to provide a great deal
of data about the environment gathered through spatially
distributed sensor networks. The advances of the underlying
technologies, like digital communication, video transmis-
sion and, specially, wireless sensors and actuator networks
(WSANS) (Akyildiz and Kasimoglu 2004), have facilitated
the deployment of new surveillance sensors for use in en-
vironmental monitoring, healthcare systems, homeland se-
curity, public safety and, generally, critical environments.

The video camera is perhaps the most important sensor
in surveillance scenarios, as it has attracted much of the
attention of the scientific community. Many visual sensor
networks are used to provide rich features like object detec-
tion and tracking, object and colour classification, activity
recognition, alert definition and detection, database event
indexing and so on (Hampapur 2008). All these technolo-
gies tend to be integrated in a common system to provide
richer and improved video surveillance experiences (Han
and Bhanu 2007).

A real visual sensor network relies not only on fixed
colour cameras, but can also be composed of a wide vari-
ety of heterogeneous sensors, like active, thermal and in-
frared cameras, or also time-of-flight cameras (Bevilacqua,
Di Stefano, and Azzari 2006).

This paper focuses primarily on the problem of con-
trolling multiple active (or pan-tilt-zoom, PTZ) cameras.
As sensors, active cameras do not work like other camera
types, which always monitor the same region, and operators

have to handle the movements of each video camera in the
environment manually according their perceptions or de-
sires. Operators using an active camera to monitor a scene
will be able to track situations of interest more flexibly.

In an environment where there are a lot of active cam-
eras, some with overlapped fields of view (FOV), it makes
sense to have cameras controlled somehow autonomously
or even give different cameras the opportunity to collabo-
rate autonomously to satisfy or improve some established
goal. In this way, operators controlling such complex en-
vironments will be less encumbered, and the surveillance
task will be improved as their attention will only be re-
quired when necessary. Cameras sharing a FOV can benefit
from active cooperative sensing, which has many advan-
tages over non-cooperative sensing, as reported in the liter-
ature (Collins et al. 2011).

Two main problems have to be solved in order to design
this kind of visual surveillance systems, as described in
Manyika and Durrant-Whyte (1994). The first issue is data
fusion, which is related to the optimal combination of data
from different sources (Liggins, Hall, and Llinas 2008).
The second question is multi-sensor management, which
assumes that the data-fusion problem has been solved,
and should optimise the global management of the whole
system by applying individual operations on each sensor
(Molina Loépez, Garcia Herrero, Jiménez Rodriguez, and
Casar Corredera 2003). There are two main approaches
for solving this problem: the centralised and decentralised
options. A centralised architecture is usually based on
a data-fusion centre, or a network node, combining all

http://dx.doi.org/10.1080/00207721.2013.795632

system information to plan and execute actions on each
sensor. Thus, a simple prototype centralised architecture is
affordable to build, but it has many drawbacks related to
scalability, fault tolerance and deployment when the sen-
sors are highly distributed (Molina Lopez et al. 2003). The
existence of intelligent sensors that are capable of mak-
ing distributed decisions brings with it the possibility of
conceiving alternative decentralised architectures.

So, the main concern of this paper is to describe an
architecture for a distributed solution to the two main prob-
lems described above: sensor management, and data fu-
sion for active cameras. Assuming that sensors may be
highly autonomous (as the cameras are usually distributed
across large surveillance environments), the local man-
agement system rather than a centralised node can make
the decisions about the task that the sensor is to perform
(Wesson, Hayes-Roth, Burge, Stasz, and Sunshine 1981).
Thus, a multi-agent system (MAS) would be a suitable ap-
proach for this problem.

MAS research focuses on systems in which many in-
telligent agents interact with each other to achieve differ-
ent goals. The research community has put agent technol-
ogy into widespread use in intelligent, multisensory and
distributed surveillance, as there are many works on the
use of agents in activity detection, image segmentation,
tracking, robotic application modelling, facial identifica-
tion, multisensory data fusion and so on (Gascuefia and
Fernandez-Caballero 2011). In this paper, however, we pro-
pose a high-level definition of a MAS architecture mainly
for supporting autonomous active camera control. In or-
der to achieve cooperative sensing, we have introduced a
data-fusion level as an integral part of the MAS archi-
tecture. In this way, different agents will be able to col-
laborate based on information-fusion events. The architec-
ture is designed in such a way that fusion nodes can be
distributed depending on the cameras and their FOV, and
there is no single node controlling the camera action. As
it would be far beyond the scope of this paper to fully de-
fine such an architecture and its underlying algorithms, we
have tried to provide a practical overview of the different
parts of this system and how they will be developed and
tested.

The rest of this paper is organised as follows. Section 2
discusses some related work dealing with multi-camera
sensor management, algorithms used for controlling active
cameras and some basic knowledge that must be taken into
account to understand the architecture. Section 3 describes
the general MAS architecture. The different parts of the
architecture, like sensor management, data fusion and user
interface with their underlying agents are detailed in Sec-
tions 4, 5 and 6. Section 7 describes how agent knowledge
can be represented using an ontology. Finally, Section 8 pro-
vides some experiment results and discusses the possibility
of using virtual environments to test this MAS.

2. Related work

Many interdisciplinary approaches are required to rise to
the challenges of managing multiple active cameras in or-
der to perform automatic control and coordination, where
a set of active cameras track an object or a face, or zoom
in to acquire high-resolution images of a region of inter-
est. They range from utilising vision processing, through
communication and networking, to artificial intelligence.
In this section, we give a brief overview of the different
approaches applied in the research community to solve the
different parts of the problem.

The most basic issue is related to object detection and
tracking with active cameras. As opposed to passive cam-
eras, which always provide the same FOV, where a simple
temporal difference algorithm is enough to detect the ob-
jects in the scene, a PTZ camera can easily change its FOV.
So, applying traditional algorithms for active cameras will
fail, providing motion detection for all pixels. Therefore,
the same methods as for passive cameras cannot be used
with PTZ cameras if tracking is to be robust against camera
movements.

Some researchers have dealt with this issue. A proposal
by Shibata, Yasuda, and Ito (2008) reported a novel tech-
nique based on optical flow distortion used to detect mov-
ing objects in the scene, even when the camera is changing
its FOV. A similar approach presented by Lim, Elgammal,
and Davis (2003) detects objects using an adaptive back-
ground subtraction algorithm. The mean shift procedure
(Meer 2003) was adopted in Everts, Sebe, and Jones (2007)
for successfully tracking objects from PTZ cameras. Other
researchers give examples of face rather than object track-
ing with active cameras (Comaniciu and Ramesh 2000;
Petrov, Boumbarov, and Muratovski 2008).

Once object tracking in the environment has been en-
abled, the camera pixels, or the object bounding box, need to
be mapped to real-world locations. This is normally done by
calibration. A vast amount of literature is available on this
subject, and there are even automatic calibration algorithms
(Heikkila2000; Zhang 2000; Jones, Renno, and Remagnino
2002). However, traditional calibration techniques deal with
stationary, passive cameras. In this context, active cameras
have to be calibrated for any pan, tilt, zoom settings. Some
very recent approaches that propose this type of calibration
are described in Galego, Bernardino, and Gaspar (2012),
Possegger et al. (2012) and Puwein, Ziegler, Ballan, and
Pollefeys (2012). So the calibration process for active cam-
eras and passive cameras is slightly different. Nonetheless,
it is affordable if suitable specialised methods are used.

Now, assuming that we have solved the problem of
tracking objects and mapping their positions to real-world
coordinates, we have need of an upper control layer to
handle the camera coordination when necessary. There are
some interesting dual-camera frameworks for this purpose,
in which a master camera takes wide panoramic images and

the slave zooms into the targets to get more accurate im-
ages, as described in Marchesotti, Messina, Marcenaro, and
Regazzoni (2003) and Collins et al. (2011). A more com-
plex approach than the master-slave method is dynamic
target assignment according to camera availability and ac-
curacy (Singh, Atrey, and Kankanhalli 2007). Moreover,
Krahnstoever, Yu, Lim, Patwardhan, and Tu (2008) ad-
dresses the generic problem of collaboratively controlling a
limited number of PTZ cameras in order to optimally cap-
ture an observed number of subjects. Previous research by
our group (GIAA), reported in Garcia, Carbo, and Molina
(2005), Castanedo, Patricio, Garcia, and Molina (2006) and
Patricio, Carbd, Pérez, Garcia, and Molina (2007), deals
with the problem of still/active camera management with
MAS. However, it does not contemplate data fusion as an
integral part of the MAS architecture and management.
Investigation related to MAS and data fusion was pre-
sented in Castanedo, Garcia, Patricio, and Molina (2010),
where a MAS system was used along with a data-fusion
system to improve multiple camera tracking. It does not,
however, contemplate the use of active cameras, and fu-
sion is only used to improve tracking, not as a source of
coordination.

A prototype for cooperative object tracking between two
PTZ cameras was built in Everts et al. (2007). In this case,
the authors described the need to share common knowledge
about target location and appearance; therefore, the cameras
had to be able to communicate somehow. An alternative for
a proactive PTZ camera control was described in Qureshi
and Terzopoulos (2011). They employ a centralised plan-
ning strategy to select optimal camera assignment and hand-
off with respect to predefined observational goals. However,
they encountered a scalability problem when dealing with
numerous active cameras spread across an extensive re-
gion, so they are planning to tackle the scalability problem
by investigating distributed multi-agent planning strategies
in the future.

So, whereas the approaches for the object tracking and
active camera calibration problem appear to be sound, we
found that attempts at managing the upper layer control-
ling the active camera are likely to fail on a common point:
camera coordination in a single node. The use of MAS in
surveillance environments as a method to achieve better
scalability and robustness is not new to the research com-
munity. There are some good approaches dealing with a
heterogeneous net of sensors like the research reported by
Pavon, Gomez-Sanz, Fernandez-Caballero, and Valencia-
Jiménez (2007). In this research, a whole surveillance sys-
tem is designed as a MAS, identifying agents, how they
are grouped and the roles they can play in the system. This
is sound groundwork that highlights the design issues that
have to be addressed when applying MAS to this kind of
problems. It is also a good example of how to design MAS
using the INGENIAS methodology.

3. Multi-agent system architecture

Consider an active camera network of N, cameras, some
of which have overlapped FOV, described by the tuple {6,
mins XCmaxs Bmins Bmax }>» Where we assume that the three-
dimensional position 6 of each active camera is known a
priori,and where [in, ¥ max] a0A [Binin, Bmax] rEPresent pan
and tilt limits respectively for each active camera. Suppose,
moreover, that each active camera knows how the gaze
direction parameters (o, 8) map to the three-dimensional
world locations. Thus, given the three-dimensional location
of atarget, the active camera is able to direct its gaze towards
the target. Some of the algorithms that fit these assumptions
were discussed in Section 2, so this paper will focus on
the high-level control layer. So, basically, consider that we
have a set of cameras N, with the required configuration
and algorithms to perform single actions like search, fix,
zoom and track targets.

With the above assumptions, we propose a distributed
camera control architecture based on a MAS driven mainly
by fusion events. This architecture will allow each agent
controlling an active camera to collaborate with others,
whether or not they share part of its FOV. For this purpose,
the architecture has been divided into three different logical
tiers. The first tier, called Sensor Management, is related to
the agents that will control the physical sensor itself. This
low-level tier, mainly composed of agents, will support
the other two tiers: Data Fusion and User Interface. The
Data Fusion tier is related to distributed fusion that will
enable agent coordination. The User Interface will enable
a potential operator to monitor and control the state of the
environment.

As the architecture overview illustrated in Figure 1
shows, the Sensor Management tier includes the Sensor
Agent (S,), Control Agent (C,) and the Manager Agent
(M,), which together provide the active camera control and
management. There is only one M, in the environment that
will control agent deployment, whereas there are normally
apair of S, and C, for each camera. The Local Fusion Agent
(LF,) and the Global Tracking Agent (GT,) come into play
in the Data Fusion layer. The Local Fusion Agent (LF,)
provides local coordination between C, sharing FOVs, and
the Global Tracking Agent (GT,) provides the user inter-
face with a set of non-redundant tracks of the different tar-
gets in the environment without loss of information about
the underlying tracks. Also, it can provide a coordination
mechanism between C,, as it can notify interesting tracking
events for some agents. Finally, the User Interface subsys-
tem will be composed of a variety of agents depending on
user requirements. Some agents that may be useful a priori
are, for example, the Event Agent (E,), which can recollect
events that occur in the environment, like a pedestrian en-
tering a restricted zone (saving its location, pictures, etc.), a
Recorder Agent (R,), which receives and records the video
streams from the different S,, and an Interface Agent (1,),

MAS System

Overlapped
FOV

Interface
Agents

o —————

A

Figure 1. MAS architecture solving sensor management and sensor data fusion.

which will provide a user interface for users to establish
new requirements, watch the different video streams, view
the system track list, track features, and so on.

As discussed in Everts et al. (2007), the cameras, or
in this case the different agents, must share some knowl-
edge for coordination purposes. In this way, some kind of
intermediate framework is required that is able to straight-
forwardly deploy new agents, enabling agent communi-
cation and reasoning. Perhaps the best known framework
is JADE (Bellifemine, Poggi, and Rimassa 2001), which
implements an important standard enabling heterogeneous
interactions among agents. The communication standard
was developed by the Foundation for Intelligent Physical
Agents (FIPA) and is known as the Agent Communication
Language (FIPA-ACL). Frameworks like JADE simplify
the implementation of MAS using middleware that com-
plies with FIPA specifications and a set of graphical tools
that support the debugging and deployment phases. In this
platform, agents can be distributed across machines (which
do not even need to share the same OS), and the configura-
tion can be controlled via a remote GUI. It would therefore
be handy to design our MAS based on a framework like
this, as the development, deployment and testing phases
will go much faster. We opted for the JADEX framework
(Braubach, Lamersdorf, and Pokahr 2003), as it extends
JADE, adding the possibility of running agents based on
the belief-desire-intention (BDI) model. The BDI model
is now possibly the best-known and best-suited model of
agent practical reasoning (Georgeft, Pell, Pollack, Tambe,
and Wooldridge 1999). Reasoning agents are potentially
proactive, tending to initiate changes rather than only re-
acting to events.

Bearing these ideas in mind, we describe the different
tiers of the multi-agent architecture in more detail in the fol-
lowing sections. We also discuss some low-level details for
this real-time problem or even deal with the communication
specification for some agents.

4. Sensor management

The Sensor Management layer is the part of the architecture
that allows the MAS to both communicate and control cam-
eras. It acts somewhat like a low-level interface between the
upper-level control procedures and the sensors themselves.
It is mainly composed of three different agents, the Sensor
Agent, Control Agent and Manager Agent. The purpose of
each agent is discussed in the following sections.

4.1. Sensor Agent

This agent is related to the sensor itself and basically pro-
vides a sort of interface, rendered as capabilities, enabling
other agents and systems to perform actions on the camera
or get data from the sensor. This agent mainly wraps a soft-
ware component called Sensor Controller, which is mid-
dleware between the camera and the agent. This controller
physically interacts with the camera, and, as described in
Bustamante and Molina (2011), currently provides three
high-level interfaces, independently of the active camera
model, which are decomposed into video, control and track-
ing interfaces.

The Video Interface enables the real-time transmission
of video sequences across the network using the JPEG-
2000 codec. This is an important part of the architecture
for meeting the real-time requirements of the video surveil-
lance scenario. For example, considering the transmission
of video sequences directly using the JADEX framework
via the FIPA-ACL communication language would lead to
an immediate overhead, and excessive message processing
for the framework, which will ultimately result in a big
delivery delay in the video visualisation. So, this is not an
affordable way of streaming video sequences. As defined in
Bustamante, Molina Lopez, and Patricio (2011), this Sen-
sor Controller achieves the transmission with a state-of-
the-art real-time transport protocol (RTP), which encodes

Table 1. Tracking events raised by the S,.

Event name Description

Sent when a new track has been detected
in the camera FOV, and cannot be
correlated with any previously existing
track.

Sent when an existing track is no longer
in the camera FOV, i.e. a track has not
been updated for a set time period.

Sent when an existing track has been
updated, i.e. its position or any other
feature has changed. Track update will
be always sent after track creation, and
before track deletion.

Track creation

Track deletion

Track update

and compresses video frames using the JPEG-2000 codec.
This protocol also allows multicasting, so many network
destinations can receive the same video source in real time
without increasing the delivery delay.

The Control Interface is used to control the different
parameters offered by the camera. The typical parameters
for active cameras would be pan, tilt and zoom. It allows
external entities, like other agents or operators, to change
the camera FOV to satisfy their own goals.

Finally, the Tracking Interface is probably the most im-
portant part of the Sensor Controller, as it is concerned with
offering tracking capabilities for the upper control layers.
Tracking features refer to the capability of offering track-
ing information, like number of tracks, shape, size, position,
identifier, colour density and any other track features that
may be available depending on sensor type, implemented
tracking algorithms and the enacted feature extraction pro-
cess. In this way, this interface may execute several tracking
modes working at the same time depending on the fea-
tures that other agents want to extract, like blob, colour,
thermal tracking or even face recognition. The tracking
information generated by S, and other agents is commu-
nicated via tracking events (transmitted under the JADEX
messaging framework). The tracking events have been de-
fined in Table 1, and basically consist of track creation,
update and deletion, which represent the different track sta-
tuses. The metadata generated by the tracking algorithm, i.e.
track identifier, track location, track shape, colour density

and so on, associated with the event itself is also attached.
This will be useful for later fusion processes.

Figure 2 illustrates this idea. In this case, the Sensor
Agent does not interact directly with the physical camera;
instead the Sensor Controller provides a common interface
for different cameras, and the Sensor Agent does not have
to be adapted to every network camera. Notice that the Sen-
sor Controller does all the camera processing, specially the
tracking process. In this way, an extra video transmission
process is not necessary prior to image processing. The
tracking result and the video sequences can be delivered
separately depending on agent requirements. On the one
hand, a given agent, like Recorder Agent, may only need
the video stream for recording purposes, whereas another,
i.e. Control Agent, may require only the tracking informa-
tion for camera management purposes. On the other hand,
an Event Agent may require both streams: the tracking in-
formation to detect events (like intrusion detection in some
restricted zone), and the video stream to take the event pic-
tures. Moreover, with just one image processor residing in
the Sensor Controller, the tracking information can be de-
livered to multiple agents at the same time. This approach
reduces the workload of remote agents, as the video se-
quences do not have to be transmitted to all remote agents,
and the agents do not then have to process the images for
every incoming frame. If an agent were to require any spe-
cial image processing to execute a special algorithm, it
can always retrieve the video stream and perform its own
analysis.

The Sensor Agent in conjunction with the Sensor Con-
troller should either be run on the computer to which the
camera is attached, or could, ideally, be embedded in a smart
camera with onboard computing and networking features.
This will provide for an easier integration of the different
parts: video acquisition, transmission, processing, running
the agent and so on.

4.2. Control Agent

The Control Agent (C,) is responsible for controlling cam-
era movements according to the established goals and the
incoming environment events. The C, will expect two dif-
ferent types of incoming events (see Figure 1). First, the
tracking events from the S,, which, at their simplest, may

- '\I\Q—’[% Sensor Agent]
I
1

Capabilities

/‘—0[D:’ Physical Sensor]

Figure 2. Sensor Controller middleware used by the Sensor Agent.

provide the camera with some kind of autonomous control,
like automatically changing camera gaze according to a
predefined or random path in search of new tracks, follow-
ing an operator-specified track, switching between different
monitoring areas, maximising the number of tracks in the
camera FOV, automatically starting to follow tracks with
some predefined features and so on. All these actions can
be achieved by listening to the tracking events provided by
S,, and each event may trigger different agent reactions. For
example, a track creation event alerts the C, to the presence
of new tracks, which may provoke an agent reaction, like
starting more detailed monitoring; a track update event will
allow the agent to continue tracking at the latest known
track location; or, finally, a track deletion event can cause
the C, to start monitoring different zones in search of new
tracks.

The benefits of relying on the .S, is that this agent does
not have to perform any image processing to achieve its
purposes. Instead, the tracking information is received di-
rectly and can be used to control the active camera. Figure 3
illustrates an example of this mode of operation, where S,
outputs different information flows, like the video streams
to be displayed in the interface and the tracking information
that is used to both control the camera and complement the
visual information in the interface. The C, merely receives
and processes the tracking information and then controls
the S,,.

There can be no question that the C, is very useful
working in autonomous mode. However, as stated in the
Introduction, the use of active cooperative sensing would
improve or will, at least, expand system capabilities. Hence,
apart from running in a stand-alone way, this agent is also
assumed to be part of the process of collaboration among
different cameras. So, the fusion events generated by LF,
are the second source of environment events, which is use-
ful for establishing collaboration among different C,. This
mechanism will be explained in more detail in the Data
Fusion tier. Basically, though, any C,i will be able to col-
laborate with any other C,j to perform a common task, like
following the same track, taking different regions or de-
tails from the track, looking for a lost track, trying to cover
different tracks and so on.

4.3. Manager Agent

The Manager Agent (M,) is responsible for simplifying
MAS initialisation to expedite MAS architecture startup ev-
ery time the surveillance system is initialised. This agent re-
lies on a Sensor Repository that contains information about
all the deployed sensors, like sensor type, sensor ID, real-
world sensor location, calibration parameters, etc. It also
contains the relationship among the different cameras, such
as cameras sharing some FOV. This information should be
initialised manually while setting up the architecture, and it
can be reused in other system executions.

The initial functioning of the Manager Agent can be
divided into two steps. The first is related to loading the
sensor repository for the dynamic creation/initialisation of
S, for every camera present in the environment. Each S,
will then be associated with a C, that will handle the camera
controls, as discussed in Section 4.2 and presented in the
system architecture (see Figure 1). The second relies on the
creation of static coalitions through LF, for S, that share
some FOV. In this way, a LF, is created for each set of S,
with some overlapped FOV, for tracks from the respective
cameras. These LF, are also related to the associated C,, so
the C, can benefit from the fusion events sent by the LF,.
The last agent in the architecture, that is, the GT,, is created
after all the S,, C, and LF, have been deployed.

5. Data fusion

Data fusion is normally related to the process of integrating
multiple data and knowledge representing the same real-
world objects into a consistent, accurate and useful repre-
sentation. Data fusion is mainly used in the geospatial (GIS)
domain, where there is a need to combine diverse data sets
into a unified (fused) data set that includes all the data points
and the time steps from the input data sets. The fused data
set is different from a simple combined superset in that the
points in the fused data set contain attributes and metadata
that the original data set might not have included for these
points. Therefore, integrating data from multiple sensors of
different types provides a better result because the strengths
of one type may compensate for the weaknesses of another
type (Hall and Llinas 2001).

[ﬁ Interface Agent

A

<<Tracks>>

10 tracks

Track: id: 1, loc: 21, 35, 2...
Track: id: 2, loc: 24, 33, 2, ...
Track: id: 3, loc: 20, 31, 2, ...

<<Video>>

<<Tracks>>

[ﬁ Sensor Agent

<<Control>>

Y

% Control Agent]

JE

Figure 3. Using the Control Agent to control an active camera.

The Data Fusion tier of this MAS architecture is not so
related to trajectory improvement as in research reported
by Castanedo et al. (2010). Instead, this architecture uses
data fusion mainly for coordination purposes. In an envi-
ronment where there are a lot of cameras (some with over-
lapped FOV) and different targets need to be tracked, the
agents have to know what the nearby cameras are watching,
i.e. whether two cameras are looking for the same track.
Agents can use this knowledge, which is a priori unknown,
to proactively collaborate to achieve a common goal with
respect to the track, like taking pictures of different regions
of interest. Here, data fusion is a way of somehow providing
dynamic coordination of the different C,, communicating
the information on shared observed tracks among cameras.
This is done by raising fusion action events between the C,
sharing some FOV. Another reason for using data fusion
is to provide centralised knowledge of the environment for
the operator. As the MAS is running in a distributed man-
ner, there has to be a way of displaying to the operator a
real-time summary of the environment, like the number of
tracks being monitored, their positions, their shapes, etc.,
omitting, if possible, redundant data. The interface part will
be discussed in the User Interface section.

The Data Fusion tier is composed of two different
agents, the Local Fusion Agent (LF,) and the Global Track-
ing Agent (GT,), which are explained in the following
sections.

5.1. Local Fusion Agent

The LF, is deployed at system startup and communicates
with the S, and the C,, as shown in Figure 4. There is one
instance of LF, for each set of cameras sharing some FOV
(as the same real-world objects viewed by different cameras
should be fused). This agent may be physically distributed
in the network, i.e. by proximity to its S,, as there is no
restriction on all LF, instances having to run on the same
computer. The sensor-related agents (S,) provide the result
of the local tracking process, which is a set of tracking
events, as the source input for LF,. Then, the LF, pro-
cesses the incoming track information to discover possibly

Tracking f Control
POO-EN_ & £
/ ‘ “\‘ Fusion
i ' Events
16— £

plE Local Fusion

Figure4. The LF, agent will receive the tracking events from the
cameras sharing some FOV (from S, agents) in order to provide
fusion events to the C, agents. C, agents may use this information
to start collaboration.

\.

Table 2. Fusion events raised by the LF,.

Event name Description

Fusion creation Sent when at least one pair of source
tracks from different source cameras
have been fused for the first time as
their characteristics (location, colour,
etc.) are similar.

Sent when an existing fused track has
been broken. This may happen when a
source track within the fused track has
been removed by the S,, and the fused
track has no meaning.

Sent when a fused track has been
updated. This may happen when an
underlying source track has been
updated, or when a source track has
been added or removed from the fused
track. Like the track update event, this
event is only sent after fusion creation,
and before fusion deletion.

Fusion deletion

Fusion update

redundant tracks generated by overlapped FOV for fusion
to provide a single representation of each track, which is
the LF, output. The proposed LF, will be able to perform
data fusion using the tracking information provided by each
Sy, like track size, real-world track location (output by cal-
ibration processes), etc. A good approach for this purpose
is described in Snidaro, Foresti, Niu, and Varshney (2004).
Remember that this agent does not have to perform any
image processing because all the necessary information is
received as tracking events processed locally in S,.

Like the S,, which provides tracking events, the LF,
will provide fusion events with the same statuses (creation,
deletion and update). Table 2 lists the fusion events along
with a short description. These output events are used as
input for the C,, as shown in Figure 4. This allows col-
laboration or coordination among the different C, working
with a shared FOV to perform different actions. The use
of fusion events in C, agents is similar to the autonomous
reaction to tracking events. In this case, however, a fusion
event implies some shared knowledge about tracks, which
can be used to initiate dynamic coalitions among agents for
the purpose of coordination.

The purpose of a dynamic coalition is to enable the
respective C, (at least two) to collaborate on a common
target goal. Suppose that we have a scenario with a C,1
sharing some FOV. Thus, this C,1 is connected to one local
LF, with other C,x agents. At some point, it receives a fu-
sion creation event from LF, related to another C,2, which
means that both agents are monitoring the same track. De-
pending on the goals of C,1, it may suggest the creation
of a new dynamic coalition with C,2 for the purpose of
coordination to satisfy a collaborative goal. Suppose the
goal of creating this coalition is to gather as much infor-
mation as possible about the fused target. If C,2 accepts
the creation of this coalition, then a new temporary agent

MNew track

: track creation C_a_1

MNew track

: track creation C_a_2

Fusion process

: fusion creation C_a_2

C_a_1

Fusion process

<

: fusion creation C_a_2

C_a_1

: propose coalition
(C_a_1,C_a_2)

: coalition response (ok)
: create coalition (C_a_1,
C_a_2)

Local
planning

~

Y

:control C_a_1

:control C_a_2

Figure 5.

Example of dynamic coalition creation based on a fusion event. C,1 and C,2 share a common track, so they decide to create a

dynamic coalition with a CC, agent that will schedule the camera controls.

called Coalition Agent (CC,) can be started. CC, will be
able to coordinate C,1 and C,2. This CC, agent will start
to receive the tracking and fusion information used by both
C,1 and C,2 from the LF, in order to decide or plan the
tasks that C,1 and C,2 should perform. Figure 5 illustrates
the complete interaction for this kind of dynamic coalition
creation. Thanks to the use of CC, to plan camera move-
ments, different Coalition Agents will be able to specialise
in different features, i.e. one CC, may specialise in coordi-
nating agents to gather the maximum information about the
track, and another may be interested in gathering different
track features from different cameras (face, pose, etc.).

This kind of dynamic coalition, which enables camera
coordination, would normally be started by C, agents, as
described above, depending on the fusion events raised by
the LF,. However, a potential operator using the system may
also deploy different CC, assigned to a LF),. In this case,
richer coalitions with different goals can be established to
improve surveillance capabilities. In this way, a CC, that
minimises the number of fusions for a given set of cameras
sharing a FOV would maximise the number of tracks and
zones being covered. Another possible example is a CC,
that prioritises the targets being observed according to some
rules and selects the important target to be monitored by
each C,.

The use of BDI agents to support these actions is a per-
fectly good option, since there is a belief base (information
about the environment mainly gathered by tracking and fu-
sion events), a set of desires (like maximising the tracking
targets) and a set of intentions that can be used to achieve
each goal (like move the camera, create a coalition, etc.).
On this occasion, the use of JADEX as the MAS framework
will provide the necessary reasoning engine to execute the
task required at any time depending on agent goals and
beliefs.

5.2. Global Tracking Agent

The Global Tracking Agent (GT,) works by receiving both
tracking and fusion events from a single S, (without over-
lapped FOV) and the different LF, running in the envi-
ronment (illustrated in Figure 1). All this information is
integrated in this single node in order to be able to han-
dle a global view of the environment. The centralisation
of this part of the architecture is not a critical issue, since
this agent does not require much computing power because
all it has to do is keep an up-to-date status of the differ-
ent tracks present in the environment. So, the only task
assigned to this component is to receive the events, update
the ongoing information and notify environment changes to

other agents, e.g. interface agents. Moreover, the use of this
agent may provide other features that can be used to improve
tracking continuity across the whole area covered by active
cameras.

6. User Interface

The User Interface is probably one of the most important
parts of a video surveillance system, as the system should
be able to be finally monitored and controlled by an opera-
tor. Thus, a user interface displaying the status of the entire
environment is necessary. The traditional interfaces used in
this kind of systems mainly rely on a set of video streams
displayed on one or more screens. Some sources, like active
cameras, are normally controlled by a joystick to change
the camera FOV. Nowadays, however, surveillance systems
may also include tracking features that can provide some
automated information about the scenes, like the number
of tracks, their positions, certain features, etc. The benefits
of using data fusion as an integral part of this architecture
is that the fused output is very useful for display purposes
too. So, we think that, apart from displaying tracking infor-
mation, the Interface Agent (I,) should also integrate data-
fusion information. Displaying the fused tracks will provide
the operator with a superset of non-redundant tracks with-
out loss of information on any underlying track. Figure 6
shows an example of how this interface would work using
the MAS. In this case, the /, will display the tracking infor-
mation provided by S, agents, but it is also able to group the
fused tracks in the interface, allowing the operator to easily
obtain all the information about each track. Moreover, as
this agent receives the tracking information (including track
locations), the operator could establish restricted areas that
can generate interface alerts when a track enters a protected
zone.

It is necessary not only to display the real-time infor-
mation captured by the system, but also to record it for later
analysis. In this way, new agents can be deployed with dif-
ferent goals. The first may be a Recorder Agent (R,) dealing
with the centralised storage of raw video streams from the
cameras, acting as a common digital video recorder (DVR)
used in surveillance systems. This agent could be running
on a remote computer with high storage capabilities, re-
ceiving the video streams from the different S, deployed in
the environment and saving the video files for each camera.
Another potentially interesting agent is the Event Record-
ing Agent (E,), which can listen for both track events and
video streams. With this information, this agent would be
able to detect and capture interesting events (a track enters
a predefined zone). So, the output would possibly be some
kind of log with the different events and their respective
pictures.

7. Agent communication

By using a framework like JADEX, which relies on the
FIPA-ACL standard language for agent communications,
we are assuming that the agents will know how to com-
municate, that is, understand or speak the same language.
However, agents not only have to speak the same language,
but also require a common ontology in order to understand
each other. An ontology is a part of the agent’s knowledge
base that describes what kind of things an agent can deal
with and how they are related to each other. So, basically,
it is necessary to represent knowledge as a set of concepts
within the domain of video surveillance with active cam-
eras, and the relationships among these concepts. It would
be beyond the scope of this paper to define the whole ontol-
ogy for this domain. Instead, we highlight the major points

DVR

Figure 6. The benefits of using data fusion, camera coordination aside, is to present more detailed information about each track, like the
information obtained from each sensor. Different Interface Agents to support different actions, like show events, track information and

record the video streams.

of the ontology and its modelling for its later use in the
JADEX framework.

The Protegé Ontology Editor (Horridge, Knublauch,
Rector, Stevens, and Wroe 2004) is used to define the agent
ontology. Protegé is a tool for easily defining ontologies
with a graphical user interface. The OntologyBeanGener-
ator, a plugin for Protegé that generates Java files repre-
senting an ontology that is usable with the JADEX environ-
ment, is used to get interoperability between the designed
ontology specification and the JADEX framework. Thus,
FIPA/JADEX-compliant ontologies can be generated from
the Protegé ontology specification files. In this case, the
ontology has to be filled by subclassing some predefined
classes from an abstract ontology, like A/D, in order to de-
fine the different agents in the domain: Concept for defining
any concept in the ontology (i.e. entity types such as Cam-
era, Track, Event, ...) and Agent Action for specifying the
different actions to be achieved by the agents. This is how
the different concepts, agents and actions for this domain
have been defined. Figure 7 shows an example of a subset
of the designed ontology.

8. Validating the architecture

This kind of surveillance systems is hard to evaluate since
there are many interrelated components, like camera acqui-
sition, image processing, agent communication and reason-

¥ AgentAction
ChangeFieldOfView
EndCoalition
ProposeCoalition
SendFusionEvent
SendTrackingEvent
StartCoalition
StartTracking
StartVideoTransmission
StopTracking

ing, fusion techniques and so on. Thus, we would have to
conduct an exhaustive analysis of every independent part
in order to test the whole system. Therefore, this paper
evaluates an operational prototype with some capabilities
in order to check whether the proposed agent-based dis-
tributed architecture is suitable for this type of real-time
sensor management and processing.

For this purpose, we have a real environment with three
active cameras (C, C,, C3) placed at fixed positions. Each
camera is connected to an independent server that can ac-
cess its video feed and PTZ control interface. The Sensor
Controller middleware described in Section 4.1 runs on
each server, enabling each Sensor Agent to access the phys-
ical camera. Once this setup is ready, we can start deploying
the agents using the Jadex framework running on each ma-
chine. Each server will run an instance of both Sensor Agent
and Control Agent. The remaining Local Fusion Agent and
Global Fusion Agent will run on a fourth computer. As we
can see, this system is running in a fully distributed envi-
ronment, with agents running on four different machines.
Agents are also communicated through the Jadex platform,
as described in Section 7. All computers are connected to
the same local area network.

The purpose of the prototype is to track different tar-
gets in the proposed environment. In this way, we can
test the whole architecture as all the components should
work together to perform the task. PTZ camera tracking

StartVideo Trans
msson

ChangefieldONVi

’ ew

StopVideoTransmission
Camera

Y FusionEvent
FusionCreation
FusionDeletion
FusionUpdate

Y Track
ColorTrack
FaceTrack
FusedTrack
ThermalTrack

¥ @ TrackEvent
TrackCreation
TrackDeletion
TrackUpdate

Y Position
~1 2DPoint
' 3DPoint

BsSon

Stop\VideoTranam '

SendTrackingEve
n

| ProposeCoalto

Figure 7. An ontology has to be used to define agent knowledge for proper agent understanding. In this case, the Protegé tool is used
along with the OntologyBeanGenerator for easily exporting the domain to the JADEX framework.

10

EF| Tacker Options

General Tracker options Tracker Outpul

o o

Tracker options
Tracker. HSY Color Tracker

Min BlobSize; |[1000_

Colors:

@r0
GREEN

v| BLUE

[Add | [Edit | [Delete |

Displey

Tracking Events
Initialized LastUpdate Score Id Type Location UpdateFreque Width Heigth Age Operation Cents
» 136172279... |0,898204 1 BLUE 491;331;4.. 1 a2 |48 7066 [UPDATE 512,
136172276... 0,99597851.., 2 RED 428,413,4... 1 41 g 7017 UFDATE 448,

Figure 8. The Sensor Controller middleware is responsible for providing tracking information to Sensor Agent. The tracking information

is delivered to the respective Sensor and Fusion Agents.

algorithms are likely to be harder to develop and tune, so
we use a simple colour-based tracking algorithm for this
preliminary stage. As discussed earlier, the tracking infor-
mation is provided by the Sensor Controller middleware,
which enables agents to access tracking information with-
out processing images, among other things. Figure 8 illus-
trates an example of this controller running on one server
to provide the colour-based tracking. The agents receiving
the tracking information can start to manage sensors and
coordinate with other agents. In this case, coordination will
consist of tracking different targets when possible. So, the
expected system behaviour is for each camera to track a
single target.

In this experiment, there are three different targets (7,
T,, and T3), with blue, red and green colours, respectively.
T, appears in the environment at an early stage (1), and,
being the only target, is tracked by all the cameras. At a
given time (#,), the second track 7, enters the scenario,
forcing cameras to collaborate. In this case, each agent has
colour priorities, so they collaborate to maximise both the

overall priority and targets covered when there are shared
tracks in the FOV. So, the track-to-camera association is
forged in real time when the fusion events indicate that
there are cameras looking at the same targets. At this time,
C; and C; switches their FOV to the new target 75, and
C; keeps its gaze on 7). Finally, #3, 75 changes the rea-
soning and re-associates the targets, where each camera
should now look at a single target. According to the colour
priorities, C; to T, C; to T} and Cs to T3. Figure 9 illus-
trates an example of this behaviour. Also a video demon-
stration with this experiment is available at http://www.
giaa.inf.uc3m.es/miembros/alvaro/ptz_mas_2013.mov for
a better understanding.

This a priori apparently simple experiment covers many
distributed processes working together, ranging from the
Sensor Controller acquiring frames, performing tracking
and allowing PTZ movements, to the Sensor Agent receiv-
ing tracking and fusion information to determine which
track to follow and then drive the PTZ camera. The re-
sults in the proposed scenario suggest that the agents can

1"

Figure 9. Example of multi-agent behaviour as new targets appear in the environment. The columns show the FOV of each camera, C,
C, and Cj, from left to right. Rows represent a given moment in time, ¢y, t, and #;, from top to bottom, with the different targets followed

by each camera.

follow the desired targets and perform reasoning when there
is more than one track in the same FOV, so the proposed
multi-agent architecture is suitable for this kind of environ-
ments. Moreover, the fusion layer affords a more flexible
solution, as it is able to trigger reasoning between agents
when necessary.

The next step for validating the architecture and gather-
ing quantitative results typically involves measuring track-
ing capabilities and goal achievement success.

For this purpose, a training set of situations (mainly
videos) is necessary to validate the system under different
conditions. Many data sets are available for this purpose,
and the Performance Evaluation of Tracking and Surveil-
lance (PETS; http://pets2012.net/) conference provides a
data set that is well known in the visual surveillance com-
munity. Such data sets consist of a group of (relatively well)
synchronised videos of everyday situations taken from dif-
ferent cameras. Along with the video streams, they con-
tain the calibration parameters of each camera required to

reference camera location, and sometimes the ground truth
information of each track. This information is very helpful
when designing a tracking system, as results are compa-
rable, based on the same conditions, with research com-
munity outcomes. However, when dealing with a system
mainly focusing on the management of active cameras as
the main part of the video surveillance system, the plot
thickens. Such data sets become unusable for the simple
reason that an active camera can change its FOV, and each
camera movement will provide different video feeds. This
will throw out the calibration parameters, and the location-
fixed video sequences will now be meaningless. So neither
the standard data sets nor the real world can provide enough
repeatability for achieving quantitative results.

As the traditional techniques for validating video
surveillance systems are deficient, we have to search for
alternatives capable of satisfying the complex active cam-
era scenario. The research community has proposed sev-
eral approaches, but the use of virtual worlds is perhaps

12

Figure 10. The use of virtual environments can provide synchronised video streams from multiple cameras (including active cameras),
low-level features like automatic ground truth generation, different ambient conditions, automatic simulation of pedestrians, etc.

the best suited (Qureshi and Terzopoulos 2007). The Ob-
jectVideo Virtual Video Tool (OVVYV), which is avail-
able online for free at http://development.objectvideo.com/
(Taylor, Chosak, and Brewer 2007), serves this purpose.
It is basically able to create virtual environments in which
you can place different types of cameras, including active,
still and fisheye cameras, or even cameras placed in un-
manned aerial vehicles (UAVs). It will generate synthetic
video feeds for processing. It may also provide information
like automatic ground truth generation for each visible track
and its three-dimensional world location, so you can focus
on high-level coordination algorithms rather than trying to
tune your real-world environment. Figure 10 shows some
images generated by this tool.

So, we will use the OVVYV tool for the next devel-
opment stage of the MAS architecture in order to focus
mainly on the problem of active camera coordination. This
will provide for the necessary repeatability in the experi-
ments in order to improve agents working under the same
circumstances, and create several environments with dif-
ferent numbers of and arrangements of PTZ cameras. The
Sensor Agent described in the architecture, which has been
designed for real-world sensors, is still applicable for this
kind of environments, as all the changes are made in the
Sensor Controller through adaptation to the virtual camera
interfaces.

9. Conclusions and further work

In this paper, we have defined a MAS integrating a fu-
sion system in order to support the distributed control of
an active camera sensor network. During the design of this
architecture, we have found that there are several aspects
to be defined or considered in order to get a real opera-
tional prototype, as this topic implies multiple disciplinary
approaches. This paper deals with the problem of control-
ling active cameras, by both identifying the different low-
level algorithms that can be used for active camera track-
ing, calibration, etc. and proposing a high-level architecture
based on a MAS. The MAS is responsible for coordinating
the active cameras to achieve different operator-specified
goals. As the cameras can dynamically collaborate depend-
ing on their goals, we have proposed a fusion architecture

integrated with the MAS that will allow the agents to know
when collaboration is possible. This will enable the dynamic
creation of coalitions with specialised agents for solving a
particular problem. Also, we have identified possible prac-
tical concerns when developing this kind of architecture,
like the use of a MAS framework, and how the communica-
tion should be defined. The experiments conducted suggest
that the proposed architecture is suitable for this real-time
environment, as the cameras can be handled by a set of
cooperative agents.

In the future, we plan to extend the architecture defi-
nition for integration with multiple sensor types, like in-
door/outdoor localisation systems, thermal cameras, other
sensing devices like RFID or NFC, or also external devices
performing activity recognition (like mobile phones). The
integration of this kind of different inputs can improve the
system by allowing another level of perception and coordi-
nation. For example, rather than just tracking information,
camera agents can employ accurate fused location infor-
mation provided by indoor localisation systems to track
objects. Or in a health-care monitoring system, a remote
device can detect a person that has a fall. The agents can
then react to this event and start monitoring the target per-
son. All these inputs can be easily adapted to the existing
architecture by extending the Control Agent perceptions
and creating new Sensor Agents to input information to the
architecture.

Acknowledgements

This work was supported in part by Projects MINECO
TEC2012-37832-C02-01, CICYT TEC2011-28626-C02-02 and
CAM CONTEXTS (S2009/TIC-1485).

Notes on contributors

Alvaro Luis Bustamante received his B.S degree in computer
science from Universidad Carlos III de Madrid in 2008, his M.S
degree in artificial intelligence in 2009 and he is currently doing
his Ph.D. degree in artificial intelligence at the same university
as Research Fellow of the Applied Artificial Intelligence Group
(GIAA). His main interests are artificial intelligence applied to
image data processing, video surveillance automatic system, com-
puter vision, and multi-agent systems.

13

http://development.objectvideo.com/

Jose Manuel Molina Lopez received a degree in Telecommuni-
cation Engineering from the Universidad Politecnica de Madrid
in 1993 and a Ph.D. degree from the same university in 1997.
He joined the Universidad Carlos III de Madrid in 1993 where,
actually, he is Full Professor in the Computer Science Depart-
ment. Currently, he leads the Applied Artificial Intelligence Group
(GIAA, http://www.giaa.inf.uc3m.es) involved in several research
projects related with ambient intelligence, surveillance systems
and context based computing. His current research focuses in the
application of soft computing techniques (Multiagents Systems,
Evolutionary Computation, Fuzzy Systems) to surveillance, am-
bient intelligence, air traffic management and e-commerce. He is
the author of up to 50 journal papers and 200 conference papers.

M. A. Patricio received his B.S. degree in computer science from
the Universidad Politecnica de Madrid in 1991, his M.S. degree
in computer science in 1995, and his Ph.D. degree in artificial
intelligence from the same university in 2002. He has held an
administrative position at the Computer Science Department of
the Universidad Politecnica de Madrid since 1993. He is currently
Associate Professor at the Escuela Politecnica Superior of the
Universidad Carlos III de Madrid and Research Fellow of the
Applied Atrtificial Intelligence Group GIAA). He has carried out
anumber of research projects and consulting activities in the areas
of automatic visual inspection systems, texture recognition, neural
networks, and industrial applications.

References

Akyildiz, I., and Kasimoglu, I. (2004), ‘Wireless Sensor and Ac-
tor Networks: Research Challenges’, 4d Hoc Networks, 2(4),
351-367.

Bellifemine, F., Poggi, A., and Rimassa, G. (2001), ‘JADE: A
FIPA2000 Compliant Agent Development Environment’, in
Proceedings of the Fifth International Conference on Au-
tonomous Agents, pp. 216-217.

Bevilacqua, A., Di Stefano, L., and Azzari, P. (2006), ‘People
Tracking Using a Time-of-flight Depth Sensor’, in [EEE Inter-
national Conference on Video and Signal Based Surveillance,
pp- 89-89.

Braubach, L., Lamersdorf, W., and Pokahr, A. (2003), ‘Jadex:
Implementing a BDI-Infrastructure for Jade Agents’, EXP, 3,
76-85.

Bustamante, A., and Molina, J. (2011), ‘Multi-Camera Control and
Video Transmission Architecture for Distributed Systems’,
User-Centric Technologies and Applications, 94, 37-45.

Bustamante, A.L., Molina Lopez, J.M., and Patricio, M.A. (2011),
‘MIJ2K: Enhanced Video Transmission Based on Conditional
Replenishment of JPEG2000 Tiles With Motion Compensa-
tion’, Journal of Visual Communication and Image Represen-
tation, 22(4), 332-344.

Castanedo, F., Garcia, J., Patricio, M.A., and Molina, J.M. (2010),
‘Data Fusion to Improve Trajectory Tracking in a Cooperative
Surveillance Multi-Agent Architecture’, Information Fusion,
11(3), 243-255.

Castanedo, F.,, Patricio, M.A., Garcia, J., and Molina, J.M. (2006),
‘Extending Surveillance Systems Capabilities Using BDI Co-
operative Sensor Agents’, in Proceedings of the 4th ACM
International Workshop on Video Surveillance and Sensor
Networks, New York: ACM Press, p. 131.

Collins, R.T., Lipton, A.J., Kanade, T., Fujiyoshi, H., Duggins,
D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O., Burt,
P, and Wixson, L. (2011), ‘A System for Video Surveil-
lance and Monitoring’, System, 69(CMU-RI-TR-00-12), 573—
575.

Comaniciu, D., and Ramesh, V. (2000), ‘Robust Detection and
Tracking of Human Faces With an Active Camera’, in Pro-
ceedings of the Third IEEE International Workshop on Visual
Surveillance, pp. 11-18.

Everts, 1., Sebe, N., and Jones, G. (2007), ‘Cooperative Object
Tracking With Multiple PTZ Cameras’, in Proceedings of
the 14th International Conference on Image Analysis and
Processing, pp. 323-330.

Galego, R., Bernardino, A., and Gaspar, J. (2012), ‘Auto-
Calibration of Pan-Tilt Cameras Including Radial Distor-
tion and Zoom’, Advances in Visual Computing, 7431, 169—
178.

Garcia, J., Carbo, J., and Molina, J. (2005), ‘Agent-Based Co-
ordination of Cameras’, International Journal of Computer
Science and Applications, 2(1), 33-37.

Gascuefia, J., and Fernandez-Caballero, A. (2011), ‘On the
Use of Agent Technology in Intelligent, Multisensory and
Distributed Surveillance’, Knowledge Engineering Review,
26(02), 191-208.

Georgeff, M., Pell, B., Pollack, M., Tambe, M., and Wooldridge,
M. (1999), ‘The Belief-Desire-Intention Model of Agency’, in
Proceedings of the 5th International Workshop on Intelligent
Agents V: Agents Theories, Architectures, and Languages, pp.
1-10.

Hall, D., and Llinas, J. (2001), ‘Multisensor Data Fusion’, in Hand-
book of Multisensor Data Fusion, eds. M.E. Liggins, D.L.
Hall, and J. Llinas, Boca Raton, FL: CRC Press, pp. 1-14.

Hampapur, A. (2008), ‘Smart Video Surveillance for Proac-
tive Security’, IEEE Signal Processing Magazine, 25(4),
136.

Han, J., and Bhanu, B. (2007), ‘Fusion of Color and Infrared
Video for Moving Human Detection’, Pattern Recognition,
40(6), 1771-1784.

Heikkila, J. (2000), ‘Geometric Camera Calibration Using Circu-
lar Control Points’, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(10), 1066—-1077.

Horridge, M., Knublauch, H., Rector, A., Stevens, R., and Wroe,
C. (2004), A Practical Guide to Building OWL Ontologies
Using the Protégé-OWL Plugin and CO-ODE Tools Edition
1.0, Manchester: University of Manchester.

Jones, G., Renno, J., and Remagnino, P. (2002), ‘Auto-Calibration
in Multiple-Camera Surveillance Environments’, in Third
IEEFE International Workshop on Performance Evaluation of
Tracking and Surveillance, pp. 40—47.

Krahnstoever, N., Yu, T., Lim, S., Patwardhan, K., and Tu, P.
(2008), ‘Collaborative Real-Time Control of Active Cameras
in Large Scale Surveillance Systems’, in Workshop on Multi-
Camera and Multi-Modal Sensor Fusion Algorithms and Ap-
plications.

Liggins, M., Hall, D., and Llinas, J. (2008), Handbook of Mul-
tisensor Data Fusion: Theory and Practice (Vol. 22), Boca
Raton, FL: CRC Press.

Lim, S., Elgammal, A., and Davis, L. (2003), ‘Image-Based Pan-
Tilt Camera Control in a Multi-Camera Surveillance Environ-
ment’, in ICME, 3, 645-648.

Manyika, J., and Durrant-Whyte, H. (1994), Data Fusion and
Sensor Management: A Decentralized Information-Theoretic
Approach, Upper Saddle River, NJ: Prentice Hall.

Marchesotti, L., Messina, A., Marcenaro, L., and Regazzoni, C.
(2003), ‘A Cooperative Multisensor System for Face Detec-
tion in Video Surveillance Applications’, Acta Automatica
Sinica, 29(3), 423-433.

Meer, P. (2003), ‘Kernel-Based Object Tracking’, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 25(5),
564-577.

14

Molina Lépez, J.M., Garcia Herrero, J., Jiménez Rodriguez, F.J.,
and Casar Corredera, J.R. (2003), ‘Cooperative Management
of a Net of Intelligent Surveillance Agent Sensors’, Interna-
tional Journal of Intelligent Systems, 18(3), 279-307.

Patricio, M.A., Carbd, J., Pérez, O., Garcia, J., and Molina, J.M.
(2007), ‘Multi-Agent Framework in Visual Sensor Networks’,
EURASIP Journal on Advances in Signal Processing, 2007,
1-22.

Pavon, J., Gomez-Sanz, J., Fernandez-Caballero, A., and Valencia-
Jiménez, J.J. (2007), ‘Development of Intelligent Multisen-
sor Surveillance Systems With Agents’, Robotics and Au-
tonomous Systems, 55(12), 892-903.

Petrov, P, Boumbarov, O., and Muratovski, K. (2008), ‘Face De-
tection and Tracking With an Active Camera’, in 4th Interna-
tional IEEE Conference on Intelligent Systems, pp. 14-34.

Possegger, H., Ruther, M., Sternig, S., Mauthner, T., Klopschitz,
M., Roth, P, and Bischof, H. (2012), ‘Unsupervised Calibra-
tion of Camera Networks and Virtual PTZ Cameras’, in 17th
Computer Vision Winter Workshop.

Puwein, J., Ziegler, R., Ballan, L., and Pollefeys, M. (2012), ‘PTZ
Camera Network Calibration from Moving People in Sports
Broadcasts’, in 2012 IEEE Workshop on Applications of Com-
puter Vision (WACV), pp. 25-32.

Qureshi, E, and Terzopoulos, D. (2007), ‘Surveillance in Virtual
Reality: System Design and Multi-Camera Control’, in /[EEE
Conference on Computer Vision and Pattern Recognition,

pp. 1-8.

Qureshi, F., and Terzopoulos, D. (2011), ‘Proactive PTZ Cam-
era Control’, in Distributed Video Sensor Networks, eds.
B. Bhanu, C.V. Ravishankar, A.K. Roy-Chowdhury, H.
Aghajan, and D. Terzopoulos, London: Springer, pp. 273—
287.

Shibata, M., Yasuda, Y., and Ito, M. (2008), ‘Moving Object De-
tection for Active Camera Based on Optical Flow Distortion’,
in Proceedings of the 17th IFAC World Congress, pp. 14720—
14725.

Singh, VK., Atrey, PK., and Kankanhalli, M.S. (2007), ‘Coopeti-
tive Multi-Camera Surveillance Using Model Predictive Con-
trol’, Machine Vision and Applications, 19(5-6), 375-393.

Snidaro, L., Foresti, G., Niu, R., and Varshney, P. (2004), ‘Sensor
fusion for video surveillance’, in Proceedings of the Seventh
International Conference on Information Fusion, pp. 739—
746

Taylor, G., Chosak, A., and Brewer, P. (2007), ‘OVVV: Using Vir-
tual Worlds to Design and Evaluate Surveillance Systems’, in
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 1-8.

Wesson, R., Hayes-Roth, F., Burge, J., Stasz, C., and Sunshine, C.
(1981), ‘Network Structures for Distributed Situation Assess-
ment’, IEEE Transactions on Systems, Man and Cybernetics,
11(1), 5-23.

Zhang, Z. (2000), ‘A Flexible New Technique for Camera Cali-
bration’, I[EEE Transactions on Pattern Analysis and Machine
Intelligence, 22(11), 1330-1334.

15

