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Preface 

This thesis is a compilation of research works conducted at the Department of Geosciences of 

the University of Oslo as a partial fulfillment of the requirements for the degree of 

Philosophiae Doctor (Ph.D.) during my employment at the Department as a research fellow. 

The research was conducted with the title “Matching of repeat remote sensing images for 

precise analysis of mass movements” under the umbrella of a larger research project titled 

“Precise analysis of mass movements through correlation of repeat images (CORRIA)”.  It is 

a methodological study which focuses on the commonly used algorithms for matching of 

repeat remote sensing images in mass movement analysis, namely the normalized cross-

correlation and the least squares matching. The study is thus not restricted to any geographic 

location, but high mountain regions in general. As such, the data used in the research are 

satellite and airborne images of mass movements from the European Alps with some image 

data from Svalbard and Asian high mountains. The mass movement types on which the 

methods and algorithms are tested, evaluated and modified are glacier flow, rockglacier creep 

and land sliding. 

The research is funded by the Research Council of Norway (NFR) through the CORRIA 

project (no. 185906/V30) and contributes also to the NFR International Centre for 

Geohazards (SFF�ICG 146035/420) and the European Space Agency (ESA) GlobGlacier and 

glaciers_CCI project. The results of the research are communicated through publications in 

scientific journals, and oral and poster presentations at international scientific conferences. 

Misganu Debella-Gilo 

December 2011 

Oslo, Norway 
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Abstract 
Photogrammetry, together with radar interferometry, is the most popular of the remote sensing 

techniques used to monitor stability of high mountain slopes. By using two images of an area taken 

from different view angles, photogrammetry produces digital terrain models (DTM) and 

orthoprojected images. Repeat digital terrain models (DTM) are differenced to compute elevation 

changes. Repeat orthoimages are matched to compute the horizontal displacement and deformation of 

the masses. The success of the photogrammetric approach in the computation of horizontal 

displacement (and also the generation of DTM through parallax matching, although not covered in this 

work) greatly relies on the success of image matching techniques.   

The area-based image matching technique with the normalized cross-correlation (NCC) as its 

similarity measure is widely used in mass movement analysis. This method has some limitations that 

reduce its precision and reliability compared to its theoretical potential. The precision with which the 

matching position is located is limited to the pixel size unless some sub-pixel precision procedures are 

applied. The NCC is only reliable in cases where there is no significant deformation except shift in 

position. Identification of a matching entity that contains optimum signal-to-noise ratio (SNR) and 

minimum geometric distortion at each location has always been challenging. Deformation parameters 

such as strains can only be computed from the inter-template displacement gradient in a post-matching 

process. 

To find appropriate solutions for the mentioned limitations, the following investigations were 

made on three different types of mass movements; namely, glacier flow, rockglacier creep and land 

sliding. The effects of ground pixel size on the accuracy of the computed mass movement parameters 

such as displacement were investigated. Different sub-pixel precision algorithms were implemented 

and evaluated to identify the most precise and reliable algorithm. In one approach images are 

interpolated to higher spatial resolution prior to matching. In another approach the NCC correlation 

surface is interpolated to higher resolution so that the location of the correlation peak is more precise. 

In yet another approach the position of the NCC peak is computed by fitting 2D Gaussian and 

parabolic curves to the correlation peak turn by turn. The results show that the mean error in metric 

unit increases linearly with the ground pixel size being about half a pixel at each resolution. The 

proportion of undetected moving masses increases with ground pixel size depending on the 

displacement magnitudes. Proportion of mismatching templates increases with increasing ground pixel 

size depending on the noise content, i.e. temporal difference, of the image pairs. Of the sub-pixel 

precision algorithms, interpolating the image to higher resolution using bi-cubic convolution prior to 

matching performs best. For example, by increasing the spatial resolution (i.e. reducing the ground 

pixel size) of the matched images by 2 to 16 times using intensity interpolation, 40% to 80% of the 

performances of the same resolution original image can be achieved.  
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A new spatially adaptive algorithm that defines the template sizes by optimizing the SNR, 

minimizing the geometric distortion and optimizing the similarity measure was also devised, 

implemented and evaluated on aerial and satellite images of mass movements.  The algorithm can also 

exclude ambiguous and occluded entities from the matching. The evaluation of the algorithm was 

conducted on simulated deformation images and in relation to the image-wide fixed template sizes 

ranging from 11 to 101 pixels. The evaluation of the algorithm on the real mass movements is 

conducted by a novel technique of reconstructing the reference image from the deformed image and 

computing the global correlation coefficient and the corresponding SNR between the reference and the 

reconstructed image. The results show that the algorithm could reduce the error of displacement 

estimation by up to over 90% (in the simulated case) and improve the SNR of the matching by up to 

over 4 times compared to the globally fixed template sizes. The algorithm pushes terrain displacement 

measurement from repeat images one step forward towards full automation. 

The least squares image matching (LSM) matches images precisely by modeling both the 

geometric and radiometric deformation. The potential of the LSM is not fully utilized for mass 

movement analysis. Here, the procedures with which horizontal surface displacement, rotation and 

strain rates of glacier flow, rockglacier creep and land sliding are computed from the spatial 

transformation parameters of LSM automatically during the matching are implemented and evaluated.  

The results show that the approach computes longitudinal strain rates, transverse strain rates and shear 

strain rates reliably with mean absolute deviation in the order of 10-4 as evaluated on stable grounds. 

The LSM also improves the accuracy of displacement estimation of the NCC by about 90% in ideal 

(simulated) case and the SNR of the matching by about 25% in real multi-temporal images of mass 

movements.  

Additionally, advanced spatial transformation models such as projective and second degree 

polynomial are used for the first time for mass movement analysis in addition to the affine. They are 

also adapted spatially based on the minimization of the sum of square deviation between the matching 

templates. The spatially adaptive approach produces the best matching, closely followed by the 

second-order polynomial. Affine and projective models show similar results closely following the two 

approaches. In the case of the spatially adaptive approach, over 60% of the entities matched for the 

rockglacier and the landslide are best fit by the second-order polynomial model. 

 In general, the NCC alone may be sufficient for low resolution images of moving masses with 

limited or no deformation. To gain better precision and reliability in such cases, the template sizes can 

be adapted spatially and the images can be interpolated to higher resolution (preferably not more detail 

than 1/16th of a pixel) prior to the matching. For highly deformed masses where higher resolution 

images are used, the LSM is recommended as it results in more accurate matching and deformation 

parameters. Improved accuracy and precision are obtained by selecting matchable areas using the 

spatially adaptive algorithm, identifying approximate matches using the NCC and optimizing the 

matches and measuring the deformation parameters using the LSM algorithm. 
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PART I OVERVIEW





1. Introduction  

1.1. Motivation 

Geohazards related to mass movements cause human casualties, infrastructure destructions, 

environmental degradation and changes to the landscape. Hazardous events such as 

landslides, rock avalanches, ice avalanches, rockfalls, etc can provoke other hazardous chain-

reactions such as damming of rivers, outbursting of lakes, and tsunamis, all resulting in great 

economic, humanitarian and environmental consequences (Evans and Clague, 1994; Kääb et 

al., 2005a; Kääb et al., 2005b). Glacier and permafrost related hazards alone can take 

hundreds, even thousands, of human lives at once and can cause a global economic damage 

on the order of hundreds of millions of Euros (Kääb et al., 2005b). The risk is even increasing 

due to the expansion of human activities to hazard-prone areas driven by economic and 

population growth. Mass movements often occur in high mountain regions which are 

particularly sensitive to climate change and thus represent unique areas for the detection of 

climatic change impacts (Beniston, 2003; Kääb et al., 2005b). Therefore, monitoring high 

mountain terrain is an important step for understanding climate change impacts and 

improving hazard management.  

High mountain regions are difficult to access physically due to remoteness and 

relatively hazardous terrains.  The analysis and monitoring of mass movements in these 

regions therefore greatly benefit from remote sensing methods that provide spatially 

continuous and temporally frequent data from a distance (Kääb et al., 2005a).  The available 

collection of remote sensing data over more than six decades in many countries coupled with 

the advances in the technologies of image acquisition indicate a largely untapped potential of 

using bi- and multi-temporal images for understanding past histories, monitoring current 

processes and predicting future trends of high mountain slopes. However, the advancement in 

the technologies of image acquisition and the speed with which image data are accumulated 

has not been fully complemented with advanced techniques of processing and analysis.  

A remote sensing technique that has become increasingly popular in analyzing and 

monitoring Earth surface mass movements is matching of repeat images. Two and three 

dimensional displacements of glacier flow, rockglacier creep, landslides, etc can be computed 

by matching repeat remotely sensed optical images (Bindschadler and Scambos, 1991; 



2 

Copland et al., 2009; Delacourt et al., 2004; Haug et al., 2010; Janke, 2005; Kaufmann and 

Ladstädter, 2003; Kääb, 2002; Kääb and Vollmer, 2000; Maas et al., 2010; Wangensteen et 

al., 2006; Yamaguchi et al., 2003). Change in elevation can be measured using a technique of 

differencing elevations measured at different times (Abdalati et al., 2001; Dewitte et al., 2008; 

Kääb, 2005b; Kääb et al., 1997; Kääb et al., 2005a; Moholdt et al., 2010; Nuth and Kääb, 

2011; Wangensteen et al., 2006). Both the photogrammetric computation of the horizontal 

displacements and the generation of the DEM, if done through stereo parallax measurements, 

are highly dependent on image matching techniques, especially image correlation.  

Many of the image matching algorithms are developed in other fields and for other 

purposes than mass movement analysis where the temporal baselines and the geometric 

characteristics are different from that of mass movement images. Limitations of precision, 

reliability and automation issues hamper the method in mass movement applications calling 

for further researches aimed at:  

(1) Evaluation and identification of the factors limiting precision and reliability in the 

most commonly used image matching algorithms, 

 (2) Modification (where necessary) of the image matching algorithms for improving 

the precision and reliability of the derived mass movement parameters,  

(3) Test and evaluation of the algorithms on different mass movement types for 

robustness,  

(4) Increasing the number of mass movement parameters to be computed directly by 

the image matching algorithms,  

(5) Adaptation of the algorithms to the local mass movement and image 

characteristics, and  

(6) More automation with reduced manual interference of the image matching task. 

1.2. Objectives 

Image correlation techniques, especially the normalized cross-correlation (NCC) 

algorithm, are widely used in matching of multi-temporal mass movement images. The 

precision of the NCC is limited to a pixel, which translates to large ground size particularly in 

low resolution images. The effects of the pixel-precision on the accuracy of the computed 

mass movement parameters have not been well quantified. Besides, the sub-pixel precision 

algorithms used have not been systematically evaluated in mass movement images. Some of 

the objectives of the thesis are therefore to: 
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• investigate the influence of pixel size on the detectability and precision of 

horizontal displacement of mass movements

• identify the most precise and reliable sub-pixel image matching algorithms 

when using the NCC

The NCC and other area-based image matching algorithms require that the entities to 

be matched have adequate texture with minimum noise and geometric distortion (Schenk, 

1999). Small matching entities lack the demanded texture for the matching while large 

matching entities may involve significant deformation. Compromising between the two gets 

more challenging in matching repeat mass movement images as they have high noise level 

and deformation, which varies spatially, due to temporal differences. Another specific aim of 

the thesis was thus to: 

• develop a spatially adaptive technique for identifying matchable entities, 

optimizing their sizes and excluding ambiguous and occluded entities 

The least squares image matching (LSM) algorithm is designed to deal with the 

limitations of the NCC such as precision and the influence of geometric and radiometric 

distortions (Förstner, 1982). LSM operates in such a way that the geometric and radiometric 

distortions between the matching entities are adjusted so that the sum of squares of their 

intensity differences is minimized. There is very limited application and evaluation of the 

algorithm in mass movement analysis. Besides, further advantage of the capability of the 

algorithm to model the geometric distortion is not taken. Only the affine transformation model 

has been used in the few applications of LSM for mass movement analysis (Kaufmann and 

Ladstädter, 2003; Maas et al., 2010; Whillans and Tseng, 1995). The deformation may 

however involve convergence/divergence, tilting and curving of the masses demanding more 

advanced transformation models such as the full projective and the second-order polynomial 

(quadratic) models. The mode of the deformation may even vary spatially. Some of the 

specific objectives of this thesis were therefore to: 

• implement and evaluate the LSM for computation of horizontal surface 

displacement in glacier flow, rockglacier creep and land sliding 

• develop, implement and test the procedures with which the mass movement 

deformation parameters, such as rotation and strain rates, are computed from 

the geometric transformation parameters of the LSM model used simultaneous 

with the image matching task 
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• implement and evaluate  advanced spatial transformation models such as the 

projective and second-order polynomial in displacement measurement of mass 

movements  

• spatially adapt the geometric transformation models of the LSM  to the local 

deformation of the mass movements 

1.3. Outline 

The thesis is divided into two major parts. Part I presents an overview of the research theme. 

This part is divided into six chapters. Chapter one formulates the motivation behind the 

research followed by the objectives. Chapter two defines and explains types of mass 

movements common in high mountain regions. Available methods of mass movement 

analysis and monitoring, remote sensing included, are discussed. Chapter three briefly 

discusses the different remote sensing technologies used in mass movement analysis and 

monitoring. Chapter four then provides state-of-the-art area-based spatial-domain image 

matching for mass movement analysis and monitoring, starting from image acquisition to 

accuracy evaluation. The conceptual framework of the research is explored in chapter five 

specifying the research theme, image data, processing tools and outputs of the research. 

Chapter six briefly summarizes each of the papers published or submitted for publication 

followed by other key innovations of the research that played, however, not central part in the 

publications. Part II of the thesis presents four research papers: three journal articles and one 

peer-reviewed proceeding paper. The papers are numbered I to IV and are referred to in the 

thesis using those numbers. 
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2. Mass movement analysis and monitoring 

2.1. Mass movements in high mountain regions 

Mass movement, in the context of this thesis, refers to the down slope movement of Earth 

materials (Ritter, 2006), including rocks, glacier ice and debris. Such movements can lead to 

sudden or gradual failure of the slope. Slope masses move when the stress exerted on them is 

greater than their strengths. The major source of the stress is gravitational force occasionally 

aided by tectonic forces. The strength of the materials is weakened by agents such as heat, 

water, anthropogenic activities and tectonic actions. 

High mountain areas have high gravity-based potential energy of which hazard 

potential is enhanced by steep slopes. These areas are often characterized by low temperature 

and large accumulations of frozen water. Warming of cold environments increases therefore 

the potential for mass movements in two ways. First, warming increases wetness from melting 

surface or subsurface ice leading to increased pore water pressure. Second, the cohesive force 

that cements the materials in glaciers and rockglaciers, and also in joints of rock faces and 

slopes, is highly reduced due to the melting of ice and the freeze/thaw cycles. There is thus a 

great potential for mass movements in high mountain regions as compared to other parts of 

the globe. The hazard potentials can be enhanced by climate change as the temperature of 

surface and subsurface ice may increase (Beniston, 2003; Dehn et al., 2000; Gruber and 

Haeberli, 2007; Haeberli and Beniston, 1998).   

Mass movement redistributes both material and energy controlling the effects of the 

dynamic factors such as climate change and its consequences such as the mass balance 

(Hooke, 2005; Kääb, 2005b; Kääb et al., 2005a).  Typical mountain glaciers have 

accumulation zones at high altitude areas where snow accumulates, is buried and eventually 

crystallizes into solid ice after undergoing metamorphism (Hooke, 2005). The glacier then 

moves down slope towards lower elevation (ablation area) where the ice gets heated and 

melted ending up in a lake, river or sea.  Under equilibrium condition, the ice lost in the 

ablation zone equals the ice deposited in the accumulation zone.  Change in velocity of 

glaciers lead to changes in this equilibrium. Or, vice versa, changes in mass balance will lead 

to an adjustment of ice fluxes.  Horizontal flow is thus one of the major components of glacier 

mass loss in addition to bottom melting, calving, sublimation, etc (Hooke, 2005; Sommerkorn 

and Hamilton, 2008).  
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The velocity differences over space (strain rates) are results of deviatoric stresses, 

which are differences in stress with space (Hooke, 2005).  Glaciers deform down slope in 

response to gravitational stress, internal deformation of the ice crystals and basal slip due to 

heating of the base of the glacier, approximately obeying plastic mechanics (Hooke, 2005; 

Nye, 1952). Glacier velocity varies spatially, most notably decreasing horizontally from the 

glacier centre towards the glacier margins and vertically downwards to the glacier bottom. 

Fig. 2-1 presents the spatial variation of the horizontal surface velocity of Nigardsbreen 

glacier as a typical example. Difference in velocity with time (i.e. acceleration/deceleration) 

may be an impact of seasonal weather changes, climatic changes over longer period (Rignot 

and Kanagaratnam, 2006) and dynamic instabilities.  These influence the temperature and 

hydraulic regime of the base changing the basal motion rather than the internal deformation of 

the ice crystals. Studies show that the spring/summer velocities are greater than the 

autumn/winter velocities (Willis, 1995).   

Fig. 2-1. Typical spatial variation of the horizontal surface velocity of glacier, an example 
from Nigardsbreen glacier, Southern Norway 

When strain and basal sliding are large, the glacier may collapse, crevasse, debuttresse 

and calve, sometimes also creating glacial hazards.  Such events may endanger life, economy, 

environment, and trigger chain-reactions such as lake outbursting and damming of rivers, 

resulting in far more disastrous consequences (Kääb et al., 2005a). Therefore, monitoring the 

velocity (strain rates and acceleration/deceleration) of glacier will help understand the impacts 

of the driving forces such as climate change and to foresee upcoming changes. 
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Rockglaciers  are  permanently frozen debris supersaturated with ice and ice lenses that 

slowly deform down slope under gravity (Barsch, 1992). Rockglaciers typically move slowly 

with speeds ranging from centimeters to decimeters per year forming a continuous and 

internally coherent flow field (Barsch, 1992; Haeberli et al., 2006; Kääb et al., 2003; Kääb 

and Reichmuth, 2005).  Slope and material accumulation affect the spatial distribution of the 

velocity (Haeberli et al., 2006). The average velocity is typically high in the centre decreasing 

towards the margins. The velocities of tongue-like rockglaciers often depict velocity contours 

that emulate the shape of the rockglacier as shown by the example of the Muragl rockglacier 

(Fig. 2-2). Notice the high velocity region in the centre of the rockglacier. Little is known 

about the temporal variation of rockglacier creep.  It is generally understood that causes of 

velocity variation varies depending on the temporal scale (Kääb, 2005b). The temporal 

variation of velocity is generally attributed to internal conditions of the rockglacier, weather 

and climate conditions, material supply, thermal regime and terrain topography (Kääb, 2005b; 

Kääb et al., 2003; Roer et al., 2005).  Monitoring of surface deformation integrated with other 

subsurface techniques will help understand the three-dimensional deformation of rockglaciers. 

Understanding both spatial and temporal variation of the deformation is important for 

monitoring climate change impacts, geomorphologic processes and hazard potentials. The 

typically slow speed calls for very accurate measurements or longer time span between 

measurements. 

Fig. 2-2. Spatial variation of the horizontal surface velocity of rockglacier, an example from 
the Muragl rockglacier, Upper Engadine, Swiss Alps 
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Gravity, melting ice, tectonic activities, and loss of support due to, for example, glacier 

retreat generates land sliding, rockslides, rock falls, etc.  These are common in high mountain 

environments. The loss of support due to the melting of valley glacier is found to be triggering 

rockslides in some parts of the European Alps (Kääb et al., 2000). Their velocity varies from a 

few centimeters per year to free fall of rock masses. In areas close to infrastructures and other 

human activities, they create risk and need thorough monitoring.  

2.2. Methods of mass movement analysis and monitoring 

To understand climate change impacts and to foresee potential geohazards, mass movements 

have to be detected, analyzed and monitored.  Detection is the observation that the slope mass 

is moving. Analysis in this case is the computation of different components of the movement. 

Slope masses, just like any other physical object, are characterized by their position and 

geometry in addition to their thematic properties. The changes in geometry and position are 

known as kinetics. Kinematics is then the quantification of the kinetic properties of the masses 

(Kääb, 2005b). Changes in position lead to displacement. Changes in displacement with space 

create deformation, i.e. changes in geometry (shape, size and orientation).  Velocity is the 

displacement per unit time, and strain rate is change in velocity with space. The periodic 

computation of these parameters to observe the temporal behavior is known as monitoring.  

The detection, analysis and monitoring can be carried out qualitatively, quantitatively, 

using numerical models, or in combination. As a rule, the more quantitative the method, the 

more communicable and valuable the information is. However, qualitative observation is also 

important especially in the detection of mass movements so that monitoring actions are taken. 

Qualitative methods include visual observation in the field using geomorphodynamic 

indicators, observation on photographs of different times, observation of indirect indicators 

such as tree trunks, etc (Kääb, 2005b; Shroder, 1978). 

Numerical methods model the mass movements partly using data from the quantitative 

methods to understand mass movement process and forecast its future trends. The quantitative 

methods are basically involved in the detection, analysis and monitoring to measure the 

position, geometry and/or the kinetics of the slope masses. The approaches commonly used 

can be characterized into four groups. Each group has strengths and weakness when used for a 

given type of mass movement.  They are in many cases complementary to each other rather 

than alternative.   The four groups of quantitative methods are: 
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• Geotechnical methods: involve techniques of measuring relative displacement and 

deformation of masses without geo-referencing using instruments such as tiltometer 

(inclinometer), piezometer, extensometer, etc. Although they are known for measuring small 

magnitude displacement and deformation, they provide only point based data with limited 

spatial coverage.  They have been used for monitoring deformation, for example, in glacial 

beds (Hart and Rose, 2001), rockglacier (Arenson et al., 2002) and landslides (Caris and Van 

Asch, 1991) 

• Geodetic methods: involve the use of leveling instruments to quantity geo-referenced 

displacements of slope masses. Instruments such as levels, laser ranging, global navigation 

satellite system receivers, total stations, etc are used to regularly register the one, two and 

three dimensional positions of masses or points on masses. These result in very limited data 

density as they require point based measurements with instruments installed or placed at the 

measuring stations. They are used to monitor landslides, glacier flow and rockglacier creep 

(Andreassen et al., 2002; Kaufmann, 1996). 

• Geophysical methods: involve the measurement of soil and debris parameters through 

systems such as ground penetrating radar (GPR), seismic survey and electrical resistivity 

measurement. They have been used for example in investigating landslides (Caris and Van 

Asch, 1991), glacier flow (Hart and Rose, 2001) and rockglacier deformations (Maurer and 

Hauck, 2007; Musil et al., 2002).  

• Remote sensing methods: Remote sensing is the acquisition of information about an 

object or phenomenon, without making physical contact with the object  (Lillesand et al., 

2008). Basically the technique measures electromagnetic (EM) radiation emitted by the sun or 

by the measurement system itself that is reflected, scattered, diffracted or emitted by the 

object standing somewhere from meters to thousands of kilometers away.  The remote sensing 

system does not need direct contact with the objects which is an indispensible characteristic 

for applications in remote and hazardous areas. It provides data usually in one, two or three 

dimensions regularly or on-demand covering large geographic area. The continuous 

improvements in the data quality and processing technique have made this method 

increasingly popular. 
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3. Remote sensing methods of mass movement analysis

A remote sensing approach to mass movement analysis involves the thematic properties of 

objects such as reflection and scattering of EM radiation, together with the position and 

geometry of the platform (sensor) to unravel the position and geometric properties of the 

observed masses. The kinetics can then be computed directly or from repeat computation of 

the position and geometry. By using the kinetic properties together with models and/or 

auxiliary data, the dynamics of the slope masses can be understood. These are the bases for 

the use of remote sensing in monitoring and analysis of mass movements. As remote sensing 

is restricted mainly to the surface, the parameters measured are also restricted to the surface 

unless some inference techniques are used.  

Depending on the type and the source of the EM radiation and the processing system 

used, the remote sensing technologies commonly used for mass movement analysis can be 

grouped into three: namely, photogrammetry, interferometric synthetic aperture radar 

(InSAR) and laser scanning. Brief explanation of each is given below followed by summary 

of their comparison. 

3.1. Photogrammetry 

Photogrammetry is the technique of measuring the position, orientation, shape and size of 

objects from images (Kraus, 2007). The images can be the conventional film-based 

photographs or, more recently, digital images acquired from the ground (terrestrial), air or 

space (satellite). Three branches of photogrammetry are known depending on the image type 

and processing technique. When the images are conventional (film-based) and the processing 

is optical-mechanical it is called analogue. When the images are conventional but the 

processing is based on computers, it is called analytical. When the images are digital (or 

digitized from analogue) and the processing is carried out by use of computers it is called 

digital photogrammetry, towards which modern photogrammetry is evolving.  

The line of sight from the camera (sensor) location to any object on the ground can be 

constructed provided that the internal and external sensor parameters are known. The 

intersection of two homologous lines of sight in two images taken from different viewpoints 

(stereo images), as depicted in Fig. 3-1, can be used to determine the 3D location of objects 
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(Kraus, 2007; Kääb, 2005b; Mikhail et al., 2001; Schenk, 1999). By taking more points from 

the overlapping areas of the stereo images, a digital surface model (DSM) and orthoimages 

can be extracted. The identification of the homologous lines of sight can be conducted 

manually or digitally. In the digital approach the homologous points are identified through 

image matching techniques.   

Photogrammetry provides the capability to monitor deformation in two major ways 

(Kaufmann and Ladstaedter, 2000; Kaufmann and Ladstädter, 2003; Kääb, 2005b). First, 

vertical changes can be monitored by subtracting the digital terrain models (DTM) of different 

times. Horizontal displacement can be computed from multi-temporal orthoimages through 

matching of features or image subsets and computing the change in position and geometry. 

Second, by using image pairs of different times, given accurate  camera internal and external 

parameters, rough DTMs and ‘quasi-orthophotos’ can be generated and matched (Kaufmann 

and Ladstaedter, 2000). Positions of a feature in all orthophotos of the different times can be 

identified by matching. Once the positions are known lines of sight can be projected back 

from the positions to the images. The spatial intersection of the projection rays of the 

photographs of the same time gives the 3D position of the feature at the time. From the 3D 

positions of different times, the 3D displacement of the masses can be computed in the same 

process. The setup of the two approaches is depicted in Fig. 3-1 (Kääb, 2005b) 

Fig. 3-1 The two basic approaches for the digital measurement of three-dimensional 
displacements from repeat optical images using photogrammetry, from (Kääb, 2005b), with 
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permission). vx
s is the horizontal surface displacement; �zs/�t is the elevation differences: 

whereas, �zs/�x is the terrain slope component of the particle movement. 

Image matching plays a double role in computer-based digital photogrammetry. First, 

image matching is used to create the DTM and the orthoimages of the different times, i.e. the 

geometry. Second, image matching is used to track the slope masses on the multi-temporal 

orthoimages, i.e. the kinematics.   The success of digital photogrammetry in mass movement 

analysis is therefore heavily dependent upon the success of the image matching technique 

used.  

Digital photogrammetry has widely been used to monitor two and three dimensional 

displacements of glaciers, rockglaciers and landslides (Casson et al., 2005; Casson et al., 

2003; Delacourt et al., 2007; Kääb, 2002, 2005b; Kääb et al., 2005a; Strozzi et al., 2004; 

Yamaguchi et al., 2003).  The change in elevation is measured by differencing digital 

elevation models measured at different times (Dewitte et al., 2008; Kääb, 2005b; Kääb et al., 

1997; Kääb et al., 2005a).  3D surface flow vectors are also directly computed using the 

‘quasi-orthoimages’ as stated above (Kaufmann and Ladstädter, 2003). Precision, reliability 

and robustness related to the image matching techniques partly limit photogrammetric 

applications in mass movement analysis. 

3.2. Interferometric Synthetic Aperture Radar (InSAR)  

Interferometric analysis is based on the principle that the phase difference of the signals of 

two synthetic aperture radar (SAR) images acquired from slightly different orbit 

configurations (the same pass or different passes) can be exploited for the computation of 

terrain topography (Bamler and Hartl, 1998; Goldstein et al., 1988). The spatial variation of 

the phase difference of two coherent waves (interferogram) is proportional to the height 

difference and slant-range displacement. By removing the slant-range displacement due to 

horizontal interferometric baseline, i.e. interferogram flattening, the height dependent phase 

difference can be unwrapped to produce digital elevation model (DEM) of the area covered. If 

a temporal baseline is involved and there is coherence between the images of the two times, 

the flattened interferogram is proportional to both elevation and slant-range displacement. 

Subtraction of the height dependent phase difference, i.e. differential interferometry 

(DInSAR), results in the phase difference due to slant-range horizontal displacement alone. 
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 Two approaches can then be used for mass movement analysis. First, by computing 

multi-temporal DTMs, elevation changes can be computed. The technique has been used on 

glacier, rockglacier and land subsidence in different cases (Catani et al., 2005b; Kääb, 2005a; 

Kääb et al., 2005a; Strozzi et al., 2004). Second, if there is horizontal ground displacement in 

the slant range direction, the multi-temporal interferogram contains both the altitude 

differences and horizontal displacement related components. The phase differences due to 

topography can be removed in different ways. (1) A synthetic interferogram based on the 

digital elevation model of the scene, if available, can be subtracted to produce the 

interferogram related to slant range displacement alone. (2) Interferograms of different times 

can be subtracted. This requires a pair of interferogram (at least three SAR images). (3) SAR 

images of no interferometric baseline but with temporal baseline will result in phase 

differences related only to slant range displacement (Klees and Massonnet, 1998). Provided 

coherence is maintained, as in non-vegetated areas, surface deformation of a few centimeters 

over the acquisition period can be measured. DInSAR measures displacement only in slant-

range direction. Displacements in other directions are computed from DInSAR with slant 

ranges oriented in those directions. Nonetheless, DInSAR is a powerful technique for 

mapping land surface deformations (Bamler and Hartl, 1998; Catani et al., 2005a; Catani et 

al., 2005b; Hsing-Chung et al., 2004; Kenyi and Kaufman, 2003; Luckman et al., 2003; 

Strozzi et al., 2004; Strozzi et al., 2002).   

An InSAR technology for mass movement analysis that can significantly reduce the 

problem of temporal decorrelation is the permanent scatterer InSAR (PSInSAR). PSInSAR 

overcomes the decorrelation problem by identifying resolution elements whose echo is 

dominated by a single scatterer in a series of interferograms (Ferretti et al., 2001; Hooper et 

al., 2007).  Increased coherence over large horizontal and temporal baseline improves spatial 

resolution and precision. In its use of series of multi-temporal and multi-source SAR 

coherence data of a permanent scatterer, PSInSAR can monitor fine objects with very high 

precision as long as the coherence is established (Hilley et al., 2004; Lesniak and Porzycka, 

2008; Meisina et al., 2006).  

Yet another system of interferometry is the polarimetric interferometry which utilizes 

the polarimetric dependence of coherence to optimize the coherence between multi-temporal 

SAR images (Cloude and Papathanassiou, 1998). The optimization of the coherence 

contributes to the improvement of the precision of the computed deformation.  
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3.3. Laser altimetry 

Laser scanning, also known as LiDAR (Light Detection and Ranging), is a technique where 

laser light is sent to the ground in the form of pulses and the elapsed time between 

transmission and reception of the pulse is recorded (Wehr and Lohr, 1999). The record is then 

used to compute the distance between the sensor and the ground as the speed of light is 

constant and atmospheric influences are accounted for through modeling. Aided with global 

positioning system (GPS) and inertial navigation system (INS), it produces high accuracy 3D 

position of objects. The system is especially known for its high accuracy height measurement 

although its horizontal errors are known to be higher than that of the vertical. Terrestrial laser 

ranging has long been used in many forms. However, airborne laser scanning made the 

system more popular for terrain modeling. The launch of the ICESat satellite took the 

technique to space.  

By taking multi-temporal measurements, the changes in elevation can be accurately 

measured if the errors in horizontal position are reduced. This is the major role of laser 

altimetry in mass movement analysis. In fact the ICESat satellite was launched to monitor the 

elevation changes of polar ice (Schutz et al., 2005). Laser altimetry methods have been used 

to monitor the elevation changes of rockglaciers, glaciers, rockslides, etc (Bauer et al., 2006; 

Bauer et al., 2003; Hofton and Blair, 2002; Krabill et al., 2002; Nuth and Kääb, 2011).  

DTMs created using, especially airborne, laser scanning are usually very dense and 

accurate. Multi-temporal DTMs can then be treated just like multi-temporal orthoimages and 

image matching can be applied to track terrain features. Conventionally, signals of reflected 

or emitted EM radiation or their transforms are used in matching. DTM matching methods use 

another data domain, i.e. the elevation data. The approach has been used, for example, to 

measure velocities of ice (Abdalati and Krabill, 1999), rockglaciers (Bauer et al., 2003) and 

landslide deformation (Jones, 2006).  

3.4. Comparison of the different remote sensing techniques  

The three remote sensing systems used in mass movement analysis and discussed above have 

a number of strengths and shortcomings. In most cases, they are complementary to each other; 

meaning, the weaknesses of one is covered by the others and vice versa. Summary of the 

strengths and limitations of each of the techniques is given in Table 3-1 (Baltsavias, 1999; 

Colesanti et al., 2003; Hsing-Chung et al., 2004; Lingua et al., 2008; Strozzi et al., 2004).  
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Photogrammetry has a long history in mass movement analysis starting from its early 

visual tracking of changes on photographs up to the current semi-automated computer 

processing. Due to this and its well-established implementation scheme, large volumes of 

application experience exist in mass movement analysis. It is indispensible in historical mass 

movement analysis as optical aerial and satellite images date back many decades, in contrast 

to SAR and laser scanning.  Therefore, photogrammetry still remains central in deformation 

measurement, with still a lot of improvements required in the image matching algorithms used 

as they are critical in both geometric measurements and kinematics of the masses.  

Table 3-1. Strengths and limitations of the three remote sensing techniques used in kinematic 
monitoring of mass movements 
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4. Image matching in mass movement analysis

4.1. Image matching definition and purposes  

Image matching is a task of finding correspondence between two or more images taken at 

different times, from different viewpoints or by different sensors over the same area (Brown, 

1992; Zitová and Flusser, 2003). Terms such as image registration, image fusion, image 

integration, image correlation, and feature tracking are often used for image matching 

inappropriately as they mix tasks and purposes. Image matching is a task carried out for 

purposes such as image registration (geometric alignment), fusion (thematic or spectral 

combination), tracking (change in position or geometry of a feature), etc. Image matching is 

used for one or more of these purposes in remote sensing, medical imaging, computer vision, 

robotics and mechanics among others.  The analysis scheme can be grouped into four (Zitová 

and Flusser, 2003):  

• Multi-view analysis. Images are taken from two or more directions so that larger 2D 

or 3D observations are made of a scene. This is common in remote sensing for image 

mosaicing or in computer vision and photogrammetric stereo vision. DTMs are basically 

generated using this scheme. 

• Multi-temporal analysis. Images of the same scene are acquired at different times. 

The goal here is to find and evaluate the changes that have taken place within the temporal 

baseline of the images acquisitions. The task is part of change detection 

• Multi-modal analysis. Images of the same scene are acquired by different sensors. 

The aim is to get more complex and detailed information about a scene by integrating or 

fusing data from different sensors. 

• Image-to-scene analysis. Scene images are sometimes registered to models of the 

scene. Typical examples in remote sensing are registering DEM to image, map to image, etc. 

4.2. Image matching elements and methods 

A number of important elements are common to all image matching tasks independent of the 

application. Fig. 4-1 is a schematic depiction of an area-based image matching scheme with 
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most of its elements. For each application, the specifics of the elements may vary. While their 

explanation in the light of mass movement analysis comes in the upcoming section, general 

explanations of the elements are given briefly as follows.  

The images: Image matching requires two or more images that, at least partly, overlap 

each other. The images should not be unrecognizably distorted in relation to each other. 

Distortion in this case refers to both geometric and radiometric distortions; and, 

“unrecognizably” is to stress that if the images are highly distorted one way or another in 

relation to each other, the computer may not be able to successfully match them.   

The matching entities: For efficiency purposes, the images are not matched as a whole or 

pixel by pixel. Therefore, a matching entity sometimes referred to as a primitive  has to be 

identified (Schenk, 1999; Zitová and Flusser, 2003). The different methods of image matching 

are differentiated based on this fundamental unit of matching. 

(i) When the intensities or intensity transforms of image subsets, usually of square 

shape and certain size (referred to as templates in this thesis), are used for the 

matching, the method is called area-based matching. If the intensity values are 

directly used for the matching, the processing is said to be in the spatial-domain. 

If the intensity values are transformed to other domain such as the frequency 

domain before matching, the processing is said to be in the transform-domain.  

(ii) When distinct features with defined attributes are used as matching entities, the 

method is called feature-based matching. The distinct features can be points, 

lines, edges, regions or global structures. Feature-based method requires existence 

and prior identification of distinct features with accurate computation of their 

attributes. Accurate computation of the location of the feature attributes is a 

matter of ongoing research. Its accuracy is thus dependent on the accuracy of 

feature extraction. 

(iii)  A least known matching method called relational matching also exists. Structural 

image descriptions, both features and their relationships, are used in relational 

matching (Schenk, 1999). 

The search area: The search area is a subset of the search image and requires definition 

in order to avoid searching in the entire image. It is defined systematically based upon prior

information regarding the imagery and the surface it represents.  

The similarity measure: The entities are matched based on certain quantitative 

parameter, i.e. similarity measure, which measures either similarity or dissimilarity between 
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the matching entities. Examples include the computation of correlation coefficient, sum of 

squared differences, etc. 

The optimization algorithms: The geometric precision and radiometric similarity of the 

matches needs to be optimized using, an optimization algorithm. In addition to the 

optimization, post-matching filtering may be conducted to take out wrong matches, due to 

ambiguity and occlusion. Image matching is generally known as an ill-posed problem because 

no match (occlusion) or no unique match (ambiguity) may exist (Schenk, 1999).  

4.3. State-of-the-art area-based image matching for mass movement 

analysis 

Image matching application to mass movement analysis is basically a multi-temporal analysis 

although multi-view and multi-modal analyses may also be involved. The procedures outlined 

here focus on area-based spatial-domain image matching method, as it is the most widely 

used.  The discussion starts by mathematical formulation of image matching in 2D space. 

Suppose an image of a slope mass is taken at a certain time (for e.g. the left image in 

Fig. 4-1). The image is then orthoprojected so that its position is fixed on the 2D global 

coordinate system and the topographic distortion is corrected for. The intensity values of a 

piece of the slope mass (represented by image template here) is given as f(x, y). If image of 

the same area is taken sometime later (could be days or years depending on the mass 

movement type), the template will now be moved to a new location with dx and dy

displacements from its original location.  Its new intensity value will be t(x-dx, y-dy). The new 

intensity value will not be equal to f(x, y) as random noise (e) may exist (Eq. 4-1). Due to 

surface changes, illumination changes or changes in imaging conditions, the intensity values 

may be changed by systematic gain (�) and offset (�) as given in Eq. 4-2.  During movement 

the template may be deformed, i.e. rotated, compressed/extended, sheared, tilted, or curved as 

simplified by the dashed quadrilateral of Fig. 4-1.  The two geometries are now related by 

geometric transformation functions (gx and gy) that are characterized by parameters (p1…n) as 

shown in Eq. 4-3.  

���� �� � 	�� 
 ��� � 
 ��� � 
� � � � � � � � ����
���� �� � ��� 
 ��� � 
 ���� � � � �
� � � � � � � ����



20 

���� �� � 	 �������� � ��� �� ��� � ���� � � ��� �� ��! � � �� � �
� � � � ��"�

The fundamental problem of image matching is to determine the displacements (dx

and dy) so that the residual (e) equals or close to zero. As displacement is the unknown, the 

matching searches for the matching entity which produces the minimum residual (e). Due to 

the likely systematic radiometric changes, the problem is reformulated as finding the right 

radiometric transformation parameters (� and �) so that e is minimized. In the presence of 

significant displacement gradient, the functions gx and gy, characterized by the model 

parameters p1…n will be included. The problem is thus finding the exact p1…n (� and �

included) that minimize e. In mass movement analysis, radiometric changes and geometric 

deformation are inevitable. The choice of the correct algorithm that is invariant to the 

radiometric and at least slight geometric changes (or capable of modeling them) is needed for 

successful image matching. Furthermore, the success of image matching is dependent on the 

characteristics of the imagery, matching entity, similarity measure and the search area. 

Fig. 4-1 Framework of an area-based image matching task where two images are matched 
using a similarity maximizing measure such as the NCC 

f(x, y) t(x-dx, y-dy)

Search area

Reference image Search image
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4.3.1. Imagery 

Multi-temporal images used in image matching for mass movement analysis can be acquired 

directly for that purpose or selected from the available image archives. Images may be 

acquired in digital format or digitized from analogue images. A number of imaging 

characteristics are important in image matching for mass movement analysis: namely, 

platform, sensor, spatial, spectral, radiometric and temporal characteristics.  

Platform and sensor: Remote sensing images can be acquired from the ground 

(terrestrial), air and space (satellite). Spatial coverage of the images increases from terrestrial 

to satellite. When viewing from a long distance, a small field of view can cover a large area. 

Due to the distance between the sensor and the surface that determines atmospheric influences 

on the amount of photons detected at the sensor, the smallest ground size detected (scale of 

observation) will change depending on the platform. Therefore, the choice of image platform 

for mass movement analysis depends on the level of detail of the investigation. Stability of the 

platform is also important for geometric precision of the data collected. Highly unstable 

platforms such as helicopters and balloons are not attractive. The type of lenses may also be 

important for SNR and geometric precision. Pushbroom sensors as used in many satellites are 

slightly advantageous in terms of SNR and geometric stability (McCloy, 2006). 

Spatial characteristics: The spatial characteristics of images include the spatial 

coverage and resolution. Spatial coverage is the ground area covered by an image scene. 

Spatial coverage is a factor of the swath width (field of view in angles) of the sensor and the 

flight height. The choice of the coverage is dependent on the size of the mass movement to be 

investigated. Spatial resolution is the ground size an image pixel represents, technically 

referred to as the Ground-projected Sample Interval (GSI). This is also dependent on the 

sensor and platform characteristics combined with the flight height. A pixel is a discretized 

unit of the 2D continuous space. The smaller the GSI, the better is the representation of the 

continuous space.  This has a number of implications. (1) When the GSI changes, the scale at 

which the observation is carried out, and hence the features being observed, change. 

Investigations show that  images over a certain feature attain high signal variance when the 

ground pixel size is just less than the average size of the surface features (Woodcock and 

Strahler, 1987). (2) The geometric precision of the observed feature depends on the size of the 

pixel. Due to the integration of the signal over the pixel, the location of a feature can only be 

resolved to +0.5 pixel (Schowengerdt, 2007). The implications for image matching are that 
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the precision of the matching is as good as the GSI unless the matching is conducted with sub-

pixel precision. In pixel-precision matching, the displacement in mass movements can be 

detected only as long as the ground pixel size is less than the displacement magnitude.  

Therefore, the choice of the spatial resolution depends on the displacement of the mass 

movement and the precision required for the mass movement parameters to be computed. 

High spatial resolution is suited for slow-moving masses.  Fast-moving masses can be 

monitored using lower spatial resolution images as long as the demanded precision is 

obtained. The effects of pixel size on mass movement parameters and the performances of the 

different sub-pixel precision algorithms have not been quantified in mass movement analysis. 

Paper I of this thesis investigated these issues on images of glacier flow, rockglacier creep and 

land sliding (Debella-Gilo and Kääb, 2011). 

Spectral characteristics: Spectral characteristics include the EM wavelength region, 

the width and the number of the spectral channels used for the imaging. Visible and near 

infrared EM wavelengths are commonly used in photogrammetric applications. Spectral 

resolution refers to the bandwidth used in the acquisition of the images. The EM wavelength 

region and bandwidth are important factors for the SNR of the images as the quantity of the 

photon arriving at the sensor passing through the atmosphere is partially depending on the EM 

wave region and width. Although single band, panchromatic, is very often used for image 

matching in mass movement analysis, it is in principle possible to use multiple channels as 

well (Fookes et al., 2004). 

Radiometric characteristics: Analogous with the discretization of continuous ground 

area into the discrete finite pixels, the continuous real radiometric records of a pixel are 

quantized into discrete (integer) values. For an n-bit image, the dynamic range is 2n different 

intensity values. In image matching for mass movement analysis, panchromatic 8-bit images 

are commonly used. Generally, the higher the dynamic range, the more detail and more 

resolved the images are although not necessarily increasing the amount of information 

obtained. For example, higher dynamic range images may increase the contrast of low texture 

surfaces. However, such contrast may not correlate over long temporal baseline. Further 

research is needed to investigate the issue, e.g. a cost-benefit analysis.  

Temporal characteristics: The temporal characteristics include the temporal gap, the 

season and the time of the day of the images acquisitions. The temporal gap needed is 

dependent on the velocity of the mass movements. For fast moving masses, short temporal 

baseline is needed as it is already possible to measure the displacement within the short time 

and as longer temporal baseline may lead to deformation and destruction of the surface. The 
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temporal resolution should be long enough and/or the spatial resolution of the images should 

be high enough for the displacements of the masses to be detected. For measuring glacier 

flow, temporal gaps ranging from a day to a few years are used. Surface and geometric 

changes related to melting, crevassing, dirt accumulation and high velocity increase temporal 

decorrelation. Images with temporal gaps up to decades can be used on rockglaciers and high 

mountain rockslides as they are not much vegetated and move at slow speeds.  Some mass 

movements occur in areas which change seasonally due to snow, vegetation and cloud cover. 

To increase the correlation between the images, they have to be acquired during the same 

season of the year. The possibility of getting no vegetation or snow cover should be utilized 

so that the relatively permanent surfaces are observed. The time of the day is important too as 

it affects the illumination. Satellites are commonly constellated to pass over a place at the 

same time of the day during every pass.  Aerial and terrestrial images need such 

synchronization for optimized correlation.  

4.3.2. Preprocessing 

Once appropriate images over a certain mass movement are acquired, there are a number of 

preprocessing steps to be performed before the actual matching is conducted. These are 

independent orthorectification and /or co-registration of the images, noise filtering, interest 

point selections and transformation (where needed).

Orthorectification and co-registration: Accurate analysis of mass movement from 

repeat remotely-sensed images requires precise co-registration of the images. Co-registration 

errors directly affect the accuracy of the computed movement parameters. As the movements 

can be very small at places, the co-registration error needs to be well below a pixel so that the 

displacement magnitudes computed are outside the error margin.  If the images are 

georeferenced with relief distortion corrected, there is no need of subsequent co-registration 

unless systematic shift is observed. During co-registration, the ground control points to be 

used should be outside the moving areas as otherwise the co-registration model will contain 

movement. 

Noise filtering: Presence of noise in one or both images decreases the matching 

correlation. Noise in this case is defined as the randomly distributed additive noise (the e in 

Eqs. 4-1 to 4-3) originating from the sensor, atmospheric conditions, the viewing angle, 

surface changes, resampling during orthorectification, etc. Low pass or high pass filters 

maybe used to reduce noise. Other forms of noise may also exist. Salt-and-pepper noises and 
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radar speckles can be reduced using geometric filters which can smooth the speckle but 

preserve features of interest such as edges (Crimmins, 1985). For example, the NCC 

normalizes scale and offset illumination changes (Lewis, 1995). Orientation correlation is also 

invariant to scale and offset illumination changes (Fitch et al., 2002), while LSM models the 

radiometric changes (Förstner, 1982).  

Interest point operators: Image matching is usually performed on pre-defined points 

which are selected systematically based on certain criteria. This preprocessing step is 

particularly crucial in feature-based matching to detect features that will be characterized and 

matched. Geometrically stable interest points with high information content need to be 

identified for successful feature-based matching (Schmid et al., 1998). Also in area-based 

methods, matchable points can be detected. Points that are located in image sections with high 

SNR are selected excluding textureless areas.  

Transformation: If the matching is to be performed in the transform domain, the 

image intensities have to be transformed in to another domain, for e.g. the Fast Fourier 

Transform, gradient computation.  

4.3.3. Identification of matching entities  

Image subsets (templates hereafter) are used as matching entities in area-based matching. The 

size and quality of the template affect the reliability of image matching. A template should 

contain low noise level and high signal variance (texture). Noise and signal are hardly 

distinguished in small templates creating an ambiguity problem. In principle, increasing the 

size of the template makes the template more unique increasing variability and suppressing 

noise (Okutomi and Kanade, 1990; Schenk, 1999). Unfortunately, increasing the template size 

increases the geometric distortion within the template. The cause of geometric distortion in 

mass movement images is displacement gradient (strain). Increasing the template size also 

increases the computation time exponentially. Finding the matchable template that contains 

adequate SNR with minimum geometric distortion at each location is not easy. As both SNR 

and geometric distortion vary spatially, template sizes need to be locally adapted (Kanade and 

Okutomi, 1994; Okutomi and Kanade, 1990; Okutomi and Kanade, 1992). The local 

adaptability becomes even more important in Earth surface mass movements due to the often 

non-rigid motion of these masses leading to displacement gradients and the often necessary 

long temporal baseline increasing the noise level. 
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In paper II of this thesis, an algorithm that locally optimizes template sizes based on 

the SNR and the similarity measure is developed, implemented and evaluated. Candidate 

templates for matching are identified based on the maximization of SNR, excluding 

textureless templates. Identification of a candidate template does not guarantee a match. That 

can be guaranteed by optimizing the similarity measure and excluding occluded templates.  

4.3.4. Defining search area  

Searching in an entire image through a “brute force” is not efficient. First, the computational 

cost is explosively high. Second, there is high chance of getting entity duplicates which create 

an ambiguity problem. In mass movement images, prior information on the maximum 

displacement together with slope direction (if available) can be used to limit the search 

distance and direction respectively. 

4.3.5. Similarity measures  

The similarity measure quantifies the similarity or dissimilarity between the matching entities. 

A number of similarity measures exist each with strengths and limitations (Brown, 1992; 

Zitová and Flusser, 2003).  Typical similarity measures are the sum of absolute differences 

(SAD), sum of squares of differences (SSD), normalized cross-correlation (NCC), least 

squares (LSM), mutual information, and Fourier invariance properties (Fitch et al., 2002; 

Foroosh et al., 2002) such as phase correlation, orientation correlation, etc. For mass 

movement analysis, the choices need to be based on some pre-requisites such as robustness 

against noise, invariance to some level of deformation, invariance to at least systematic 

radiometric distortions, precision of the matching location, etc.  

The SAD and SSD compute the absolute values and the squares, respectively, of the 

difference between the intensity values of the corresponding pixels of the reference and the 

search templates and add their total sum (Eqs. ��� and ��#). In both cases, as dissimilarity is 

quantified, the template that produces the lowest value is considered the most likely match. 

They operate in the domain of Eq. ��� above as they assume no systematic radiometric and 

geometric differences. Although they are fast and simple to implement, they are not attractive 

in mass movement analysis where multi-temporal images with likely high level of noise and 

geometric deformation are involved.  
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The normalized cross-correlation (NCC) function is developed to overcome the 

drawbacks of the SAD and SSD (Eq. 4-6). It results in a clear range between -1 and 1, 

respectively showing complete opposite and exact replica. Thus after computation for all 

templates in the search area, the one that has the highest NCC coefficient is considered the 

most likely match. NCC operates in the domain of Eq.  ��� above as it normalizes systematic 

radiometric differences but assumes no geometric differences (Nillius and Eklundh, 2002; 

Lewis, 1995).   

The NCC is widely used for matching mass movement images. There are however 

some limitations related to accuracy and computation. The correlation peak may sometimes 

be flat lacking sharpness due to possible spatial autocorrelation of the intensity values. Even if 

sharp, the location of the peak cannot be resolved more precisely than a pixel which can be 

large for low spatial resolution images. Rigid translation is assumed between the matching 

templates ignoring the possible change in size, shape and orientation. Although, it is invariant 

to radiometric offset and gain, a high noise level can still affect the matching. NCC is 

computationally costly especially when the template and the search area are large as it 

involves convolution. If an acceleration of the computational speed is needed, Eq. 4-6  can be 

solved using the Fast Fourier Transform (Lewis, 1995; Haug et al., 2010). NCC in the 

frequency domain simply replaces the convolution of the NCC in the spatial domain with 

multiplication.  

/��� �� � ' �0�1�2�345��4�136��236 �345�7�8
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The least squares matching (LSM) is a cost minimization function that works based on 

the L2-norm theorem.  The best matching position is sought for by adjusting the geometry and 

radiometry of the matching template so that the sum of squares of the gray-value deviation 

between the two templates is minimized (Förstner, 1982; Gruen, 1996). Instead of assuming 

exact shape and size of the matching templates, the LSM models both the geometric and 

radiometric distortions. The model parameters are determined iteratively using least squares 

adjustment. LSM has thus no limitation of precision as the location of the matches can, at 

least in theory, be determined at any sub-pixel precision.  It operates in the domain of Eq.  ��"
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above accounting for systematic radiometric changes and geometric deformations. Most 

commonly affine model is used for both geometric and radiometric changes. However, full 

projective and second-order polynomial models (Bethmann and Luhmann, 2010) can also be 

used to fit more advanced geometric deformations. The LSM solves only within a few pixels 

distance after the approximate matching location is estimated by other simpler and faster 

method. It is therefore more of an optimization algorithm than a similarity measure.  

LSM is a very powerful algorithm that has not been utilized to its full potential in 

mass movement analysis. In addition to matching images at very high precision, the spatial 

transformation models can be used to estimate the parameters of deformation such as strain 

and rotation rates of the mass movements. Only few examples exist for LSM application in 

mass movement analysis (Kaufmann and Ladstädter, 2003; Maas et al., 2010; Whillans and 

Tseng, 1995). Paper III of this thesis implemented LSM to images of glacier flow, rockglacier 

creep and land sliding to compute horizontal surface displacement. Besides, the procedures of 

computing the deformation parameters from the parameters of the spatial transformation 

model are also presented. Paper IV of this thesis presents the procedures of implementing 

advanced spatial transformation models on rockglacier creep and land sliding in a spatially 

adaptive way. 

Other similarity measures that are used either in the transform domain or in other 

application areas are not considered further in this thesis. For example, mutual information is 

often used in medical image registration especially for multi-modal image analysis (Pluim et 

al., 2003). The potentials of phase and orientation correlations of the Fourier domain are 

investigated in mass movement analysis such as glacier flow (Haug et al., 2010; Michel and 

Rignot, 1999).  

4.3.6. Optimization and post-processing 

If the images are coarse spatial resolution and the similarity measure operates at pixel 

precision, slow mass movements may not be detected or they may be under or over estimated. 

A number of sub-pixel algorithms are known to improve the precision, especially in computer 

vision and mechanics, which use fundamentally different approaches. (1) The images can be 

interpolated to higher resolution prior to matching or on the fly. (2) The correlation surface 

around the peak of the NCC coefficients can be interpolated to higher resolution. (3) A 2D 

parabolic or Gaussian curve can be fit to the peak of the NCC surface.  These methods simply 
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attempt to improve the positional precision of the matching without adjusting the radiometry 

and geometry of the matching entities. Other methods such as LSM attempt to optimize the 

positional precision of the matching by adjusting the radiometry and geometry of the 

templates. 

Post-matching filtering is conducted to remove false matches due to ambiguity and 

occlusion. The filtering can be done by thresholding the similarity measure (e.g. the 

maximum cross-correlation coefficient), the maximum displacement, the displacement 

direction, coherence of the displacement, etc. Manual filtering or manual setting of filter 

parameters may have heuristic effects. Thus, if available, systematic and automated 

approaches are preferred.   

4.3.7. Computation of mass movement parameters 

After the matching positions are fixed, what remains is the computation of the mass 

movement parameters. 2D horizontal surface displacement is computed as the Euclidean 

distance between the old and the new positions. The horizontal surface velocity is then the 

displacement divided by the temporal gap between the images’ acquisitions. 

Strain is basically a derivative of displacement with respect to distance. Strain rate is 

the derivative of velocity with respect to distance. Strain rates can thus be computed from the 

velocities obtained using prior image matching (Kääb, 2005b). In 2D computations, the 

horizontal longitudinal and transverse strain rates and shear strain rate can be computed. LSM 

can be used to compute the rotation and strain rates automatically from the spatial 

transformation parameters during the matching. The procedures and implantation results are 

presented in paper III of this thesis.  In 3D computation, there are three velocity vectors. Their 

derivation with respect to distance in the three orthogonal directions gives the nine 

components of strain rate tensor, i.e. the three normal strain rates and the six shear strain rate 

components. Stress-strain relationship for the specific material can be used to understand the 

dynamics of the mass movements.  
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4.3.8. Uncertainties 
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There are many sources of error that affect the accuracies of mass movement measurements 

computed from repeat images. Three sources of error can be characterized: radiometric, 

geometric and propagated. 

The radiometric sources are those that introduce noise and systematic changes to the 

signal. Sensor noises, atmospheric conditions, illumination and temporal surface changes are 

the major factors that contribute to the radiometric sources of error. Such sources lead to 

mismatching and imprecise estimation of the parameters. In multi-temporal images the 

chances of atmospheric, illumination and surface changes are high even if the sensor noises 

are kept to minimum. 

Geometric sources are those affecting the positional precision and geometric similarity 

of the matching entities. Pixel size, displacement gradient (deformation), crevassing (in 

glacier and rockglacier), formation of cracks and gullies, rotation, etc are the major geometric 

sources. Pixel size affects the precision of the geolocation of the matching entities. Large 

ground pixel sizes lead to the use of large ground template size which contains large intra-

template displacement gradient. Pixel size can be, at least partially, dealt with by using sub-

pixel algorithms such as intensity interpolation (paper I) or LSM (paper III). Deformation, 

formation of crevasses, cracks and rotation make templates different from each other in size, 

shape and orientation. Inter-template geometric deformation can be reduced by either using 

optimum template sizes or modeling as in LSM (papers II and III respectively).  

Propagated errors are those passed over from the preprocessing steps. Typical 

preprocessing steps include orthorectification, co-registration, noise filtering, selecting 

interest points, etc. Any error in one or more of these Preprocessing steps will propagate to 

the matching and the computed mass movement parameters introducing both radiometric and 

geometric errors. Orthoprojection errors dominate due to internal and external imaging system 

errors, errors in the DTM used for the orthoprojection, errors in the projection model 

parameters and resampling noise. Noise filters generally smooth images reducing the texture. 



30 

�������� �������

�
��	�����

The cumulative effects of all sources of error may not be known exactly. Some errors cancel 

each other while others combine. Quantification of the total error budget and the components 

of each error source is a deep research topic by itself and therefore will not be addressed here 

except discussion of the components. The total error budget in area-based image matching for 

mass movement analysis can be divided into three major components: namely, algorithm-

related, image-related and mass movement-related. Each of these has components which 

contribute to its own error budget. 

(1) Algorithm error involves precision, robustness and reliability of the similarity measure. 

Mismatching (blunders) and misrepresentation due to poor parameterization of the 

matching algorithm such as non-optimum template size, inappropriate search area size 

and inefficient or no use of optimization (e.g. sub-pixel) algorithm are typical sources of 

algorithm error. Algorithm error can be very large determining the success and failure of 

repeat image matching for mass movement analysis. Matching errors can be reduced by 

using the correct algorithm and its parameters or making necessary improvements to the 

algorithm used. Once algorithm errors are corrected or reduced, the other components of 

the error budget can be dealt with.  

(2) Orthorectification error is a major error in image matching for mass movement analysis 

following the algorithm-related errors. Precise movement measurement is possible only if 

the images are more precisely orthorectified and co-registered. Displacements to be 

detected have to be greater than the orthorectification error. Among the different sources 

of orthorectification errors, DTM errors dominate the total error budget of 

orthorectification (Lutes, 2002). Unfortunately, relatively high DTM errors are common 

in steep and rugged terrains where mass movements are prevalent. For frame images, for 

example, DTM-related orthoprojection error increases from the centre of the scene to the 

peripheries (Kääb, 2005b). Systematic sensor-related orthorectification errors can be 

corrected for pushbroom sensors through advanced sensor modeling as used, for 

example, in the COSI-Corr software (Leprince et al., 2007a; Leprince et al., 2007b).  

(3) The third component of the total error budget is the temporal decorrelation of the mass 

movement images. However precise the matching algorithm and the orthorectification 

might be, there may still be decorrelation due to significant temporal change of the 

surface and deformation. Temporal decorrelation leads to mismatching (blunders) and/or 

misfitting of the matching templates, i.e. misrepresentation. This error component 
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increases with the temporal baseline between the images. The main solution is therefore 

using image pairs with appropriate temporal baseline for the movement expected. 

Another solution may be using preprocessing procedures such as noise filtering, interest 

operators (e.g. paper II), etc. The matching algorithm needs to be as robust as possible to 

some levels of these errors. 

4.3.9. Evaluation techniques 

An ideal method of evaluation is to compare the computed mass movement parameters with 

their actual values as measured using ground-based methods such as geodetic techniques. 

When available, these are considered very accurate and provide true comparison to that of 

matching (Kääb et al., 1997; Kääb and Vollmer, 2000). Such ground-based data seldom exist 

for many of the high mountain mass movements.  Due to seasonal or even shorter-term 

velocity variations, ground-based validation would require ground measurements synchronous 

with the image acquisitions which, in practice, are hardly available. Commonly, the 

algorithms’ performances are evaluated based on synthetic images and stable grounds around 

the moving masses. The following approaches are found to be useful. 

Simulated deformation: When the displacements and the matching positions in the 

real multi-temporal images are not known, simulation can be used. The images of the mass 

movement can be simulated by taking one of the images of the mass movements and applying 

an analytic deformation and adding random Gaussian noise, offset and gain to the intensity 

values. In such simulated deformed images, the matching position of every pixel is known 

together with the geometric transformation parameters. Although this does not exactly 

represent the real image, it can evaluate the performance of the algorithm under similar and 

controlled conditions.  

Stable ground around the moving mass: If the images are accurately orthorectified 

and co-registered, stable ground on the scene should not show any movement. The 

displacements and the deformation parameters are expected to be zero on the stable ground. 

The accuracy of the estimated parameters can then be computed as the deviation from the zero 

value, assuming that the stable ground well represents the moving masses. This may not 

always be the case, though. It can however help determine the orthoprojection error. 

Reconstruction of the moving surface: The assumption behind image matching in 

mass movements is that although the position and geometry of the masses change their 

spectral signals remain similar. Therefore, by reconstructing the reference image from the 
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displaced image, the effectiveness of the matching can be measured using the correlation 

coefficient between the reference and the reconstructed images. This can be used for 

comparing different algorithms although it does not provide absolute accuracy. However, it is 

the only method that evaluates the performance of the algorithm used on the actually moving 

masses except when true ground data exists. Further detail of this novel approach is given in 

section 6.5. 

Whatever approach is used, the statistics to be used for the evaluation of accuracy is 

also important.  Standard deviation, standard error and root mean square error (RMSE) are 

sometimes used (Kääb, 2005b). Mean deviation may also be used. Mean deviation measures 

only the systematic bias of the estimation.  Standard deviation measures the blunders.  The 

RMSE is too sensitive to extreme values such as mismatches due to the squaring (Willmott 

and Matsuura, 2005).  Mean absolute error is the mean of the absolute values of the difference 

between the estimated values and the actual values. Both blunders and biases are included. 

Every deviation is accounted with its magnitude at the scale of the measurement. The best 

estimate is, therefore, the one with mean absolute error equal to or close to zero. This statistic 

is found to be appropriate for evaluating the accuracy of algorithms and methods. 
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5. Conceptual framework  

In this thesis the task of analyzing mass movements from repeat remotely-sensed images is 

viewed as a processing chain which has four major components as shown in Fig. 5-1 multi-

temporal images of mass movements are acquired then processed and analyzed using 

computer-based tools to produce geometric and kinematic properties of the mass movements. 

The kinematic properties aided by auxiliary data and/or models enable to understand the 

dynamism of the mass movements. 

Fig. 5-1 Framework of image matching task for mass movement analysis 

(1) The mass movements. Three mass movement types are involved in this research: 

namely, glacier flow, rockglacier creep, and land sliding (Table 5-1). They are very common 

in high mountains and cold regions and have practical implications, such as geohazards. The 

regions where they are prevalent are also sensitive to changes in climatic variables such as 

temperature and the mass movements are good indicators for climate change impacts. The 

examples used here are mainly from European Alps with some glacier flows in Asia and the 

Arctic (Svalbard). 

(2) The images. The images of the masses used in the study are from different 

platforms, sensors and spatial and temporal resolutions. Table 2 gives summary of the image 

characteristics used for the specific mass movement type. Pairs of simulated deformation 

images are also used for evaluation purposes. 

(3) The image processing and analysis tools. Images are only visual models of 

reality until they are processed and analyzed after which they produce information about the 

The real mass 
movement

Multi-temporal 
images

Processing 
tools

Kinematic 
properties
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reality they represent.  The goal of this research work is to push image matching in mass 

movement analysis towards more accurate (truthiness), more precise (level of detail of 

measurement), more automated (less required prior information and manual interference) and 

get more thematic output. The NCC and LSM algorithms are used with some algorithm 

modifications. An image matching tool called Image Matching for Movement Analysis 

(IMMA) with both the NCC and LSM as similarity measures is scripted and used in 

MATLAB. 

(4) The thematic outputs. The outputs per se are not the essential goal of this 

research, rather the methods are. Nonetheless, displacement (velocity), longitudinal strain 

rate, transverse strain rate, and rotation rate of the masses are computed. These parameters can 

be used in other geoscientific applications together with auxiliary data and/or models. 

Table 5-1. Main characteristics of mass movements and imagery used in the research 

Mass movement Image pair characteristics 
Type Location Platform   Sensor  Spatial 

resolution 
Temporal 
resolution 

Glacier flow Nigardsbreen, Norwegian 
mountains  

Aerial    Optical    30 cm 10 days 

Kronebreen, Svalbard 
(Norway) 

Satellite  
(Radarsat) 

Microwave   ~3 m 25 days 

Ghiacciaio del Belvedere, 
Italian Alps 

Aerial  Optical  50 cm 1 month 

Baltoro, Pakistani 
Himalaya region 

Satellite  
(Landsat)   

Optical  15 m 1 year 

Rockglacier 
creep  

Muragl, Swiss Alps Aerial  Optical  20 cm 13 years 

Land sliding La Clapiére, French Alps Satellite 
(QuickBird)   

Optical  60 cm 7 years 

Aletsch, Swiss Alps Aerial  Optical  30 cm 30 years
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6. Summary of papers and other innovations

6.1. Ground pixel size effects and sub-pixel algorithms in NCC (paper I) 

Debella-Gilo, M. and A. Kääb (2011). "Sub-pixel precision image matching for measuring 
surface displacements on mass movements using normalized cross-correlation." Remote 

Sensing of Environment 115(1): 130-142. 

The NCC is the most widely used similarity measure in image matching for mass movement 

analysis. However, the fact that its precision is limited to a pixel reduces its accuracy 

compared to its theoretical potential. The effects of ground pixel size on the accuracy of 

horizontal displacement of mass movements have not been well investigated. Displacements 

less than half the ground pixel size cannot be detected. This has implications in particular for 

low spatial resolution images when applied to slow-moving masses. In most high mountain 

regions medium and low spatial resolution satellite images are the only available image data.  

Such images can be utilized optimally if appropriate techniques are used. A number of sub-

pixel algorithms are available. They are mainly adapted from other application areas, such as 

computer vision, and applied in mass movements without thorough evaluation and 

comparison. The algorithms basically use two major approaches. (1) Interpolating the images 

to higher resolution prior to matching. (2) Computing the location of the NCC peak from the 

correlation surface with higher precision using different techniques.  

Paper I presents a study conducted to investigate the effects of ground pixel size on the 

accuracy of horizontal surface displacement and to evaluate and compare the two different 

approaches of sub-pixel precision algorithms. The NCC-based image matching is conducted 

on image pairs of different resolution created through resampling to evaluate the effects of the 

change in the spatial resolution. The two sub-pixel approaches are also implemented and 

evaluated. In one of the two sub-pixel precision approaches, image intensities are interpolated 

to a desired sub-pixel resolution using a bi-cubic interpolation scheme prior to the actual 

displacement matching. In the second approach, the image pairs are correlated at the original 

image resolution and the peaks of the correlation coefficient surface are then located at sub-

pixel resolution using three techniques, namely bi-cubic interpolation, parabola-fitting and 

Gaussian-fitting. Both principal approaches are applied to three typical mass movement types 
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from European Alps: rockglacier creep, glacier flow and land sliding. The results show that 

bi-cubic interpolation of image intensity performs best followed by bi-cubic interpolation of 

the correlation surface. By increasing the spatial resolution (i.e. reducing the ground pixel 

size) of the matched images by 2 to 16 times using intensity interpolation, 40% to 80% 

reduction in mean error in reference to the same resolution original image could be achieved. 

Both Gaussian and parabolic peak locating turn out less accurate. The study also quantifies 

how the mean error, the random error, the proportion of mismatches and the proportion of 

undetected movements increase with increasing pixel size (i.e. decreasing spatial resolution) 

for all of the three mass movement examples investigated. By using image interpolation prior

to matching, available low resolution images can be utilized for precise analysis of slow-

moving masses. 

6.2. Locally adaptive optimum template sizes for the NCC algorithm (paper 

II) 

Debella-Gilo, M. and A. Kääb (2011). "Locally adaptive template sizes for matching repeat 
images of Earth surface mass movements." ISPRS Journal of Photogrammetry and Remote 

Sensing Revision submitted. 

The main requirements of a matching entity in area-based matching are the presence of 

adequate image texture (signal variance) and the absence of noise.  Templates that lack 

texture and small templates that are not unique enough result in ambiguous matching. In 

principle, increasing the size of the template makes the template more unique (Okutomi and 

Kanade, 1990; Schenk, 1999). However, increasing template size poses two challenges. First, 

it increases the computation time exponentially. Second, it increases geometric distortion 

within the template. The challenge in deciding template size is therefore finding the optimum 

size that contains high signal variation in relation to noise variation (i.e. adequate signal-to-

noise ratio) with minimum geometric distortion. As these parameters vary spatially, template 

sizes need to be locally adapted (Kanade and Okutomi, 1994; Okutomi and Kanade, 1990; 

Okutomi and Kanade, 1992). The local adaptability becomes even more important in Earth 

surface mass movements due to the often non-rigid motion of these masses and the often 

necessary large temporal baseline.  

Paper II presents an algorithm for locally adaptive template sizes in NCC-based image 

matching. The algorithm relies on two important facts. Firstly, the SNR of an image subset 
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attains peak when the noise is minimized and the signal variance is maximized. Such peak is 

attained due to edge crossing (object boundaries) or when the signal gets saturated due to lack 

of new source of signal variation. Textureless regions lack this SNR peak. Secondly, when the 

peak of NCC coefficient is computed together with the matching position for increasing 

template sizes, the value of the peak decreases first due to noise and then increases again, 

attaining a peak at the size where the noise is maximally suppressed and geometric distortion 

is still low. The matching position of the template gets fixed just before attaining the peak. 

Ambiguous and occluded templates either lack the peak or their matching positions do not get 

fixed. Therefore, the spatially adaptive algorithm for template sizes identifies candidate 

templates based on the SNR peak and then iteratively looks for the size at which the cross-

correlation coefficient attains a local peak and the matching position gets fixed. The algorithm 

is tested on simulated deformation images and applied to real bi-temporal images of different 

Earth surface mass movements. The evaluation of the algorithm was conducted on simulated 

deformation images and in relation to the image-wide fixed template sizes ranging from 11 to 

101 pixels. The evaluation of the algorithm on the real mass movements is conducted by a 

novel technique of reconstructing the reference image from the deformed image and 

computing the global correlation coefficient and the corresponding SNR between the 

reference and the reconstructed image. The results show that the algorithm could reduce the 

error of displacement estimation by up to over 90% (in the simulated case) and improve the 

SNR of the matching by up to over 4 times compared to the globally fixed template sizes. The 

algorithm highly reduces the effects of geometric distortion and noise. Besides, it effectively 

excludes most of the templates that lack adequate SNR from the analysis through its candidate 

selection step and excludes occluded templates in the second step. The algorithm pushes 

terrain displacement measurement from repeat images one step forward towards full 

automation as it overcomes the choice of template sizes by an operator, which is subjective 

and not spatially adaptive and requires experience.

6.3. LSM for displacement and deformation measurement (paper III) 

Debella-Gilo, M. and A. Kääb (2011). "Surface displacement and deformation on mass 
movements using least squares matching of repeat images." Remote Sensing Revision 

submitted. 

In response to the shortcomings of correlation-based and other similarity measures, the Least 

Squares Matching (LSM) was developed (Förstner, 1982). Instead of assuming exact shape 
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and size of the matching templates, the LSM models both the geometric and radiometric 

distortions. The model parameters are determined iteratively using least squares adjustment 

by changing the shape and size of the matching entities. In so doing the LSM matches images 

accurately at sub-pixel precision. Although the algorithm is popular in photogrammetric 

stereo vision, there are very few applications in mass movement analysis (Bethmann and 

Luhmann, 2010; Kaufmann and Ladstädter, 2003; Whillans and Tseng, 1995). There is a lack 

of wider application and evaluation of the algorithm on different mass movement types. 

Besides, the capability of the algorithm to model deformation is not utilized further except 

precisely locating the matching positions for displacement estimation. Strain rates are usually 

computed in a post-processing step from the velocity gradients (Kääb, 2005b). 

Paper III presents the procedures of exploring the potential of automatically computing 

displacement, rotation and strain rates of Earth surface mass movements directly and 

simultaneously from the matching positions and from the parameters of the geometric 

transformation models of the LSM. The procedures are exemplified for aerial and satellite 

images of glacier flow, rockglacier creep and land sliding. The performance of the algorithm 

is evaluated on the stable grounds, simulated deformed image pairs and on the mass 

movement itself. The results show that the approach computes longitudinal strain rates, 

transverse strain rates and shear strain rates reliably with mean absolute deviation in the order 

of 10-4 as evaluated on stable grounds. The LSM also improves the accuracy of displacement 

estimation of the NCC by over 90% in the ideal (simulated) case and by about 25% in real 

multi-temporal images of mass movements. The performances are higher on glacier flow and 

rockglacier creep images with their coherent flow fields, limited surface changes and accurate 

co-registration (in the present study) as opposed to the land sliding images analyzed. 

6.4. Spatially adaptive and higher-order transformation models in LSM 

(paper IV) 

Debella-Gilo, M. and A. Kääb (2011). Monitoring slow-moving landslides using spatially 
adaptive least squares image matching. The Second World Landslide Forum. Rome, Italy. 

Accepted

In the few applications of the LSM algorithm in mass movement analysis, only the affine 

geometric model is used for the entire scene (Bethmann and Luhmann, 2010; Kaufmann and 

Ladstädter, 2003; Whillans and Tseng, 1995). The affine model incorporates movements that 
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involve change in position, linear and constant changes in size in each direction (i.e. scaling), 

and shearing. However, Earth surface masses can also be tilted, diverged/converged and 

deformed non-linearly depending on the form, process and material of the slope. The problem 

gets more complicated as in reality the pattern of deformation can vary spatially on a slope. 

One geometric model may thus not fit to all deformation types on a slope. LSM with higher-

order spatial transformation models such as the projective and second-order polynomial 

(Bethmann and Luhmann, 2010) have not been used in mass movement analysis. 

Paper IV presents and evaluates an algorithm which uses the LSM with spatially 

adaptive and high-order geometric models to estimate horizontal surface displacements of 

slow-moving landslides from repeat optical aerial and satellite images. Affine, projective and 

second-degree polynomial geometric models are included. Pairs of high resolution optical 

images over a rockglacier creep and a slow-moving landslide are orthorectified and co-

registered. Image matching is applied first using the conventional NCC, then using the LSM 

algorithm with image-wide single geometric models, and finally using the LSM with spatially 

adaptive geometric models. The spatially adaptive algorithm operates in such a way that for 

each template the model that produces the lowest sum of square of intensity difference is 

considered the best fitting model. The approaches are evaluated in reference to the NCC 

algorithm based on the SNR of reconstructing the reference image from the search image.  In 

general, over 25% improvement in the SNR gain is obtained when the LSM algorithms are 

used compared to the NCC algorithm. In both cases, the spatially adaptive algorithm performs 

the best closely followed by the image-wide second-order polynomial model. The image-wide 

affine and projective models perform alike.  The performance of the spatially adaptive 

approach is a clear indication of the spatial variation of the mode of deformation of the 

masses. In the spatially adaptive case, majority of the image templates matched (over 60%) 

are found to fit the second-order polynomial model as it can model first-order deformations as 

well. 

6.5. Other innovations of the thesis 

Apart from the articles presented, the research has come up with some other novel techniques 

that are explained as follows. 

The use of SNR of image reconstruction for evaluation  



40 

The use of simulated deformation in the evaluation of an image matching task may not give 

the real accuracy. Simulated deformations lack the complexity of real mass movements. The 

representation of temporal radiometric changes with Gaussian noise and the geometric 

deformations with single spatial transformation model cannot fully represent real mass 

movements. They can however evaluate the reliability of the algorithm under a control 

condition.   

The use of stable ground for accuracy evaluation is closer to the real mass movements. 

Although it shares the temporal differences between the images, stable ground lack the 

deformation that the mass movements undergo. The deformation can create radiometric 

changes. In addition, the stable ground may not adequately represent further conditions on the 

mass movement, such as texture, topography, etc. The level of accuracy on the stable ground 

may thus not necessarily represent that on the moving ground.  

Image matching is used in mass movement analysis based on the assumption that 

although the masses are displaced and deformed, the radiometry of the masses remain 

generally similar. This has the implication that if every deformed pixel is accurately identified 

and moved back to its original position, the two matching images will correlate image-wide. 

The better the matching algorithm, the higher is the image-wide correlation (�) between the 

reference and the reconstructed image. The SNR is then computed as given in Eq. =��. The 

SNR before the matching (SNRrd) and after the reconstruction (SNRrr) can then be computed to 

see the gain in the SNR by the specific matching algorithm used (Eq. =�� and Fig. 6-1). 

�$>? � @
�3@� � � � � � � � � � =���

$>?��(AB� � $>?CC 
 $>?C6� � � � � � � =���
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Fig. 6-1. Image reconstruction and computation of the SNR gain. �rd and SNRrd are the global 
correlation coefficient and the corresponding SNR (respectively) between the reference 
(older) and the deformed (recent) images, while the �rr and SNRrr  are the global correlation 
coefficient and the corresponding SNR (respectively) between the reference and the 
reconstructed images. 

This approach has some limitations. Firstly, it does not give absolute quantity of the 

errors in terms of mass movement parameters such as displacement or strain rate. It is, 

however, useful for comparing different methods and algorithms. Empirical tests show that 

the relative gain in the SNR is comparable to relative gain in the accuracy of the computed 

displacement.  Secondly, the approach fails in low texture areas as the SNR appears to be high 

already before the matching. This problem is not specific to this approach but common to 

area-based image matching. Textureless areas are not reliably matched in area-based method 

anyway. 

Spatially adaptive interest operator 

The study has found out that if a pixel is taken and the SNR of windows around the pixel are 

computed consecutively every time increasing the window size, for regions with good texture 

there will be a size at which the SNR attains a certain peak(s). This peak shows the size at 

which the noise variance is minimized and the signal variance is maximized within the 

defined maximum size. It is the size at which the information content per image (not ground) 

size is optimized. Besides, the peak is found to be coinciding with edges as shown for the 

rockglacier image subset of Fig. 6-2. Such image subsets with maximized SNR are good 

candidates for area-based matching. Image regions lacking signal variability lack the SNR 

Reference 
image 

Deformed 
image 

Reconstructed 
image 

�rd and SNRrd

�rr and SNRrr  
Reconstruction by a 
matching algorithm 
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peak and can easily be excluded from the matching (e.g. shadow image subset of Fig. 6-2). 

This operator can be used to exclude areas lacking adequate SNR from the matching. 

  

Fig. 6-2. Signal-to-noise ratio together with the first local maximum (right) as plotted against 
the window size for an aerial image of real rockglacier section (upper left) shadow area (lower 
left). The smooth line is for the rockglacier and the dotted line is for the shadow area. 

Spatially adaptive matching optimizer 

Even if we have a good matching candidate, there is no guarantee that it will have one (not 

occluded) and only one (unambiguous) match. A good way to ensure that is by using the 

cross-correlation coefficient. For a given template size, the peak of cross-correlation values in 

the search image shows the most likely match. With the same token, if we compute this peak 

and the accompanying matching position for different template sizes increasing from small 

size, the first peak of the peaks, if accompanied by fixed matching position, shows the 

optimum size of the template (Fig. 6-3). At this size the noises are maximally suppressed and 

the displacement gradient is still under a pixel. The matching position of the templates is fixed 

around this size. Occluded templates lack such peak, while ambiguous templates lack stable 

matching position together with the peak (paper II).  This operator can be used together with 

the above operator to exclude occluded and ambiguous matches and to find the optimum size 

of the template. If there is no geometric and radiometric difference between the two images, 

the peak of SNR overlaps the peak of the peaks of NCC. For a given template, if the template 

is deformed during the movement, the NCC optimizes at smaller template size; where as if 

there is great radiometric difference (noise) the NCC optimizes at larger templates. In reality 

there is a combination of the two. As a result, the SNR peak and the peak of the NCC peaks 

will not often overlap but will be close to each other.  
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Fig. 6-3. The relationship between template size and the maximum NCC coefficient (B) and 
the displacement estimates (C) for an image subset (A) that contains good signal variance.  

Fig. 6-3 shows that the NCC peak is high at point B1 due to random duplicates. The 

matching position is random and changes with the next template size (C1). When the size 

increases further, the NCC peak then decreases due to the increased noise with addition of 

more pixels until point B2. With further increase of template size, the noises get suppressed 

and the signal starts to dominate. The matching position may already be fixed before the NCC 

maximum attains a peak (C2). As a result the NCC peak increases until the noise is maximally 

suppressed. The NCC maximum attains a peak (B3) where the noise is maximally suppressed 

and the geometric difference between the matching templates is still low. The peak starts to 

decrease again due to the geometric distortion within the now large template. The NCC peak 

attains a new low (B4) when the displacement gradient is close to full pixel.  When the 

gradient attains full pixel, the matching position shifts by a pixel (C3) showing the influence 

of large template sizes on the accuracy of matching positions.  B3 thus shows the optimum 

NCC peak with optimum template size as the matching position is also stable before and after 

that size (from C2 to C3).  
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7. Conclusions and outlook 

Review of the application of image matching in mass movement analysis shows that the 

correlation-based algorithms, especially the NCC, are the most widely used algorithms. The 

major limitations of the correlation-based algorithms in the spatial-domain are addressed in 

this research. 

The precision of the NCC is limited to a pixel. The implication of the pixel size on the 

computed mass movement parameters such as the accuracy of the horizontal displacement is 

investigated. Not surprisingly, the investigations show that the detectability of mass 

movements and accuracy of the computed parameters such as displacement decrease with 

increasing ground pixel size. Therefore, the need for additional algorithms for refining the 

matching positions at sub-pixel precision increases with increasing ground pixel size of the 

images used. Of the available sub-pixel algorithms, interpolating the images to higher 

resolution prior to the matching results in better accuracy of the matching. This is followed by 

the interpolation of the NCC correlation surface to higher resolution. Computation of the 

position of the NCC peak using models such as Gaussian and parabolic do not necessary 

result in accurate peak localization due to the deviation of the correlation surface of low 

resolution images from these models. These functions perform better than interpolating the 

image to one-half a pixel only. However, interpolating to more detailed spatial resolution than 

1/16th of the original resolution is highly affected by interpolation noise. 

The challenge of spatially adapting template sizes for the NCC algorithm is addressed 

in this research. The following facts, learnt during the investigation, helped in developing an 

algorithm that spatially adapts the template sizes. (1) When the size of an image subset 

increases, the SNR also increases. If a certain edge or feature boundary is encountered, the 

SNR attains a peak at that boundary. Even if there is no feature boundary but the image subset 

contains texture, the SNR gets a certain peak at certain sizes due to saturation of information. 

Such SNR peak identifies (the size of) a unique entity. Monotonous image regions such as 

shadow, water surface, snow, cloud, etc lack such SNR peak and can therefore be excluded as 

textureless. (2) Analogous with the fact that the peak of NCC in a search window shows the 

most likely match, the peak of the NCC peaks, when computed for increasing window sizes, 

accompanied with fixed matching position indicates the size at which noise is maximally 

suppressed and signal is maximally matched due to the still limited intra-template 

deformation. If such peak does not exist or is not accompanied by a fixed matching position, 
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then the template is either ambiguous (as in textureless areas) or occluded (as in matchless 

templates) avoiding the heuristic manual post-matching filtering. Therefore, the spatially 

adaptive algorithm can exclude textureless regions and occluded (permanently changed areas) 

from the matching and optimize the size of the matchable templates. In so doing it improves 

the reliability and accuracy of the matching and the computed movement parameters. The 

image matching task is then more automated as template sizes are determined 

computationally.  

The NCC is appropriate only where the deformation within the template is not 

significant. LSM is found to be very suitable in highly deformed mass movements both for 

accurate matching and for the estimation of the deformation parameters.  The LSM improves 

the accuracy of displacement estimation of the NCC significantly (at least by 25% in the 

present study). It is also able to compute rotation and strain rates automatically during the 

matching with high spatial resolution and very high accuracy, i.e. with mean absolute error in 

the order of 10-4.  LSM searches only in a couple of pixels distance, requiring that 

approximate position of the match is located first using other methods such as the NCC. 

The deformation of the masses is spatially variable and can not be optimally modeled 

using single spatial transformation model such as the affine. Deformations of the mass 

movements investigated are more accurately modeled by second-order polynomial function. 

Spatially adapting the transformation models using affine, projective or second-order 

polynomial improves the accuracy further as the most fitting model is used for each image 

subset improving the accuracy of the matching and the derived mass movement parameters.  

The general conclusion is that the NCC is useful in all mass movement analyses as 

long as there is adequate signal variance. NCC alone may be sufficient for low resolution 

images of moving masses with limited or no deformation. To gain better precision in such 

cases, the images need to be interpolated to higher resolution (better not finer than 1/16th of a 

pixel) prior to the matching. For highly deformed masses where higher resolution images are 

used, the LSM is recommended as it results in much more accurate matching. Longitudinal, 

transverse and shear strain rates can be computed reliably and at higher precision using the 

transformation parameters of the LSM. Such strain rates show detailed spatial variation which 

could be used for other geoscientific applications. Improved accuracy and precision can be 

obtained by selecting matchable areas using the first part of the spatially adaptive algorithm 

and optimizing the matches and measuring the deformation parameters using the LSM 

algorithm. 
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The algorithms devised and used in this research are computationally costly. 

Computational issues can be addressed through faster programming and faster computers that 

are becoming more available. Attention should, therefore, be paid to the precision, accuracy, 

robustness and automation of the algorithms. Although the algorithms can get precise, the 

accuracy of the matching and the computed mass movement parameters can be challenged by 

the other sources of error. The other components of the total error budget need to be addressed 

through further research.  

This study focused on two similarity measures used in the spatial-domain area-based 

optical image matching, namely NCC and LSM. There needs to be more application of LSM 

in mass movement analysis under different conditions as it is promising especially for precise 

computation of displacement and strain rates.  

Other similarity measures used in other fields such as medical image matching and 

computer vision may also have potential in some types of mass movement images. For 

example, the mutual information is a similarity measure used in medical image matching for 

registering multimodal images. The potential of using multimodal images in mass movements 

also exists. The potential of the mutual information in mass movement analysis needs to be 

investigated in relation to the NCC, LSM and the other algorithms through further researches.  

Repeat images are also successfully matched in the transform-domain for mass movement 

analysis (Haug, 2010). For example the Fourier domain algorithms such as Fourier Phase 

correlation, orientation correlation, etc are used for displacement measurement on glacier flow 

(Haug et al., 2010; Michel and Rignot, 1999). The relative strengths and limitations of these 

transform-domain methods and the aforementioned spatial-domain methods when used for 

mass movement analysis need to be investigated through further researches.  

Although area-based image matching methods are widely used for mass movement 

analysis, the potential of feature-based matching also exists, especially for high spatial and 

temporal resolution images of high texture areas. The challenges in feature-based matching 

are accurate identification and characterization of distinct features which can be even more 

difficult in mass movement images. The potentials of combining area-based and feature-based 

image matching methods for mass movement analysis need to be explored through further 

researches. 

Further research needs to be geared towards integrating the different techniques of remote 

sensing, i.e. photogrammetry, laser scanning and InSAR. The weaknesses of one can be 

addressed by the others so that 3D deformation with good spatial extent could be obtained. 

When 3D deformation is reliably computed it can be used together with auxiliary data and/or 
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models to understand the dynamism of mass movements. The deformation data can also be 

used for other geo-scientific purposes in multi-disciplinary studies of a wider scope. 
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I. Sub-pixel precision image matching for 
measuring surface displacements on mass 

movements using normalized cross-correlation1
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ABSTRACT. This study evaluates the performance of two fundamentally different 
approaches to achieve sub-pixel precision of normalized cross-correlation when 
measuring surface displacements on mass movements from repeat optical images. In the 
first approach, image intensities are interpolated to a desired sub-pixel resolution using 
a bi-cubic interpolation scheme prior to the actual displacement matching. In the second 
approach, the image pairs are correlated at the original image resolution and the peaks 
of the correlation coefficient surface are then located at the desired sub-pixel resolution 
using three techniques, namely bi-cubic interpolation, parabola-fitting and Gaussian-
fitting. Both principal approaches are applied to three typical mass movement types: 
rockglacier creep, glacier flow and land sliding. In addition, the influence of pixel 
resolution on the accuracies of displacement measurement using image matching is 
evaluated using repeat images resampled to different spatial resolutions. Our results 
show that bi-cubic interpolation of image intensity performs best followed by bi-cubic 
interpolation of the correlation surface. Both Gaussian and parabolic peak locating turn 
out less accurate. By increasing the spatial resolution (i.e. reducing the ground pixel size) 
of the matched images by 2 to 16 times using intensity interpolation, 40% to 80% 
reduction in mean error in reference to the same resolution original image could be 
achieved. The study also quantifies how the mean error, the random error, the 
proportion of mismatches and the proportion of undetected movements increase with 
increasing ground pixel size (i.e. decreasing spatial resolution) for all of the three mass 
movement examples investigated. 

Keywords: Normalized cross-correlation, Sub-pixel precision, Image matching, 

Displacement measurement, Rockglacier, Glacier, Rock slide 

                                                
1 Remote Sensing of Environment 115(1): 130-142
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I.1. Introduction 

Present climatic change shifts geomorphodynamic equilibriums and intensifies related mass 

movement processes such as landslides and permafrost creep (Haeberli and Beniston 1998; 

Rebetez et al. 1997). Extension and intensification of human activities in areas affected by 

such mass movements increase the probability of connected adverse impacts like natural 

hazards or building stability problems. A growing number of remote sensing opportunities 

exist to monitor such mass movements. The increasing number of available collections of 

multi-temporal space-borne, air-borne and terrestrial images, and the improvements in remote 

sensing and image processing in general significantly enhance the potential for applying 

matching techniques to detect and quantify Earth surface mass movements from repeat 

remotely sensed data. These needs and developments call for continued efforts to improve 

terrain displacement matching methods based on repeat images for a large number of 

applications in Earth sciences.  

Image matching is a group of techniques of finding corresponding features or image 

patches in two or more images taken of the same scene from different viewing positions, at 

different times and/or using different sensors. Image matching is used for a large variety of 

applications such as image (co-) registration, stereo parallax matching for generation of digital 

elevation models, particle image velocimetry (PIV), or displacement measurements (Brown 

1992; Westerweel 1993; Zitová and Flusser 2003). 

The group of area-based matching techniques is the most widely used method due to 

its relative simplicity (Zitová and Flusser 2003). Cross-correlation, particularly  its normalized 

form which accounts for brightness and contrast in image sequences, is the most widely used 

similarity measure of this method due to its reliability and simplicity (Lewis 1995). The 

normalized cross-correlation (NCC) algorithm has been used to investigate Earth mass 

movements such as glacier flow, rockglacier (used here as one word after Barsch (1996)) 

creep and land sliding in many empirical studies (e.g. Haug et al. 2010; Kaufmann and 

Ladstädter 2003; Kääb 2005; Kääb and Vollmer 2000; Quincey et al. 2005; Scambos et al. 

1992; Scherler et al. 2008; Skvarca et al. 2003; Taylor et al. 2008; Wangensteen et al. 2006).    

Although NCC has been documented to be simple and reliable, a number of 

drawbacks have been reported as well (Lewis 1995; Scambos et al. 1992; Zhao et al. 2006). 

Firstly, NCC is sensitive to noise in the images. Secondly, NCC is sensitive to significant 

scale, rotation or shearing differences between the images to be correlated. Thirdly, for the 
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measurement to be reliable the displacement has to be greater than the mean error of the 

image (co-)registration.  Fourthly, the precision of NCC is, in principle, limited to one pixel, 

and thus varies with the pixel size of the image data used.  

Pixel-level accuracy might be satisfactory depending on the spatial resolution of the 

imagery available and the type of process being investigated. Improving NCC precision, 

however, improves displacement accuracy twofold: by reducing the image co-registration 

error and by improving the matching accuracy directly. To achieve sub-pixel precision in 

NCC, two approaches can be used. The first option is to resample the image intensity to a 

higher spatial resolution through interpolation. This approach has been applied in stereo 

matching (e.g. Szeliski and Scharstein 2002) and in displacement measurement of Earth 

surface movements (e.g. Crippen and Blom 1991; Yamaguchi et al. 2003). The second option 

is to interpolate the cross-correlation surface after the matching process to a higher spatial 

resolution in order to locate the correlation peak with sub-pixel precision. This approach has 

been applied in image registration (e.g. Althof et al. 1997; Scambos et al. 1992), in mechanics 

to measure the velocity of particles (e.g. Westerweel 1993; Willert and Gharib 1991), in 

motion tracking to measure displacements of landslide (e.g. Delacourt et al. 2004; Yamaguchi 

et al. 2003) and glaciers  (e.g. Scambos et al. 1992). There are also area-based spatial domain 

methods that are intrinsically capable of sub-pixel precision such as the least squares 

matching, which is more often used in stereoscopic DEM generation and image registration. 

Least square matching is known for its capability to deal with scaling and rotation and has 

occasionally been used in the displacement measurement of mass movements (e.g. Kaufmann 

and Ladstädter 2003; Whillans and Tseng 1995). Other techniques that are used in mass 

movement analysis for achieving sub-pixel precision are the Fourier-based phase matching 

and gradient-based matching (e.g. Haug et al. 2010; Leprince et al. 2007; Taylor et al. 2008).  

Preprocessing steps such as noise filtering and post-processing steps such as filtering of 

displacement vectors by averaging are also able to improve the precision and accuracies of 

displacement estimates (Kääb and Vollmer 2000; Zitová and Flusser 2003). 

The present study focuses exclusively on mass movement analysis by NCC due to the 

wide-spread use of this technique, and its simplicity and reliability. Thus, we do not consider 

the above methods that are intrinsically capable of sub-pixel precision. Further, we 

concentrate on the intensity interpolation and the correlation interpolation approaches because 

both are generic and independent of image resolution. There is no study available that 

rigorously compares the relative performance of the two approaches when measuring the 

displacement of mass movements from repeat images. 
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Mass movement, in the context of our study, refers to the down slope movement of 

Earth materials including rocks, glacier ice and debris triggered by agents such as gravity, 

water, and tectonic activity (Ritter 2006). Many Earth surface mass movements such as 

landslide, glacier flow, and rockglacier creep are characterized by displacement rates of the 

same order of magnitude as the spatial resolution of the space-borne or air-borne imagery 

typically available for their measurement. Such masses usually move with rates in the order of 

several centimeters to some hundred meters per year. Sub-pixel precision of image matching 

algorithms, here NCC, therefore has a large potential to improve the signal-to-noise ratio of 

the measurements. In other words, improving the precision (i.e. level of detail of the 

measurement) of displacement estimation contributes to the improvement of accuracy (i.e. the 

certainty of the estimation).   

Using NCC as an example, this study compares the accuracies of two fundamentally 

different approaches to reaching sub-pixel precision in mass movement measurement from 

repeat remotely sensed images, namely intensity interpolation and correlation interpolation. 

The study specifically aims at (i) quantifying the effects of pixel size (i.e. ground area 

represented by a pixel) on the accuracy of displacement matching, (ii) quantifying and 

comparing the performances of different sub-pixel precision algorithms, and (iii) identifying 

the gains and limit of the sub-pixel precision algorithms. 

I.2. Methods 

I.2.1. Image data and resolution pyramid 

For this study, three different types of mass movements were selected based on their 

frequency in high mountain areas: land sliding, glacier flow, and rockglacier creep. Three 

temporal pairs of air photos each covering ground areas of 0.35 km2, 3 km2 and 0.25 km2

respectively were used. These images were orthorectified prior to displacement matching. 

Details are given in section 3.  

Better understanding of the influence of spatial resolution on the accuracy of image 

matching requires images of the same area taken at the same time, under the same flight and 

ground conditions, but using sensors with different spatial resolutions. Such conditions are not 

easily met. Instead, different optical systems were simulated by down-sampling the original 

high-resolution aerial orthoimages to five levels of lower spatial resolution (Table I-1). One 
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resolution pyramid with six levels each was finally obtained for each of the two repeat images 

of each of the three mass movements as shown in Fig. I-1. The resolution pyramids are thus 

not the same as the Gaussian or Laplacian image pyramids often used in multi-scale image 

analysis or in image visualization. The down-sampling factors here are chosen for 

convenience. The down-sampling was performed using the MATLAB module ‘imresize’ with 

the most efficient and reliable algorithm for this purpose, namely bi-cubic convolution. The 

algorithm assigns the weighted average of pixel values in the nearest 4-by-4 neighborhood 

(Keys 1981). Although this resampling process is slightly different from the pure signal 

averaging happening in the instantaneous field of view of a sensor detector cell, we decided to 

choose bi-cubic convolution because most images used for matching will in practice have 

undergone such interpolation during image correction and Preprocessing steps, such as 

orthorectification (Toutin 2004). 

Additionally, one resolution pyramid was created from one of the original glacier 

images after applying a two-dimensional translation of 15 pixels (9 pixels in the x-direction 

and 12 pixels in the y-direction). This translation becomes a non-integer pixel displacement in 

the lower resolution resampled images. Since this pair was made from just one original image 

and the displacement applied was only translation, the pair serves as a control data set as it is 

free of noise from temporal surface changes, changes in imaging condition, registration errors 

and geometric distortions.   

Table I-1. Movement process types, spatial resolution of the original images and 
resolution pyramids used in this study, and examples of satellite sensors simulated by this 
image resolution resampling. 

Mass movement 
type 

Resampling 
factor 

Ground pixel 
size (m) 

Examples of optical satellite  
systems simulated 

R
oc

kg
la

ci
er

 
 

an
d 

la
nd

sli
de

 

original 0.2  

2 0.4  IKONOS, WorldView-1 
4 0.8 IKONOS, QuickBird 
8 1.6 QuickBird 
16 3.2 SPOT 5 panchromatic, 

ALOS(PRISM) 
32 6.4 SPOT 5 panchromatic 

G
la

ci
er

  

original 0.5  
2 1 IKONOS 
4 2 IKONOS, QuickBird, SPOT 5 

panchromatic, ALOS (PRISM) 
8 4 SPOT 5 panchromatic 
16 8 SPOT  panchromatic 
32 16 ASTER, Landsat 7 panchromatic 
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Fig. I-1 Setup of the image resolution pyramid, w being the ground pixel size  of the original 
image 

I.2.2. Normalized cross-correlation 

The normalized cross-correlation (NCC) algorithm is a similarity measure that is used in 

image matching to measure the similarity between matching entities in one image and their 

corresponding entities in the other image. The algorithm was developed based on the concept 

of distance measure but second normalized to account for the differences in brightness and 

contrast (Lewis 1995; Vosselman et al. 2004). An image I1 over an area is taken at time T1

and another image I2 over the same area at time T2 (Fig. I-2). The term f(x, y) stands for the 

intensity values of a squared area that is a subset of I1, t(x-u, y-v) for the intensity values in a 

squared area in I2 of the same size as f(x, y), where u and v are integer pixel offsets in x- and 

y-direction respectively. f(x, y) is further called reference template and t(x-u, y-v) is called 

search template. The size of the template is chosen to be large enough to maximize the signal-

to-noise ratio and small enough to minimize velocity gradients (Kanade and Okutomi 1991). 

The search area size is chosen to be large enough to include the farthest moving template and 

small enough to limit the computational cost of the matching. To find the corresponding 
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square to f(x, y) in I2, the normalized cross correlation coefficient (�) between f(x, y) and 

corresponding window in I2, t(x-u, y-v), is computed. The NCC coefficient � is computed as 

given in Eq. (I-1) and is assigned to the central pixel of the template (Lewis 1995; Vosselman 

et al. 2004). The computation continues by moving t in every iteration by one pixel until the 

entire search window is covered. After finishing the computation, the pixel (x0, y0) in the 

search window with the highest correlation coefficient is considered as the likely best match 

for the central pixel of the reference template. The Euclidean distance between the 

coordinates of the reference point [x, y] and the matching point [x0, y0] is considered as the 

horizontal displacement magnitude, d(x, y).  

/��� �� � ' D0�1�2�305E�4�13F�23G�345�7�8
�' �0�1�2�30�9:7�8 ' �4�13F�23G�345�:�7�8 ;<:� � � � � � H���

� is the mean of the intensities in the reference template f(x, y) and � is the mean of the 

intensities in the search template t(x-u, y-v). The values of � range between -1 (when the 

matching entities are inverses of each other) and 1 (when the matching entities are exactly the 

same). �=0 is an indication of no relationship between the matching entities. Even if there is 

no truly corresponding entity in the search image, there will always be some peak correlation 

coefficient. Therefore, it is necessary to decide a threshold for � below which the match is 

rejected.  

Fig. I-2.   Scheme of the image pairs together with the reference template, central pixel, 
search template and the search window 
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I.2.3. Matching and displacement measurement at different pixel sizes 

First, the original high-resolution orthoimages (before resampling) were matched using the 

NCC algorithm at pixel-precision to determine the matching positions and compute the 

horizontal displacement magnitude and direction. Mismatches that were characterized by low 

peak correlation coefficients, very large displacements in relation to their neighboring 

templates, or displacements showing distinct upslope movement were removed manually. 

Since manual removal of the mismatches is heuristic and influences the final analysis, the 

proportion of mismatches is counted and reported separately as an indicator of performance. 

Additionally, displacements less than the mean orthorectification error were removed as they 

are not reliably distinct from the error. The orthorectification error (offset between the 

images) was computed by matching stable grounds. The computation revealed that a 

maximum of 1 pixel offset exists in each dimension at the resolution of the original 

orthoimages. In orthoimages, positional errors increase from the projection centre 

proportional to the magnitude of the vertical errors in the digital elevation model used for the 

orthoprojection.  All our three mass movements are located near the centers of the original air 

photos and the stable grounds are located towards the edges. Therefore, the here-estimated 

offset error is assumed to exceed the actual positional errors on the mass movements. The 

matching results on the original full-resolution images were considered as reference for all 

other measurements throughout the resolution pyramid pairs. 

Matching and displacement measurement were in a next step performed on all 

resolution levels of the resolution pyramid pairs for all locations used also above for the 

original images. The absolute sizes and positions of the reference templates and the search 

windows were kept constant in ground coordinates throughout the resolution pyramid by 

adjusting the number of pixels according to the resolution. This procedure was in order to 

avoid variations in signal content as a result of inclusion or exclusion of ground features. In 

other words, the ground area covered by the templates remained the same when the respective 

image resolution changed. The size of the template was kept at around 26 m and 65 m for the 

originally 0.2 m and 0.5 m resolution images, respectively. The size of the search window was 

kept at around 102 m and 265 m for the originally 0.2 m and 0.5 m resolution images, 

respectively, so that it certainly included the expected maximum surface displacement.  

The performance of the matching at different resolutions was evaluated by comparing 

the obtained matching position to those obtained from the image pairs at original full 
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resolutions. Often, the accuracy of displacement measurements using cross-correlation is 

evaluated by comparing the estimated displacement magnitude (di) to the actual displacement 

magnitude (d0). In this study, this is found to be misleading as the displacement direction is 

equally important to assess the matching accuracy. Therefore, instead of using the difference 

in displacement magnitude as an indicator of accuracy, we use the shift in matching position 

(Fig. I-3). The matching positions obtained during the correlation of the original images [x0, 

x0] are considered as references. All the matching positions at the different coarser or back-

interpolated (see next Section) resolutions [xi, yi] are compared to these reference positions. 

The magnitude of this deviation (dev) is here used as measure for the performance of the 

image and algorithm used (Eq. I-2).  

IJK � � L��M 
 �N�. ����M 
 �N�.: � � � � � � � H���

The image and algorithm performance was evaluated based on three types of errors known in 

image matching, namely mismatches (spurious matches), mean bias (here mean deviation) 

and the root mean square (RMS) error (Huang et al. 1997; Lourenco and Krothapalli 1995). 

Additionally, the proportion of undetected movements was also added as a measure of the 

influence of pixel size on the success of displacement measurements. The mismatches and the 

undetected moving entities were counted globally while the magnitudes of the mean deviation 

and the RMS were computed locally (Eqs.  H�" and H��). Here, n stands for the total number of 

validly matched entities and i stands for the individual validly matched entity. 

The mean deviation (�
O) is given as:   

� IJK � ' PQGRSRT;
U � � � � � � � � H�"�

And the RMS (V6WX) is given as: 

YPQG � Z' ��PQGR3�PQG�:SRT;
U3�

: � � � � � � � � H���
�



68 

Fig. I-3. Scheme of the matching position deviations and the difference in displacement    

I.2.3. The sub-pixel precision approaches 

$%&%'%(% $�	���
	��
�	�� ���	
���
The issue of sub-pixel estimation appears because the images available are often not at the 

optimal resolution for precise quantification of movement. Signals in image pixels are created 

by integrating spatially continuous signals over the area covered by the pixel. If the 

continuous signal existed, one could choose the interval at which the integration is done, i.e. 

the pixel resolution, as long as the signals are detectable. However, since such integration of 

continuous signals is done by the imaging sensor during the image acquisition, the continuous 

signal is no longer available for later analysis. One alternative is thus to reconstruct the 

continuous signal from the spatially discrete images. Full reconstruction is only ideally 

possible, though. Therefore, the image itself is interpolated to the desired pixel resolution 

using certain interpolation schemes, preferably ones that can effectively reduce aliasing.  

In this study, the coarse resolution images within the above-computed resolution 

pyramids were back-interpolated to different finer resolutions using the MATLAB-based 

‘imresize’ module with the bi-cubic interpolation scheme (Fig. I-4 left). The bi-cubic 

algorithm is an appropriate choice for accuracy and efficiency in comparison with other 

algorithms (Keys 1981; Meijering and Unser 2003). After such back-interpolation, the NCC 

algorithm with Eq. (1) was applied using the same templates and search windows as used in 

the original reference image pairs. The interpolation is done on the fly for each reference 

template and search window, and not for the entire image before the matching process to cope 
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with MATLAB’s memory restrictions. Even in this approach when the resampling factor is 

doubled, the computation time increases about four times. 

  

$%&%'%&% �
�
���
	��
�	�� ���	
���

The similarity measure used in this study, i.e. the NCC coefficient, produces pixel-level peak 

locations. However, that location might not be the exact position of the matching entity. To 

find the sub-pixel position from the discrete NCC coefficients, one can either interpolate the 

cross-correlation surface to a higher resolution using two dimensional interpolation 

algorithms or fit a two-dimensional analytical function to the correlation surface around the 

peak.  

Correlation interpolation using bi-cubic convolution. The correlation surface 

around the peak is resampled to the desired higher resolution.  A two-dimensional cubic 

convolution of the correlation coefficients is then applied to the resampled grid using the 

MATLAB module ‘interp2’.  The bi-cubic convolution takes the weighted average of the 

nearest 16 (4-by-4) pixels. The peak is then relocated at the new resolution.  

Curve fitting. As an alternative to peak interpolation, one can also create a continuous 

function that optimally fits the correlation coefficient data and compute the precise location of 

the peak from the maximum of the function. The challenge is that no single function can 

usually perfectly describe the cross-correlation surface. However, the fact that the correlation 

surface around its peak often approaches a bell shape can be exploited. Therefore, two 

dimensional polynomial functions can approximate the surface. A number of models have 

been tested in empirical and theoretical researches, particularly in particle image velocimetry 

(PIV), though with varying successes (Nobach and Honkanen 2005; Westerweel 1993; 

Willert and Gharib 1991). Parabola and Gaussian fitting are tested here for mass movement 

analysis, as these have shown successes in other areas, especially in PIV.  

In parabola fitting, the shape of the correlation surface is assumed to fit two 

orthogonal parabolic curves. The location of the ‘actual’ peak is computed by independently 

fitting one dimensional quadratic function and computing the location of the peak (Nobach 

and Honkanen 2005; Shimizu and Okutomi 2002; Westerweel 1993). Assume we have 

computed the pixel level (integer) position of the peak as [x0, y0]. This pixel has two 

neighbors in each of the two orthogonal directions: (x0-1) and (x0+1) in the x-direction and 

(y0-1) and (y0+1) in the y-direction.  To find the sub-pixel peak position in each direction 

(x0+�x, y0+�y), we define a parabolic curve that connects the three points of that direction 
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and compute the position where the curve attains its maximum. Equations I-5 and  H�=
compute the non-integer location of the peak in the x- and y-directions which will then be 

added to the pixel (integer). 

� [\ � ]�^_3��`_�3]�^_a��`_�
.]�^_3��`_�3b]�^_�`_�a.]�^_a��`_���� � � � H�#�

� [c � ]�^_�`_3��3]�^_�`_a��
.]�^_�`_3��3b]�^_�`_�a.]�^_�`_a������� � � � H�=�

Likewise, in Gaussian fitting, the bell shape of the correlation surface is assumed to fit 

a 2D Gaussian function (Nobach and Honkanen 2005; Westerweel 1993; Willert and Gharib 

1991). It is assumed that the two dimensions are separable and orthogonal. Thus, the sub-pixel 

peak location is calculated separately for the two directions by fitting a second-order 

polynomial to the logarithm of the maximum sample and the direct neighbors (Eqs. I-7 and 

I-8).  

� [\ � dU��]�^_3��`_��3dU��]�^_a��`_��
.dU��]�^_a��`_��3bdU��]�^_�`_��a.dU��]�^_3��`_������ � � H�e�

� [c � dU��]�^_�`_3���3dU��]�^_�`_a���
.dU��]�^_�`_a���3bdU��]�^_�`_��a.dU��]�^_�`_3������� � � H�f�

I.2.4. Evaluation of different levels of sub-pixel detail 

Section 2.4 evaluates which sub-pixel approach performs best in improving the precision and 

accuracy of NCC-based image matching. It is also important to know how far sub-pixel 

interpolation of coarse resolution image intensities or the correlation surface is able to 

substitute pixel-level matching of images of the corresponding but original resolution, as well 

as the sub-pixel detail at which the interpolation to achieve sub-pixel precision can no longer 

sufficiently substitute image of that resolution.  The sub-pixel precision matching is thus 

computed at different levels of the resolution pyramid and its performance is evaluated in 

reference to the pixel-level matching of images with the same but original resolution.  This 

procedure becomes clearer with an example: suppose we want to know the performance of 

sub-pixel precision matching at the level of half a pixel. This can be achieved by taking an 

image of, for instance, 8 m resolution, computing the sub-pixel precision matching to 4 m and 
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comparing the latter sub-pixel performance to the performance of pixel-level matching of an 

image with 4 m original resolution. Alternatively, one can take a 4 m resolution image, 

compute its sub-pixel resolution matching to 2 m and compare the performance of the latter in 

relation to a 2 m resolution original image. In our study, this procedure is iterated for the 

entire pre-processed resolution pyramid and all resolution steps included in it, not just the 

level-factor 2 exemplified here (Fig. I-4 right).  

Equation H�"  was used to evaluate the deviation between the sub-pixel matching and 

the pixel-level matching at corresponding image resolutions. This time, the reference 

matching position [x0, y0] is the matching position obtained for the same template by using a 

pixel-level matching of an image pair of a resolution equal to the resolution to which the sub-

pixel algorithm is conducted. If the sub-pixel matching between two coarse images exactly 

substitutes pixel-level matching of images with corresponding fine resolution, there will be no 

deviation between the two matching positions. 

In addition to the performance evaluation parameter dev explained above, the 

proportion by which each error term of the pixel-level precision was reduced by a sub-pixel 

algorithm was used as an alternative indicator for the accuracy improvement. For example, if 

an algorithm i was used, its performance in reducing the mean deviation from the pixel-level 

algorithm mean deviation is given as in Eq. (I-9). 

� � gJhM � �PQGR3PQGi�j�NN
PQGi � � � � � � � H�k�

Here, �
lm�is the percentage reduced mean bias when sub-pixel algorithm i is used, 

�
Om is the mean bias of that algorithm, and �
On is the mean deviation of the pixel-level 

NCC algorithm. 

Fig. I-4. Schematic setup of intensity and correlation interpolation of the coarsest resolution 
images to different sub-pixel details (left) with the different possible alternatives of  assessing 
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sub-pixel performance (right). H stands for the ground pixel size of the coarsest resolution 
images 

I.3. Test sites 
As an example for glacier flow, we use the glacier Ghiacciaio del Belvedere. It is located 

below the Monte Rosa peak, above Macugnaga and the Anzasca valley of the Italian Alps 

(approx. 7°54’39” E, 45°54’39” N). This glacier has recently become known for its surge-

type movement (Haeberli et al. 2000; Kääb et al. 2004). It is a very dynamic glacier with a 

history of flooding and hazardous incidences. Since the glacier was at the time of photography 

very dynamic with high surface speeds, the images chosen for the present study were taken on 

6 September and 11 October 2001 with a temporal baseline of around one month and an 

orthoimage pixel resolution of 0.5 m. More details on the images and the glacier can be found 

in Kääb et al. (2005). 

Rockglaciers consist of permanently frozen debris that slowly deforms down slope 

under gravity. The rockglacier chosen as test site for this study is located in the Muragl valley 

of the Upper Engadine area of the Swiss Alps (approx. 9°55’30” E, 46°30’15” N). It has been 

under investigation for decades using technologies such as photogrammetry, geodesy and 

geophysics to understand the mechanics of the rockglacier (Kääb 2002; Kääb and Vollmer 

2000). The previous studies showed maximum creep speeds of up to 0.5 ma-1. The 

orthoimages used in the present study were based on aerial images taken on 7 September 1981 

and 23 August 1994 with 13 years of temporal baseline and 0.2 m of spatial resolution.  

The Aletsch rockslide, used here as an example for a slow landslide, is located near the 

tongue of the Aletsch Glacier, Canton of Valais, Swiss Alps (approx. 8°01’28” E, 46°24’11” 

N). The driving force behind the rockslide is the continuous retreat of the Aletsch Glacier 

since approximately 1850 causing debuttressing of the adjacent slopes (Kääb 2002; Kääb et 

al. 2005). A study that investigated the velocity of the rockslide between 1976 and 1995 

showed that the rock masses have moved up to 2 m on average over 19 years (Kääb 2002). 

The orthoimage pair used in the present study is based on air photos taken on 6 September 

1976 and 5 September 2006 with 30 years temporal baseline and 0.2 m spatial resolution.  
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I.4. Results  

I.4.1. Displacement vectors of the three different mass movements 
Table I-2 summarizes displacement statistics for the three mass movements investigated. The 

results were produced from the analyses of the original orthoimages after filtering all the 

mismatches. One can see that the glacier moves fast as compared to the rockglacier and the 

even slower moving rockslide. Fig. I-5 to Fig. I-7 present the displacement vectors of the 

three mass movements systematically sampled at 128 pixels in both dimensions. Image 

matching showed that also the stable ground in the scene show non-zero displacements due to 

the presence of systematic image (co-)registration errors. However, after filtering of the 

vectors based on the estimated overall image registration error of one pixel, after thresholding 

of the correlation coefficients (0.65 for the rockglacier, 0.6 for the glacier and 0.45 for the 

landslide) and after excluding upslope movements, only the remaining vectors presented in 

the Figs. are considered to be valid and useful as reference.  

Table I-2. Summary statistics for the displacement magnitudes and average horizontal speed 
of the mass movements and the translation-only control image as estimated from the matching 
of the original full-resolution orthoimages

Mass 
movement  

Temporal 
baseline 

Mean 
displacement 
(m) 

Maximum 
displacement  
(m) 

Standard deviation of 
displacement (m) 

Maximum 
speed (ma-1) 

Aletsch 
rockslide 

30 years 1.5 4.2 0.45 0.14 

Muragl rock 
glacier 

13 years 2.4 5.8 1.20 0.45 

Ghiacciaio 
del Belvedere 
glacier 

1 month 12.22 18.83 5.0 226 

Control 
(translation 
only) 

7.50 7.50 0 7.50 
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Fig. I-5. Displacement vectors on the Ghiacciaio del Belvedere (Sept. – Oct. 2001) as 
estimated by matching the original orthoimages and systematically sampled at 128 pixels 
interval in each dimension. The image displayed is from Oct. 2001. 

Fig. I-6. Displacement vectors on the Muragl rockglacier (1981-1994) as estimated by 
matching the original orthoimages and systematically sampled at 128 pixels interval in each 
dimension. The image displayed is from 1992. 
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Fig. I-7. Displacement vectors on the Aletsch rockslides (1976 – 2006) as estimated by 
matching the original orthoimages and systematically sampled at 128 pixels interval in each 
dimension. The image displayed is from 2006. Aletsch Glacier is to the lower right. 

I.4.2. Pixel resolution and matching accuracy 
As expected, Fig. I-8 (A) shows for all the three mass movement types that, as the pixel size 

increases, the mean deviation ��
Ooooooo� also increases. There is no observable difference among 

the three mass movements on this type of error. The control matching shows that the mean 

deviation increases linearly with the factor by which the pixel size increases. In fact, the mean 

deviation is about half a pixel at every resolution, and similar for the real mass movement 

images. However, at larger pixel sizes the deviations for the real mass movements tend to be 

lower than a linear increase between pixel size and mean deviation, as opposed to that of the 

control image set which maintains the linear relationship. 

The random error (RMS) shows a similar pattern except that it is very low at small 

pixel sizes (Fig. I-8 B). The trend in RMS for the landslide appears to be higher than for the 

other two sites, with that for the glacier being the lowest. The control does not have any 

random error until the pixel size is increased by the factor of 8.  

The proportion of mismatches (Fig. I-8 C) dramatically increases with increasing pixel 

size. There appear to be fewer mismatches for the glacier compared to the other mass 
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movement types for the same metric pixel resolution. In the case of the control set, there was 

no mismatch observed until the pixel size was increased by the factor of 8.  

The proportion of undetected moving templates also increases with pixel size (Fig. I-8

D). There seems to be no difference between the rockglacier and the landslide, but for the 

glacier the proportion is lower at comparable resolutions. Movements are undetected when the 

pixel size is greater than the displacement. That can practically be observed in the case of the 

control which has a uniform translation of 7.5 m over the whole image. All of the movements 

were detected as long as the pixel resolution was kept less than 8 m. However, as soon as the 

pixel resolution became 16 m, about 50% of the moving entities were not detected. In the case 

of the three mass movements, undetected movements were first observed after the pixel size 

was doubled. This is due to the existence of slow movements in all scenes that could be 

missed in resolution pyramid levels with comparably fine resolution. At a pixel resolution of 

6.4 m approximately 35% of the original landslide and rockglacier movements and 65% of the 

original glacier movements could be detected.  
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I.4.4. Accuracies of the sub-pixel precision algorithms 
In this section we present the results of the test described in Section 2.4. Fig. I-9 and Fig. I-12 

depict the mean deviation �
Oooooo of the matching positions against the sub-pixel precisions of 

each of the algorithms for the control set and the three mass movements respectively. The 

magnitudes (Fig. I-12) are created by averaging the values obtained for the three mass 

movement types as the trend is similar for all the three. Both Figs. show that interpolation of 

the image intensity before matching results in the best matching accuracy. In the control set, 

the bi-cubic interpolation of intensity and correlation perform alike up to the precision of 0.25 

pixel below which they clearly separate.  The bi-cubic interpolation of the correlation surface 

follows the intensity interpolation. The curve-fitting using the parabola and Gaussian models 

perform better than bi-cubic interpolations to only one half of the original pixel size. For the 

real mass movements, there is very little accuracy gain by interpolating to lower than 0.1 

pixels.  The control result shows that when the movement is only translation, the magnitude of 

the deviation is very low. Besides, it seems that for the control set interpolation to more detail 

level than 0.1 pixels improves the accuracy even further.  

Fig. I-9  Comparison of the different sub-pixel precision approaches for the translation-only 
control image set. 
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Fig. I-12  Comparison of the different sub-pixel precision approaches for the real mass 
movements averaged from the three mass movement types investigated 

I.4.5. Relative performance of the algorithms at different sub-pixel 
details 

This Section presents how much each level of sub-pixel detail substitutes original images of 

the same resolution. The set-up of this test is described in Section 2.5. Fig. I-10 shows the 

mean deviation between the matching position of the interpolated image pairs and the 

matching of the reference image pairs, against the factor of resolution difference between the 

original reference and the coarse image. Results are presented for the control set and the three 

mass movement types.  

Fig. I-10 (A) shows that when the difference between the images is only the here-

applied translation, sub-pixel interpolation of the image intensities up to 1/8th of the original 

pixel size prior to matching can perfectly substitute images of comparable original resolution. 

This exact substitution can be achieved by using bi-cubic interpolation of the correlation 

surface only up to 1/4th of the original pixel size. For example, a 16 m resolution image 

interpolated to 2 m using bi-cubic interpolation before matching performs exactly as a 2 m 

resolution image pair as long as there is no other source of difference between the image pairs 

than rigid translation.  But when the level of detail goes beyond 1/8th, there appears to be a 

deviation between the two. The magnitude of these numbers depends, of course, on the 

translation magnitude applied in the control set. However, the test shows the better 

performance of bi-cubic intensity interpolation over the other sub-pixel algorithms tested. 
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For all the real mass movement types, as the difference in pixel size between the 

coarse resolution and the reference resolution increases, the deviation ��
O��ooooooooof the sub-pixel 

matching position from the matching position of the same, but original image resolution, 

increases regardless of the algorithm (Fig. I-10 B, C and D). This means, not surprisingly, that 

the sub-pixel algorithm resembles images of comparable resolution less and less as the sub-

pixel detail increases. At every resolution, the mean deviation is the lowest when intensity 

interpolation was used before matching followed by the bi-cubic interpolation of the 

correlation surface. The parabola- and Gaussian-based peak localizations perform poorer and 

alike.  This confirms the above results based on the control set.  

Remarkably, at a certain level of sub-pixel detail, the deviation between the sub-pixel 

algorithm and same resolution original image becomes high enough that further interpolation 

has no meaningful advantage. For the real mass movements used in this study, such level of 

detail is about 1/16th although the control set gives less deviation even at greater level of 

detail.   

Similar performance is observed for the RMS although the differences are not as clear 

as for the mean deviation. Noticeably, the RMS of the pixel-precision matching of the control 

set is lower than that of the similarity interpolation whichever algorithm is chosen. For the 

real mass movements the lowest RMS is recorded for intensity interpolation followed by 

similarity interpolation using bi-cubic, parabolic and Gaussian algorithms.  

No clear difference is observed among the algorithms in the proportion of mismatches. 

One of the advantages of sub-pixel algorithms is locating the exact position within the pixel 

and thus the detection of all movements as long as the resolution at which the interpolation is 

conducted is less than the displacement. This implies that when using low resolution images, 

slow-moving terminus and margins of the masses are hardly detected. For example, Fig. I-13 

shows non-zero displacement vectors computed by matching images of 3.2 m ground pixel 

size without sub-pixel interpolation (black vectors) and after sub-pixel interpolation of the 

images to 0.4 m ground pixel size using bi-cubic interpolation (white vectors). As can be seen 

from the regions indicated by the four thick black arrows, slow motions, as typically found for 

e.g. towards the margins and terminus of a rockglacier, are detected only using sub-pixel 

interpolation. Success of displacement measurement from repeat images therefore varies 

spatially depending on the ground pixel size of the images and the displacement magnitude of 

the moving masses. 
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be achieved. Intensity interpolation performed best in all cases removing in average between 

40% and 80% of the mean deviation when interpolated to 1/16th and one-half of a pixel, 

respectively. There is no point of interpolating beyond 1/16th of a pixel as the improvements 

gained are quite limited. According to our three test cases, for instance when using images of 

16 m resolution such as approximately ASTER, one can use intensity interpolation and 

improve the accuracy of matching by 40% in reference to that obtained from matching 1 m 

original resolution images, or by 80% in reference to 8 m-resolution imagery.  

I.5. Discussion 
I.5.1. Image resolution issues 

The effect of the spatial image resolution on the matching accuracy, as presented in Section 

4.2, shows that, not surprisingly, all forms of errors increased with increasing pixel size. The 

mean deviation increased with increasing pixel size simply due to the systematic aggregation 

of the pixels. The reason why it deviates from linearity for the real mass movements at large 

pixel sizes can be ascribed to noise due to temporal surface changes, changes in imaging 

conditions, rotation and deformation which the control set is free of. The control is free of 

registration errors of the image pairs as well. Additionally and importantly, the fact that the 

template size is kept constant may have reduced the signal-to-noise ratio due to fewer 

numbers of pixels per template at large pixel sizes.  Real mass movements are more sensitive 

to this due to the already lower SNR compared to the control set.  

The random error (RMS) increases with pixel size due to a number of reasons. Firstly, 

for a fixed template size, the number of pixels decreases with increasing pixel size leading to 

lower information content (lower signal-to-noise ratio). Secondly, the low-resolution images 

used in this study were created by down-sampling the high-resolution images. Resampling 

introduces noise which increases with the resampling factor. The introduced noise and the 

noise that already exists in the original image from various sources lead to a higher RMS and 

even mismatches. If there are too few pixels in an entity, the entity may get chance-based 

matches in the target image as ambiguity and noise-related correlation dominates (Kanade and 

Okutomi 1991; Westerweel 1993). In reality, when low-resolution images are used, the 

random error might not be as high as the ones in this study. Firstly, the template sizes will be 

adjusted according to the image resolution. Secondly, noise in real images might be lower 

than that of the comparable resolution images created through down-sampling from high-

resolution images. 
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As both the RMS and the mismatches are results of noise of various sources, image 

pairs such as the landslide and rockglacier which contain more noise due to the large temporal 

baselines have more of those errors (Fig. I-8 B and C). These large periods imply changes of 

the ground surfaces leading to poorer correlation. The mode of movement of these masses 

which is far from the pure translation of a rigid body including deformation and rotation also 

contributes to random errors. Especially the landslide moves in a fragmented pattern lacking 

good spatial coherence that is needed for good template correlation. The glacier observed over 

1 month moves more coherently than the other mass movements and thus shows a relatively 

lower matching RMS. On the other hand, the control set, which contained only pure 

translation between otherwise identical images, did not have any random error or mismatch 

until the pixel size was increased by the factor of 8 and 16 respectively due to reduced SNR.  

The proportion of undetected moving entities increases as the number of entities with 

displacements less than the pixel size increases (Fig. I-8 D and Fig. I-13). It is obvious that if 

one continues to increase the pixel size, there will be a point at which no moving template 

will be detected and the terrain would be reported stable. As can be observed from Fig. I-8 D, 

for the specific mass movements investigated here, if only pixel-level precision matching is to 

be used, the resolution of the images should not be coarser than about 3 m so that the majority 

of the displacements (less than 3 m) would be detected. 

As stated in Section I.2, the bi-cubic method of resampling was used for the creation 

of the resolution pyramid. This does not perform significantly differently from signal 

averaging that happens within imaging sensors. A test run on the rockglacier image to 

compare the averaging method and the bi-cubic method showed no observable difference in 

performance between the two methods except when the factor of down-sampling is high. The 

difference in performance in the  latter case originates from the difference in the number of 

nearby pixels that contribute to the computation of the  value of the resampled pixel in the 

two methods. While weighted average of the 16 nearest pixels is used for the bi-cubic, 

arithmetic average of the aggregated pixels is used in the averaging method. 

I.5.2. Performance of the sub-pixel algorithms and levels of detail 
Comparison of the sub-pixel precision approaches shows that intensity interpolation 

outperforms all the other algorithms of similarity interpolation. There can be two explanations 

to this. Firstly, in correlation interpolation the positions of the correlation values on which the 

interpolation is based, and which are computed based on coarse resolution images, influence 
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the position of the recomputed correlation peak. Secondly, the number of pixels in an entity is 

higher when intensity interpolation is applied leading to the suppression of noise. Fewer 

numbers of pixels in an entity makes the entity more susceptible to chance-based, i.e. 

erroneous matching results. This is able to explain the increased difference between the 

performances of the bi-cubic interpolation of the intensity and the correlation surface of the 

control images at very detailed levels of sub-pixel precision while they are very close at less 

detail level where the signal-to-noise ratio is still high.   

The bi-cubic interpolation scheme that was used for the intensity interpolation is 

known to replicate the reference data better than most other interpolation schemes (Keys 

1981), and it is known to approximate the sinc interpolation that is ideal in image 

interpolation (Dodgson 1992). This has led to the fact that the images re-interpolated from 

coarser resolutions were found to have high correlation with the aerial images of 

corresponding original resolution. For example, when the down-sampled rockglacier image of 

resolutions 0.4 m, 0.8 m, 1.6 m, 3.2 m and 6.4 m were re-interpolated to a resolution of 0.2 m 

(1/2 to 1/32 of a pixel respectively) their global correlation coefficients with the reference 

image of 0.2 m resolution were 0.98, 0.96, 0.93, 0.90 and 0.86 respectively. Although the 

images deteriorate due to resampling noise, they still remain well-correlated with the 

reference image due to the good performance of the interpolation algorithm. Correlation is, in 

fact, one of the quality measures of image interpolation (Lehmann et al. 1999). Fig. I-14 

shows a sub-image over rockglacier in the original 0.2 m spatial resolution (A), a 1.6 m 

spatial resolution image resampled to 0.2 m, i.e. 1/8th, (B) and the 1.6 m spatial resolution 

itself (C). One can observe the clear image quality of the original 0.2 m spatial resolution (A) 

as compared to the resampled one (B) which appears to be noisy. The coarse 1.6 m spatial 

resolution (C) appears blurry showing the lack of detail. 

Fig. I-14 A part of the Muragl rockglacier image with original 0.2 m spatial resolution (A) 
and resampled to 0.2 m (B) from a 1.6 m resolution image (C) 

A B C
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  The same interpolation algorithm, bi-cubic, performed also best in the similarity 

interpolation approach although not as good as in the intensity interpolation. The better 

performance in comparison to the Gaussian and parabola fitting is partially ascribed to the 

reasons explained above. In addition, parabola fitting is reported in many occasions to have a 

systematic bias known as “pixel locking”, which forces the estimated sub-pixel locations to 

approach integer values (Nobach and Honkanen 2005; Prasad et al. 1992). The presence of a 

systematic bias is testified by the fact that both parabola and Gaussian fitting could not 

remove 100% of the errors of pixel-level precision in the case of the control set unlike the 

other two algorithms (Fig. I-11). Although reports from PIV state that Gaussian peak finding 

does not have that kind of bias and performs better (Westerweel 1993; Willert and Gharib 

1991), it performed no better than parabola fitting in the present study. We believe the 

underlying reason is the fact that the cross-correlation surfaces of the mass movements cannot 

be perfectly modeled by either parabolic or Gaussian functions. The image resolutions used in 

the present study are not high enough to be compared to that of particle images used in 

mechanics which are high enough to be approximated by, for example, Gaussian. Noise that 

is present in the images due to temporal surface changes and other sources contribute to the 

deviation of the correlation shape from both Gaussian and parabolic ones.  

Finally, two important points regarding the size of the matching entities: first, in this 

study the absolute metric size of the matching entities was kept constant across image 

resolutions. This means that the number of pixels in each entity varies with the pixel 

resolution, leading to a variable signal-to-noise ratio. This had to be done for the sake of 

comparison. In reality, the size of matching entities will vary with the resolution of the image 

pair to keep a good signal-to-noise ratio.  Second, the size of the matching entities was kept 

constant for the entire scene as is done in most area-based image matching practices.  

I.5.3. Velocity fields 
The results of the present study for the Muragl rockglacier correspond very well with those of 

previous studies (Kääb 2002; Kääb and Vollmer 2000).  Both the displacement vectors and 

their spatial variation agree with those studies, although comparison is not the aim here. The 

maximum velocity recorded here ( 0.45 ma-1) is only slightly lower than the one recorded by  

Kääb (2002), i.e. 0.5 ma-1, as the latter covered a wider geographical area. This shows the 

consistency of the NCC as a reliable tool for such applications. Since the Muragl rockglacier 

creep reflects spatio-temporally variable thermal regimes and ground compositions, also the 



88 

surface velocities vary. The presented results show mean horizontal velocities over 13 years 

(1981 to 1994). 

Although a number of investigations have been conducted on the dynamics of the 

great Aletsch Glacier, there are only few regarding the landslides that are occurring in 

response to the glacier retreat. Investigations made for the period between 1976 and 1995 

reported up to 2 m (10.5 cm a-1) mean horizontal displacement magnitude (Kääb 2002, 2005). 

The 4 m (13 cm a-1) maximum horizontal displacement magnitude reported in the present 

study is for the period 1976 to 2006, and shows only a slight increase in average horizontal 

velocity.  

The displacement and velocity statistics obtained for the Ghiacciaio del Belvedere 

glacier agree well with the results presented in Kääb et al. (2005). Both studies used the same 

images. However, since the main focus of the present study was not to investigate the mass 

movements per se, the full extent of the image was not used. Therefore, the velocities were 

somewhat overestimated in comparison with the other study as, coincidentally, a part of slow-

moving areas were left out of the present study. The high velocity of this glacier is recorded 

also by Haeberli et al. (2002) and Kääb et al. (2004).  

The difference in velocity among the three types of masses can be ascribed to the 

sediment characteristics, terrain type, thermal regime, topography, etc. These velocity 

differences led to the use of images of different temporal resolutions. Large temporal 

baselines lead to changes in surface conditions decreasing the potential correlation between 

the two images. Slow-moving masses such as rockglaciers and landslides can be investigated 

using longer temporal baselines. Although the surfaces might not change drastically compared 

with a glacier, growth of vegetation and erosion of the surface can lead to decorrelation 

between the two images. This was a challenge in the landslide case. The rockglacier surface 

was found to be largely stable over the 13 year observation period. This stability owes to the 

lack of vegetation growth on the rockglacier surface and the somewhat rigid movement due to 

the geotechnical coherence by ground ice saturation. On the contrary, the landslide moves in a 

way that is far from rigid-body translation as the rock masses deform and fragment when 

moving. This leads to poorer correlation, increased random error and even mismatches in 

cases. 
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I.6. Conclusions and outlook 
This study has clarified a number of questions around the relation of accuracy and pixel or 

sub-pixel resolution when matching terrain displacements such as glacier flow, land sliding 

and permafrost creep from repeat optical images by using pixel-precision correlation 

measures, here namely the normalized cross correlation (NCC).  The study contributes to 

better exploiting the large archives of repeat remotely sensed images that exist over actual or 

potential Earth surface mass movements, as well as to better meeting the increasing needs to 

quantify and monitor mass movements, in particular when they are accompanied by adverse 

effects. 

The study has in particular evaluated the performance of two different approaches to 

sub-pixel precision in NCC for displacement measurement based on repeat images. It has also 

investigated the influence of pixel resolution on image matching and displacement estimation. 

The findings reveal that with increasing pixel size, all types of matching errors increase. The 

mean deviation between a displacement and its reference measurement has a linear 

relationship with the factor by which the pixel size increases. Random errors and mismatches 

tend to be higher for larger temporal baselines and where the mode of the movement deviates 

much from rigid-body translation.  

When sub-pixel accuracy is aimed for, interpolating image intensities to a higher 

resolution using bi-cubic interpolation prior to the actual image correlation performs better 

than both interpolation of the correlation surface using the same algorithm and peak 

localization using curve fitting. Correlation peak localization using the Gaussian and 

polynomial algorithms are inferior in such applications.  

Therefore, we conclude that more precise and accurate displacement measurements 

are obtained by interpolating the available images to a higher resolution using bi-cubic 

interpolation prior to matching. In such approaches, one can gain over 40% reduction in mean 

error (in reference to the same resolution original image) by interpolating the images to up to 

1/16th of a pixel. Interpolating to a more detailed sub-pixel resolution than 1/16th of a pixel 

does not add much. Or in other words, when matching low-resolution images using 

normalized cross-correlation with intensity-interpolation based sub-pixel precision, 40% or 

better accuracy increment can be achieved compared to pixel-precision matching in reference 

to images with the same original resolution as the interpolated image. When actual low-

resolution images are used together with varying sizes of matching entities, as opposed to the 

approach used in this study, even better precision and accuracy might be obtained as the noise 
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due to resampling will not be present, and template and search window sizes will be adjusted 

with the pixel size.  

Although the relative performances of the algorithms is expected to be valid at least 

for other spatial domain matching approaches and for other applications, the magnitudes 

given here are strictly valid only for the similarity measure and test sites used in this paper. 

Validation outside the conditions described in this study requires further research focusing on 

the development of a rigorous theoretical concept. Future investigations can, for example, aim 

at comparing the relatively best performing algorithm of this finding to other area-based 

approaches that intrinsically result in sub-pixel precision, namely least squares matching and 

Fourier-based phase matching. Besides, the performance of the approach in comparison with 

feature-based approaches needs to be evaluated as well. There are also other accuracy 

improving approaches such as preprocessing (e.g. noise filtering) and post-processing (e.g. 

filtering of displacement vectors by averaging).  Further research is needed to know if they 

even improve the accuracy further after sub-pixel precision. 
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ABSTRACT. This paper presents an algorithm for locally adaptive template sizes in 
normalized cross-correlation (NCC) based image matching for measuring surface 
displacement of mass movements. After adaptively identifying candidate templates 
based on the image signal-to-noise ratio (SNR), the algorithm iteratively looks for the 
size at which the maximum cross-correlation coefficient attains a local peak and the 
matching position gets fixed. The algorithm is tested on modeled (deformed) images and 
applied to real bi-temporal images of different Earth surface mass movements. It is 
evaluated in comparison with globally (image-wide) fixed template sizes ranging from 11 
to 101 pixels based on the improvement in the accuracy of displacement estimation and 
the SNR of the matching. The results show that the algorithm could reduce the error of 
displacement estimation by up to over 90% (in the modeled case) and improve the SNR 
of the matching by up to over 4 times compared to the globally fixed template sizes. The 
algorithm reduces the effects of geometric distortion and noise. Besides, it excludes most 
of the templates that lack good signal variance from the analysis through its candidate 
selection step. The algorithm pushes terrain displacement measurement from repeat 
images one step forward towards full automation. Although not investigated, the 
findings are expected to be useful for other area-based image matching methods in the 
spatial domain. 

Keywords: Image matching, Repeat imagery, Normalized cross-correlation, Change 
detection, Mass movement, Displacement, Adaptive template  

II.1. Introduction 

One of remote sensing techniques that have become increasingly popular in analyzing and 

monitoring Earth surface mass movements is matching of repeat images (e.g. Debella-Gilo 

and Kääb, 2011; Haug et al., 2010; Kääb and Vollmer, 2000;  Scambos et al., 1992; Scherler 

et al., 2008; Taylor et al., 2008; Wangensteen et al., 2006). Of the image matching methods 

available, the group of area-based methods with the normalized cross-correlation (NCC) as its 

similarity measure is widely used due to its simplicity and reliability (Brown, 1992; Zitová 

                                                
2 ISPRS Journal of Photogrammetry and Remote Sensing, Revivision submitted 
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and Flusser, 2003). The NCC calculates the correlation coefficient between an image subset 

(template) in the reference image and template of the same size in the target (search) image 

(Lewis, 1995; Vosselman et al., 2004). It assigns the correlation coefficient to the central 

pixel (i.e. the pixel at the center of the square template) of the search template. It continues 

doing so by moving the search template by one pixel at a time until the entire search window 

is covered. The pixel within the search window which produces the maximum correlation 

coefficient is considered as the best matching central pixel. Horizontal displacement is then 

computed as the Euclidean distance between the positions of the central pixels of the 

reference and the matching templates. This displacement is then assigned to all pixels of the 

template.  

There are two key assumptions here. First, the template that produces the highest 

correlation coefficient is unambiguously the matching template. Second, all the pixels within 

the template are displaced rigidly. This means that the two matching templates are equal in 

size, shape and orientation. The first assumption is realized if there is no ambiguity between 

the true match and duplicates. The second assumption is realized if the template is not 

changed in shape, size and orientation.  

The ideal situation would be finding a match for each and every pixel independently 

which is not practically possible and feasible. An image subset (template) is therefore created 

by including neighboring pixels until the entity becomes unique.   The number of the 

neighboring pixels to be included in the subset basically depends on a number of factors such 

as surface roughness (contrast), the noise content of the image and the extent of geometric 

distortion (Schenk, 1999).  

In principle, increasing the size of the template makes the template more unique 

(Okutomi and Kanade, 1990; Schenk, 1999). However, increasing template size poses two 

challenges. First, it increases the computation time exponentially which is, however, not 

anymore a major concern for many applications over limited areas. Secondly, it increases 

geometric distortion within the template. The challenge in deciding template size is therefore 

finding the optimum size that contains high signal variation in relation to noise variation with 

minimum geometric distortion. As these parameters vary spatially, template sizes need to be 

locally adaptive (Kanade and Okutomi, 1994; Okutomi and Kanade, 1990; Okutomi and 

Kanade, 1992). The local adaptability becomes even more important in Earth surface mass 

movements due to the often non-rigid motion of these masses and the often necessary large 

temporal baseline.  
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Attempts made so far to achieve this locally adaptive optimum template size vary 

fundamentally and/or in the parameters and assumptions they rely on. Most popularly, 

intensity and statistical models of the disparity distribution within the template are used to 

determine optimum template sizes for each central pixel (Kanade and Okutomi, 1994; 

Okutomi and Kanade, 1990; Okutomi and Kanade, 1992; Scherer et al., 1998). Multiple fixed 

window sizes are also found to be improving the accuracy over fixed windows (Fusiello et al., 

1997).  Template sizes are also related to physical boundaries by using disparity variation 

together with edge boundaries as limits to window sizes, combining area-based matching with 

feature-based matching (Koo and Jeong, 2001; Lotti and Giraudon, 1994). There are 

approaches that use weighting of the pixels in the template (Yihua et al., 2002; Yoon and 

Kweon, 2006). Pan et al. (2008) used combination of noise variance and sum of square of 

intensity gradients to select subset size in digital image correlation. Cyganek (2005) presents 

an adaptive window growing technique based on the entropy of the window.  Entropy and 

intensity variances can be used to identify matchable templates with good information 

content. However, they do not guarantee the presence of conjugate for such candidates in the 

search image. 

The algorithm presented here aims at locally adaptive optimization of template sizes in 

NCC-based image matching for displacement measurement of Earth surface mass 

movements. It relies on the maximization of the signal-to-noise ratio (SNR) for matchable 

template identification. The algorithm then iteratively defines optimum template sizes based 

on the local maximization of the peak of the NCC coefficient which is another way of 

minimization of uncertainty of the matching. The optimization is based on the principle that 

the reliability of a match for a template with optimum size should be greater than not only that 

of other templates but also that of the same (concentric) templates with other sizes.  

The paper starts by investigating the influence of template size on signal-to-noise ratio 

and on the NCC coefficient. Based on the findings of these investigations, presentation of a 

new algorithm for adaptively identifying candidate templates and iteratively determining their 

optimum sizes follows. The procedures of testing, implementation and evaluation of the 

algorithm are then presented together with the datasets used. After presenting and discussing 

the results, the paper winds up by giving concluding remarks.  
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II.2. Template size in image matching  

A template in this context refers to an image subset of a square shape defined in the reference 

image for which a conjugate is sought in the search image.  Template size is defined by 2� +1 

by 2� +1 pixels, where � represents the number of pixels on either side of the central pixel [x, 

y] in both dimensions (Fig. II-1). Similarly, the size of the search area is defined by 2�+1 by 

2�+1. Area-based image matching in the spatial domain using NCC is basically measurement 

of co-variation of the intensities of the two templates being matched, i.e. f(x, y) and t(x-u, y-

v). Therefore, templates which lack a significant level of intensity variance are not good 

candidates for matching. Information content of an image subset is better represented by 

SNR. The information content (SNR) per ground size of an image subset is among others 

dependent on the image contrast (roughness), noise and the ground pixel size (Gonzalez and 

Woods, 2008; Woodcock and Strahler, 1987). A good matching candidate over an area is 

obtained if the surface has good contrast, the images contain low level of noise and the spatial 

resolution of the image is high.  

Fig. II-1 The structural layout of reference image, search image, reference template, search 
template and search window in area-based image matching 

Image matching becomes successful only when an exact match with precise location has 

been identified. Thus, it is not only the identification of the matchable templates but also their 

presence (or absence) and location in the second image that is important. The (un)certainty of 

the presence of a match is measured by the value and location of the peak of the NCC 

coefficient. Therefore, the behavior of the SNR and the maximum NCC coefficient has to be 

2�+1 

2�+1 
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explored in relation to different template sizes so that an automatic method of defining locally 

adaptive optimum template sizes may be devised. 

II.2.1. Template size and signal-to-noise ratio 

Assume I(xi, yj) represents the intensity value of pixels [xi, yj] in an image (or its subset) with 

size M rows by N columns. The mean (p 5� and variance (�2) of the image intensity for MN

number of pixels are computed as in Eqs. II-1 and II-2 respectively. 

H5 � ' q�1R�2r�s�t;�;
uv �� � � � � � � � � � HH���

Y.�H� � ' DqD1R�2rE3q5E:s�t;�;
uv � � � � � � � � � HH���

For every pixel [xi, yj] the digital number (I) contains the true image signal (S) and 

noise (e). Thus, intensity variance has to be decomposed into noise and signal variances. The 

major type of noise that affects optical image is additive noise although other noise types may 

also be present (Gonzalez and Woods, 2008).  This noise type is stationary, independent of 

the signal, and Gaussian distributed with zero mean and variance �2 (e).  Thus: 

H � w � J� � � � � � � � � � � HH�"�
Y.�H� � Y.�w � J�� � � � � � � � � � HH���
Y.�w � 
�� � Y.�w� � Y.�J� � �x�w� J�� � � � � � � HH�#�

Here, �2(S) is the signal variance; �2 (e) is the noise variance; and, �(S, e) is the 

covariance between the signal and noise. Since the noise is assumed to be completely 

independent of the signal, �(S, e) equals zero. Image variance is thus the sum of signal 

variance and noise variance. It can be decomposed into the signal and noise variances by 

computationally estimating noise variance and subtracting it from the image variance (Eq. 

II-6). The SNR can then be computed as in Eq. II-7.  

Y.�w� � Y.�H� 
 Y.�J�� � � � � � � � � HH�=�

wyz� � {:�|�
{:�Q�� � � � � � � � � � �� HH�e�
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A fast and efficient approach to noise variance estimation is presented by (Immerkær, 

1996) where the difference between two Laplacian masks is used to convolve the image. The 

mask has zero mean and is almost insensitive to image structures such as edges.   The 

variance of the output of the convolution is used to estimate noise variance. Eqs. II-2 and 

Immerkær’s method are used to compute image and noise variances respectively for varying 

template sizes to investigate the relationship between SNR and template sizes. Image and 

noise variances are computed for � values ranging from 1 to a maximum size set (Fig. II-1). 

The M and N of Eqs. II-1 and II-2 are replaced by (2� +1) each. 

The relationship is first investigated on a synthetic image which is made of square grid 

features of 61 by 61 pixels that repeat themselves with clear edges at their borders (Fig. II-2).  

Intensity values within each grid vary non-uniformly in all directions from the center.  The 

synthetic image is used to investigate how SNR is related to feature boundaries (edges) and 

information content in a controlled situation. The computation was then extended to real 

images of Earth surface masses.  It was later conducted on images down-sampled to lower 

resolutions to understand the relationship between SNR and template size is affected by 

ground pixel size.    

The findings show that the SNR is low for small template sizes (Fig. II-2 A to C). This 

is because at small template sizes noise and signal are hardly distinguished. As the template 

size increases, the SNR increases as well indicating that new pixels bring in new variances.  If 

the template reaches an edge, the SNR increases considerably as edges are characterized by 

sharp intensity change. After the edge is crossed, the SNR tends to decrease as the new pixels 

do not add new information. If, however, another edge is encountered, the SNR increases 

again. Therefore, SNR plotted against template sizes will characteristically show a number of 

peaks depending on the presence of edges. Even if no edge is encountered, the SNR does not 

keep on increasing indefinitely. It will reach a certain peak and starts to decrease when new 

sources of variation cease to appear. In both cases, the size at which the first peak is attained 

defines the minimum size of the unique entity surrounding the central pixel.  

In the examples of the synthetic images, when the central pixel is placed at the center 

of the grid (Fig. II-2 A), the local maxima (peaks) of the SNR are observed at window sizes 

ca. 60 pixels and its multiples indicating the repetitive patterns (Fig. II-2 lower right A). This 

size is the edge-crossing size. When the central pixel is located at the edges of the grids (Fig. 

II-2 B), the image variance starts with high value due to the high intensity variation at the 

edges although the SNR attains the first peak at a similar template size. For other locations 
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features such as rock blocks in an aerial image of a rockglacier exhibit a clear SNR peak due 

to the edge-like behavior at the boundaries often enhanced by the shadow of the block (Fig. 

II-3).  However, not all Earth surface masses contain such distinct features at the image 

resolutions usually available. When the intensity variation is smooth, the SNR peak is also 

less pronounced (Fig. II-4). As long as there is good signal variation and there is a limited 

level of noise, SNR will reach a certain local peak identifying a unique entity.  

The influence of noise at small template sizes can easily be observed by the 

differences between image variance and SNR as exhibited by the noisy synthetic aperture 

radar (SAR) image over a glacier (Fig. II-5).  This type of images has very low SNR due to its 

high noise content (radar speckle) which is characteristic for SAR intensity images. 

Monotonous features that lack signal variance as in the case of low contrast surfaces 

such as snow, water and shadow lack the distinct SNR maxima. Even if they have a certain 

SNR peak, they attain it at very large size, which shows that the peak is attributed more to the 

far off entities than to the entity close to the central pixel. They also have very low SNR 

values as shown by the monotonously dark image of Fig. II-3 and bright image of Fig. II-4. 

Such entities are not good candidates for area-based spatial domain image matching as they 

lack adequate signal variance.  

The examples show that the SNR attains certain peaks regardless of the ground pixel 

size. However, the ground distance over which these peaks are attained is dependent on the 

ground pixel size. Computation of SNR for the same central pixel at different ground pixel 

size, although not shown here, reveals that the metric window size of SNR peak is resolution 

dependent.  The metric window size at which the SNR peak is attained remains constant only 

over a short range of ground pixel sizes. Investigations show that  images over a certain 

feature attain high signal variance when the ground pixel size is just less than the average size 

of the surface features (Woodcock and Strahler, 1987). When the ground pixel size changes, the 

scale at which the observation is carried out, and hence the features being observed, change. 

Therefore, in addition to the intra-image variation, the optimum size of a unique entity at an 

individual location varies across images depending, among others, on the spatial resolution of 

the images. 
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Fig. II-3 Image intensity variance (A), noise variance (B) and signal-to-noise ratio together 
with the first local maximum (D) as plotted against the window size for an aerial image of 
real rock block (upper left) shadow area (lower left) 
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Fig. II-4 Image intensity variance (A), noise variance (B) and signal-to-noise ratio together 
with the first local maximum (C) as plotted against the window size for an aerial image of a 
fine-grained rockglacier surface (upper left) and a snow covered surface (lower left) 
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Fig. II-5 Image intensity variance (B), noise variance (C) and signal-to-noise ratio together 
with the first local maximum (D) as plotted against the window size for a high –resolution 
SAR image (A) of a glacier.  

II.2.2. Template size and cross-correlation coefficient 

As stated, the most reliable disparity (displacement) estimate is the one with the least 

uncertainty of matching. The value of the NCC coefficient is a measure for the level of 

(un)certainty of the matching. Conventionally the value of NCC coefficient is used to 

compare the similarity of different consecutive templates in the search window to the 

reference template. Here, it is hypothesized that the variations of the NCC coefficients for the 

same central pixel but for different template sizes can be used to compare the certainty of the 

matching. Therefore, the relationship between the maximum NCC coefficient and template 

sizes is explicitly investigated. A Section of aerial images taken over rockglacier with 13 

years apart were used. Using the older image as reference, the maximum NCC coefficients are 

computed for each � value ranging from 1 to a maximum size set by increasing � by steps of 1. 
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A number of points in the reference image are selected and NCC-based matching is 

performed using different � values. For each � , only the peak of the NCC coefficient and the 

position of the match are recorded. A typical example of the relationship between template 

size and the maximum correlation coefficient is presented in Fig. II-6  and summarized in the 

text that follows. 

   

Fig. II-6 The relationship between template size and the maximum NCC coefficient (B) and 
the displacement estimates (C) for an image subset (A) that contains good signal variance 

i) For small template sizes, the maximum NCC coefficient is very high (Fig. II-6B, point 

B1). It is likely that many exact matches can be found.  The matches may include a true 

match, naturally existing duplicates and noise-related duplicates. Identifying the true match 

is therefore ambiguous. It is even difficult to distinguish the signal correlation from that of 

noise (Fig. II-7 A). The matching position is thus located randomly leading to an unreliable 

displacement estimate (Fig. II-6C, between C1 and C2). As the template size increases, the 

template will become more unique but still contains noise. The peak of the NCC 

coefficient will be reduced due to noise.  As more and more pixels are included, the noises 

get suppressed and the peaks become clearer (Fig. II-7 B). 

Fig. II-7 Typical NCC coefficient surfaces for template sizes of 7 pixels (A), 20 pixels (B) 
and 51 pixels (C) for search window size of 256 pixels 

ii) After the noise is optimally suppressed, the correlation of the signal takes over. The 

maximum NCC coefficient increases again (Fig. II-6B between B2 and B3). It will then 
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reach a certain local peak at a certain template size (B3).  This size is assumed to contain 

minimum geometric distortion and noise.  Fig. II-6C shows that the matching position may 

get fixed already before the correlation attains this peak (C2). However, maximizing the 

correlation coefficient increases the certainty of the matching position. The actual 

displacement of 17.26 pixels is now correctly computed. 

iii)The NCC coefficient then starts to decrease again after point B3 of Fig. II-6B. The 

decrease this time is related to the fact that additional pixels mean more source of 

dissimilarity as a result of increased geometric distortion. This decrease is proportional to 

the velocity gradient (deformation) within the template. When the displacement gradient 

increases, the correlation coefficient decreases until the gradient gets so high that the 

matching position shifts by a pixel. The correlation coefficient starts to increase again (Fig. 

II-6B B4). This time the correlation belongs more to the farther off entity than to the 

entities close to the central pixel. The matching position also shifts slightly changing the 

displacement magnitude (Fig. II-6C C3). The displacement is now underestimated to be 

16.28 pixels due to averaging over the large template. Such shift is small compared to the 

mismatches due to ambiguity. 

   The relationship between the maximum NCC coefficient and the template size 

presented above is typical for features that contain sufficient signal variability.  For shadows, 

water surfaces, snow, and other monotonous surfaces that lack adequate signal variability (at 

least for optical imagery), or for terrain Sections that are very unstable over time, the 

relationship is quite different. Such templates are usually mismatched or occluded (lack a 

match) due to the fact that they may no longer exist or may have changed pattern. Their 

matching position may thus not get fixed easily or at all (e.g. Fig. II-8).  

   

Fig. II-8 The relationship between template size and the maximum NCC coefficient (B) and 
the displacement estimates (C) for a feature in shadow (A) presented here as an example 
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In addition to noise and velocity gradients the ground pixel size has a role to play in the 

relationship between template size and NCC. High spatial resolution images enable to match 

smaller features and detect small disparity (displacement) enabling to deal with the problem 

of velocity gradient more elegantly. In low spatial resolution images, features are observed at 

different scale. Small features are hardly matched and small displacements cannot be detected 

(Debella-Gilo and Kääb, 2011). Besides, velocity gradients are harder to deal with. There can 

be velocity gradient even within a single pixel. Therefore, although NCC peaks can be 

observed at any spatial resolution, its precision and reliability is dependent on the resolution. 

II.2.3. Signal-to-noise ratio and cross-correlation coefficient 

The relationship between SNR and template size can be used to identify unique entities with 

good information content and entities that lack such qualifications. Although matchable 

entities can be identified, there is no guarantee that these entities remain as they are 

geometrically and radiometrically. Therefore, using the size of the entity with optimum SNR 

as template size for matching may lead to mismatches as one of the following scenarios may 

happen due to the time lag between the images and different imaging conditions: 

• The entity does not move or moves rigidly with limited level of noise in the image. In 

such cases, the template size at which the first local peak of the NCC coefficient is 

attained is the same as or smaller than the window size at which the first SNR peak is 

attained. 

• The entity does not move or moves rigidly but the image is highly noisy. The size at 

which the first local peak of the NCC coefficient is attained will therefore be greater than 

the window size at which the first SNR peak is attained so that the noises are optimally 

suppressed.   

• The entity disintegrates into smaller pieces or deforms significantly. In such cases, the 

optimum template size will be smaller than the window size at which the first SNR peak is 

attained. If the images are too noisy the matching may no longer be reliable. 

• The entity is unrecognizably altered or disappears. In such cases, the optimum template 

size does not exist. The template should be excluded from the analysis. 
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II.3. Methods 

II.3.1 Algorithm for locally adaptive template sizes 

The scenarios stated in Section II.2.3 and discussions of Sections II.2.1 and II.2.2 help us 

design an algorithm which uses the SNR and the NCC peaks to identify matchable templates 

and determine their optimum sizes. Such an algorithm is presented in two steps in the 

following Sections. 
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The relationship between SNR and window size described in Section II.2.1 indicates that for 

every entity the relationship between SNR and the size of the entity can be approximated by a 

polynomial function. Based on this relationship we can use Fermat’s theorem to find the 

position of the first local maximum. Fermat’s theorem states that the necessary condition for 

every local extremum (maximum or minimum) is that the function’s derivative is zero at that 

point (Zlobec, 2009). Assume f(x) is a differentiable function and for a certain domain value 

x0, the function decreases for x values just before x0 and decreases for x values just after x0. In 

other words, the derivative of f is positive as x gets close to x0 from the left and negative as x

gets close to x0 from the right. Intuitively, and by Darboux’s theorem (Olsen, 2004), there 

exists x0 where the derivative of f(x) is zero. At such x0 the function attains its local 

maximum. Since we do not have a continuous function relating SNR to the template size, we 

use its differencing (�SNR) over a unit of the template size (�) and then find the � value where 

the difference changes from positive to negative. Additionally, at this � the signal variance has 

to exceed the noise variance, otherwise it would simply be matching noises. 

[wyz�}�� �� wyz��}� 
 wyz�} 
 ������� � � � � � ������������HH�f�

The template size at which the SNR attains its local maximum (� opt) is then:  

}�~�4 � }�� � � � � � � � � ��������������������� HH�k�
with � such that: 

I. �2 (S)  > �2 (e ) 
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II. �SNR (� -1) > 0, and 

III. �SNR (� +1) < 0.  

IV. II and III imply �SNR (� ) = 0. 

The algorithm is implemented as follows. For every � ranging from 1 to a certain value 

chosen based on the maximum acceptable ground template size, the SNR is computed. For 

every � greater than 1, the �SNR is computed. The computation continues until the conditions 

of Eq. II-9) are satisfied at which point the computation stops and that � value (in fact 2� +1) 

is used as the candidate window size. If it fails to satisfy the condition, the algorithm discards 

the entity and continues to the next central pixel.  
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The behavior of the different features discussed in Section II.2.2 shows that for every image 

subset, there is a size at which the maximum NCC coefficient attains a first local peak and the 

position of the match is identified, unless it lacks true match. The variation of the maximum 

NCC coefficient (�max) with template size approximates the shape of a polynomial function 

(Fig. II-6). Based on this, just like in Section II.3.1.1, we can use Fermat’s theorem and 

differentiate the function �max over a unit of the template size (�) and then find the value where 

the derivative changes from positive to negative (Eq. II-10 and II-11).  

[/��1�}�� �� /��1�}�� 
 /��1�}� 
 ���� � � � ���������������������������HH����

The template size at which the maximum correlation coefficient attains its first local 

maximum (�opt) is then:  

��~�4 � ��� � � � � � � � � � ������������HH����
with � such that: 

I. ��max (� -1) > 0 , and 

II. ��max (� +1) < 0.  

III. I and II  imply ��max (� ) = 0. 

The first local peak found has to be checked whether it is attained at the optimum 

template size or noise-based template size. If it is at the optimum template size, the matching 

position is also fixed. This means that the matching position of the central pixel should not 
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change for template sizes greater than � opt unless there is a full pixel shift in matching 

position. The matching position of the central pixel is expected to remain the same for 

template sizes starting from � opt until the displacement gradient attains a full pixel. Increasing 

the template size until such point is reached only adds computational cost as full pixel 

displacement gradient may not be attained or may be obtained at very large template sizes. 

Therefore, iterating for 3 more template sizes (i.e. up to � = �opt+3) should suffice based on 

two assumptions. Firstly, this size difference is too large for chance-based (ambiguous) 

matching positions to remain the same for three consecutive template sizes. Secondly, it is too 

small for the displacement gradient to attain one full pixel in most slow-moving masses. 

Therefore, if the matching position does not change within that range, it is considered to be 

the true match. If it changes, it is an indication of randomness or ambiguity.  To formalize 

this, let’s assume that when the template size is �, the position of the matching central pixel is 

[X� , Y� ]. If � is the optimum template size, Eqs. II-12 and II-13 should be true: 

\� � \�a� � \�a. � \�a�� � � � � � � � HH����
c� � c�a� � c�a. � c�a�� � � � � � � � HH��"�
�

For every �, the �max, ��max and the matching positions are computed. The algorithm 

then checks if the conditions are fulfilled. If they are fulfilled, � is used for the optimum 

template size. If the conditions are not fulfilled within the given search range, it is assumed 

that the entity lacks a reliable match and the algorithm ignores the entity and moves to the 

next central pixel.  

Iterating for all templates and from template sizes of 3 by 3 to the maximum size set 

for every template is computationally expensive. To limit this, the SNR-based matchable 

template identifier is used as follows: first, the iteration is done only for the central pixels 

identified by the SNR-based algorithm of Section II.3.1.1. Second, since the optimum 

template size is related to the SNR as explained in Section II.2.3, the iteration is done for 

template sizes ranging from half to twice the window size at which the first SNR peak is 

attained. The lower boundary is set to include all the features that might have moved with 

significant displacement gradient, and the higher limit is set to include candidates affected by 

high level of noise. 
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II.3.2. Test and implementation of the algorithm 

The here-developed algorithm is tested on modeled deformation image pairs with known 

displacement for each pixel. It is then implemented on real bi-temporal images of Earth 

surface mass movements. The algorithm’s performance is evaluated in reference to the 

performances of various globally (i.e. image-wide) fixed template sizes. 
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To model bi-temporal Earth surface mass displacement image, let’s first clarify the theoretical 

assumptions of displacement and deformation in images: 

• An entity at a certain location (x, y) has the intensity value f(x, y) in the reference image. 

This entity is displaced to a new location (x1, y1) and gets intensity value g(x1, y1) in the 

search image.  

• The two intensity values are expected to be the same unless radiometric (sometimes 

referred to as photometric) distortion exists. The most common forms of radiometric 

distortion are shift (also called offset; �), scaling (also called gain; �) and random noise 

(e). Therefore, the transformation of the intensity values can be approximated as: 

��� ������ ���� � ������ �� � � � J� � � � � � HH����
• The mode of displacement varies from simple translation (constant velocity) to a more 

complicated deformation that involves translation, rotation, shearing and scaling. For most 

mass movement types first order deformation is sufficient to approximate the relationship 

between the two locations within typical template sizes. Therefore, affine transformation 

with six parameters of the following form can approximate the relationship: 

�� � �� � ��� � ���� � � � � � � � HH��#�
�� � �. � �.� � �.�� ������������������������������������������� � � ��������� HH��=�

NCC measures the similarity between f(x, y) and g(x1, y1). NCC is insensitive to both 

radiometric illumination and brightness (Nillius and Eklundh, 2002). Therefore, it is 

influenced only by the presence of random noise (e) and the velocity gradients that deform the 

templates.  This means, the NCC coefficient is expected to be high for e , c1 and b2 values 

close or equal to 0 and for b1 and c2 values close or equal to 1. In fact, assumption of rigid 

translation means that all of these parameters are assumed to be so within a given template. 
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Therefore, to model Earth surface mass movements and investigate the influence of 

the factors independently, artificial displacement is introduced to a real image based on the 

above principles as follows: First, a Section of an aerial image covering a debris-free glacier 

with crevasses, and bedrock and debris surrounding the glacier is taken (Fig. II-9 A). More 

details on the image and site are given in Section II.3.2.2. First order affine transformation of 

Eqs. HH��eand HH��f are used to artificially model a deformed image of time 2. Note that only 

full-pixel displacements are allowed to avoid unnecessary image interpolation. The horizontal 

displacement magnitude in Euclidean distance is thus computed as in Eqs. II-19, II-20 and 

II-21.  The displacement map of Fig. II-9 (B) is the result of this computation at integer pixel 

precision. Exploration of the computed displacement shows that the displacement magnitude 

coincidentally changes every 20 pixel in the x-direction and at variable but larger distances in 

the y-direction. No radiometric distortion or noise is introduced at this moment. The intensity 

value of a pixel is thus expected to remain the same although the pixel is moved to another 

location (Eq. II-22).   

�� � h���I��� � ��ke� � �������� � � � � � � HH��e�
�� � h���I��� � ����� � ��k#���� � � � � � � HH��f�
� � � 
 ��� � � � � � � � � � HH��k�
K � � 
 ��� � � � � � � � � � HH����
I � ��. � K.�� � � � � � � � � HH����
���� �� � ����� ����� � � � � � �������������������������������� HH����

In the second case, the same displacement is modified by distortion of the image 

intensities by the addition of Gaussian random noise of mean 0 and variance 0.1 using the 

inbuilt MATLAB module “imnoise” in order to model random temporal changes in image 

intensities . Thus, the image of time 2 is not only a displaced version of the first image but 

also contaminated by Gaussian random noise. No radiometric gain or offset is included into 

the model as they are believed to have no effect on the NCC.  

Now we have two pairs of images: one with just displacement and the other with 

displacement and additive Gaussian noise. Image matching is then applied on the two pairs of 

images using the NCC algorithm. First, different globally fixed template sizes ranging from 

11 to 101 pixels (with 10 pixels interval) are used. Then, the here-developed locally adaptive 

algorithm is applied. The same search window size is used for all cases so that the comparison 
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is conducted under the same condition and no manual filtering was conducted in order to 

mimic full automation.  

Fig. II-9 A segment of the test image of the crevassed Nigardsbreen glacier and its 
surroundings (A), the artificially created displacement magnitude for every pixel (B), the 
same image after getting displaced by B and after adding Gaussian noise of 0 mean and 
variance 0.1 (C), and the histogram of the displacement (D)  

$$%'%&%&% /!�� �����	�����������/��	�����������������*����	��

The algorithm is mainly applied to three types of bi-temporal images of glacier flow. This 

selection is governed by the aim to choose very different image types (aerial, satellite optical, 

radar), but on the same type of process in order to facilitate the comparison. Other mass 

movement types (Muragl rockglacier creep and Aletsch land sliding) have also been tested for 

which the description of dataset is found in (Debella-Gilo and Kääb, 2011) and the outcomes 

are only briefly reported here. 

1) The first image pair is a Section from panchromatic aerial images over the Nigardsbreen 

glacier in Southern Norway (lat 61.68°N, lon 7.20°E). The images were acquired on 

August 19 and 29, 2001 within the EU Glaciorisk project (see Fig. II-9). The images were 

orthorectified using photogrammetric stereo pairs and automatic DEM extraction of the 

two dates. The ground resolution of the orthoimages is 0.3 m. Surface changes within the 

A 
B

C D
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very short time period of 10 days were very small. More details on the images and on their 

glaciological analysis can be found in (Wangensteen et al., 2006).  

2) The second image pair is composed of a section of synthetic aperture radar (SAR) 

intensity images over a Section of Kronebreen glacier on Svalbard, Norwegian Arctic (lat 

78.87°N, lon 12.5°E; Fig. II-10 left). Note that the image used here is in original SAR 

geometry and appears therefore mirrored with respect to map geometry. The noise level 

(radar speckle) of SAR images is much higher than that of optical images. Both images 

used here are taken from Radarsat-2 in high-resolution mode (ultrafine beam) in HH 

polarization, with a ground resolution of approximately 3 by 3 m. The first image is taken 

on April 06, 2009 while the second is taken on April 30, 2009. Both images have been 

acquired from the same orbit so that no orthorectification was required but a polynomial 

adjustment was sufficient to reach sub-pixel accuracy co-registration between both 

images. The latter co-registration was performed using the GAMMA radar software. The 

radar images are courtesy of Radarsat, the Norwegian Space Center and KSAT. More 

information on the flow field of Kronebreen can be found in  (Kääb et al., 2005). 

Fig. II-10 A Section of the SAR image of the Kronebreen taken on April 06, 2009 (left) 
and a Section of a Landsat 7 panchromatic image over the Baltoro Glacier taken on June 
16, 2000 (right) 

3) The third image pair is composed of Landsat7 ETM+ panchromatic images with 15 m

resolution captured on June 16, 2000 and July 27, 2001 over a part of the Karakoram 

Mountains of Pakistan (Landsat7 path 148, row 35). Here, a small Section over the 

Baltoro Glacier is used (lat 35.74°N, lon 76.43°E; Fig. II-10 right). More detailed 

description of the glacier and its dynamics is found in Copland et al. (2009). Both images 

were acquired and orthorectified by the US Geological Survey (L1T level). The terrain 

correction and the fact that both images were acquired from the same orbit path minimize 



118 

differential topographic distortions within the image pair. Landsat7 ETM+ pan data are 

known to have a noise level of several digital numbers (Haug et al., 2010).    

II.3.3. Performance evaluation of the algorithm 

$%'%'%(% /*����	
���	���	��	�
��������
����
� �������	���	��

Every pixel in the two test image pairs has a known displacement value which can be 

computed from the transformation equation used for the modeling.  The accuracy here is 

therefore the straight forward comparison of the actual displacement and the estimated 

displacement. A few different statistical parameters could be used to measure the accuracy of 

the estimation: namely, the mean of the differences between the actual and estimated 

displacements (mean bias), the mean absolute error (MAE), and the root mean squared error 

(RMSE). Since mean bias measures only the systematic bias of the estimation and the RMSE 

is too sensitive to extreme values such as mismatches due to the squaring (Willmott and 

Matsuura, 2005), the MAE is found appropriate.  MAE (Eq. II-23) is the mean of the absolute 

values of the difference between the estimated displacement (di) and the actual displacement 

(d0i). Every deviation is accounted with its magnitude at the scale of the measurement. Best 

estimate of displacement is, therefore, the one with MAE equal or close to zero.  As the actual 

displacements in the real images are not known, only the test images can be evaluated using 

this approach. 
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In real multi-temporal images displacement-based assessment procedure is not possible as 

true displacement data is usually not available. Subjective evaluation approaches such as 

visualization of the velocity fields and looking for outlying displacement vectors can be used 

at first glance. Such approaches can identify most of the mismatches caused by ambiguity as 

they often result in observable gross errors. However, misrepresentation errors (i.e. errors due 

to displacement gradient within the template) can hardly be detected visually. Therefore, a 

self-relying quantitative approach is devised.  It is based on the assumption that, even if 

displaced, Earth surface entities retain their radiometric characteristics over the temporal 



119 

baseline of the image acquisition. This retention of the radiometric characteristics can be 

measured by the correlation coefficient as outlined below. 

Assume a pixel (x, y) of the reference image with intensity value of f(x, y) is displaced 

by u and v in x and y directions respectively and located at (x1, y1) in the search image with 

new intensity value g(x1, y1). After finding the matching positions, every pixel in the 

deformed (second) image is moved back to its original location, (x, y), taking the intensity 

value of the search image (Eq. HH���). This back-simulates the reference (first) image using 

the imaging condition of the search (or second) image registering each pixel of the second 

image back to the first image. Theoretically, if the displacement is perfectly estimated, the 

imaging conditions are equal and there is no temporal surface changes, f(x, y) is expected to 

be equal to g(x1, y1) which is here equal to h(x, y).  However, in reality there can be 

radiometric gain (�), offset (�) and noise (e).  For every pixel (x, y) in a reference template, 

the new intensity values, h(x, y), can be reconstructed as:  

���� �� � ��� � �� � � K� � ����� �� � � � 
�� � � � � HH����
�
The algorithm that produces the least difference between f(x, y) and h(x, y) is 

considered to be the best performing algorithm. The computed difference is cumulative of the 

systematic offset, gain and random radiometric deviations. Consequently, simple differencing 

cannot be a good parameter of the evaluation. The correlation coefficient is a more suiting 

parameter. Here, the global correlation coefficient (�) between the reference image, f(x, y), 

and the reconstructed image, h(x, y), is computed. The � can then be used as a measure of the 

SNR between the images (Thong et al., 2001). If � is the correlation coefficient between the 

two images, the SNR is then given as: 

$>? � @
�3@� � � � � � � � � � HH��#�

�
Assume the initial correlation coefficient between the reference image and the search 

image before the matching is �i. �i, implicitly SNRi, is typically low in cases where there is 

significant change in geometry (deformation) and surface condition (noise). Estimating the 

displacement and reconstructing the image is thus expected to improve the correlation 

coefficient, and the SNR. How much the SNR improves depends on how successful the image 

matching technique is. The success of our locally adaptive algorithm under different imaging 

and surface conditions can therefore be evaluated based on this parameter. If we assume SNRf

to be the SNR between the reference image and the reconstructed image after matching using 
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globally fixed template size, the gain (SNRgf) can be computed as in Eq. II-26. Likewise, if we 

assume SNRa to be the SNR between the reference image and the reconstructed image after 

matching using locally adaptive template sizes, the gain (SNRga) can be computed as in Eq. 

II-27).  

$>?�� �� � $>?�� $>?m� � � � � � � � HH��=�
$>?�� �� � $>?�� $>?m� � � � � � � � HH��e�
�

The relative advantage of the locally adaptive template sizes over the globally fixed 

ones can then be quantified as in Eq. II-28. Here, 1 means equal performance; values below 1 

indicate the fixed templates performing better; while, above 1 indicates better performance of 

the adaptive approach by that much factor. This is computed against different globally fixed 

template sizes for different Earth surface mass movement types and for different imagery. 

?
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II.4. Results  

II.4.1. Performance of the algorithm on the test images 

$$%0%(%(% 1
� �������	�"������*����	
���

Fig. II-11 (left) shows the mean absolute error of the estimated displacement (MAEd

hereafter) plotted against the template size for the noise-free test image pair. When the 

globally fixed templates are too small (less than 11 by 11 pixels), there are mismatches due to 

ambiguity that lead to erroneous estimation of displacement increasing the MAEd. The lowest 

MAEd (0.18 pixel for this case) is attained at template size of 11 pixels. The MAEd then 

increases gradually due to the displacement gradient which increases with template size. 

Adaptively optimizing the template size for each location using the here-presented 

algorithm increases the accuracy, removing errors of ambiguity and velocity gradient (Fig. 

II-11). The algorithm produces MAEd of 0.38 pixels which is a little higher than that of the 

best performing globally fixed template size.  The algorithm reduces MAEd of the globally 

fixed template size of 101 pixels (1.13 pixels MAE) by 66% and that of the ambiguous 5 
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pixels (3.7 pixels MAE) by 90%. Notice that due to the linear deformation the MAEd of the 

globally fixed template size increases linearly with the template size. This is an evidence of 

the relationship between velocity gradient (which is by design linearly related to the template 

size) and MAEd.  

Fig. II-11. Mean absolute error of displacement (MAEd) of the globally fixed template sizes 
(dotted line) and the locally adaptive algorithm (horizontal line) for the noise-free (left) and 
noisy (right) test images  

The presence of Gaussian noise of zero mean and variance 0.1 significantly increases 

the MAEd of the globally fixed small templates (Fig. II-11, right).  Globally fixed template 

sizes of 11 pixels now produce very high MAEd (12.2 pixels). The lowest MAEd (0.41 pixels) 

is now attained at template size of 31 pixels (dotted curve), not 11 pixels as before.  For 

globally fixed template sizes greater than 31 pixels, both the noisy and noise-free test images 

perform alike.  The locally adaptive algorithm actually registered the lowest MAEd (0.40 

pixels) which is about 96% reduction from that of 11 pixels. The mean of the template size of 

the locally adaptive algorithm is about 21 pixels, which is the template size at which the 

displacement gradient attains one full pixel (Fig. II-12D). The optimum template size is 

smaller for areas with good signal contrast and larger for low signal contrast areas. Most of 

them range between 11 and 35 pixels as can be seen from the histogram.  

The results presented so far for both the noisy and the noise-free test images are based 

on combined errors of both mismatches and misrepresentations.  Table II-1 presents the 

displacement statistics for the central pixels for a globally fixed small (11 pixels), large (61 

pixels) and the locally adapted template sizes for the noisy test image. The table clearly shows 

that the locally adaptive algorithm registered the lowest MAEd. Besides, its mean and standard 
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deviation of the estimated displacement is much closer to the actual one as compared to the 

two globally fixed template sizes showing better performance in dense matching as well.  

Table II-1. Displacement statistics for the small, large and locally adapted template sizes for 
the central pixel of their respective templates of the noisy test image.  

Statistic Actual data 61 pixels 11 pixel Locally adapted 

Minimum 0 0 1 0

Maximum 37 35.90 96.88 36.67

Mean 16.04 15.17 (1.76) a 27.62 (7.49) a 16.05 (0.65) a

Standard deviation 9.18 8.84 22.90 9.16
aThe numbers in the brackets are the corresponding MAEd. Notice that by using the locally 
adaptive algorithm, the MAEd of the large template size is reduced by about 63% while that 
of the small template size is reduced by about 91%.  

The displacement vectors of Fig. II-12 show that when small templates are used the 

mismatching vectors can easily be visualized. However, errors of misrepresentation when 

using large template size cannot be detected visually. The vectors of the locally adaptive 

algorithm are similar to that of the large template sizes except the absence of vectors in areas 

which lacked good SNR maxima or correlation maxima.

The spatial distribution of the errors is also significantly important. Analyzing error 

data along a horizontal transect that passes through central pixels of a number of templates 

(transect depicted in Fig. II-9 B) reveals interesting result.  Fig. II-13 shows the displacement 

magnitude (A), absolute horizontal displacement gradient (B), the absolute error of the 

displacement estimation for the fixed template sizes of 101 by 101 pixels (C) and 5 by 5 

pixels (D), and for the locally adaptive template sizes (E) along the transect. The error of the 

globally fixed template sizes of 101 pixels is systematically related to the displacement 

gradient. The displacement of the test image changes horizontally by a pixel every 20 pixels 

as stated above. Likewise, the displacement estimation error of the globally fixed large 

templates changes horizontally every 20 pixels ranging from zero (close to the template 

center) to many pixels at the template peripheries depending on the displacement gradient and 

the template size. The situation with small template sizes is different. The random mismatches 

created due to ambiguity lead to matching error of the entire template including the central 

pixel. They often end up far away from the true match overestimating the displacement.  The 

only limit to the overestimation is the extent of the search area. The use of the locally adaptive 
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algorithm removes much of the error (Fig. II-13 E). Notice the magnitudes of the absolute 

errors of the three cases for comparison. 

Fig. II-12 . Displacement vectors computed using globally fixed template sizes of 11 pixels 
(A), 61 pixels (B) and the locally adaptive algorithm (C) together with the histogram of the 
template sizes of the locally adaptive algorithm (D) for the noisy test image.  

$$%0%(%(% $�	���
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Due to deformation there is low initial global correlation coefficient between the reference 

image and the original noise-free test image (Fig. II-14, left, dashed line). The correlation 

coefficient between the reference and the reconstructed image after matching using the 

globally fixed template size (dotted line) is much higher. Globally fixed template sizes below 

21 pixels produce the best reconstruction. However, too small template sizes (e.g. 5 pixels) 

suffer from ambiguity due to insufficient signal variance. As the template size increases over 

21 pixels, the performance of the reconstruction decreases due to the misrepresentation error 

resulting from the velocity gradient within the templates. The locally adaptive algorithm 
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seems to have effectively removed the problems of misrepresentation as its performance is 

comparable to that of the globally fixed size of 31 pixels (smooth line).  The reason why it 

could not improve the correlation further is because, as stated above, that in some cases it uses 

large template sizes to maximize both the SNR and NCC coefficient allowing some errors of 

misrepresentation.  

Fig. II-13  Displacement magnitude (A),  absolute horizontal displacement gradient (B) 
absolute displacement error in pixels for the globally fixed template sizes of 101 by 101 
pixels (C)  and 5 by 5 pixels (D) and the locally adapted template sizes (E) along a horizontal 
transect that passes through template centers of the noise-free test images 
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For the test images with Gaussian noise, there is overall reduction of the global 

correlation coefficients (Fig. II-14 right). Additionally, the small templates now perform 

much poorer due to noise. The � first increases with template size up to about 21 pixels and 

then deceases again. Here, the locally adaptive algorithm performs better than that of the 

globally fixed template size of even 21 pixels proving that locally adapting the template sizes 

is more important in cases where there is high level of both noise and velocity gradient. The 

similarity between the corresponding curves of Fig. II-11 and Fig. II-14 shows that 

correlation-based evaluation can be used as a proxy for displacement-based evaluation. Once 

the ambiguity issue is resolved, the decrease in the reconstruction accuracy is linearly related 

to the template size due to the linear deformation (Fig. II-14). 

Fig. II-14. Global correlation coefficients between the original reference image and the search 
image before (dashed horizontal lines), after reconstructing using the globally fixed (dotted 
lines) and the locally adapted (smooth horizontal lines) template sizes for the noise-free (left) 
and the noisy (right) test images 

 The result of the test images reveals some interesting points. First, when estimating 

horizontal displacements from repeat images, the locally adaptive algorithm performs better 

than large globally fixed template sizes in cases of noise free images with significant 

deformation, and better than all globally fixed template sizes in cases where both significant 

noise and deformation are involved. Secondly, analysis on the test image showed that better 

reconstruction correlated well with higher displacement estimation accuracy. The test has 

therefore laid the ground for implementation of the algorithm on real multi-temporal images. 
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II.4.3. Performance of the algorithms on the multi-temporal images 

The performance of the algorithm on the bi-temporal images of glacier flow is consistent with 

that of the test images. For the Nigardsbreen aerial image, the initial global correlation 

coefficient is very low (0.2). Reconstructing the images after matching raised the correlation 

coefficient highly (Fig. II-15).  Due to the lower noise content and the high signal contrast, 

template sizes of 21 to 31 pixels produce good reconstructions. The performance of the 

adaptive algorithm here is comparable to that of the noise-free test images. The explanation is 

that the Nigardsbreen aerial images are least affected by noise due to the short temporal 

baseline between the two image acquisitions (10 days). The image Section used is 

characterized by good intensity contrast due to the crevasses. The image covers mainly the 

glacier with a smaller area of stable ground.  

The displacement vectors, computed using the adaptive algorithm, are presented in 

Fig. II-16. A limited number of outlying vectors are observed. The stable ground is almost 

perfectly identified with the absence of any moving template as can be seen on the northern 

part of the figure. The histogram of the template sizes (Fig. II-17) is skewed to the right 

indicating that most of the templates have small optimum sizes due to the low level of noise 

with limited geometric distortion. 

Fig. II-15 Global correlation coefficients between the original reference image and the search 
image after reconstructing using the globally fixed template sizes (dotted line) and the locally 
adaptive algorithm (smooth line) for the aerial images of the Nigardsbreen glacier. 
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Fig. II-16  Displacement vectors of the Nigardsbreen glacier as computed from the bi-
temporal aerial images using the locally adaptive algorithm. 

Fig. II-17 Histogram of the template sizes as computed by the adaptive algorithm for the 
Nigardsbreen glacier aerial images. 

In the case of the Landsat panchromatic images over the Baltoro Glacier, the initial 

correlation itself is already high due to the large percentage of stable ground and the presence 

of white monotonous snowy surfaces in the scene (Fig. II-18). Matching with globally fixed 

small template sizes (11 pixels) lowered the correlation coefficient of the reconstruction even 

below the initial. That can be ascribed to a number of reasons. First, the temporal baseline 

(about one year) is large for a dynamic landform (glacier). Second, the noise level of Landsat7 
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ETM+ pan images is known to be high (Haug et al., 2010). Third, the spatial resolution of the 

image (15 m) is low. Matching errors of even one pixel are able to create a large intensity 

difference. Two neighboring pixels have a greater chance to cover two different surface 

features. Fourth, the study area includes monotonous features such as bright snow and gray 

glacier ice lacking good contrast over short distances. Due to these reasons, small template 

sizes do not correctly match even the stable ground. As can be seen from the Fig. II-19, the 

performance of the matching with globally fixed template sizes attains its peak at around 26 

pixels. At larger template sizes the reconstruction accuracy is significantly lowered again. 

Large template sizes translate into large ground areas in such low resolution images, leading 

to comparably high velocity gradients in the templates especially due to the fact that the 

glacier studied is fast moving with varying velocities.  The reconstruction accuracy of 

globally fixed template sizes greater than 60 pixels (which corresponds to a large ground 

distance of over 900 m) is even lower than the initial correlation coefficient between the two 

original images. In such low resolution images, large template sizes further distort the image 

rather than reconstruct it.  

The histogram of the template sizes shows that the distribution is skewed to the right 

indicating that most optimum templates have in fact small sizes (Fig. II-19). The large 

template sizes are obtained on stable monotonous (bright or dark) surfaces which lack enough 

SNR over short distance.  

Fig. II-20 presents displacement vectors of the Baltoro Glacier as computed using the 

locally adaptive algorithm.  The figure shows both the strengths and the weaknesses of the 

algorithm. On the one hand, the fact that the algorithm could exclude most of the monotonous 

(dark and bright) regions from the matching, and that the stable areas are mainly correctly 

identified as stable, shows that the algorithm performs well even in such low spatial 

resolution images of low contrast. On the other hand, one can observe erroneous vectors 

especially at the transition between shadows and bright regions. These transitions create edge-

like borders which make them pass the requirements of the algorithm.  The flowing glacier 

stream is however very clearly identified without any manual filtering.  
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Fig. II-18 Global correlation coefficients between the original reference image and the target 
image before (dashed line), after reconstructing using the globally fixed template sizes (dotted 
line) and the locally adaptive algorithm (smooth line) for the Landsat image Section over the 
Baltoro glacier

Fig. II-19  Histogram of the template sizes as computed by the adaptive algorithm for the 
Baltoro Glacier

Fig. II-20  Displacement vectors on the Baltoro Glacier as computed from the bi-temporal 
Landsat panchromatic images using the locally adaptive algorithm 
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Fig. II-21 shows that for the SAR images at very small template sizes the matching is 

so noisy that the reconstruction itself becomes random. Large templates could not optimally 

remove the influences of noise. The adaptive algorithm thus produces better reconstruction 

than all the globally fixed template sizes used. However, the number of discarded templates 

for lacking an acceptable level of SNR is, not surprisingly, high in this image pair. The 

displacement vectors have a lot of gaps in those areas (Fig. II-23). The algorithm manages to 

exclude much of the low signal areas such as water surfaces at the lower right part of the 

image. The stable ground is also clearly identified by the absence of moving templates. SAR 

intensity images are well known to be very noisy due to radar speckle. Matching such noisy 

images using area-based spatial domain image matching is a daunting task. Unless the 

template size is large and temporal baseline is small, reliable displacement estimates are 

unlikely to be achieved. If severe deformation is involved, even large templates do not 

produce reliable estimates. Usually, intensive manual filtering is required to arrive at reliable 

displacement vectors. The algorithm here however produces few observable mismatches 

reducing such manual tasks and its heuristic impact on the reliability.  

The mean template size (35 pixels) of this image is high due to the high noise level 

(Fig. II-22) compared to that of the aerial image of Nigardsbreen (29 pixels) and the Landsat 

Image of Baltoro glacier (26 pixels). The relatively smaller template size (in pixels) of the 

Landsat image over Baltoro glacier is ascribed to its low spatial resolution which indicates 

large ground template size and necessitates minimization of the projective distortion. The 

histograms are skewed to the right in all of the cases due to the presence of some features 

requiring large template size to maximize their SNR. If the iteration limit of the window size 

is reduced, the tails of the histogram would be shortened as such features will be excluded.   

Fig. II-21. Global correlation coefficients between the original reference image and the target 
image before (dashed line), after reconstructing using the globally fixed template sizes (dotted 
line) and the locally adaptive algorithm (smooth line) for the SAR image pair over 
Kronebreen, Svalbard.

/601

/60-

/608

/607

/68

/681

/ ./ 1/ 2/ -/ 0/ 8/ ;/ 7/ 9/ .//

��
��

��
��
��
��
��

��

��
��
��
���
��
�


���������������
�����
��������������������������

"34���������������

"34�$�������
����
��

"34�(��
���



131 

Fig. II-22  Histogram of the template sizes as computed by the adaptive algorithm for the 
Kronebreen glacier 

Fig. II-23  Displacement vectors of the Kronebreen glacier as computed from the bi-temporal 
SAR images using the locally adaptive algorithm. 
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II.4.4. Relative advantage of the adaptive algorithm over globally fixed 

template sizes 

For every image pair, relative advantage varies with the size of the globally fixed template 

size it is compared with (Fig. II-24). In general, the algorithm registers better performance 

relative to small and large globally fixed template sizes. Although in most cases the gain in 

SNR is twice that of the globally fixed template sizes, it can reach over four times compared 

with very small and very large template sizes. 

For the aerial image over Nigardsbreen glacier the lowest relative advantage is 

registered compared to the other image pairs.  The reasons for this partly explain that of the 

others as well. The image pair over the Nigardsbreen is a high resolution (0.3 m) aerial image 

pair of short temporal baseline (10 days) over crevassed glacier with, thus, high signal 

contrast and little stable ground included. Therefore, it is relatively less error prone whether 

one uses relatively small (e.g. 21 pixels) or large (e.g. 61 pixels) template sizes.  All the other 

images have either lower spatial resolutions, or larger temporal baselines, or large velocity 

gradients, or lower contrast, or combinations of these. 

The algorithm performs much similarly on the Muragl rockglacier and the Aletsch 

rockslide images. These aerial images have high spatial resolution (0.2 meter), but large 

temporal baselines (13 years for the rockglacier and 30 years for the rockslide).  For this 

group, the relative advantage of using locally adaptive template size decreases with increasing 

template size of up to 81 pixels, which is not too large in metric size but can suppress noises. 

For the SAR image the relative advantage continues to decrease with the increasing globally 

fixed template size. The image pairs contain a noise level so high that even large template 

sizes do not effectively suppress it. The locally adaptive algorithm is however more 

advantageous in all of the three cases.  

The Landsat image pair over the Baltoro glacier stands out because the image pair is 

different from the others in its spatial resolution. This image is most sensitive to changes in 

template size as single pixel translates into large ground area. The advantage of using locally 

adaptive template size over large and small globally fixed template sizes is therefore well 

pronounced in this case. Although the template sizes are represented in pixels here, the 

ground size they represent varies with the spatial resolution of the images. The differences in 

the relative advantages presented in the figure are results of the combined effects of temporal 

baseline, spatial resolution, sensor type and surface type.  
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Fig. II-24. The factor by which the SNR of the reconstruction is improved by the locally 
adaptive algorithm plotted for different image pairs against different globally fixed template 
sizes 

II.5. General discussion 

The above presentations of the results are accompanied by brief discussions. Therefore, a 

more general discussion is given here.  

In area-based image matching, usually regularly spaced templates of square shape 

with an image-wide (globally) fixed size are used. The general assumptions of this procedure 

are that: 1) all of the templates are matchable (i.e. they contain enough information for 

matching); 2) their matches exist in the search image (i.e. they are not occluded). In our 

approach, the selection of matchable templates based on the optimization of the SNR 

identified only those templates that fulfill the first assumption and discard those failing to do 

so. This proved to be very useful in images which contain large sections of monotonous 

features lacking good signal variance over short distance in cases such as the Baltoro glacier 

and the inherently noisy images such as the SAR images of Kronebreen glacier.   

The use of a non-optimal template size can lead to either or both mismatch and 

misrepresentation. Mismatch is in the sense that even the central pixel will not get the true 
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match, whereas, misrepresentation is in the sense that although the central pixel gets its true 

match, the pixels far away from the central pixel are erroneously represented as they may 

have been deformed.  Optimizing the template sizes through the local maximization of the 

NCC peaks reduces both error types. Besides, it excludes entities which are completely 

altered or occluded. In so doing it excludes templates which fail to meet the second 

assumption stated above. 

As the results for both the modeled and the real multi-temporal image pairs show, the 

locally adaptive algorithm performs better than the globally fixed template size in a range of 

image types: high spatial resolution optical (aerial), low spatial resolution optical (Landsat), 

noisy (radar intensity), large temporal base-line, short temporal baseline, etc.  It also showed 

better performance on different Earth surface mass movement types: glacier flow, rockglacier 

creep and rock sliding. These outcomes show the robustness of the algorithm over different 

image and process characteristics. The algorithm has a strong advantage over the globally 

fixed template sizes particularly in cases where the images contain a high level of noise due to 

either their generic type or due to a large temporal baseline and/or severe deformation. The 

degree of advantage of using a locally adaptive algorithm depends on image (sensor) type, 

mass movement type, temporal-baseline, spatial resolution, etc. (Fig. II-24). 

The results have shown that in cases where there is very limited or no noise, as in the 

case of the noise-free test image and the Nigardsbreen glacier aerial image, simply using 

globally fixed small template sizes may even perform better than the locally adapted 

algorithm as there is no noise to suppress. Also in cases where there is simple translation-only 

motion of large features, large template sizes perform well and there might be no need of 

locally adapting the template sizes. In reality these conditions are rarely encountered for entire 

mass movements. Repeat images of Earth surface mass movements often contain noises and 

velocity gradients.  

One of the major goals of matching repeat mass movement images is to estimate the 

horizontal displacement of the masses.  The test images showed that locally adapting the 

template sizes immensely improves the accuracy of the computed displacement. This is also 

justified by the high reconstruction accuracy as expressed in the correlation between the 

reference image and the reconstructed search image implying the possible use of the 

algorithm in other areas such as surface reconstruction, stereoscopy, etc albeit slow 

computation speed. The reduction in mismatches means less post-matching filtering and 

reduced heuristic impact of the manual filtering on the reliability. The use of optimized search 
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windows (which is not covered in this study) could remove most of the few remaining 

mismatches.   

The principles followed in the algorithm discussed here are comprehensive of single 

principles developed in previous studies. Most popularly, intensity and disparity variations are 

used to model uncertainty of disparity estimation for different template sizes taking the size 

which produces the lowest uncertainty as the optimum size (Kanade and Okutomi, 1991; 

Kanade and Okutomi, 1994; Okutomi and Kanade, 1990; Okutomi and Kanade, 1992). 

Cyganek (2005) used entropy to look for template sizes with adequate information content. 

Pan (2008) used reduction of noise variance and maximization of sum of square intensity 

gradients to define optimum template sizes. Both approaches might be plausible in stereo 

matching. However, in Earth surface mass movements, as presented in this article, entities 

recognized to have adequate signal variance (entropy) in the reference image may or may not 

be retained due to the large temporal baseline and the non-rigid motion of the masses. In the 

present study, SNR maxima are used to model entity boundaries and to identify entities with 

good texture. They improve the reliability by discarding unmatchable templates. SNR 

maxima alone, without the iteration that maximizes the certainty, may not necessarily result in 

reliable estimate in Earth surface mass movement analysis. Optimization of the NCC peak is 

thus used. 

The algorithm extended the use of the NCC from simply comparing different search 

templates to comparing concentric templates of different sizes. The study also made use of the 

normalized cross correlation to quantify the performance of the algorithm itself. Therefore, as 

the algorithm is much dependent on the NCC, its success and failures are very much related to 

the success and the failure of the NCC itself.  

The algorithm is one step forward towards full automation of deformation 

measurement in Earth surface mass movements, which is increasingly becoming important 

due to the increasing need for fast and reliable monitoring system of such processes. The 

necessity is partly increased by the climate change driven hazardous Earth surface mass 

movements in high mountains and cold regions, sometimes with disastrous consequences. 

Besides, human activities are expanding to such areas driven by economic and population 

growth.  

The drawback of the algorithm is that it is computationally expensive as iteration is 

involved in both the identification of matchable templates and finding their optimum sizes. It 

is over 10 times slower compared to the globally fixed template sizes depending on the SNR, 

contrast in the image and the maximum template size set. For example, to match 1912 
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templates on a computer with 6GB RAM and 3GHZ processor speed, the conventional NCC 

algorithm took about 62 seconds (ca. 1 minute), where as the locally adaptive algorithm took 

551 seconds (ca. 9.2 minutes). The process can take up to hours depending on the computer 

performance, the search window size and the number of templates to be processed.  

II.6. Conclusions and outlook 

This paper presented a new algorithm for locally adaptive template sizes in NCC-based image 

matching for displacement measurement of Earth surface mass movements. First, it 

investigated the relationship between template size and SNR. The relationship was then used 

to device an algorithm that identifies matchable templates. Second, it investigated the 

relationship between template size and the NCC coefficient. The relationship was then used to 

iteratively identify the optimum size for each template. The two algorithms were combined 

step-wise to create a more efficient and more reliable algorithm. 

Testing of the algorithm on artificially modeled image displacements and its 

implementation on real mass movement images show that the algorithm performs better than 

globally fixed template sizes.  It removes the mismatches due to ambiguity in small template 

sizes and reduces the errors of misrepresentation due to geometric distortion in large template 

sizes depending on the noise content and deformation of the images. Up to over 90% 

reduction in mean absolute displacement error and up to over 4 times improvement in SNR of 

the image matching can be obtained compared to the globally fixed template sizes.  Errors due 

to geometric distortion remain only where noise or lack of good signal variance necessitate 

the use of large template sizes.  The algorithm discards most of the templates which lack 

sufficient SNR and occluded templates (i.e. templates whose matches do not exist). The 

algorithm is found to be fairly robust over different Earth surface mass movement types and 

images of different characteristics and qualities although its performance varies accordingly. 

It retains its superiority in dense matching as well. 

Although the study focused on the NCC alone, it is in principle believed that the 

findings hold for other area-based image matching methods in the spatial domain. The 

algorithm pushes displacement measurement from repeat images one step forward towards 

full automation. One can also use the first part of the algorithm separately if one is interested 

in only identifying matchable templates. 
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This study also presented two other important procedures. First, Earth surface mass 

movements over a certain temporal baseline were computationally modeled. Such modeling 

approach can be used to evaluate other image processing methods for Earth surface mass 

movements. Second, a self-relying quantitative performance evaluation of image matching 

results was presented for cases where reference displacement data is not available, which is 

often the case. The first image is thereby reconstructed by reversing the measured 

displacements. Then the correlation coefficient and SNR between the reconstructed and the 

original first image are computed. The technique proved to be reliable and can be used in 

comparative evaluation of image matching methods. 

There are some issues that need to be resolved through further investigations. First, the 

computational efficiency of the algorithm needs to be improved.  Second, the algorithm needs 

to be extended to other template shapes as Earth surface features may better be modeled by 

other shapes than squares. Third, automated ways of defining optimum search window sizes 

need to be devised to limit the probability of mismatching and reduce computational cost. 
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ABSTRACT: Displacement and deformation are fundamental measures of Earth 
surface mass movements such as glacier flow, rockglacier creep and rockslides. Ground 
based monitoring methods can be cost inefficient, time consuming and limited in spatial 
and temporal data coverage. Remote sensing techniques such as matching of repeat 
optical images are increasingly used to compute displacement and deformation fields. 
Strain rates are usually computed in a post-processing step from the velocity gradients. 
This study explores the potential of automatically computing velocity, rotation and 
strain rates of Earth surface mass movements simultaneously from the matching 
positions and from the parameters of the geometric transformation models using the 
least squares matching (LSM) approach. The procedures are exemplified using bi-
temporal high resolution satellite and airborne images of glacier flow, rockglacier creep 
and land sliding. The results show that LSM matches images and computes longitudinal 
strain rates, transverse strain rates and shear strain rates reliably with mean absolute 
deviation in the order of 10-4 as evaluated on stable grounds. The LSM also improves the 
accuracy of displacement estimation of the normalized cross-correlation by over 90% in 
ideal (simulated) case and by about 25% in real multi-temporal images of mass 
movements.

Keywords: Image matching, Least squares, Mass movement, Displacement, 
Velocity, Deformation, Strain rate

III.1. Introduction 

Remote sensing is highly suited for slope monitoring in easily inaccessible areas such as high 

mountains and cold regions where mass movement processes such as glacier flow, permafrost 

creep and rock sliding are common. Repeat optical image matching is used to compute 

displacements of slope movements within the temporal baseline of the images’ acquisitions 

[1-5]. The most commonly used group of image matching methods are area-based methods, 

where intensities of image patches (hereafter referred to as templates), usually of square shape 
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and certain size, are matched using a chosen similarity measure. The template within the 

search image that maximizes similarity or minimizes dissimilarity (depending on the statistic) 

with the reference template is considered the most likely match [6]. The Euclidean distance 

between the positions of the reference and the matching templates quantifies displacement, 

specifically the horizontal displacement component if orthorectified image data are used. The 

displacement gradient between neighboring templates defines the strain [7,8]. Although there 

is a range of possible similarity measures [6,9], the normalized cross-correlation (NCC) is the 

most widely used due to the normalization that makes it insensitive to differences in 

brightness and contrast [10]. 

The NCC, and other similarity measures, is subject to a number of shortcomings: (1) 

The NCC is only reliable in cases where the template is not significantly deformed except 

shift in position. (2) The precision with which the matching position is located is limited to 

the pixel size unless some sub-pixel precision procedures [11] are applied. (3) Radiometric 

differences are not accounted for except normalizing. Thus, the images are matched with a 

lower precision and accuracy than theoretically possible. In response to these shortcomings 

least squares matching (LSM) was designed [12]. Instead of assuming exact shape and size of 

the matching templates, LSM models both geometric and radiometric distortions. The model 

parameters are determined iteratively using least squares adjustment. The LSM has no 

limitation of precision as the location of the matches can theoretically be determined at any 

sub-pixel precision. 

Matching of orthorectified and co-registered bi/multi-temporal images of the Earth 

surface can be thought of as looking to the changing object from a fixed camera multiple 

times with small (or absent) spatial baselines and dominant temporal baselines. The spatial 

transformation models are in this case used to model the distortion of the mass, not the 

perspective one as done in multi-angular parallax matching [13]. The models can thus be used 

to directly compute intra-template deformation parameters such as normal strain rates, shear 

strain rates and rotation. The computation of displacement using LSM by itself leads to 

improved precision of the computed strain even when it is computed later, after the matching, 

from displacement gradients as is conventional practice. The fact that the LSM is able to 

model the template’s geometric deformation has also the advantage that larger template sizes 

with higher signal-to-noise ratios (SNR) can be used for the matching as the intra-template 

deformation, that normally limits the template size, is accounted for.  

There is limited application of this powerful image matching approach in mass 

movement analysis [14-16]. The algorithm has to be tested and evaluated on different types of 

mass movement and imagery. The possibility of computing deformation parameters directly 

from the spatial transformation model has to be explored. The study presented here 

implements the LSM with the affine transformation model on three different types of mass 

movements and evaluates its performances in displacement measurement compared to that of 

the NCC. The procedures with which deformation parameters such as longitudinal strain rate, 

transverse strain rate, shear strain rate and rotation rate are automatically computed during the 
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matching are implemented and evaluated. The mass movements investigated are glacier flow, 

rockglacier creep and landslide, at high mountain sites in Europe. 

III.2. The least squares matching algorithm and its 

significance in mass movement analysis  

III.2.1. The least squares matching algorithm 

The LSM algorithm works based on the L2-norm theorem to determine the best matching 

position by adjusting the geometry and radiometry of the matching templates so that the sum 

of squares of the gray-value differences (SSD) between the two templates is minimized 

[12,17,18]. Assume a discrete two dimensional function F(x, y) represents intensity data of a 

subset of an image taken over a certain area at a time t1. G(x’, y’) represents intensity data of a 

subset of another image taken over the same area at some other time t2.  In principle, if the 

two subsets (templates) match, the two functions will be equal. However, due to the likely 

presence of noises in both images, random noise (e) is added (Equation (III-1)).  In an ideal 

situation e or its expectation equals zero.  In the displacement measurement of Earth surface 

mass movements, the two images are often taken with long temporal base lines. 

Consequently, systematic radiometric changes can exist due to various factors such as 

changes in surface condition, illumination, noise, imaging condition and geometric 

distortions. It is often assumed that the systematic radiometric differences can be accounted 

for by gain (�) and offset (�) parameters as in Equation (III-2).   

¡��� �� � ¢��£� �£� � �
       (III-1) 

¡��� �� � ¢��£� �£�� � � � �
      (III-2) 

A moving slope mass, here represented by an image template, may also change 

geometrically. A geometric transformation model, characterized by parameters p1 to pn, 

relates the pixels of the reference template to those of the search template, for each dimension 

as shown for the affine model in Equations �HHH�") and �HHH��). The relationship between the 

two intensity data will consequently incorporate the parameters of the model (Equation 

(HHH�#). This relationship can be linearized using Taylor-series expansion and rewritten in 

matrix form as in Equation �HHH�=). Here, v is the residual, A is the differential quotations 

computed from the gray-value gradients, l is the difference between the gray-values of the 

matching templates, and dp is element of the adjustments (dp1,…, dpn, d�, d�) to the initial 

parameter values which assume the same size, shape and orientation. The solution for dp is 

then computed using Equation �HHH�e). The process is iterated until the computed dp

converges close to zero. LSM is an unbiased minimum variance estimator with the variance 
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computed as in Equation �HHH�f) where RC is the total number of observations (pixels in the 

template) and n is the number of model parameters. Further details of the LSM algorithm are 

given in [17,19,20]. 

�¤ � ��� ���.� ������ � � � � � � �HHH�"��
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VN. � X£«X
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III.2.2. The least squares matching in mass movement analysis 

LSM, as a precise matching algorithm, is expected to produce precise velocity for each pixel 

of the template. This gives the advantage that velocity gradients, i.e. strain rates, can be 

computed at sub-template level, even if computed after the matching. Additionally, the spatial 

transformation parameters (pi) are measures of the geometric deformation of the masses 

between the acquisition times of the two images. The specific meanings of each of the spatial 

transformation parameter in mass movements are presented in Table III-1 together with a 

sketch of the geometric changes represented. The spatial transformation parameters can be 

exploited to automatically compute strain rates simultaneous with the matching as outlined 

below.  

Figure III-1 reduces the reality of Earth surface mass movements to the square 

template depicted, which has unit sizes in both dimensions (denoted as lxo and lyo

respectively). The unit lengths can also be thought of as diameters (2r) of a circle as shown in 

the figure. After deformation, the template moves to a new location, attains new sizes (lxi and 

lyi) and gets rotated and/or sheared by angles �1 and �2 to a new shape. The circle now 

becomes an ellipse with maximum extension and compression shown orthogonal to each 

other (dashed axes of the ellipse). The orientation of the ellipse is not necessarily along the 

movement direction due to shearing and rotation. Notice that the central pixel itself is also 

deformed and displaced from the center. The Euclidian distance between B and B’ (parallel to 

the longitudinal direction) is the horizontal displacement magnitude while 	 is the angular 

displacement direction measured clockwise from the north. The change in size can be 

quantified using extension ratios (Sx and Sy) as in Equations (III-9) and (III-10). Sx and Sy are 

the same as the scaling factors p2 and p6 of Table III-1. The corresponding normal strains (
x
and 
y) and their relations with the scaling factors are given in Equations (III-11) and (III-12), 

adapted from [21,22]. Scaling factors greater than 1 (i.e. 
x and 
y values greater than 0) imply 

extension, where as scaling factors less than 1 (i.e. 
x and 
y values less than 0) imply 

compression.  
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Table III-1 Parameters of the spatial transformation models related to mass movement 
processes 

Transformatio

n parameters of 

Equations �HHH�") 

and �HHH��) 

Deformatio

n type  

quantified 

Visual 

example 

Significance in  mass 

movement 

p1and p4 Translation Quantifies shift, creep, slip, 

and slide. Change in position 

disregarding shape and size. 

p2 and p6 Scaling  Measures change in length 

due to compressive/extending 

motion. Measures normal strain 

(elongation). 

p3 and p5 Shearing 

(and/or 

rotation) 

The slippage of orthogonal 

masses in relation to one 

another (and/or rigid rotation of 

the mass). Measures shear 

strain and/or rotation angle. 

The tangent of the shearing angle or the angle in radians (as the angles are often very 

small) for each direction is the same as the shearing factors (p3 and p5) of the transformation 

models. Shear results in both shearing and rotation. Thus shear strain (�xy) and rotation angle 

(�xy) are derived from the shearing angles as given in Equations (III-13) and (III-14) 

respectively  [23]. Strain is better expressed in terms of strain rate (ε� i) which is simply strain 

per unit time (Equation (III-15)). The strain rates in this study are expressed in the time unit 

that is covered by the dataset in order to avoid extrapolating for time periods not supported by 

data.     
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Horizontal length of the ground surface plane changes when there is compression or 

extension. As masses such as ice are incompressible, horizontal compression is usually 

balanced by vertical extension or vice versa [24], making the total sum of the horizontal and 

vertical strain rates equal to zero. Compressive/extending motion is well discussed for 

glaciers [23,25,26] and rockglaciers [24,27,28]. In all cases, longitudinal (i.e. along the flow 

direction) and transverse (i.e. across flow direction) extension and compression are mentioned 

to lead to such processes as the formation of crevasses, calving and surface micro topography. 

Shearing may lead to cracking of the masses and eventually collapses. Here, the radiometric 

parameters are not used further than estimation of the matching position although it can 

potentially be used in estimation of surface albedo changes. 

Figure III-1. Deformation of a template and transformation of its parameters from easting-
northing to longitudinal-transverse axis. 
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III.3. Methods 

III.3.1. Image datasets  

In this study, the computations were conducted on three real mass movement image pairs and 

two pairs of simulated deformed images. The first bi-temporal images (Figure III-2) were 

taken over a rockglacier in the Muragl valley of the Upper Engadine area in the Swiss Alps 

(approx. 9.92°E, 46.50°N). The orthoimages used in the present study were based on aerial 

images taken on 7 September 1981 and 23 August 1994 with 13 years of temporal baseline 

and 0.2 m of spatial resolution. The Muragl rockglacier has been under investigation for 

decades using technologies such as photogrammetry, geodesy and geophysics to understand 

its mechanics [29,30]. 

Figure III-2.  A section of the aerial photographic image (400m x 600m) over part of the 

Muragl rockglacier taken on 7 September 1981  

The second image pair is a section from panchromatic aerial images over the 

Nigardsbreen glacier in Southern Norway (approx. 61.68°N, 7.20°E). The images were 

acquired on 19 and 29 August 2001 within the EU Glaciorisk project (Figure III-3). The 

images were orthorectified using photogrammetric stereo pairs and automatic DEM extraction 

of the two dates. The ground resolution of the orthoimages is 0.3 m. Surface changes within 

the very short time period of 10 days were very small, besides glacier flow. Additional details 

on the images and on their glaciological analysis can be found in [31]. 

The third bi-temporal images (Figure III-4) are panchromatic images taken by the high 

spatial resolution QuickBird satellite over the La Clapière landslide (approx. 44.25°N, 

6.94°E,) in the French Alps near the town of Saint-Etienne-de-Tinée. The first image was 

taken on 6 September 2003 with mean in-track view angle of -0.5o and mean off-nadir view 

angle of 9o; whereas, the second image is taken on 27 September 2010 with mean in-track 

view angle of -0.4o and mean off-nadir view angle of 4.2o. The ground pixel size of the 

images is 0.6 m. The images were orthorectified in PCI-Geomatica using the SRTM DEM 
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and GCPs collected from stable area based on the French 3D web service 

(www.geoportail.fr). As the orthorectification based on this base-map could not result in 

accurate co-registration, subsequent co-registration using polynomial transformation model 

was performed using precise GCPs collected from outside the landslide area. Finally, a mean 

co-registration error of about 1.2 m (2 pixels) is recorded from the horizontal shifts outside 

the landslide area.  The La Clapière landslide has been investigated over the years using 

different techniques [3,32-34].  

A simulated image pair was created by analytically deforming a section of the 

Nigardsbreen aerial photographic image by using the affine geometric model. Gaussian noise 

of mean zero and variance (�2
n) 0.01 was added. Another simulated image pair was created by 

using the same deformation model but adding a higher level of noise, �2
n of 0.1. The two 

simulated deformation image pairs are used for the evaluation of the algorithm as the actual 

displacements and transformation parameter values are precisely known for these images, in 

contrast to the real mass movement images. 

Figure III-3.  A section of the aerial photographic image (1233m x 1233m) over part of the 

Nigardsbreen taken on 19 August 2001  

Figure III-4. A section of the QuickBird panchromatic satellite image (1600m x 2430m) over 

the La Clapière landslide taken on 06 September 2003  
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III.3.2. Image matching 
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Considering older images as reference and newer images as search images, the images are 

first matched using the NCC algorithm to estimate the initial parameters for the least squares 

adjustment. Initially, the matching templates are assumed to have the same geometry (except 

position). Therefore, for each dimension a unit geometric and radiometric scaling factor is 

used keeping the other parameters at zero.  The least squares iteration starts by using these 

initial values. Template sizes of 51 by 51 pixels are used for the matching. Smaller template 

sizes were not used to suppress noises and avoid ambiguity. As LSM is applied in a later step, 

the presence of displacement gradient in such large templates is not of concern. In fact, as the 

images are of high resolution, the templates are not large in ground size, i.e. 10.2 m, 15.3 m 

and 30.6 m for the rockglacier, glacier and landslide images respectively. The search distance 

is decided based on the expected maximum displacement in each of the image pairs. 
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LSM is implemented using the affine transformation model following the procedures 

explained in Section III.2.1. The gradients are computed from the matching template, not 

from the reference template.. Intensity values at sub-pixel positions are interpolated using the 

cubic convolution [35] as it is the closest to the sinc interpolation, which is the most accurate 

in image interpolation [36]. The limit for the convergence of the parameters except the 

translation of the gray-values is set to 10-4 for the glacier and the rockglacier but 10-3 for the 

landslide due to the presence of more noise resulting from the vegetation cover and 

orthoprojection errors. The maximum number of iterations is set to 30 for cases where the 

parameters do not converge faster. In all cases, when the number of iteration reaches 30 the 

values of each adjustment should be less than 10-1. After the convergence the cross-

correlation coefficient between the two matching templates should be greater than that of the 

initial. The SSD between the two templates should now be below that of the initial.  

Otherwise, the template is considered incorrectly converging and excluded from the analysis.   

III.3.3. Computation of displacement and deformation 

III.3.3.1. Horizontal surface displacement 

After the parameters have converged, the horizontal surface displacement of each pixel is 

computed separately as Euclidian distance between the pixels’ positions in the reference and 

the matching templates. Velocity is then computed as the displacement divided by the 
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temporal baseline of the image pair. The movement direction is computed as the arctangent of 

the ratio of the displacements of the easting and northing directions in angles from the north.  

For later comparison, the displacements for each mass movement are also registered for the 

NCC. The mean and standard deviation of the velocities are computed. The standard 

deviation is computed as the square root of the sum of square differences between individual 

values and the mean divided by the total number of observations.  
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The transformation parameters are computed for the X (easting) and Y (northing) directions 

of the image. However, strains of Earth surface masses make plausible meaning when 

computed along (longitudinal) and across (transverse) the displacement direction. Therefore, 

the parameters computed for the easting and northing of the images are transformed to the 

longitudinal (L) and transverse (T) parameters (Figure III-1).  First, however, the coefficients 

of the spatial transformation models are converted to strain parameters as explained in Section 

0. As the parameters are measures of components of the strain tensor, we use strain 

transformation Equations [21-23].  The strain parameters are thus transformed to the axis 

along the displacement direction (L), i.e. 	 degrees from the X-axis, and across the 

displacement direction (T), i.e. 	 degrees from the Y-axis.  �x, �y and 
xy are then used to 

compute �L (longitudinal strain), �T (transverse strain) and 
TL (shear strain) as in Equations 

(III-16) to (III-18) respectively.  The computations are included in the MATLAB code that is 

used for the matching to automatically compute the strain rates and rotation angles in addition 

to the displacement. For the glacier and rockglacier, the negative values of the sums of the 

longitudinal and transverse strain rates are computed to estimate the vertical strain rate 

(Equation (III-19)) as both masses are assumed to be incompressible. All of the results are 

then mapped for visualization and interpretation. 
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III.3.4. Performance evaluation 

The precision of the LSM algorithm in matching and computation of displacement and strains 

are evaluated using error propagation principles [17,37]. The precision of the estimated 

parameters can be expressed by the covariance matrix (Equation �HHH���).  However for the 

precision of the matching, [17] suggests the use of the standard deviation of the shift 

parameters alone (Kp1 and Kp4) as they determine how precise the matching position is 
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(Equation �III-21)). Precision measures based on the covariance matrix are however known to 

be optimistic due to the high data redundancy ([15,17]). 
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Accuracy (validity) assessment of the measurements such as displacement and strain 

rates is conducted on stable grounds and simulated deformation images. The stable grounds 

are expected to have zero values for the displacement, strain rates and rotation. Simulated 

deformed images have known displacement and parameter values. The mean absolute 

deviation (MAD) between the actual and the computed values is used for the evaluation.  

Stable grounds are not good representation for the mass movements as one source of error, i.e. 

deformation, does not exist on the stable grounds at least in principle. Thus, to compare the 

performance of the algorithm over the moving masses to that of the NCC, the SNR of 

reconstructing the reference image from the search image is computed as detailed in [38], 

assuming that accurate matching leads to accurate reconstruction. The SNR is computed as 

the ratio between the correlation coefficient (�) and one minus �. The relative gain of the SNR 

is used as a measure of relative performance.  

III.4. Results  

III.4.1. Horizontal surface displacements 

The horizontal surface velocity statistics of the three mass movements investigated is 

presented in Table III-2 to give an overview of the mean, standard deviation (variation of the 

magnitudes) and the maximum values of the horizontal surface velocities of the mass 

movements. The velocities of the rockglacier and the landslide are in the range of (tens of) 

centimeters per year while that of the glacier is in the range of centimeters per day or meters 

per year (ma-1).  In the table, we use velocity units that are relevant for the time period 

covered by the image pairs. For example, we use md-1 as opposed to ma-1 for the velocity of 

the Nigardsbreen as the data cover only 10 days from late summer. The data on maximum 

velocity especially that of the landslide, needs to be read with caution. Experience shows that 

in image matching, ambiguous (noise-based) matches often lead to large displacement 

estimates. Even when they are filtered manually and systematically, some of such false 

matches would still remain. Mismatches often occur in fast moving areas where surface 

destruction is likely. Although such outliers may not have considerable influence on the 

mean, they may inflate the maximum values.  
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Table III-2 Overview statistics for horizontal surface velocity for the three mass 

movements  

Mass movement Muragl rockglacier 

(ma-1) 

Nigardsbreen 

glacier (md-1) 

La Clapière 

landslide (ma-1) 

Mean 0.18 0.57 0.4 

Standard 

deviation 

0.09 0.32 0.32 

Maximum 0.5 1.1 2.75 

The velocity magnitude map of the Muragl rockglacier computed using the LSM is 

presented in Figure III-5A with the velocity vectors overlaid. The tongue-like shape of the 

rockglacier also manifests in its velocity distribution creating a similar pattern. The mean 

velocity of the rockglacier is computed to be 0.18 ma-1 with the maximum reaching up to 0.50 

ma-1.   There is a high speed area in the middle of the rockglacier that causes considerable 

velocity gradients. Upstream of this area velocity increases significantly while velocity 

decreases downstream along the creep direction. The smooth transitions in the velocity field 

instead of stepwise ones are ascribed to the capability of the LSM to detect and estimate intra-

template displacement variation unlike the constant displacement assumed for each template 

by the NCC-based matching.  The open gaps in the figure indicate templates that failed to 

converge during the LSM iteration.  Figure III-5B presents the spatial variation of velocity on 

the Nigardsbreen glacier computed using the LSM with the velocity vectors overlaid. The 

glacier velocity is high in the center decreasing towards the boundaries. The velocity vectors 

show harmonious flow lines with a coherent field of flow directions. The velocity magnitude 

map of the La Clapière landslide is presented in Figure III-5C together with the velocity 

vectors. The upper part of the landslide moves faster than the lower. The recently detached 

part on the upper left part is also moving with high velocity. The reliability of matches in this 

area is, however, questionable as it is close to the head scarp of the landslide where significant 

surface changes are likely to lead to mismatching.  The velocity vectors show that the major 

part of the landslide moves towards the south-west with its lower part moving slightly to the 

south-east direction.   
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Figure III-5. Velocity (ma-1) maps and vectors of the Muragl rockglacier (A) the Nigardsbreen 

glacier  (B) and the La Clapière landslide (C) computed using the LSM 

III.4.2. Precision and validity of the displacement data 

Table III-3 presents the precision of the shift parameters of the three mass movements 

averaged over all the templates. The highest precision is recorded for the Muragl rockglacier 

image while the lowest is recorded for the La Clapière landslide. The mean precision ranges 

between about 1/20th of a pixel (Muragl) to 1/6th of a pixel (La Clapière). These show the 

precisions of the LSM in locating the matching positions under different radiometric and 

geometric distortions. After observing their histograms, templates with precision of the shift 

parameters over 0.2 were removed from the analyses. The accuracy (validity) is however 

dependent on the precision of the precision of the orthorectification and co-registration of the 

images, deformation of the templates, and noise. Stable grounds and simulated deformation 

images are used to evaluate the validity of the LSM and the NCC algorithms.  

Table III-4 presents the mean absolute deviation (MAD) between the measured 

displacement and the expected displacement for the simulated and the stable grounds of real 

mass movement images. For the simulated image with low noise variance, about 90% 

reduction in MAD by the LSM compared to that of the NCC is obtained. However, when �2
n

is raised to 0.1, the reduction in the MAD by the LSM from that of the NCC is only 52%.   

B 
A 

C 
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When the noise level (�2
n) increased ten-fold, the error in the estimated displacement 

increases five-fold for the LSM and only 10% for the NCC.  We do not investigate further at 

this point how far this trend is a general one for LSM applied to noisy images. However, the 

finding supports the widely known general robustness of NCC algorithm with regard to noise.  

The reduction in the MAD of displacement error on the stable grounds of the real mass 

movements is also presented. As the table shows the MAD is the lowest for the glacier (due to 

precise orthorectification and co-registration of the images) and the highest for the landslide. 

The percentage of the error (MAD) of the NCC reduced by the use of LSM is the highest in 

the Muragl rockglacier case followed by the glacier and the landslide respectively.  

Table III-3 Mean precision of the shift parameters for the three bi-temporal mass 

movement image pairs 

Image pair Mean precision of the shift parameters  
X-shift (p1) Y-shift (p4) 

Muragl rockglacier creep 0.07 0.06 

Nigardsbreen glacier flow 0.11 0.12 

La Clapière landslide 0.13 0.15 

Table III-4 The MAD of the errors of displacement on the simulated deformation 

images and the stable grounds of the real mass movement images  

Image pair MAD (in pixels) Percent reduction by 

LSM NCC LSM 
Simulated (�2

n =0.01) 0.38 0.04 90 

Simulated (�2
n =0.1) 0.42 0.2 52 

Muragl rockglacier creep 2.25 1.4 37 

Nigardsbreen glacier flow 0.47 0.34 27 

La Clapière landslide 2.5 2.01 19 

As stated above, the SNR of reconstructing the reference image of t1 from the 

deformed image of t2 is also computed over the mass movements. For the analytically 

deformed image pairs, the relative gain in the SNR of the LSM in relation to that of the NCC 

is close to 100% (double) in the case where the noise standard deviation is 0.01 and 47% 

where it is 0.1. For the real mass movement images, around 25% gain in SNR of matching is 

obtained by using the LSM compared to that of the NCC. The LSM algorithm again makes 

the best improvement on the Muragl rockglacier.  The expectation is that this improvement in 

the SNR of the image reconstruction translates to improvements in the accuracy of the 

estimated displacements (velocities). For the analytically deformed images, the gain in the 

SNR is comparable to the reduction in MAD of the estimated velocities. The improvements in 

the SNR for the real mass movements are also comparable to the reductions in the MAD of 

the velocities of their stable ground except for the La Clapière landslide. The general trend of 

agreement between the SNR gain and the reduction in MAD of displacement shows some 

important points. (1) The LSM performs clearly better than the NCC. (2) The SNR gain of 

image reconstruction is directly related to the accuracy of the displacement estimation. (3) 
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Increased noise level reduces the performance of the LSM strongly indicating that the LSM is 

sensitive to noise, more than NCC is. 

III.4.3. Surface strain and rotation rates 
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The deformation parameters investigated in this study are the longitudinal strain rate (ε� L), the 

transverse strain rate (ε� T), the shear strain rate (ε� LT) and the rotation rate (�).  The results for 

the Muragl rockglacier are presented in Figure III-6 and Figure III-7. Summary statistics for 

the computed deformation parameters are given in Table III-5. The statistics of the ε� L data 

shows that 96% of the creeping rockglacier has ε� L between -0.0034 a-1 and 0.0037 a-1 with a 

mean of 0.00012 a-1.  Regions of extending deformation (the hollow circles of Figure III-6A) 

are regions where the velocity increased considerably over short distance. Areas of 

compressive movement (black circles in the figure) are characterized by decreasing speed 

along the creep direction. One region stands out for its high compression in the longitudinal 

direction. This region is located immediately downstream of the high velocity region shown 

in the velocity map (Figure III-5A). The rest of the rockglacier is characterized by steady 

creep with very limited velocity gradients.  

The ε� T map (Figure III-6B) shows that the rockglacier is compressed where velocity 

decreases across the flow direction and extended where velocity increases across the flow 

direction obeying a similar rule as ε� L. The figure shows that the rockglacier is mainly 

extended in the transverse direction. The extension is more pronounced in areas where 

longitudinal compression is recorded. In contrast to the ε� L, the upper (northern) side of the 

tongue-like shape of the rockglacier is mainly compressed in transverse direction, while the 

lower boundaries are mainly extended.  

Table III-5 Summary statistics of the computed deformation parameters of the Muragl 

rockglacier 

Deformation parameter Mean  Standard 

deviation  

Minimum Maximum  

Longitudinal strain rate (ma-1) 0.00012 0.0018 -0.0077 0.0085 

Transverse strain rate (a-1) 0.00039 0.0016 -0.0061 0.0077 

Shear strain rate (a-1) 0.0015 0.0016 0 0.01 

Rotation rate (degrees  a-1) 0.068 0.066 0 0.44 

The horizontal compression and extension are compensated for by the vertical 

extension and compression respectively as the rockglacier can roughly be assumed to be 

incompressible due to its ice content.  This means the negative sum of the horizontal strain 

rates presented in Figure III-7 is assumed to be equal to the vertical strain rate. The upstream 

part of the rockglacier and its margin at the tip of the tongue-like shape are dominated by 
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vertical compression, which would in practice lead to dynamic thinning of the body. This is 

indicative of net material drainage from that zone into the lower one. The downstream part of 

the rockglacier is dominated by vertical extension (hollow circles of the figure) or horizontal 

compression indicating net influx of material, and expected dynamic thickening. However, 

erosion of materials, vertical compression, at the tip of the tongue-shaped rockglacier is 

clearly marked by the dark circles of Figure III-7.  

The ε� LT of the Muragl rockglacier (Figure III-6C) demonstrates high shear strain rate 

associated with the boundaries of significant change in velocity (speed or direction) as can be 

observed from the dark regions of the figure.  The significant change in flow direction and 

speed seems to have created such significant shearing. The mean ε� LT is 0.0015 a-1 which 

means 1.5 mm of shearing in a 1 m horizontal distance over one year period. However, this 

can in places reach up to 1cm (Figure III-6C and Table III-5). 

Figure III-6. The ε� L (A), ε� T (B), ε� LT (C) and the rotation rate (D) for the Muragl 
rockglacier  

Figure III-6D presents the spatial variation of the rotation rate for the rockglacier. The 

high rotation areas are the inflection zones where the rockglacier flow direction changes from 

the northward to the north-westward. The maximum rotation rate registered is 0.44 degrees a-1

with the mean rotation rate close to 0.07 degrees a-1. The strain, shear and rotation values 

obtained are representative for the size of matching windows used, here 51 x 51 pixels. The 

A B 

C D 
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values may change slightly with template size as the spatial transformation parameters are for 

the whole template. 

Figure III-7. The negative sum of the horizontal strain rates (assumed to be equal to the 

vertical strain rate for an incompressible medium) for the Muragl rockglacier. 
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Summary statistics of the computed deformation parameters for the Nigardsbreen glacier 

(maps not shown here) are given in Table III-6. The statistics here include stable ground 

which has deformation parameter values close to zero.  Recalling that ice is not compressible, 

the negative of the sum of the longitudinal and the transverse strain rates is computed for the 

Nigardsbreen and presented in Figure III-8.  A major part of the glacier section registered 

total horizontal compression (vertical extension), i.e. dynamic thickening of the glacier. The 

stable ground is unstrained and thus has vertical strain rates close to zero. The boundaries 

with the stable ground are compressed in transverse direction which is not compensated with 

longitudinal extension. Therefore, it is vertically extended or thickens dynamically; so are all 

the areas shown in hollow circles.  The areas covered by the dark circles are areas where the 

glacier has shown horizontal extension.  As stated above, vertically extended areas indicate 

mass gain while vertically compressed areas mass loss. 

Table III-6 Summary statistics of the computed deformation parameters of the 

Nigardsbreen glacier section 

Deformation parameter Mean  Standard 

deviation  

Minimu

m  

Maximu

m  

Longitudinal strain rate (d-1) -0.0003 0.0024 -0.01 0.012 

Transverse strain rate (d-1) -0.00067 0.002 -0.01 0.007 

Shear strain rate (d-1) 0.0017 0.002 0 0.019 

Rotation rate (degrees d-1) 0.072 0.076 0 0.54 
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Figure III-8. The negative sum of the horizontal strain rates (assumed to be equal to the 

vertical strain rate) of the Nigardsbreen glacier. 
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The computed ε� L, ε� T, ε� LT, and rotation rate for the La Clapière landslide are presented in 

Figure III-9A to D respectively. Summary statistics of the deformation parameters for the 

landslide are presented in Table III-7. Recall that the mages have poor orthorectification 

quality and the ground undergoes considerable surface changes in seven years due to the 

vegetation cover. Therefore, the deformations quantified are not necessarily the ground 

deformation alone. Nonetheless, longitudinally the landslide is mainly extended with few 

zones of compression (Figure III-9A). As expected, the lower part of the landslide is 

longitudinally compressed. There are few interesting regions where significant transverse 

compression is observed (Figure III-9B). These areas are where the masses converge from 

two directions leading to compression or net influx of masses.  There are three channel-like 

compression regions as can be observed from the maps of the ε� T. These patterns however do 

not have corresponding ground structure. The mass is a porous medium that can change 

density under stress. Therefore, the principle that holds for glacier and roughly for 

rockglaciers that compression in one dimension leads to extension in the other dimension 

does not necessarily hold for such porous landslides. Computing the negative sum of the 

horizontal strain rates does thus not produce a meaningful parameter.  
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When it comes to the surface shear strain rate (Figure III-9C), it is only the north-west 

and western part of the landslide that is highly sheared. The northwestern part of the landslide 

cracked from the stable ground recently and seems to be actively shearing.  The same regions 

show high rotation rate (Figure III-9D). The major part of the landslide seems to be extended 

both longitudinally and transverse with limited shearing and rotation. Apart from the northern 

part, the high rotation areas are the foot of the landslide where the materials rotate towards 

south east after reaching the foot. 

Table III-7 Summary statistics of the computed deformation parameters of the La Clapière 

landslide 

Deformation parameter Mean  Standard 

deviation  

Minim

um  

Maxim

um  

Longitudinal strain rate (a-1) -0.0009 0.005 -0.028 0.017 

Transverse strain rate (a-1) -0.0007 0.005 -0.01 0.017 

Shear strain rate (a-1) 0.005 0.005 0 0.03 

Rotation rate (degrees a-1) 0.15 0.13 0 0.7 

Figure III-9. The ε�
L (A), ε�

T (B), ε�
LT (C) and the rotation rate (D) of the La Clapière 

landslide  

A B 

C 

D 
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III.4.4. Precision and validity of the deformation data 

Error propagation using the covariance matrix of the geometric parameters of the affine 

transformation model (Kpi) shows high precision in the order of 10-3 (Table III-8). The 

parameters are related directly to the strains as shown in the bracket. The mean absolute value 

of the estimated parameters is given in the parenthesis for overview of the relative magnitude 

of the precisions. The uncertainty is therefore less than 10% of the estimated parameter 

values, i.e. at least one decimal point lower. The scaling parameters are relatively more 

precise than the shearing parameters. 

The MAD of the strain rates on the stable grounds are in the order of 10-4 for the 

glacier and rock glacier and 10-3 for the landslide (Table III-9).  This means the values 

estimated for each deformation parameter in reality lies within the estimated value + the 

MAD. The error values for rotation are somewhat higher in all cases. This might be an 

indication of a slight rotation of one of the images against the other. The error magnitudes are 

however below (at least 1 level of significance) the estimated values of the deformation 

(rotation and strain rates) except that of the La Clapière landslide for which the computed 

strain rates are not significantly outside the error margin. These MAD values can be 

optimistic as they are computed on non-deformed area, i.e. stable ground. 

Table III-8. Precision of the geometric (shape and size) parameters of the spatial 

transformation model for the three mass movement types 

Mass movement type Precision of the parameters  

 Kp2 

(p2=1+�x) 

Kp3 

(P3=�1) 
Kp5 

(P5=�2) 
Kp6 

(P6=1+�y) 

Muragl rockglacier 

creep 

0.002 

(0.997) 

0.002 

(0.021) 

0.002 

(0.022) 

0.002 

(0.998) 

Nigardsbreen glacier 

flow 

0.003 

(0.997) 

0.003 

(0.013) 

0.003 

(0.021) 

0.003 

(0.999) 

La Clapière landslide 0.003 

(1.001) 

0.003 

(0.038) 

0.003 

(0.044) 

0.003 

(0.098) 

Table III-9. The standard deviation of the errors of the computed rotation and strain 

rates as computed on the stable grounds of the mass movement images   

Deformation 

parameters 

MAD  

Nigardsbreen 

glacier (d-1) 

Muragl 

rockglacier (a-1)  

La Clapière 

landslide (a-1) 
ε� L 0.0001 0.0005        0.006 
ε� T 0.0001 0.0006        0.002 
ε� LT 0.0002 0.001      0.005 

� TL 0.008        0.05        0.1 
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III.5. Discussion 

III.5.1. Computed displacements and deformations 

Although no formal quantitative comparison is conducted, the velocities obtained for the mass 

movements using the LSM are in agreement with those obtained in other studies using similar 

and other methods. For example, similar velocities are registered for the same section of the 

Nigardsbreen glacier during the same period [31]. The average and maximum velocities of the 

Muragl rockglacier are similar to what is reported in [29] which is validated using different 

approaches, including ground measurements. The surface velocity data in that study ([29]) 

agrees well with that of borehole data [39]. The limited surface change during the 13 years 

period contributes to the success of optical image matching on this rockglacier, and 

rockglaciers in general. The spatial pattern of the La Clapière landslide velocity variation is in 

agreement with that computed by other studies, particularly [3]. The velocity magnitudes 

show a slight slowdown from earlier records (e.g.  [32,40]). The decreased magnitudes are in 

agreement with the general observation of the slowdown of the landslide since the year 2000 

(http://gravitaire.oca.eu/spip.php?rubrique15). Errors in the orthorectification and the 

presence of vegetation on the surface leading to radiometric noises imply the presence of 

blunders in the image matching. 

Realistic values of longitudinal, transverse and shear strain rates together with rotation 

rate are also obtained. The technique computes strain rates at higher resolution than the 

conventional technique of computing from velocity gradient after the matching. When 

computing strain rates of a template from the velocity gradients, two neighboring templates 

are used for each orthogonal dimension. Therefore, the computed negative total sum of strain 

rate is in a way averaged over neighboring templates. Additionally, such strain rates are 

simply measures of velocity changes between the central pixels of the neighboring templates 

especially when the NCC is used for the matching. Thus it can appear smoothed even before 

filtering. Changes in the size and shape of the masses are not directly computed as is done 

when using the LSM algorithm.  

The spatial patterns of the strain rates and elevation changes of the Muragl rockglacier, 

previously computed from velocity gradients by [7], agree with those of the present  study. 

The negative total of the horizontal strain rates of the present study (Figure III-7) agrees with 

figure 3 of [7]. Notice that the symbols in the present study and that study ([7]) are inverse of 

each other and scaled differently. Areas of vertical compression (horizontal extension) in the 

present study correspond with negative elevation changes (figure 2 of [7])  indicating loss of 

mass from those areas. For the Nigardsbreen glacier, the negative sum of the horizontal strain 

rates shows that the glacier is dominantly extended vertically, which is in agreement with the 

thickening of the glacier as reported in [31]. High shear strain rate is registered at the margins 

of flow, especially where the moving glacier borders with stable ground.  The deformation 
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maps of the La Clapière landslide require cautious interpretation as more sources of error can 

influence the reliability compared to the other two mass movement types as discussed in the 

following section. Specifically propagated orthorectification error and surface changes such as 

vegetation cover contribute to major blunders in the strain rate data. Computation of strain 

rates on its stable ground shows that the computed strain rates are not outside the error 

margin. 

III.5.2. On the precision of the algorithm and sources of error 

The results of the study show that the LSM computes horizontal displacements in Earth 

surface mass movements with significantly higher precision (level of detail of measurement) 

and accuracy (truthiness of the estimated values) compared to the NCC. The mean precision 

of the LSM algorithm in locating the matching position is found to be better than 1/6th of a 

pixel; whereas, the matching precision of NCC is generally +0.5 pixel. In addition to the 

precision of matching, the accuracy of the computed displacements is also higher when 

computed using LSM than using NCC as evaluated on test images and stable grounds of the 

bi-temporal mass movement images. The better performance of the LSM is in agreement with 

theoretical claims and earlier findings in photogrammetry on image pairs of shorter temporal 

baselines [19,20,41]. 

When computing deformation and displacement of mass movements from repeat 

images using a precise algorithm such as LSM, the sources of error are basically related to 

either the image (noise, orthorectification and co-registration) or the ground itself 

(deformation and temporal surface changes). Both major error sources can technically be 

grouped into three, i.e. geometric errors, radiometric errors and propagated sensor or 

processing errors. The possible sources that cause geometric error are: (1) the formation of 

crevasses or micro-topography, (2) the boundary effect where the velocity gradient between 

the moving body and the stable ground is so large that it creates outlying deformation 

parameter values. (3) Vegetation cover can also create geometric change that is not actually 

ground deformation in addition to its contribution to intensity noise. Signal- (in fact the SNR-

) related causes include the presence of shadows, surface changes, illumination differences, 

presence of dirt, vegetation cover, etc that can lead to false and outlying convergence 

parameter values in the least squares iteration. Propagated errors can be attributed to the 

sensor or image preprocessing, such as orthorectification and co-registration. If the images are 

not perfectly orthorectified and co-registered, the geometric adjustment includes the mass 

deformation, sensor projective distortion and change of geometry between the two images. 

Due to the high resolution of strain computation, the maps of the strain rates look 

noisy when visually observed, necessitating the application of noise filters. In the case of the 

strain rate maps, it might well be that high-resolution deformations actually are somewhat 

noisy due to real local deformation of the masses or due to the error sources mentioned above. 

Filtering would lead to smoothing the whole result. In so doing it affects both the realistic 



163 

values and the blunders. The use of larger template sizes also leads to more smoothed strain 

rate map. Recall that the criteria for the right template size in the NCC is the presence of 

adequate SNR and constant displacement within the template. In the LSM, one of the criteria 

is no more constant displacement but rather constant displacement gradient, at least for the 

affine model. Thus for very large templates, as the parameters of the transformation model are 

forced to be constant within the template, the computed strain rates visually look like as if 

they are filtered. Such smoothed or filtered strain rate map may be sufficient or even wanted 

for some geoscientific applications. However, the detailed variability may be needed for other 

current and future applications, and provide new insights in to the mechanics of mass 

movements.  

A better approach than filtering or the use of much larger template sizes would 

therefore be restricting the least squares iteration process more. Pixel-based constraining such 

as data snooping or template-based constraining such as raising convergence precision can be 

used [17,20]. This would affect only the highly noisy (and maybe the highly deformed) 

templates leaving the well-converging templates unaffected. Simple test on the Muragl 

rockglacier shows that increasing the demanded precision of the parameter adjustment during 

the LSM iteration discarded more templates especially in the shadow areas resulting in more 

data-void areas. However, the strong spatial variability is not smoothed implying that they are 

real strain rate variation.  

III.6. Conclusions and outlook 

This study explored the possibility of automatically and precisely computing displacement, 

strain rates and rotation of Earth surface mass movements from repeat optical images 

simultaneously. The performance of least squares matching (LSM) with an affine geometric 

transformation model is evaluated in relation to that of the most widely used algorithm for 

such purposes, i.e. the normalized cross-correlation (NCC). Aerial and satellite images over 

glacier flow, rockglacier creep and land sliding are used in the study covering three different 

types of mass movements and two different types of imaging systems.  

The results of the study clarified that the LSM estimates the displacement of Earth 

surface masses with better precision and accuracy than the conventional NCC. Around 25% 

improvement in the SNR gain of image matching over that of the NCC is registered in real 

images reaching up to double in the case of the analytically deformed images. The 

improvements in the SNR gain lead to comparable improvements in the accuracy of the 

estimated displacement. Up to 35% reduction in the MAD of displacement by the LSM from 

that of the NCC is observed on the stable grounds of the mass movement images reaching up 

to 90% in the case of the simulated deformation. The exact magnitude obviously varies 

depending on the case of application. The improvements are dependent on the level of noise 

in the image. 
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The study has also demonstrated the capability of the LSM in deriving surface strain 

rates and rotation rate simultaneously with the image matching process. This has the potential 

of replacing earlier approaches based on post-processing from displacement gradients. 

Additionally, the spatial density of deformation parameters measured and, thus, the 

unprecedented level of detail of deformation fields obtained might allow for new insights in to 

the mechanics of the masses observed. The strain rate data obtained through such processes 

are found to be realistic when compared with data from different sources and when logically 

evaluated. The spatial transformation parameters from which the strain rates are derived are 

computed with precision less than 10% of the measured values in all cases. However, 

evaluation of the accuracy (validity) of the rotation and strain rates on the stable grounds of 

the mass movement images shows that the accuracy is dependent on the mass movement type, 

i.e. image and ground characteristics. The MAD is as low as 10-4 for the rockglacier and the 

glacier (one decimal point below the computed average strain rates). For the landslide, the 

computed strain rates are not outside the error margin.  

The capability of deriving surface strains from images through the LSM algorithm 

advances the application of image matching in mass movement analysis. Once strain is 

reliably computed from repeat images automatically through image matching, the stress 

exerted on the masses can also be computed using the stress-strain relationship for the specific 

type of mass under investigation. This is very important in early warning of geohazards and in 

understanding terrain kinematics, and hopefully dynamics, in high mountain areas. Validation 

of the computed strain under different conditions and possibility of extending to the 

computation of stress requires further research, though.  

The algorithm is computationally expensive as it involves iteration for each template. 

The ever improving computer processor speeds coupled with smarter computational 

approaches can deal with this limitation. Simple tests indicate that the algorithm is very 

sensitive to noises in the images. More work is thus needed to define the sensitivity and 

applicability range of the LSM approach for repeat images of lower resolution, of more 

strongly deforming masses, and with longer temporal baselines.  
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