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Abstract—The 2012 Data Fusion Contest organized by the
Data Fusion Technical Committee (DFTC) of the IEEE Geo-
science and Remote Sensing Society (GRSS) aimed at investi-
gating the potential use of very high spatial resolution (VHR)
multi-modal/multi-temporal image fusion. Three different types
of data sets, including spaceborne multi-spectral, spaceborne
synthetic aperture radar (SAR), and airborne light detection and
ranging (LiDAR) data collected over the downtown San Francisco
area were distributed during the Contest. This paper highlights
the three awarded research contributions which investigate
(i) a new metric to assess urban density (UD) from multi-spectral
and LiDAR data, (i) simulation-based techniques to jointly use
SAR and LiDAR data for image interpretation and change de-
tection, and (iii) radiosity methods to improve surface reflectance
retrievals of optical data in complex illumination environments.
In particular, they demonstrate the usefulness of LiDAR data
when fused with optical or SAR data. We believe these interesting
investigations will stimulate further research in the related areas.

Index Terms—Data fusion, LIDAR, multi-modal, multi-tem-
poral, optical, SAR, urban, VHR imagery.
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I. INTRODUCTION

HE Data Fusion Contest has been annually organized by

the Data Fusion Technical Committee [1] of the IEEE
Geoscience and Remote Sensing Society (GRSS) since 2006
[2]-[6]. It is open not only to IEEE members, but to everyone,
with the aim of developing new or evaluating existing method-
ologies at the research or operational level to solve remote
sensing problems using data from different sources. It has
earned international reputation for providing high-quality data
and promoting the cutting-edge research of remote sensing
image processing and analysis.

The 2012 Contest was designed to investigate the potential
use of very high spatial resolution (VHR) multi-modal/multi-
temporal image fusion for various remote sensing applications.
Three different types of data sets, including spaceborne multi-
spectral (i.e., QuickBird and WorldView-2) and synthetic aper-
ture radar (SAR) data (i.e., TerraSAR-X), and airborne (LiDAR)
data, were provided by DigitalGlobe, Astrium Services, and the
United States Geological Survey (USGS).

Fusion of multi-source images and data is considered to be
the ultimate solution for optimized information exploitation in
remote sensing [7]. Passive optical sensors have been widely
employed to map horizontal structures like land cover (LC)
types at broad scales. SAR complements optical imaging capa-
bilities because of the minimum constraints on time-of-day and
atmospheric conditions, and because of the unique responses
of terrain and man-made targets to radar frequencies. Airborne
LiDAR can provide highly accurate sample measurements
(single pulse, multiple pulses, or even full waveform) of ver-
tical structures, but it is currently limited by the high cost of
acquisition. Thus, fusion of optical/SAR/LiDAR data can offer
additional information for various applications, such as LC
mapping [5], forest-related studies [8]-[12], oil slick detection
and characterization [13], and accurate digital surface model
(DSM) and digital elevation model (DEM) generation [7].
More recently, due to its increased availability, hyperspectral
imagery and its fusion with LIDAR data have been of great
interest for practical applications [14]—[20].

The data sets distributed during the Contest were acquired
over the downtown San Francisco area, covering a number of
large buildings, skyscrapers, commercial and industrial struc-
tures, a mixture of community parks and private housing, as
well as highways and bridges. The composition of the optical,
SAR, and LiDAR data sets is shown for a small subset in Fig. 1.
As listed in Table I, the QuickBird/WorldView-2/TerraSAR-X
data sets were acquired in late 2007 and 2011, while the LiDAR
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Fig. 1. Composition of the optical, SAR, and LiDAR data sets over the downtown San Francisco area.

TABLE 1
SENSORS AND ACQUISITION DATES FOR THE IMAGES
DISTRIBUTED DURING THE CONTEST

Sensor
QuickBird/WorldView-2

Acquisition 1
11 November 2007
5 December 2007

Acquisition 2
9 October 2011
2 October 2011

TerraSAR-X 16 December 2007 13 October 2011
27 December 2007 | 24 October 2011
LiDAR June 2010

data were collected in June 2010. Three products were derived
from the raw LiDAR data in advance, including a DEM, a DSM
and an intensity image. For this purpose, the LP360 software for
ArcGIS was used. The DEM was created by triangulating ele-
vation only from the bare-earth LiDAR points, while the DSM
was created by triangulating elevation only from the first-return
LiDAR points. And finally, the intensity layer was generated by
triangulating intensity from the first-return LIDAR points.

More than 1150 researchers across the globe registered to the
Contest, corresponding to an increase of more than 51% over the
previous year. The data sets were downloaded by practitioners
from 78 different countries, with a large number from devel-
oping and underdeveloped countries. This clearly demonstrates
that the Data Fusion Contest is of great interest to the Earth ob-
servation research and application community.

To enter the Contest, each participant was asked to submit
a paper describing the problem addressed, the method used,
and the final results. Several interesting contributions were
received, the large majority of which investigated the fusion
problem for urban LC classification and change detection,
followed by image pansharpening. Other topics included au-
tomated road extraction, moving object detection, urban tree
inventory, and image superresolution, demonstrating the large
variety of applications that multi-modal/multi-temporal remote
sensing images can offer.

After rigorous review by the Data Fusion Award Committee,
three winning papers were selected, and their authors were
awarded IEEE GRSS Certificates of Appreciation during the
2012 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS) held in Munich, Germany.

In the remainder of this paper, the contributions proposed
by the three winning teams are described in detail. Specifi-
cally, Section II presents the work of C. Berger, M. Voltersen,

R. Eckardt, J. Eberle, T. Heyer, N. Salepci, S. Hese, and
C. Schmullius, from the Friedrich-Schiller-University of Jena,
Germany, who fused WorldView-2 and LiDAR data to derive
a new metric for the assessment of urban density (UD) by
taking into account both horizontal and vertical characteristics
of a city. In Section III, a simulation-based method to jointly
use TerraSAR-X and LiDAR data for image interpretation and
change detection in dense urban areas is proposed by J. Tao,
S. Auer, and R. Bamler from the German Aerospace Center
and Technische Universitit Miinchen, Germany. Section IV
illustrates the research of K. Ewald and A. Buswell from
Ball Aerospace and Technologies Corp., M. Gartley from the
Rochester Institute of Technology, and J. Jacobson from the
National Air and Space Intelligence Center, United States,
on a technique using radiosity methods to improve surface
reflectance retrievals from WorldView-2 data in complex
illumination environments. Finally, the conclusions and per-
spectives drawn from this Contest are presented and discussed
in Section V.

II. FUSION OF MULTI-SPECTRAL AND LIDAR DATA FOR AN
INTEGRATED ASSESSMENT OF URBAN DENSITY (UD)

This section aims at the derivation of a new indicator to as-
sess UD (defined here as the intensity of urban development)
that takes into account all three spatial dimensions of a city. In
fact, the presence of building objects adds a third dimension to
be considered among the environmental relationships found in
urban areas. Thus, urban environmental studies should rely on
information sources that account not only for the horizontal di-
mensions, but also for the vertical dimension of a city to enable
a more holistic assessment of the builtscape [21].

To assess UD, a variety of spatial indicators has been used in
the past. In general, these indicators can be subdivided into two
groups: (i) two-dimensional (2D), and (i7) three-dimensional
(3D) indicators. While 2D indicators measure the percentage
of specific urban LC classes within a predefined area of interest
(AQI), 3D indicators quantify information related to the height
or volume of objects belonging to specific urban LC classes
within the AOI. To calculate the 2D indicators, a priori infor-
mation about urban LC is required. In addition to urban LC,
3D indicators do also require information about the height of
urban LC objects. The AOI used to infer those indicators can
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be a single pixel, a grid cell, or a moving window (kernel) sum-
marizing groups of classified pixels [22], [23], but can also be a
circle of a certain radius around specific urban LC objects [24]
or an administrative area like a zoning district, tax parcel or a
land lot [25], [26]. If the AOI is a single pixel (2D indicators
only), the indicator is computed by analyzing the proportion of
specific urban LC classes at the sub-pixel level using spectral
unmixing techniques [27]-[31].

A common 2D indicator of UD is the impervious surface area
(ISA), also known under various other names [22], [23], [27],
[28], [32]. Often provided as percentage [27]-[30], [33], the ISA
is defined as the share of impervious surfaces within an AOI.
A similar 2D indicator is the building coverage ratio (BCR)
[25], [26], [34], [35]. As bare soil areas usually do not cover
more than 5% of a city, the abundance of impervious surfaces is
found to be inversely related to the abundance of urban vegeta-
tion [31], [36]. For this reason, it is also possible to describe UD
by the intensity of urban greenery. In this regard, a widely used
2D indicator is the vegetation fraction (VF) [37]-[40]. VF eval-
uates the percentage of urban green within an AOI. Schopfer et
al. [41] extended the VF by introducing additional criteria and
weighting factors to its calculation. As a result, VF values de-
pend not only on the amount of urban vegetation, but also on
the percentage of high-rise buildings and the distance between
buildings found within the AOI.

Only few 3D indicators of UD can be found in the scientific
literature. Among them, the floor area ratio (FAR) has been dis-
cussed in [25], [26], [35]. It represents the ratio of the gross floor
area of one or more buildings within an AOI and the total area
of the AOL. For its estimation, a constant value representing the
average height of one story of all buildings under considera-
tion has to be specified. Another 3D indicator is the vegetation
volume to built-up volume (VV2BV) [24], which describes the
relation between the cubic volume of high vegetation and the
cubature of buildings within an AOI. The VV2BV was devel-
oped to better characterize the living quality in cities. A further
3D indicator related to vegetation is the green plot ratio (GPR)
[42]. Tt is defined as the average leaf area index (LAI) of urban
greenery within the AOI. For example, a site with a GPR of 2:1
features vegetation that has a total canopy cover twice that of
the site. Because the LAl measures the area of leaves per area of
ground, the concept behind the GPR takes into account the area
that is covered by multiple, vertically-arranged canopy layers
within the AOL

The above selection of studies shows that various spatial in-
dicators of UD have been proposed and used so far. However,
it has to be kept in mind that each of these indicators considers
different and distinct characteristics of human settlements and,
thus, addresses only specific aspects of UD. Consequently, there
is a lack of comprehensive indicators that are able to inter-
relate existing and possibly new spatial indicators for a more
holistic assessment of density patterns in urban environments.
An exception to this observation are the Spacematrix and the
urban vegetation index (UVI). The Spacematrix is a 3D feature
space to describe UD within an AOI [34]. This feature space
is spanned by the indicators road network density (N), FAR,
and BCR [34], and was successfully used to investigate the rela-
tion between traffic noise and UD [35]. The UVI represents the
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(1) Data Preparation (2) Land Cover Mapping (3) Urban Density Mapping
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Fig. 2. Conceptual workflow for the assessment of urban density.

weighted sum of two ratios, namely the VV2BYV and the vege-
tation area to built-up area ratio, and was recently employed for
an improved assessment of both urban green spaces and urban
quality of life [24]. Apart from these exceptions, there is still
a need for integrated approaches making use of a combination
of 2D and 3D indicators to estimate UD in its entirety. In the
following subsections, this need is addressed by a combined in-
dicator that takes into account four different key features of the
urban landscape.

A. Proposed Method

The overall workflow of this study consists of three consec-
utive steps: (i) data preparation, (ii) LC mapping, and (iii) UD
mapping. Fig. 2 illustrates the role of the data sets being used
in the context of each stage of the data fusion approach. After
data preparation, LC is extracted from the preprocessed World-
View-2 and LiDAR data by means of feature fusion [43]. The
LC map is then utilized in combination with the object height
information provided by the LiDAR data to infer UD.

1) Data Preparation: Preprocessing of the WorldView-2
imagery comprises three separate steps: (i) radiometric nor-
malization using ATCOR [44], (ii) pansharpening using the
high-pass filter (HPF) fusion [45], and (iii) co-registration to
the LiDAR data using more than 20 well-distributed ground
control points (GCPs) and the DEM. A normalized digital
surface model (nDSM) is calculated from the LiDAR data by
subtracting the DEM from the DSM. It contains the height of
urban objects relative to the ground. With respect to the LC
classification, additional features are derived from the input
data. Amongst those features are the average reflectance of the
blue, green, red, and the first near-infrared (NIR) WorldView-2
bands, the normalized difference vegetation index (NDVI)
[46] and the slope (in percent) of the nDSM [47]. The latter is
useful for identifying transitions between flat areas and elevated
objects (e.g., trees or buildings) [48].

2) Extraction of Land Cover (LC) Information: Six LC
classes are extracted from the data basis: buildings, impervious
surfaces, trees, grass/shrubs, bare soil areas and water bodies.
For this purpose, an object-based image analysis (OBIA)
approach [49]-[51] is employed for its advantages over tra-
ditional, pixel-based classification techniques with respect
to feature extraction from VHR multi-source imagery [49],
[52]-[56]. A complete description and evaluation of the method
(implemented in Trimble eCognition), including a discussion
on its robustness with regard to four different multi-spectral
and LiDAR input data sets acquired over three urban areas, is
provided in Berger et al. [57].
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Fig. 3. The land cover mapping scheme applied to the image objects.

As a first step, a number of segmentation algorithms is ap-
plied to the input data. Subsequently, a rule-based classification
of the resulting objects is performed following the scheme in
Fig. 3. The numbers at each node of the decision tree indicate
the features that are used for class separation. As an example,
the tree canopy class is considered. Image segments are first di-
vided into elevated and non-elevated objects using the LiDAR
nDSM. To this end, an adjustable object height value serves as
threshold for classification. Afterwards, elevated objects are re-
classified as tree canopy if they feature a relatively high NDVL.
Finally, the resulting tree canopy objects are used as seeds which
are grown into adjacent pixels belonging to the elevated class
if the latter have similar, but not necessarily as distinct, NDVI
and brightness characteristics as the former. In a way similar
to the tree canopy class, these so-called pixel-based object re-
sizing operations [58] are also used to grow and/or shrink ob-
jects of other LC types. After the extraction of the six target
classes, some reshaping algorithms are applied to the thematic
objects for the purpose of border optimization. For instance,
building footprints are generalized by calculating a morpholog-
ical parameter called surface tension [58] and evaluating the re-
sult against a predefined criterion of compactness. In this way,
the original object primitives are successively transformed into
more meaningful objects of interest that better correspond to
the visual perception of humans [49], [59]-[61]. Finally, all re-
maining shadow objects are reassigned to the class with which
they share the largest relative common border.

To assess mapping accuracy, two data sources are used. The
building class is validated using the building footprints provided
by the City of San Francisco [62], whereas the remaining LC
types are validated using the panchromatic WorldView-2 band.
A random sampling design is chosen for validation comprising
50 sample points per LC class to assess overall accuracy, errors
of commission and omission, as well as the kappa coefficient of
agreement [63], [64].

3) Derivation of Urban Density (UD) Information: UD
values are calculated for each single building (referred to as
active building) in the LC map and within a predefined radius
(i.e., the AOI) around the centroid of the respective building.
They are the result of a logical combination of four parameters
quantifying (i) vertical development, (if) urban vegetation,
(iii) soil sealing, and (iv) the clustering of urban structures
within the AOI (Fig. 4). Since each of these input variables

inverted Floor Area Ratio (iFAR) Vegetation Fraction (VF)

A Ag+A
iFAR= —2b e tthg

Af Anol
Agp  Floor area covered by the active A Area covered by trees

building () within the AOI
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Fig. 4. The four input parameters used to infer urban density.

evaluates a different and distinct aspect of the builtscape [21],
the resulting information layer enables an integrated and more
holistic assessment of local UD patterns.

The parameters used to assess UD are the inverted floor area

ratio (iFAR), VF, ISA and building aggregation (BA):

* iFAR describes the ratio between the footprint and the gross
floor area of an active building [25], [26], [35]. It ranges
between 0 and 1. UD decreases with higher values of iFAR.

* VF describes the urban green area ratio within the AOI
[37]-[40]. It ranges between 0 and 1. UD decreases with
higher values of VF.

* IS4 describes the degree of soil sealing within the AOI
[271-30], [33]. It ranges between 0 and 1. UD increases
with higher values of ISA.

* BA describes the arrangement and compactness of build-
ings within the AOI. For the calculation of BA, the median
building distances as well as the median iFAR values of all
buildings within the AOI are used. BA is normalized be-
tween 0 and 1 to match its values to the range of other input
parameters. UD increases with higher values of BA.

Finally, UD represents an example for describing the inten-

sity of urban development in its entirety, i.e., with regard to hor-
izontal and vertical settlement characteristics. It is obtained by
linking/integrating the above selected indicators as depicted in
Fig. 4. The index is designed in a way that the individual and
unique contributions coming from its inputs are mutually rein-
forced. That is why UD is formulated as the difference between
two terms. The left term of the expression is proportional to UD
and increases if BA and/or ISA increase, whereas the right term
of the expression is inversely proportional to UD and increases
if VF and/or iFAR increase. Given the dynamic range of its input
parameters, UD ranges between —2 and +2 (from low to high
intensity of urban development).

B. Results and Discussion

The resulting LC map is shown in Fig. 5. An overall area
of about 30 km? has been classified. Since the study area is
close to downtown San Francisco, the largest areal coverage is
observed for sealed surfaces (43.2%) and buildings (20.6%).
Together with the small coverage of the vegetation classes
(7.9%), this is a first indicator of the high overall degree of
UD found in the area. The user’s and producer’s accuracies of
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Fig. 5. Land cover map of the study area in San Francisco.

the LC map are consistently above 80.0%, and in many cases
even above 90.0%. Smaller errors of commission and omission
mainly occur because of the rather simple classification rules
applied to the image objects (see Fig. 3). Examples are the
misclassification of very high bridges as buildings (instead of
impervious) or the confusion between bare soil areas and sealed
surfaces [27], [28], [65]-[69]. Apart from these classification
errors, the overall accuracy of the LC map is 88.0% and the
kappa coefficient amounts to 0.86.

The UD map derived for the study area is shown in Fig. 6.
More than 5,000 buildings have been attributed with UD values.
While high UD values are indicated by red color, medium, mod-
erate and low UD values are expressed by orange, yellow and
green tones, respectively. The AOI used for the calculation of
UD corresponds to a radius of 250 m around the centroid of
each building object. To compute the area of individual floors
of a single building (i.e., to calculate iFAR), a mean floor height
of 2.8 m is assumed [25]. The largest patch featuring high to
medium UD values (up to +1.9) is located in the north of the
scene. Three smaller UD hot spots are distributed across the
rest of the area. Moderate to low UD values (as low as —1.0)
are found in the western, southern and south-eastern regions of
the map. In the north, the high degree of horizontal and vertical
development (ISA and iFAR) paired with the large number of
buildings (BA) and the small urban green area ratio (VF) lead
to the largest UD values for the entire scene, whereas these con-
ditions are inverted for the western, southern and south-eastern
regions of the map leading to the smallest UD values.

To further investigate the validity of the UD map, UD box
plots for and locations of six selected land use (LU) types [70]
are presented in Fig. 7. Since the radius of the AOI used is 250
m, LU polygons that are closer than 250 m to the edge of the
study area are excluded from the analysis to obtain error-free
UD statistics. A comparison of the median values (red dashes)
for each LU class suggests that UD is able to consistently re-
produce the increasing degree of urban development that can
be expected in dependence of the LU type considered. While
the median UD is low for the residential classes (RM, RH), UD
steadily rises with actual settlement density in industrial areas
(PDR) until it reaches its peak for the downtown classes in the
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Fig. 6. Urban density map of the study area in San Francisco.

north of the scene (DR, SM, DC). Besides these trends of urban
densification, Fig. 7 also shows that UD values are generally
high (between 0.2 and 1.9) for all LU classes and no negative
values occur at all. This is in good agreement with the fact that
the study area covers a central part of San Francisco. In conclu-
sion, these findings underline the validity and suitability of the
proposed UD metric as a useful measure to assess density pat-
terns in urban environments. To increase the transparency of this
contribution to the Data Fusion Contest, a dedicated geoportal
was set up that visualizes all input data, final results, by-prod-
ucts, as well as additional information layers [71].

III. COMBINATION OF LIDAR AND SAR DATA WITH
SIMULATION TECHNIQUES FOR IMAGE INTERPRETATION
AND CHANGE DETECTION

The visual interpretation of SAR images is difficult due to
distortion effects related to the SAR imaging concept, whereas
the detection of changes may be hampered by missing pre-event
SAR data, different SAR acquisition configurations (especially
changes of the incidence angle), and revisit time related to sub-
sequent SAR acquisitions.

For SAR image interpretation, raw data simulators [72] and
imaging simulators [73]-[76] have been developed. Raw data
simulators focus on radiometric correctness and consider dielec-
tric properties and roughness parameters of building materials
for the radiometric interpretation [77]. SAR imaging simulators
concentrate primarily on geometric correctness when using de-
tailed building CAD-models with simplified surface material in-
formation as input. A detailed overview of different concepts for
SAR simulation is given in [78]. So far, none of the simulators
reported in the literature enables to provide geocoded simulated
image for direct comparison with real SAR data. First attempts
in the application of simulation techniques for damage assess-
ment using high resolution SAR data are presented in [79] and
are based on building parameters extracted manually from op-
tical images. So far, LIDAR data have not been included in SAR
simulation applications in a practicable and productive way.

The use of multi-temporal medium-high spatial resolution
SAR data has been discussed in [80], [81] for unsupervised
change detection methods. For very high spatial resolution SAR
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Fig. 7. Urban density box plots for the six selected land use types [70].

images, e.g., TerraSAR-X or COSMO-SkyMed, feature based
change detection methods have been proposed in [82], [83]. One
condition of all these multi-temporal analysis is that the im-
ages should be acquired with the same viewing configuration,
in order to avoid high rate of false alarms in the final change
detection result.

A. Proposed Method

This section provides the details in three major steps: (7) in-
terpret TerraSAR-X images of a dense urban area, (if) detect
changes between LiDAR data and TerraSAR-X data, and (i)
support an object-based multi-temporal SAR change analysis
focusing on facade regularities:

1) Automatic Interpretation of SAR Images Based on Simu-
lation Techniques: The TerraSAR-X product is first projected
to a plane with constant height (frame mean height) on the
WGS84 ellipsoid. The LiDAR image is converted to a DSM
in the WGS-84 coordinate system with ellipsoidal heights.
Finally, a DEM and an nDSM are generated from the DSM
using the method described in [84]. Successfully, the SAR
simulator RaySAR [85] is used to generate a simulated SAR
image of the LIDAR DSM. Thereafter, the geoinformation of
the DSM as well as the orbit and projection parameters of the
real SAR image are used to geocode the simulated image. The
generation and geocoding of the simulated SAR image using
a DSM is detailed in [86]. Finally, the simulated signals of
reflection levels 1 and 2 are combined into one image or are
assigned to separate image layers [85] for the DSM, DEM,
and nDSM, respectively. The simulated images are: image A4
(double reflections from DSM) and images B, C, and D (sum of
all reflection levels for DSM, DEM and nDSM, respectively).
Successively, the images are combined to generate five image
layers:

* double reflection (A >0)

+ layover (D>0)

* shadow (B=0 & C>0)

* background (B=0 & C=0)

+ ground (B>0& A=0& D=0)

The layer generation flow-chart is illustrated in Fig. 8.

2) Change Detection Between LiDAR and SAR Data: as the
simulated images and the real SAR images are geocoded, they
can be directly compared. As the focus of the simulation algo-
rithm is on geometrical correctness, no comparison is carried out
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Simulated images Separate layers

All reflections

All reflections

erraSRX '
(for comparison)

5, ground

Fig. 8. Simulation of separate layers: from the elevation models (left), four
simulated images are generated (center); the combination of them yields five
image layers (right).

between simulated and real intensities. Instead, the geometric
information provided by the simulated images is used, espe-
cially in the shadow and ground layers. If there is no change
within the scene between the LIDAR and SAR acquisition dates,
SAR image pixels in the shadow and ground layers should be
mainly characterized by low intensity. Following this assump-
tion, a pixel based algorithm is performed to detect positive
changes of large extent in shadow and ground layers. To this
end, an intensity threshold is determined by a statistical analysis
of the SAR image for each layer. All pixels in the corresponding
layer in the SAR image with intensities higher than the threshold
value are considered as candidates of positive changes and will
form regions in terms of changes of significant extent (see [87]
for a detailed description).

3) Object Based Change Detection Between Two SAR Im-
ages With Support of LIDAR Data Simulation: In addition to
the pixel based change detection between LIDAR and SAR data,
simulation techniques that enable an object based change detec-
tion between two SAR images are also investigated.

For the extraction and simulation of single buildings and
single walls, isolated parts in the nDSM exceeding a size
threshold of 1500 pixels are selected as building of interest
(see example in Fig. 9(a)). Similarly to the procedure de-
scribed previously, three image layers can be generated for
each building: layover, double bounce and shadow. As the
analysis aims at individual facades, every building model
is decomposed into separate wall segments. First, gradient
magnitude (Fig. 9(b)) and gradient direction (Fig. 9(c)) maps
are calculated and are convolved with a median filter. Second,
a height threshold value is calculated in the neighborhood of
the pixel with the highest gradient magnitude, using the mean
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W,

(e) ®

Fig. 9. Separation of building walls (DSM parts) for an individual building:
(a) building extent in DSM, (b) gradient magnitude map, (c) gradient direc-
tion map, (d) building model after applying the height threshold, (e) separated
building boundary segments, (f) extracted wall segments, different colors indi-
cate different wall masks.

value of the maximal and minimal height. Third, after applying
the height threshold (Fig. 9(d)), the building boundaries (with
width of 1 pixel) are generated and separated according to the
corresponding gradient direction values. Fourth, the separated
boundary segments (Fig. 9(e)) are enlarged using the infor-
mation of the neighborhood geometry and similar gradient
direction, which yields separate wall masks (Fig. 9(f)). Finally,
the simulation of the wall models provides the respective
wall layover masks. A gradient direction difference is used
as a threshold for separating the boundary in the third step.
Low values lead to oversegmentation, for high values several
building wall segments may be considered as one wall segment
in the result. The suggested value is 30 degrees, which works
for most of the rectangular buildings.

Regarding the fagade characterization, SAR pixels located
within the wall layover masks are extracted for identifying
signature patterns. Dominant signatures in the layover area
are likely to be related to fagade structures, e.g., reflections
at window corners [85]. Point signatures representing facades
with regular structures tend to be distributed in range and wall
direction, indicating the windows arrangement in vertical and
horizontal direction, respectively. The analysis of the pattern
topology may help convert pixel-based to object-based rep-
resentations for identifying changes. Initial attempts in this
direction are indicated as follows. First, the local maxima of
the SAR amplitude image are extracted in the layover area
(set of point signatures). Then, a weighted Hough transform,
which emphasizes pixels identified as local maxima, is used
to identify linear organized signatures (along the orientation
direction of the fagade and in range direction; see [88] for
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(®)

Fig. 10. Interpretation of SAR image in dense urban area: (a) individual
building models; (b) simulated layover areas and (c) layover contours imposed
on TerraSAR-X image. Different colors indicate different building models in
the images.

further details). An object based representation of layover areas
may be of great importance, because SAR images captured
from different imaging geometries become comparable by
analyzing differences of the pattern topology (for positive and
negative changes).

B. Results and Discussion

In order to assess the functionality of the proposed approach,
the SAR simulation is combined with the LiDAR data and two
TerraSAR-X images on a dense area with tall buildings in the
northern part of the scene for SAR image interpretation and
fagade pattern recognition, and on the harbor area for change
detection between LiDAR and SAR data.

In the first experiment, 203 building models with more than
1500 pixels are extracted from the DSM. As an example, five
building models are shown in Fig. 10(a). The contours of the
corresponding simulated layover, overlapped on the geocoded
TerraSAR-X image, are depicted in Fig. 10(c). Different colors
indicate different building models. The red model is the same
building model as shown in Fig. 9. Parts of its layover area are
overlapped with signal responses from the green and blue build-
ings. It is clearly seen which layover parts and, hence, signature
patterns can be assigned exclusively to the red building. This
helps understand why the fagade of this red building in the real
SAR image has an abnormal grammar in the overlapped area
(see detailed view in Fig. 13).

For the harbor area, the simulated image, the geocoded Ter-
raSAR-X image, the separate layers, and the detected positive
changes in the shadow and ground layers are shown in Fig. 11.
For a better representation, a rectangular area (visualized by
a yellow frame) is extracted and shown in Fig. 12(a)—(d).
Compared visually to the given LiDAR data (Fig. 12(e)) and
the WorldView-2 image (Fig. 12(f)), the detected positive
change can be confirmed. Due to the speckle effect of the SAR
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(d)

Fig. 11. Change detection between LiDAR and TerraSAR-X data:
(a) geocoded simulated image from DSM, (b) geocoded TerraSAR-X
image acquired on October 13, 2011, (c) separate layers (blue: shadow; green:
ground; red: layover; cyan: double bounce; grey: background), (d) detected
positive changes in shadow (blue) and ground (green) layer.

sensor, which is not considered in the simulator, some small
false alarms can be seen in the right upper corner.

As a change detection example, the red building model in
Fig. 10 is chosen in order to analyze the appearance of point
signatures. Among the 11 separated wall parts of the building
model, two are chosen for facade pattern analysis according
to their length and gradient direction (with respect to the SAR
range direction). Fig. 13 shows the TerraSAR-X image and
the imposed set of linearly organized signatures for the two
image acquisition dates. Signature patterns extracted from
layover areas provide the following information: the regularity
of the pattern gives strong hints for the existence of buildings;
distances between point signatures indicate distances between
windows and floor heights; the number of floors and window
columns can be counted in order to characterize the building
topology. Although the signatures in the two TerraSAR-X
images are not exactly the same, the topology of the pertinent
patterns gives a strong hint that no significant changes are
present.

IV. RADIOSITY TECHNIQUE FOR REFLECTANCE RETRIEVAL IN
COMPLEX ILLUMINATION ENVIRONMENTS

Remote sensing exploitation using spectral sensors in the vis-
ible through shortwave infrared relies on the ability to determine
the reflectance of surface materials. Atmospheric compensation
methods calculate the solar illumination, both direct from the
sun and indirect from scattered sunlight. However, many targets

1331

Fig. 12. Change detection between LiDAR and TerraSAR-X data (zoom in
to rectangle marked area in Fig. 11), (a)—-(d) images corresponding to those of
Fig. 11, (e) LIDAR DSM with marked change, (f) WorldView-2 image showing
a new building (marked in red).

Fig. 13. Extracted signature pattern for the red building model in Fig. 10.
Building layover in SAR image imposed with detected Hough lines. Red
points: local intensity maxima. Acquisition dates: December 16, 2007 (upper
two images), October 13, 2011 (lower two images).

of interest are in complex illumination environments where the
surface is in shadows and, even in sunlit areas, nearby objects
can block some of the downwelling sky radiance. In addition,
the nearby objects such as building walls or trees may reflect
radiation, providing their own source of illumination onto the
target of interest. Current atmospheric compensation algorithms
do not account for these illumination conditions that are more
complex than a clear, hemispherical sky overhead for an object
parallel to flat ground.

Many spectral processing techniques require an accurate re-
trieval of the surface reflectance from the measured radiance
data. Some material detection techniques, in particular, compare
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the retrieved reflectance to reflectance spectra from a spectral
library [89]. To obtain a better estimate of surface reflectance,
more accurate estimates of the illumination on the surface is
needed. In addition, retrieval of material reflectance in shadow
regions depends solely on the indirect illumination from down-
welling scattered radiance and reflections from nearby surfaces.

This section presents a radiosity-based method to improve
reflectance retrieval under complex illumination conditions by
taking into account surface tilt, solar obscuration, and surface
to surface interaction within the scene. The background and im-
plementation of the radiosity method to solve for surface re-
flectivity is discussed in [90]. Improvements to reflectance re-
trieval are shown through application of the radiosity technique
to multi-spectral WorldView-2 data.

A. Proposed Method

Radiosity was first used to analyze heat transfer between
surfaces [91]. While computationally intensive, the technique
provided methods for computing radiant interchange between
surfaces for many different applications. Computer graphics
began to use radiosity as a way to calculate realistic looking
scenes under specified lighting conditions. As computational
capabilities have increased, radiosity has become a more ca-
pable method to create simulated scenes that are physically
accurate.

The radiosity approach uses the energy balance of the sur-
faces in a scene to create a system of equations to solve for il-
lumination [92]. Radiosity, which is equivalent to the radiant
exitance, is related to the radiance of a surface by:

B(:z:):LL(m,(f,qS)cos()é)w (1)

where L(z, 6, ¢) is the outgoing radiance at a point defined by
the location z in the direction defined by 8 and ¢. For ideal dif-
fuse surfaces, the outgoing radiance is a function of the position
and the radiosity can be simplified to:

B(z) = nL{x) 2)

The general global illumination equation describes the energy
equilibrium for a set of radiating surfaces where the radiance
leaving point « in direction (fy, ¢¢) is given by:

L(z,0,8) = Le(, b0, o) + /Q pra(i B0, o, 6, 8)
+Li(xz,0,9)cosf dw  (3)

where the first term, L., is the emitted radiance in the direction
(0o, ¢o) atpoint z, and the integral term is the reflected radiance
due to light incident at =z from all other directions in the hemi-
sphere {2 with the bidirectional reflectance distribution function
of the surface at point x, y given by pp,q.
Using the definition of radiosity and discretizing the problem
leads to the discrete radiosity equation [93]-[95] which is:
N
Bi =E;+p;-y_ FjB; “4)

j=1

where F; is the emitted radiance for a small patch 7 (set to zero
for visible through shortwave infrared wavelengths), p; is the
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diffuse reflectance at patch ¢ (unknown to be solved for), F}; is
the form factor giving the solid angle subtended by the patch
j onto patch ¢ (solved for using scene geometry), B; is the ra-
diosity of patch j (retrieved from sensor data), and NV is the total
number of surfaces in the scene (obtained during scene and sky
facetization).

The discrete radiosity equation solves for radiosity given a
surface’s known reflectivity and illumination. The problem in
remote sensing is to solve the inverse problem: given a scene
with known radiosity of each surface, solve for the surface illu-
mination to estimate reflectivity. This procedure is known as the
inverse global illumination [91]. Equation (4) can be rearranged
to solve for reflectivity. Setting the emitted radiance to zero, we
obtain the radiosity equation for reflective surfaces:

B

== ()
N
Zj:l F;iB;

Pi

This is equivalent to the ratio of the outgoing radiance to the
incoming radiance (@out/¢in)- To use the radiosity equation to
estimate surface reflectance, a 3-dimensional model of the scene
needs to be developed to determine which surfaces see each
other and to calculate the form factors, ;. This is achieved
by dividing the geometry into discrete facets including both the
objects in the scene as well as the hemispherical skydome. The
discrete facets in the 3-dimensional model are generated using
both the geometry of the scene and the measured radiance to
obtain surface facets with near uniform radiance. In addition, the
geometric model can be used to determine which sections of the
sky illuminate each facet through the form factor calculation.
The illumination on each surface can be calculated using the
radiosity equation taking into account the radiance from other
surface and sky facets that are visible from that surface.

In this research, the process to determine the surface re-
flectance using radiosity combines processing the geometry
data from LiDAR and the spectral data. Fig. 14 shows the
process flow.

The first step in the processing chain is to estimate the
surface-leaving radiance by removing the atmospheric effects
on the collected imagery. During this step, the data is con-
verted from at-sensor radiance to surface-leaving radiance,
which equate to the B; terms in the radiosity equation. For
radiometrically calibrated spectral data, such as that from
WorldView-2, atmospheric parameters are retrieved using the
radiative transfer code MODTRAN [96]. During this step, path
radiance is estimated and then subtracted from the sensor radi-
ance. The remaining signal is radiance from the target itself that
reaches the sensor. The sensor-to-ground transmission losses
are accounted for by dividing the at sensor target radiance by
a MODTRAN-derived transmission estimate to produce the
signal that would be observed from placing the sensor at the
ground, which equates to the surface leaving radiance.

During the atmospheric retrieval step, MODTRAN is also
used to estimate downwelling radiance at various azimuth and
elevation angles. This allows for an accurate representation of
the directional spectral radiance contributions from the sky.
Fig. 15 shows a true-color composite of an upward-looking
fisheye view of the MODTRAN-created skydome radiance,
generated using uniform sampling across the sky.
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Fig. 14. The Radiosity reflectance retrieval workflow uses a series of opera-
tions to estimate reflectance using a 3-d spatial model and radiance data.

Fig. 15. True-color composite of an upward-looking fisheye view of the MOD-
TRAN-created skydome radiance, generated using uniform sampling across the
sky.

The directional sky data is interpolated to create a facetized
skydome consisting of approximately 25,000 facets, which
model changes in brightness across the skydome. The use of
a facetized skydome with directional radiance contributions
allows for more accurate illumination prediction in shadow,
where the brightest portion of the sky (nearby the sun) is
generally blocked by raised surface geometry in the scene and
a Lambertian sky assumption would provide incorrect results.
The facetized skydome is modeled at a sufficient distance such
that, when traversing from one spatial location of a scene to
another, the observer’s perspective of the skydome does not
change.

The next step in the processing chain is to facetize the scene
into discrete patches that have uniform radiance and are on the
same surface. An initial scene facetization is created using the
set of XYZ coordinates from the LiDAR point cloud or other
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rasterized elevation data. This surface is registered with the ra-
diance data, and then the facets are iteratively divided until each
facet is radiometrically uniform across its surface. This division
breaks the scene into facets that are sunlit or in shadow and min-
imizes any issues that are caused by nonuniform intensity across
the surface as it interacts with other surfaces within the scene.

The pixel to facet map is generated by using the facetized
elevation data and the registered ground-leaving radiance data.
Then, radiosity values are assigned to each facet equal to the av-
erage surface-leaving radiance of pixels within that facet. Each
facet is also tested to determine if it is shaded or in direct solar
illumination. The sun is treated as a point source using the di-
rect solar MODTRAN output term, retrieved during the initial
atmospheric characterization step as the radiant intensity. The
test examines whether the center (x,),z) location of each facet
either points away from the sun, or is obscured by other objects
in the scene that block the line of sight between the facet’s center
and the solar location. If either test is true, that facet is flagged
as being in shadow.

For facets not seen by the sensor, such as the sides of a
building, radiosity is estimated using either the average scene
radiance or separate averages from the visible sun-lit and
shaded facets. Even though a surface may be hidden from the
sensor, it may have a significant impact on the illumination of
objects observed within the scene, such as a potential target
of interest in shadow adjacent to a large building. Therefore,
an accurate representation of the unseen surface’s radiosity is
important to estimate.

The last unknown in the radiosity equation is the form
factor between scene facets and other scene/sky facets, F;. An
OpenGL implementation of the hemi-cube algorithm [97] has
been integrated into the MATLAB code to efficiently calculate
the form factors between each facet to all the other facets.

The sensor data can then be converted to reflectance by
dividing the retrieved ground-leaving radiance at the pixel
level by the illumination estimate of the pixel’s assigned facet.
The proposed method is validated using scenes generated from
DIRSIG [98].

B. Results and Discussion

The proposed technique is applied to the WorldView-2 image,
as well as co-located LiDAR data on a 128 by 128 pixel subset
that includes a large shadow area as shown in Fig. 16. The
use of a subset of the full data reduced run-times and memory
requirements.

The digital surface model (DSM) generated from the data or-
thorectified to a 0.5 m x-y grid is used to create the geometry
model. Fig. 17 shows the DSM of the area processed.

MODTRAN and the WorldView-2 relative spectral response
functions are used to calculate the transmission and path radi-
ance for each band in order to convert the WorldView-2 data to
surface-leaving radiance. Then, an in-scene correction is used
to further refine the values. The in-scene techniques rely on
the atmospheric effects’ invariability between nearby pixels and
the presence of two pixels of the same material in sunlight and
shade. Within this step, the user manually selects two back-
ground pixels of the same apparent material, one in sun and the
other in shadow. The path radiance and transmission estimates
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Fig. 16. The image subset used for the calculations has a large shadow cast by
the building in the middle of the image.

Fig. 17. A DSM model created from the LIDAR data provides the basis for the
geometry model.

are modified until the radiosity retrieval for those two pixels
results in the same reflectance being retrieved for both pixels.
The fundamental basis of this approach is the fact that when
the proper atmosphere and scene geometry is applied, the same
reflectance should be obtained for a given material using the ra-
diosity approach, regardless of whether it is sunlit or in shadow.
Lambertian reflectance is assumed for all in-scene surfaces.

Once the data is converted to surface-leaving radiance, the ra-
diosity technique is applied to the WorldView-2 subset selected
for analysis. The facetization of the chip from the LiDAR data
and surface-leaving radiance resulted in 3001 facets. Fig. 18
shows a wire-frame representation of the facets. A pixel to facet
map is then created, which is used to assign radiosity values to
the various scene surfaces, as well as determine the illumination
on a per-pixel basis for the reflectance retrieval.

A reflectance retrieval using the radiosity equation is then
performed. A true-color (RGB bands 5,3,2) composite of
reflectance output obtained by the radiosity process (Fig. 19)
shows the increased detail revealed in the shaded area. Relative
spectral color and intensity of the road matches well between
sunlit and shaded areas, but issues in reflectance retrieval persist
at the shadow edges where pixels may be partially sunlit.

To further demonstrate the improvements, Figs. 20 and 21
show principal component (PC) transforms of the radiance data
and the retrieved reflectance, respectively. The transform of the
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Fig. 18. The facetization process creates a new geometry model that accounts
for surface orientation and the measured radiance differences.

Fig. 19. The image subset after applying the radiosity reflectance retrieval
shows detail in the shaded region with structure similar to the adjacent sunlit
region. Edge effects show up as dark pixels on the transitions between sunlit
and shaded areas.

Fig. 20. A color composite from the first three principle components of the
radiance transform shows the similar materials in the scene. The shaded region
shows up as a different material than the surrounding surfaces.

radiance data shows little detail in the shaded region and ap-
pears as a different material class than the adjacent roads. After
the radiosity reflectance retrieval, the PC transform shows the
shaded region to more closely match the adjacent roads.

V. CONCLUSION

This paper summarized the outcome of the 2012 IEEE GRSS
Data Fusion Contest, including the contributions of the three
winning teams:

1) InSection I, a new metric to assess urban density that takes

into account all three spatial dimensions of an urban area
was proposed. Due to the 3-dimensional nature of human
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Fig. 21. A color composite from the first three principle components of the
retrieved reflectance shows improved detail in the shaded region. The area now
appears similar to the adjacent roads rather than a different material.

settlements, urban planning and decision making should be
based on information sources that account for both the hor-
izontal and vertical dimensions of a city to enable an inte-
grated and more holistic assessment of the builtscape [21].
The derived UD map and statistics highlight the validity
and suitability of the proposed metric as a useful measure
to evaluate human settlement density and its distinct spa-
tial patterns for different types of urban LU.

2) Section III illustrated a simulation based method for
image interpretation and change detection, jointly using
LiDAR and SAR data. To this end, the LIDAR data was
decomposed into DSM, DEM, nDSM as well as indi-
vidual building and wall models. Exploiting the simulated
images of all these models, different layers (double re-
flections, layover, shadow, ground and background) are
generated for the whole scene as well as for single build-
ings. Analyzing the TerraSAR-X image in the shadow and
ground layer, positive changes were detected with respect
to the LiIDAR data. Analyzing building wall layover in
TerraSAR-X images, signature patterns were identified,
serving an object based description of fagcades. The results
indicated that simulation techniques can support SAR
image interpretation as well as change detection for local
scenes and individual urban objects.

3) In Section IV, the radiosity technique was applied to re-
trieve reflectance for a subset of the WorldView-2 and
LiDAR data. The results showed an improved capability
to characterize shaded regions, demonstrating the utility of
modeling illumination from nearby objects to improve the
results for shaded regions.

As a final remark on the Contest, even though several different
research topics were investigated by the various teams, none
of the manuscripts exploited the three provided data sets in
full synergy. In fact, the bulk of contributions either used
multi-spectral and LiDAR or SAR and LiDAR data only.
This may demonstrate the great difficulties encountered when
fusing VHR multi-spectral and SAR data or fusing the three
modalities together.

One possible explanation for this is that the information con-
tent in SAR data is typically characterized by three types of
geometric effects, namely layover, shadow, and foreshortening
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[99]. These effects are more evident in VHR SAR imagery cov-
ering urban areas because human settlements are characterized
by distinct and very individual 3-dimensional structures that
comprise regularly and irregularly arranged LC objects of dif-
ferent shape, size and/or orientation [100]-[102]. Only when the
viewing direction of the SAR and optical sensor is orthogonal
[103], the fusion of these two data is possible and reasonable.
However, this configuration is not the usual case. In contrast, the
fusion of SAR and LiDAR does not suffer from such problems
as the geometric projection is already considered in the SAR
simulation procedure.

In the context of urban mapping with optical and LiDAR data,
the additional information provided by VHR SAR systems (e.g.,
intensity, texture, coherence, etc.) can actually be of little help if
geometric distortions predominate. This is because these effects
hold the potential to hamper nearly every stage of the analysis
task, including precise coregistration of the different data types,
data fusion at different levels, and most importantly, feature ex-
traction and classification.

It is also noteworthy that the fusion of all three data sources
is application driven and may not be of interest for all possible
studies. For instance, for the adjoint radiosity processing, SAR
data was not considered as it does not add any useful informa-
tion to improve surface reflectance retrieval.
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