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Abstract—Building change detection is a major issue for urban
area monitoring. Due to different imaging conditions and sensor
parameters, 2-D information delivered by satellite images from
different dates is often not sufficient when dealing with building
changes. Moreover, due to the similar spectral characteristics, it
is often difficult to distinguish buildings from other man-made
constructions, like roads and bridges, during the change detec-
tion procedure. Therefore, stereo imagery is of importance to
provide the height component which is very helpful in analyzing
3-D building changes. In this paper, we propose a change detec-
tion method based on stereo imagery and digital surface models
(DSMs) generated with stereo matching methodology and provide
a solution by the joint use of height changes and Kullback–Leibler
divergence similarity measure between the original images. The
Dempster–Shafer fusion theory is adopted to combine these two
change indicators to improve the accuracy. In addition, vegeta-
tion and shadow classifications are used as no-building change
indicators for refining the change detection results. In the end, an
object-based building extraction method based on shape features
is performed. For evaluation purpose, the proposed method is
applied in two test areas, one is in an industrial area in Korea with
stereo imagery from the same sensor and the other represents a
dense urban area in Germany using stereo imagery from different
sensors with different resolutions. Our experimental results con-
firm the efficiency and high accuracy of the proposed methodology
even for different kinds and combinations of stereo images and
consequently different DSM qualities.

Index Terms—Building change detection, Dempster–Shafer the-
ory, digital surface model (DSM), Kullback–Leibler divergence,
optical stereo data, stereo matching.

I. INTRODUCTION

AUTOMATIC building change detection based on satellite
imagery is becoming increasingly important for city mon-

itoring, disaster assessment, and map database updating. As
manual image interpretation and vectorization are time consum-
ing and expensive, automatic and semi-automatic change de-
tection procedures are of high interest. With recently developed
dense stereo matching methodologies [1]–[3], it is possible to
extract improved height information from satellite stereo im-
ages, which is helpful for building change detection. The work
presented in this article focuses on building change detection
based on satellite stereo data and digital surface models (DSMs)
generated from these data. Instead of extracting buildings for
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both dates, we directly focus on the surface change information
and combine the change detected from multispectral images
and from DSMs to generate a final building change map.

Traditional satellite or airborne image-based automatic build-
ing change detection methods are mainly based on radiometric
information analysis [4], [5]. The images acquired at two dates
are compared pixel by pixel based on the original spectral
information. In this case, when the satellite images are acquired
at different seasons, with different weather conditions or from
different sensors, the radiometric information between the im-
ages can be quite different, which often leads to false alarms.
Previous change detection methods developed for medium-
resolution satellite images for large-scale land cover changes
[4], [5], are not efficient for high-resolution images when the
real land cover changes are mixed with irrelevant changes.
In particular, if particular objects are of interest, as in our
case buildings, it will be very difficult to extract those without
height information. Many irrelevant changes will be mixed
with building changes, particularly when the data are acquired
from different sensors or acquired under different imaging
geometries (e.g., viewing directions).

Previous DSM-assisted building change detection methods
can be classified into three categories. The first is object-based
comparison, which is commonly employed for map updating.
In this type, DSMs are used to improve the classification accu-
racy. The extracted building class can then be compared with
an existing building map [6]–[11]. The existing building maps
can also be used as training data [10]–[12] in the classification
procedure.

The second type of approach employs feature-based meth-
ods. Height information from DSMs is normally used as change
or no-change features to describe building changes [13]. With
high quality DSMs from laser scanning, building changes can
be extracted through DSM subtraction. The change detection
accuracy can be improved if other features are also employed. A
region-based method was proposed in [14], roughness and size
of the segments from two Lidar data sets were used to separate
trees from building changes.

The third approach is to provide “change candidates” using
the height information [15]. DSM subtraction is computation-
ally less expensive to get the initial change map [15]–[18],
which can be improved to a more precise building change
map when additional information from the original image is
employed.

Most of the literature in DSM-assisted change detection
use DSMs generated from Airborne Laser Scanning (ALS) or
airborne stereo data, and only very few articles use optical
stereo satellite data (since they exhibit lower resolution than
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airborne data). However, since the spatial resolution of satellite
stereo data [now up to 50 cm ground sampling distance (GSD)]
and the availability of stereo data from space (Worldview-1/-2,
GeoEye-1) are increasing, these data are also now suited for
DSM-assisted change detection. Due to the relatively low qual-
ity of the DSMs from satellite data, a robust methodology
has to be developed to get higher accuracy change detection
results. As more and more satellite data providers acquire stereo
data with a worldwide availability, we think that satellite-based
change detection including the height component will be of
more importance in the future, particularly for urban areas and
in case of disasters.

Therefore, in this paper, an optimized fusion method for
building change detection in urban and suburban areas is de-
veloped, falling between the second approach (feature-based
methods) and the third approach (change candidates) using
DSMs produced by stereo matching together with multispectral
satellite data. The novelty is the establishment of change and
no-change indicators from several data modalities, which are
combined in a robust fusion process using statistical measures.
Change features from original satellite images are determined
using the Kullback–Leibler (KL) divergence. In a double fusion
approach, they are combined with the height changes from
the DSMs and the no-change indicators from shadow and
vegetation classes based on Dempster–Shafer (DS) theory to
get a change probability map. Finally, changed single building
objects are extracted using shape features. In the experiments
section, it is shown for two different urban areas that the
developed method leads to good results, but some shortcomings
mainly due to DSM quality are presented as well.

II. METHOD

The accuracy of the DSMs generated from stereo images
largely depends on the radiometric data quality, the GSD of the
data, the convergence angle of the stereo data, and the amount
of available stereo pairs. In most cases, the DSM exhibits
3-D information but also different kinds of inaccuracies [19],
[20]. The aim of this paper is to generate a high quality change
map by fusing the building change indicators and no-building
change indicators from DSMs and the original images. There-
fore, as shown in Fig. 1, we divide the proposed method into
two parts: the fusion of pixel-based building change indicators
and refinement of building change result using no-building
change indicator. Finally, an object-based building extraction
based on shape features is employed.

A. Building Change Indicator

The following change indicators are used to distinguish the
building changes from other changes in the fusion procedure.

1) Height Change: DSM is generated using a robust stereo
matching algorithm based on semi-global matching (SGM)
using a combination of census and mutual information as cost
functions [1]–[3]. After DSMs from two dates are generated,
first a co-registration between them is necessary to remove
any shift in three dimensions. Depending on data availability
and accuracy, the DSMs can be of similar or quite different

Fig. 1. Flow chart of the proposed method.

quality. If the DSMs have good quality, a pixel-wise subtraction
of the two DSMs can already lead to good change results,
but for spaceborne stereo data, such a subtraction is generally
not applicable, particularly in the case of different sensor,
illumination, and stereo angle properties. These factors lead to
different matching qualities and therefore different DSM qual-
ities. Fig. 2(b) compares the results of DSM provided by ALS
(dashed line) versus SGM-based DSM from high-resolution
satellite images (solid line) along the white line in Fig. 2(a). As
shown, the SGM-based DSM has a much rougher surface and
more blurred features. Therefore, for the comparison of DSMs
from various resolutions or various sensors, first a robust height
differencing method is necessary.

A robust difference between the initial DSM x1 and the
second DSM x2 for the pixel (i, j) can be defined as the
minimum of differences computed between the pixel x2(i, j) in
the second DSM and a certain neighborhood (with window size
2× w + 1) of the pixel x1(i, j) in the first DSM x1. The robust
positive and negative differences XPdif (i, j) and XNdif (i, j)
relative to the pixel (i, j) are defined as written in (1) and (2),
respectively

XPdif(i, j) = min
(p∈[i−w,i+w],
q∈[j−w,j+w])

{(x2(i, j)− x1(p, q)) ,

(x2(i, j)− x1(p, q)) > 0} (1)

XNdif(i, j) = max
(p∈[i−w,i+w],
q∈[j−w,j+w])

{(x2(i, j)− x1(p, q)) ,

(x2(i, j)−x1(p, q))<0}. (2)

It means that only the minimum value (greater than zero)
in case of positive change, or the maximum value in case of
negative change is taken, all within the defined window size.
Typically used window sizes are 3 × 3 pixels up to 7 × 7 pixels
depending on the DSM qualities and the difference in resolution
between the two available DSMs.

2) Similarity Measurement: If at least one of the DSMs
exhibits larger errors introduced in the matching procedure or
through interpolation, false alarms will still be produced in
the height difference map. Therefore, in addition to the robust
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Fig. 2. Comparison of DSMs generated from ALS and stereo matching
(Dashed line: ALS DSM; Solid line: SGM-based DSM) (a) shows the location
of the test area and (b) is the profile comparison result along the while line
in (a).

differencing, a robust change indicator using original satellite
images can be very helpful to improve the accuracy. As we
have discussed in Section I, radiometric information for the
same land cover class can be very different due to the different
acquisition circumstances. Instead of comparing gray values
directly, we use an information similarity measure to high-
light building changes. Information similarity measures, such
as Mutual Information, have been widely used in the image
processing community [21]–[23]. One prominent work [24]
proposed KL divergence for multi-temporal change detection
based on the evolution of the local statistics of the image
between two dates. The local statistics are estimated by using
1-D Edgeworth series expansion, which approximates probabil-
ity density functions (PDFs) in the neighborhood of each pixel
in the image. In [25], this method was extended for object-based
change detection by computing the KL divergence of the two
corresponding objects derived by image segmentation.

Assuming the local neighborhood of two corresponding pix-
els is considered as two random variables X and Y, with fX and
fY being the marginal PDF, then the KL divergence of these
two random variables is defined as

K(Y |X) =

∫
log

fX(x)

fY (x)
fX(x)dx. (3)

The remaining point is to estimate the marginal distributions,
which can be achieved using several approaches. The simplest

way is to make use of histograms. However, to do that, a large
amount of samples is required for proper estimation [24], which
means a relatively large window size. In this paper, we use
the cumulant-based KL approximation for PDF estimation as
proposed in [24]. This method works under the assumption
that the PDF is close to a Gaussian distribution. In this case,
the marginal density function fX(x) can be expressed by the
Edgeworth series expansion, which relies only on the first
four cumulants [26]. The cumulants can be estimated from
moment μX;i, which is the centered moment of order i of vari-
able X . The Edgeworth series expansion can be expressed as
in [24], [27]
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Because of the asymmetric property of KL divergence, the
symmetric KL divergence

KLD = KLEdgeworth(X,Y ) +KLEdgeworth(Y,X) (5)

is used as one change indicator in this paper.
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B. No-Building Change Indicator

In binary change detection, a very important final step is to
separate the relevant changes associated with buildings from
other changes (noise and other areas which might contain
irrelevant change, here e.g., no-buildings). Vegetation growth
can also create a height change, and if these areas are located
around buildings, it will largely influence the building change
detection result. To alleviate this effect, we use normalized dif-
ference vegetation index to indicate vegetation cover. Another
important effect is shadowing which can significantly influence
the quality of the DSMs. It has been shown in our previous
paper [17] that shadow areas usually result in relatively bad
matching results. Matching failures in shadow areas, which
often represent ground level, are displayed in the original gener-
ated DSMs partly as holes, and through interpolation methods,
they often get higher height values than the ground level. If this
kind of error exists only in data of one epoch, building change
alarms are produced. Here, the shadow mask is extracted with
the method introduced by Marchant and Onyango [28] in which
the relationship of red/blue channel and green/blue channel can
be used to extract the shadow class.

In urban areas with simple building structures, vegetation
and shadow areas can be successfully detected in the multi-
spectral data in order to substantially reduce their influence to
the results. For urban areas with more complicated building
structures, the differentiation can be more difficult as, e.g.,
vegetation can also be found on the roof of buildings. Therefore,
these features are only used to give a proper probability of no-
building indication, while not an absolute decision.

C. Pixel-Based DS Fusion

Information similarity measures can be employed to extract
changes between two images, but the task here is to extract
only the building changes. In order to combine two kinds of
uncertain information to one building change map, we adopt
the DS fusion theory [29], which has been proven to give
convincible results in combining various uncertain indicators
in classification and change detection [5], [10], [30], [31].

DS theory is a belief function-based combination method.
Each indicator gives different certainty to decision class A(A ∈
2Θ); 2Θ represents the object classes of interest (like build-
ing change class) and all possible combination of them. The
certainties of the decision class A is called probability masses
(m(A)) and have values between 0 and 1{

m(φ) = 0∑
A∈2Θ

m(A) = 1 . (6)

When p indicators are considered, each indicator will give
a probability to the classes in B(B ∈ 2Θ), who have a fuzzy
relationship with A. The fused certainty of A can be represented
with DS fusion theory [31] based on

m(A) =

∑
B1∩...Bp=A

p∏
i=1

mi(Bi)

1−K
(7)

i indicator, and 1 ≤ i ≤ p,
mi probability mass
p amount of indicators

K =
∑

B1∩...Bp=∅

p∏
i=1

mi(Bi).

K is a measure of conflict among different indicators, mean-
ing that a decision cannot be, e.g., change and no-change at the
same time. mi(Bi) represent mass functions of indicator i to
class B. The probability masses shown in (6) are the original
belief certainties. For instance, if one pixel has less than 1 m
height change, then it is given a small probability to indicate
low significance of real building changes, since this is in the
range of DSM noise. In contrast, if it has more than 10 m
of height change, it will have a high probability indicating
real building change. In paper [10], a cubic parabola was used
to model the mass function for the probability between these
extremes, which worked well in DSM-assisted classification. In
that model, several experimental-based thresholds are needed
for each indicator. Therefore, for this investigation, we prefer
the sigmoid curve [32] and use it to get a similar “S” shape
with less parameters

Pi(x) =
0.99

1 + e−
x−T

τ

. (8)

In (8), x is the original value of each indicator. For our
purpose, we add two parameters T and τ to control the sym-
metry point and shape of sigmoid function. The symmetry
point indicates a certainty of 50%. In this paper, we employed
minimum error thresholding method proposed by Kittler [33]
to select T. This thresholding method assumes both objects and
the background in the image to follow a Gaussian distribution.
The threshold T is chosen to optimally separate these two
distributions, which means the pixels at this threshold point
have a probability of 50% of being an object. τ is used to control
the slope of this distribution, which can be estimated using one
given sample. According to the rule of the DS fusion theory, no
indicator can give 100% certainty; therefore, a maximum value
of 0.99 is designed for this model.

Table I shows the pixel-based decision model used in this
paper. The purpose of this procedure is to distinguish the build-
ing changes (B) from other land surface changes (S) and from
no-change (N). Here, we assume that height changes (ΔH)
indicate building change, and the KLD similarity (ΔSM)
indicates building change and surface change. We suppose that
for new, demolished, or changed buildings together with the
height change, also some spectral change is likely.

The second step is the fusion of the no-building change
indicators to the building change probability map. Here, we
employ the result from step one as one change indicator (i)
and fuse it with the other two no-building change indicators
separately based on (7). The no-building change indicators are
considered and accepted to the fusion procedure when they
have a mass values m(A) greater than threshold T. According
to the decision rule mentioned in [30], T = 50% is used in
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TABLE I
DECISION MODEL FOR THE CLASSES (B: BUILDING CHANGE;

S: LAND SURFACE CHANGE; N: NO-CHANGE;
ΔH: HEIGHT CHANGE; ΔSM : SIMILARITY

this procedure. Three fusion cases are considered in the fusion
procedure:

1) m(i) > T , while m(j) < T ⇒ Building change
2) m(i) < T , while m(j) > T ⇒ No building change
3) m(i) > T , and m(j) > T ⇒ DS fusion
In the case 1) of the above fusion rules, if corresponding

pixels exhibit a high certainty of building change m(i) and a
low certainty to be vegetation or shadow m(j), the decision
is building change. If both kinds of indicators are higher than
the assumed threshold (T), as for case 3), the DS fusion is
performed based on (7) [31].

A building change probability map is achieved after these
two fusion steps. This intermediate result might be already
important for change indication in a semi-automatic procedure
(not considered here) because it can save time and manual work
if an interpreter uses this pre-information. Here, we are aiming
to get the final changed building object in an automatic proce-
dure. Therefore, a threshold on the building change probability
map is needed to get an initial building change mask before the
object-based building extraction. Since a further refinement is
considered after we get the pixel-based building change map,
in order to leave more candidates for the subsequent object
filtering, we set a low threshold of 0.45 for the building change
probability in the building change mask.

D. Region-Based Refinement

After generating the building change mask, it is still required
to separate “changed building” from false change alarms. We
therefore apply an edge-based building extraction method and
improve the output by extracting the undesired objects based on
their shape properties [17]. The three most important features to
differentiate building areas from other objects are height, area
(size), and convexity. Herein, an object level-based refinement
is proposed to combine the three change indicators.

Height: For our purpose, height means the average height
for each object, in order to get only one vertical change value
for each constructed/destructed building defined by a single
mask. We average the pixel values in the fusion result of the
“difference image” belonging to the same changed object, and
define this value as the vertical change of each building. As
follows, we exclude all pixels which have “0” value (no height
in the changed area), as well as very low values or very high
values which can be attributed to potential blunders in one or

Fig. 3. Vertical change value evaluation.

Fig. 4. Convex Hull calculation (a) Pixels in original mask; (b) Generated
Delaunay triangulation; and (c) Convex hull.

both of the DSMs, so that these pixels will not be involved in the
mean value calculation procedure. As displayed in Fig. 3, only
the pixels of the middle part (gray line section) of the height
difference values are analyzed.

Area: The area of the generated region is calculated by
counting the number of pixels inside a single object included
in the generated mask

Area = Number of pixels × (Resolution)2.

Convexity: The convexity of a region is defined in this paper
as the area ratio of this region and the smallest convex polygon
that can contain the region. The computation of the smallest
convex polygon [34] is shown in Fig. 4. Fig. 4(a) is the original
mask from the difference image. After connecting all pixels in
the original mask using Delaunay Triangulation [Fig. 4(b)], the
object is represented by the generated edges, which constitute
the smallest convex hull of the original region [shown as the
black line in Fig. 4(c)].

III. DATA SETS FOR EXPERIMENTS

The experimental data sets for this research work consist of
two pairs of stereo imagery captured on different dates and the
corresponding DSMs. Two test areas are chosen for this proce-
dure. In the first test area, the stereo images from two dates are
both acquired by the IKONOS satellite on 12 February, 2006
and 2 May, 2011 respectively. The area represents an industrial
region in Korea with an area size of 0.6× 0.6 km2 containing
a factory center with mainly well separated, regularly shaped
smaller size buildings. The other test data sets shows the city
center of Munich, Germany (1.3× 1.3 km2). In this data sets,
the first pair of the stereo imagery was acquired by IKONOS-2
on 15 July 2005, while the other pair features WorldView-2
data acquired on 12 July, 2010. This test area contains more
complicated building shapes as well as buildings which cannot
be separated from each other easily. Figs. 5(a)–(e) and 6(a)–(e)
show the orthorectified images, building change reference data,
and DSMs of the two test areas.
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Fig. 5. Test area 1 (a) Panchromatic image from year 2006; (b) Panchromatic image from year 2011; (c) Reference change map; (d) DSM from year 2006;
(e) DSM from year 2011; (f) Height change map; (g) Fusion result after second step; (h) Thresholding result; (i) Object-based filter result.

Stereo Imagery

The stereo imagery in the first test area consist of two
IKONOS multispectral and panchromatic images. Both data
sets are along-track stereo pairs. The multispectral IKONOS
imagery has a GSD of 4 m containing four bands (red, green,
blue, and near infrared). The panchromatic images have a
GSD of 1 m [Fig. 5(a) and (b)]. The orthorectifed panchro-
matic and multispectral images are generated using the DSMs,
meaning that the pixels in the images and DSMs are co-
registered precisely. The stereo imagery in the second test area
(cf. Fig. 6) consist of one IKONOS image pair (1 m GSD
pan and 4 m multispectral) and one WorldView-2 image pair
with a GSD of 0.5 m pan and 2 m multispectral (8 bands),
respectively.

DSMs From Satellite Stereo Imagery

The DSMs of all stereo pairs are generated using the SGM
algorithm implemented at DLR [1], [2] for dense image match-
ing. In the first test area, the convergence angle is 17.39◦ for
the data from 2006 and 22.28◦ for the data of year 2011, which
means that the quality of both DSMs should be similar [as can
be seen in Fig. 5(d) and (e)]. The DSMs generated by SGM
exhibit 1 m GSD; the resulting orthoimages also have a GSD
of 1 m. The WorldView-2 data set used in the second test area
exhibit a GSD of 0.5 m and is comprised of two stereo pairs
acquired on the same day and orbit in July 2010 with an overlap
in the test area, leading to four different viewing directions with
stereo angles between 12◦ and 24◦. The IKONOS data set was
acquired in 2005 and has a convergence angle of approximately
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Fig. 6. Test area 2 (a) Panchromatic image from year 2005; (b) Panchromatic image from year 2010; (c) Reference change map; (d) DSM from year 2005;
(e) DSM from year 2010; (f) Height change map; (g) Fusion result after second step; (h) Thresholding result; (i) Object-based filter result (with both positive and
negative building change results).

10◦. Since the WorldView-2 panchromatic data exhibit 0.5 m
resolution, the quality of the generated DSM is better than the
DSM from IKONOS images [as can be seen in Fig. 6(d) and
(e)]. For easier comparison, change detection is evaluated with
1 m GSD for both DSMs and orthorectified satellite images also
for the second test area.

Reference

The reference is generated based on manual/visual interpre-
tation using the orthorectified panchromatic and multispectral
data sets [shown in Figs. 5(c) and 6(c)]. The reference data
includes high buildings, normal houses, and tents. A tent with
an area size less than 100 m2 and low height cannot be detected

accurately enough with 1 m resolution satellite images and
DSMs from stereo matching technique. Thus, in this research,
only the buildings larger than 100 m2 are considered in the
reference data, procedures, and experiments.

IV. EXPERIMENTS AND RESULTS EVALUATION

A. Overall Description

In this section, we apply the proposed DSM-assisted building
change detection workflow introduced in Section II. For the
first data sets acquired by the same IKONOS-2 sensor, we
subtract the DSM of year 2006 from DSM of year 2011 to
get a first height difference map. As the second data sets
are from different sensors, the DSM quality is also different.
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That is why in this case, we use the robust difference with
a window size of 5 × 5 pixels. The similarity map based on
the original images is generated according to Section II-A.
In the first test area, we choose a 9 × 9 window size in the
KL divergence calculation procedure. In the second area, since
the two panchromatic images are from different sensors with
different radiometric characteristics and spatial resolution, a
window size of 17 × 17 pixels is selected, and a Gaussian
filter is employed in the preprocessing procedure to alleviate
the multi-resolution problems. In the DS feature fusion pro-
cedure, for the sigmoid function, all of the threshold values
are computed automatically. One sample datum is chosen for
each change indicator to control the slope of the sigmoid
distribution. For instance, (P (x) = 0.1|x = 0) is used for the
KL divergence value in Munich area to calculate τ . As stated
in Section II-A, DSMs derived from satellite data are often
erroneous and can hardly be used to detect small objects until
now. Therefore, for the object-based building extraction proce-
dure from Section II-D, we choose masks with a mean height
change of more than 5 m, an area size of more than 100 m2

for industrial area, and more than 200 m2 for urban area, and
a convexity value of more than 0.5 and 0.55, respectively, for
industrial area and urban area. A sensitivity analysis to justify
these values is shown in Section IV-C (Fig. 8).

B. Evaluation Method

In order to evaluate the effectiveness of the proposed method
for the detection of position and size of the changed buildings
and the overall change situation, we compare our results with
reference data. The evaluation is performed for each step of the
process: only height difference, only KL divergence, fusion of
the two measures, combination of the two with the additional
no-change indicators, and including the region-based refine-
ment. The assessment of the change detection results is carried
out both at pixel level and object level.

1) Pixel-Based Evaluation: For the pixel level evaluation,
the results are displayed in terms of Receiver Operating Char-
acteristics (ROC) curve analysis [35]. We use the area under the
ROC curve to evaluate the quality of each change index and the
generated result [35]. For each threshold between the maximum
and minimum value in the result, we calculate the percentage
of true positives (the building change pixels that are correctly
detected as building change) and the percentage of the false
positives (no-building change pixels that are falsely detected as
building change pixels). The ROC curve shows the relationship
of the true positive against the false positive. The area under
the ROC curve is used to measure the ability of single or com-
bined features and difference map to detect the real building
changes [35].

2) Object-Based Evaluation: As a higher level of the analy-
sis, the changed buildings are treated as single objects without
consideration of their size. Only the effectiveness of the detec-
tion of distinct changed areas (buildings) in the change map is
considered in the assessment. Therefore, four parameters are
measured to evaluate the object-based change detection result:

1) True detected number (TDN): The number of changed
objects that are correctly detected as changed.

Fig. 7. ROC curve comparison for the positive change in test area 1.

2) True detected rate (TD): True detected objects number in
percentage TD = TDN/NR × 100.

3) False detected number (FDN): The number of unchanged
objects that are incorrectly detected as changed.

4) False detected rate (FD): False detected objects number
is percentage FD = FDN/ND × 100,

where NR and ND are the total number of changed objects of
the reference data and the detected map, respectively.

C. Results

The building change detection results in each procedure are
shown in Figs. 5 and 6. The height difference image is shown in
Figs. 5(f) and 6(f) where red pixels indicate large height change
values (more than 20 m change), and blue color highlights no-
change or small height change values. Fig. 6(f) shows the robust
positive change detection result, most of the noise coming from
different sensor and different resolution is already eliminated.
Figs. 5(g) and 6(g) show the DS fusion result including all the
change indices and no-change indices, the values in the images
represent the probability of each pixel to belong to the building
change. The changed buildings are mostly highlighted in red
color. Figs. 5(h) and 6(h) are the results after thresholding. The
white masks represent the possible changed buildings according
to the threshold in Section II-C. A combination of area, height,
and convexity is applied to extract the real changed buildings as
shown in Figs. 5(i) and 6(i). In test area 2, we extracted both, the
positive change buildings and negative change buildings, which
are shown in Fig. 6(i) with green and red color, respectively,
while only positive change is evaluated in test area 1. As shown
in the reference data, only three negative change buildings are
located in the test area, one is a reconstructed building; the
newly built building, at the same place, is much higher than
the original one. Therefore, this building is correctly detected
as positive change. Due to statistical reasons, a change for two
buildings, within the category “negative change” is not included
in the result evaluation.

In order to evaluate the change indicators and efficiency
of procedures in each step, the ROC curve is applied in this
procedure (Fig. 7). For better comparison, the area under the
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TABLE II
AREAS UNDER ROC CURVES WITH DIFFERENT METHODS

TABLE III
OBJECT-BASED RESULT EVALUATION

Fig. 8. Sensitivity of parameters to threshold values in (a) Test area 1 and (b) Test area 2.

ROC curve as explained in Section IV-B is used and illustrated
in Table II. It shows that with each step in the fusion process
the reliability of the change detection is improved. Although the
KL divergence measure does not lead to a high difference for
the positive change in test area 2, it improves the result for true
negative alarms substantially. Table III shows the object-based
evaluation results for both test areas. In the first test area, 42 out

of 45 changed buildings are correctly detected. In the Munich
test site, 8 out of 10 changed buildings are detected correctly. A
sensitivity analysis of the three parameters in the object-based
filter step is presented in Fig. 8. When the threshold lies within
a specific range, it does not significantly influence the change
detection result, and therefore the specific value is not very
sensitive to the result.
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Fig. 9. Correct detected change buildings example. (a) Panchromatic-date 1; (b) Panchromatic-date 2; (c) DS Fusion result after step-2.

Fig. 10. Example of reconstructed building. (a) Panchromatic-date1; (b) Panchromatic-date2; (c) Pixel-based change detection result.

D. Discussion of Results

The detection results in Figs. 5(f)–(i) and 6(f)–(i) and the
evaluation outcome in Tables II and III show a good per-
formance for the industrial area (test area 1) and medium
performance for the urban area (test area 2). In the first test area,
when comparing Fig. 5(f) with Fig. 5(g), it can be seen that the
buildings are better separated with much sharper edges which
is the result of the improvement through the KL divergence
measure. Moreover, several false alarms of large height differ-
ences in Fig. 5(f) are eliminated after DS statistics. Although
some season/vegetation changes are still obvious in Fig. 5(g)
(at the lower left part of the image), they exhibit only 20% to
30% probability to be changed buildings. Therefore, they can be
easily removed from the positive changes after thresholding. On
the top left of Fig. 5(f), the four changed buildings do not appear
very clear; by combining the KL divergence measure, they
are all highlighted and well separated. From the pixel-based
evaluation result, the first step fusion result is not improved
by using the KL divergence in the second test area, but it
still improves the final result. The reason is that in this test
area, with 5 years of time difference, some buildings have
been reconstructed with a similar height at nearly the same
place as the former buildings. In this case, height change is
not really helpful, which in turn influences the feature fusion
result. However, after the second steps of the fusion, the area
under ROC curve results exceeds 0.9, and the final object-based
refinement missed two small buildings and found several falsely
changed buildings. The reasons are discussed in the following.

One problem for an automatic procedure arises if buildings
are still in construction. In Fig. 9, building A is only half

constructed at date 1 [shown in Fig. 9(a)], while finished at
date 2 [shown in Fig. 9(b)]; building B is a building without
change in height. Both buildings show different gray values in
the panchromatic images. With our detection method, building
A has a much higher change probability after the pixel-based
DS fusion [shown in Fig. 9(c), color bar shows the building
change probabilities], and can be extracted successfully.

Further, it should be pointed out that a false alarm will
be detected if one of the DSMs exhibits large area matching
errors. This is shown in top middle of Fig. 5(a) and (b). From
the images, we can clearly see the buildings are not changed.
Due to matching error of stereo images from date 1, the large
building in the center of the images is missing in the first DSM
[Fig. 5(d)]. While in the DSM of the later date [Fig. 5(e)],
the building is represented correctly. The color indicates the
extracted height information in Fig. 5(d) and (e). Those kinds
of mistakes cannot be handled by our method. Also, for the
second test area (Munich) the DSM from 2010 shows several
matching errors in dense building areas. This leads to several
false detected objects within the negative change detections.

The other missed alarms are caused by reconstruction, for
which the new buildings are built at the same or similar area
of the old buildings. Within 5 years of time difference, several
places show this activity. One example can be seen in the center
of Fig. 10. The shown building was reconstructed with a new
building shape. By combining the change information from
images, we get some small changed area as in the lower part
of Fig. 10(c) (shown with the black arrow), but since they are
relatively small and not connected with the other part of the
buildings, after the object-based filtering they are not kept in
the change mask.
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V. CONCLUSION

Height information is essential for urban area monitoring,
and it is particularly helpful for building change detection.
Many previous studies using laser scanning data for this pur-
pose show the potential but laser data are acquired less fre-
quent and hardly can be used for large and remote areas. In
particular, in disaster situations satellite stereo data are usually
much easier, faster, and cheaper to acquire. Using new dense
stereo matching algorithms and DSM generation technology,
it is shown in this paper that DSMs generated with spaceborne
stereo data can be a reliable source for efficient building change
detection. To fully use all of the change information contained
in original panchromatic images, multispectral images, and
the height information, we use the DS fusion theory for a
fusion process to extract real building changes. The sigmoid
function is employed in the automatic initial mass function
generation procedure. Furthermore, the whole procedure works
unsupervised, and the probability calculation is much faster
than model-based clustering methods. The generated proba-
bility maps can also be used effectively in a semi-automatic
procedure. In the end, an object-based filtering is used to extract
the building footprints. The results in each step are compared
with a reference map, and the evaluation shows the efficiency of
the combined methodology. The extracted change maps show
the surface changes correctly for most parts of the test areas.
Shortcomings appear if one of the DSMs does not meet the
required quality and cannot show the real situation through
which the result is negatively influenced.

As future work, an investigation of the DSM quality in
various situations will be performed and might be added to
our fusion model. Moreover, in this research, only pixel-based
features are employed; more texture features will also be
tested in future follow up work if they can give indication for
building change or no building change. For the object-based
building change map refinement procedure, more and also
3-D shape features could be used to improve the overall change
detection result.
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