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Abstract

Rock mass characterization requires a deep geometric understanding of the
discontinuity sets affecting rock exposures. Recent advances in Light Detection and
Ranging (LiDAR) instrumentation currently allow quick and accurate 3D data
acquisition, yielding on the development of new methodologies for the automatic
characterization of rock mass discontinuities. This paper presents a methodology for the
identification and analysis of flat surfaces outcropping in a rocky slope using the 3D
data obtained with LiDAR. This method identifies and defines the algebraic equations
of the different planes of the rock slope surface by applying an analysis based on a
neighbouring points coplanarity test, finding principal orientations by Kernel Density
Estimation and identifying clusters by the Density-Based Scan Algorithm with Noise .
Different sources of information —synthetic and 3D scanned data— were employed,
performing a complete sensitivity analysis of the parameters in order to identify the
optimal value of the variables of the proposed method. In addition, raw source files and
obtained results are freely provided in order to allow to a more straightforward method
comparison aiming to a more reproducible research.

Keyworkds: LiDAR, rock mass, discontinuities, semi-automatic detection, 3D point

cloud, sensitivity analysis.

1. Introduction
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Remote sensors such as Light Detection and Ranging (LiDAR) and Differential SAR
Interferometry (DInSAR) have become an essential tool for the landslide analysis over
the last decade (Abellan et al., 2014; Jaboyedoff et al., 2012; Oppikofer et al., 2009;
Rosser et al., 2005; Viero et al., 2010). LiDAR sensors, also known as laser scanners,
allow the acquisition of high resolution (density of points up to 10* points/m?) and high
accuracy (std. dev. <1 cm at 100 m) three-dimensional information of the ground
surface. Such systems allow obtaining the coordinates (X, Y, Z) of the points of a
surface at high speed (wp—te—more than 222.000 measurements per second) from a
considerable distance of acquisition (up to 6.000m). This sensor has revolutionized the
acquisition of rock slope parameters that play a key role in the global and local stability
including the orientation, spacing, persistence and roughness of the-discontinuities. Not
surprisingly, the number of publications dealing with the semi-automatic extraction of
3D features has exponentially grown in the last five years (Garcia-Sellés et al., 2011;
Gigli and Casagli, 2011; Jaboyedoff et al., 2007; Khoshelham et al., 2011; Lato et al.,
2009; Lato et al., 2010; Lato and Voge, 2012; Olariu et al., 2008; Slob et al., 2005;
Sturzenegger and Stead, 2009b; Sturzenegger et al., 2011). Nevertheless; Nevertheless,
in order to enable fast advancement in the application of the sensor in disciplines such
as rock mechanics, geotechnics and earth sciences, development of new algorithms is

needed (Abellan et al., 2014).

This paper proposes a new approach for the semi-automatic identification and extraction
of rock slope planar features —i.e. the discontinuity sets affecting rock mass stability—
using 3D point cloud data. The main novel contributions of the proposed method are:
(a) the user-supervised removal of noisy points through the creation of a coplanarity
test; (b) the semi-automatic identification of discontinuity sets using a Kernel Density
Estimation (KDE) Analysis; (c) The automatic extraction of single discontinuities
through a density-based clustering algorithm; (d) a complete sensitivity analysis of the
parameters playing a key role in the method; and (e) the public availability of the
complete 3D RAW and processed data sets used in this publication in order to provide
method validation for other researchers in www.3d-

landslide.com/projects/discontinuity/
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1.1. Previous studies on discontinuity characterization from 3D

point clouds.

Rock slope discontinuities play a key role in strength, permeability of rock masses and
in the stability of surface and underground excavations (Harrison and Hudson, 2000;
Hoek and Bray, 1981). Thus, a thorough understanding of the properties of
discontinuities, included their orientation (i.e. dip and dip direction) is crucial in rock

engineering applications.

In order to assess the global s-quality of a rock mass, several authors proposed the use of
geomechanical classifications more than twenty years ago. Rock mass classifications
are means for the evaluation of the performance of rock masses based on their most
important inherent and structural parameters (Pantelidis, 2009). In practice, a wide
number of geomechanical classifications for slopes exist such as those proposed by
Bieniawski (1989), Romana (1985), Hack et al. (2003) and Toméas (2007). These
classifications require precise information of a series of slope parameters —such as
discontinuities orientation, length-and-persistenece—, which are classically obtained in
tedious fieldwork campaigns using a geological compass. Some well-known techniques,
such as the stereo photogrammetry, have allowed the measurement of orientations of
individual discontinuities since the 1970s’ 70°s—deeade (Rengers, 1967). In addition,
basic photogrammetry principles and pattern recognition routines can be used to model
surfaces in 3D, which can be very useful in the rock mechanics field. Unfortunately,
these techniques require tedious and time consuming outlining of discontinuities (Slob

et al., 2005).

At the beginning of the XXI century, some authors suggested the possibility of
accurately obtaining discontinuity orientation from 3D point clouds obtained by a total
station (Feng et al., 2001). Since then, and thanks to the wide accessibility of 3D
sensors like LIDAR, different approaches were developed for obtaining the orientations
of diseontinuity discontinuities. Early studies proposed the use of least square method to
a subset of points (Abellan et al., 2006; Fernandez, 2005; Sturzenegger and Stead,
2009a). Some other authors proposed the calculation of normal vectors to a series of
2.5D interpolated surfaces (Kemeny et al., 2006a; Slob and Hack, 2004). Recently, the
calculation of the normal vector associated to a subset of the 3D point cloud is widely

accepted (Ferrero et al., 2009; Garcia-Sellés et al., 2011; Gigli and Casagli, 2011;
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Jaboyedoff et al.,, 2007). More specifically, Jaboyedoff et al. (2007) proposed the
calculation of the normal vector orientation for every point and its coplanar neighbours
using the principal component analysis method (hereinafter PCA) This concept is also
used to isolate multi-scale objects from LiDAR data (Ioannou, 2012). Other approaches
calculate the orientation for each node in the TIN (Slob et al., 2005; Voge et al., 2013)
or are based on the searching of volumetric pixels (voxels) and subsequent calculation
of the planar orientation (Gigli and Casagli, 2011). Remarkably, any of the above
mentioned studies utilise kernels for the estimation of the density function, meaning that
those points belonging to less sampled discontinuity sets can potentially be overlooked

using commonly used methods.

definttion- Most of the current discontinuity detection methods use triangulated irregular
network (TIN) to simplify the surface (Gigli and Casagli, 2011; Lato et al., 2009; Slob

et al., 2007). Reversely Conversely, our proposal uses each-3D-peoint-of-thepoint-clond

real 3D information contained in every point and its corresponding neighbours to see

the local differences in identify-the-different-sets-eontrolling-the geometry of the slope.

Some authors offer acommercial software packages, such as the-pioneer-Split-FX (Slob
et al., 2005) and Coltop-3D (Jaboyedoff et al., 2007). Some recent studies include the
use of a Graphic User Interface (GUI) in Matlab environment such as the recently
developed DiAna (Gigli and Casagli, 2011) or PlaneDetect (Voge et al., 2013), but the
use of these software is not publicly available. Other applications for the geomechanical
classifications include: (a) the automatic detection of discontinuity spacing (Slob and
Hack, 2004; Slob et al., 2005), which is based on the cluster analysis of sets of
discontinuities (Roncella and Forlani, 2005; Turner et al., 2006); (b) the removal of
objects characterized by chaotic shapes—such as vegetation—together with the
calculation of other parameters of the geomechanical classifications —such as
spacing/frequency and persistence—which can also be (potentially) achieved using
tools such as 3D-Veros (Brodu and Lague, 2012) and DiAna (Gigli and Casagli, 2011)
seftwares. Unfortunately, only a limited number of benchmarks is publicly available —
such as the Rockbech common repository described in Lato et al. (2013), so there is a
need for a comparative performance analysis of the existing algorithms mentioned in

this manuscript.
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The paper is organized as follows: (a) an introduction to LiDAR techniques and their
application to discontinuity extraction is presented in section 1; (b) the methodology for
discontinuity extraction and the presentation of the case studies used in this paper are
presented in section 2; (c) Section 3 shows a sensitivity analysis of the method using
simple geometries (case study A); Section 4 shows the application of our method to a
more complex scenario (road cut slope, case study B). In addition, the methods’
parameters are calibrated and then their processing parameters values are proposed.
Finally, section 5 discusses and summarizes the results and explores the future lines of

research.

2. Methodology

The proposed method aims to detect planes—thatform the-structural discontinuities
R’-using 3D point clouds than can be typically obtained from LiDAR sensors, 3D
digitizers, etc. Unlike other methodologies, our proposal uses, throughout the workflow,
along—the—werkflow the “true” 3D information contained on the LiDAR point cloud,
instead of using interpolated 2.5D mesh surface. Fhe-discontinuities-are-identified-and

so-al-the HiDAR-information—is-maintained: Given —Thereby—gtven the set of raw data
points (X, Y, Z) from the observed scene (hereinafter ‘P’), if the slope surface is mostly
defined by discontinuities, the outcrop points can be appropriately ordered into sets

which define planes. These planes define the discontinuity sets.

The method basically performs a compass data acquisition for each point, but only if it
is surrounded by other coplanar points. Therefore, there is an obvious advantage: it is
possible to obtain millions of virtual compass measurements leetares in a few minutes,

even in otherwise #-non-accessible areas.

The proposed methodology is developed through three main steps (Figure 1):

a) PART A - Local curvature calculation: Censisting—in-this consists of a nearest
neighbour searching and # the determination of the discontinuity orientation in
every point. This task is described in section 2.2.

b) PART B - Statistical analysis of the planes: this consists of eensisting—in the
determination of the principal orientations, main-ertentation—of which represent
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are-the different discontinuities sets affeeting that affect to the rock mass. The
next step is and—n the identification of those points that belong to a common
discontinuity set. This part, developed in section 2.3., requires the user’s
supervision.

c¢) PART C- Cluster analysis: localization of the points that define different clusters
in the space and calculation of the outcrop plane equations. This last part is

explained in section 2.4.

/
PART A - Local ¢ 2.2.1. Nearest Neighbour Searching (knnsearch)
curvature < ¢ 2.2.2. Coplanarity test
calculation ¢ 2.2.3. Plane adjustment and calculation of the
(section 2.2) L normal vector (PCA)
PARTB- [
statistic . . .
2.3.1.D t timat KDE
analysis of the < :2 3.9 Sens..lAy e |ma' o ('d )'f' .
plane poles .3.2. Semi Automatic set identification
(Section 2.3) L
PART C - Cluster ¢ 2.4.1. Clustering (DBSCAN)
analysis ¢ 2.4.2. Plane generation (PCA)
(section 2.4) e 2.4.3. Error fitting check (tolerance)

Figure 1: Flow chart of the proposed methodology.

2.1. Description of the datasets

Two different series of 3D datasets were employed used in our study: experimental
datasets and real outcrop measurements. The first was obtained under controlled
laboratory conditions and the second one is a more complex dataset corresponding to a
portion of a real rock mass. We discarded using synthetic datasets due to its-their over-

simplistic characteristics.

2.1.1. Case study A
We first scanned a series of well- known geometrical solid objects using a 3D digitizer
(Konica Minolta, Vivid 91) from University of Lausanne, Switzerland), including a cube,

dodecahedron, icosahedron, octahedron, hexagonal pyramid, hexagonal prism,
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octagonal prism and a triangular prism. Data acquisition was performed through
progressive rotation of the figures around a fixed platform axis and a subsequent
scanning. We carried out a total of 10 seanners-scans with a mean distance of 1406 mm
to the figure. The Line of Sight of the 3D digitizer was inclined about 30° to zenith. As
a consequence: (a) the density of points on one of the families, the horizontal planes,
was higher than on the other families due to the superposition of different scans, which
lead to an overrepresentation of these planes; (b) a higher alignment error was also
observed in these overlaid planes. Both effects are consistent with TLS data acquisition

in real case studies.

Then, from these figures, we selected two representative geometries: a cube and an
icosahedron (Figure 2a and b, respectively). The cubic geometric shape, which is
formed by 6 square facets grouped on three orthogonal discontinuity sets, was
represented by 60.488 points. The icosahedron, which is a type of polyhedron formed
by 20 triangular facets grouped on 10 different discontinuity sets, was represented by

37.226 points.

These simple geometries allowed the comparison of our algorithm with the true
geometries known in advance. As the data was acquired under laboratory controlled
conditions, it was possible to evaluate the quality of the methodology through

comparing our results with the real plane orientations.

Finally, as these figures are formed as a combination of perfectly plane surfaces, it was

possible to test the values of the standard deviation of the error in each single plane—n

proved-inappropriate-for some-eases-due-to-alignments: The normal vectors calculated at

each of the 3D points allowed us to properly identify not only the normal vectors
corresponding to flat surfaces such as discontinuities, but also the normal vectors
corresponding to non-flat regions surfaees, such as the vertex and the edges between

planes.
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Figure 2. Experimental datasets: scanned geometries employed in the case study A. (a) cube (50 mm side); (b)
icosahedron (50 mm height).

2.1.2. Case study B

The application of our method to a real case study was carried out using data from
publicly available LiDAR data at Rockbench repository (Lato ef al., 2013), providing
the possibility to compare our results performance to other researchers. In addition, this
case study has been used by other authors in several published papers for extraction of
rock mass characterization information (Kemeny et al., 2006b). This case study consists
in a real rock cut located in Ouray, Colorado, USA (Figure 3 and Table 1). As will be

described later, in this case study, our method detected four different discontinuity sets.

Table 1. Properties of the Case study B datasets

Physical Setting Roadcut
Location (close mjr. City) Ouray, Colorado
Lithology Quartzite
Scanner Optech
Laser Type Time of flight
Year scanned 2004

# of scan locations 4

Point spacing <2cm
Number of points 1,515,722
Collected by John Kemeny
Dataset 10a
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Figure 3 — Real road cut slope used in case study B. Image from Rockbench repository (Dataset 10a).

2.2. Part A -Local curvature calculation

The method requires as input the raw data points P, where (P;) is a point member of P.
Given a subset of neighbour points Q; (where (P;) is a member of Q; and the size of Q; is
n, points), it is possible to calculate the-its best-fit adjustment plane o fer-thesubsetQ;
(Figure 4).

Figure 4. Subsets and normal vector orientations. The sets Q; (left) and Q; (right) are defined by the points (P;)
and (P;) and their respective neighbourhoods. «, and p are the orientations of their respective sets Qi, Qj and
P.
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The proposed method calculates a normal vector for each 3D point. Fhe—mest
i i ation- Thus,

the above-described discontinuity planes identification is performed through three main

phases:

a. For each i point of the raw data (P;), the K-nearest neighbours (knn) have to be
found in order to create the set O; (subsection 2.2.1).

b. For each set Q, the coplanarity condition has to be checked (subsection 2.2.2).

c. For each set Q; a plane adjustment has to be performed in order to calculate its

normal vector (subsection 2.2.3.).

These phases are described in detail in the next subsections.

2.2.1. Nearest Neighbour Searching

The search ferP; of neighbours is usually carried out using two different approaches:

fixed distance definition—the-distance—fromP;-to-g-isless-or-equal to-asearchradius;
rwhich—is—user-defined—; or fixed number of neighbours definition——in—which-the

point-g-is-one-of the knnnearestpointsto-P,—. Some errors may arise when using the
first approach due to the heterogeneity of the density of points (Lato et al., 2010).
Reversely-Thus, a fixed number of neighbours approach was preferred in our study.

The MATLAB function knnsearch uses an algorithm that provides a quick and efficient
way to find the knn nearest neighbours by a selected norm (Friedman et al., 1977). In
the proposed approach, the knn neighbours are calculated by using knn search function
and the euclidean distance. Thus, after this step, for each i point of the raw data P;, a

subset of knn neighbour points is defined as Q.

Summarizing, in this section we have identified the k nearest neighbours for each point
of the 3D point cloud. The next step is to check if that set of k+1 points are coplanar or

not.

2.2.2. Coplanarity test

Due to the fact that the method considers every point and its neighbours as a plane
subset candidate, it is advisable to test if the Q; sub-set of points (defined in previous

steps) is coplanar (or not). This validation test must be carried out prior to o orientation

10
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calculation (Q; associated). If the sub-set of points Q; is coplanar, the rest of the process

will continue; otherwise the sub-set O; will be rejected fer-further-analysis.

The coplanarity test is based on the Principal Component Analysis (PCA). Given a 3D
set of points, the princomp MATLAB function, which allows the implementation of
PCA, determines its eigenvalues (A;,A2,A3) and eigenvectors (V1,V2,V3). The proportion
of variance accounted by the first £ components Hy is determined by eq.(1)—while-the

uwnexplained-variance-is-determined-by-eg—2)(Rencher and Christensen, 2012):

>4
>

H, =

@

Assuming that a portion of our measurements are arranged in a plane (7) in a R’space,
there will be two dimensions able to explain the majority of the data. Thus—with-+=2;
he-proportion-of variance-explained-by-the wo-dimensions-will-be-close-to-1- The
third eigenveetor dimension will explain the error present in the data. If the surface is
not flat or the instrumental error is relevant enough, the third dimension will acquire

relative importance to the first two.

In order to know if a set of points is coplanar or not, the deviation parameter (77) is

defined by eq (2):

__ A
bt

2

The parameter tolerance (7j,qy) is defined as the maximum allowable deviation in a
subset of points, such that the subset plane is reasonably considered a plane. The 77,
value is established through a sensitivity analysis with real data under certain test

conditions. It is commonly accepted that if a set of principal components have 80% or

represented(Rencher and Christensen, 2012). Hence, a 7,,.x value of 20% is proposed.
In those cases in which 77> 77,,.,, the sub-set is rejected for-further-analysis.

11
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Summarizing, in this section we have identified those points which are coplanar with
their nearest neighbours. The next step is to calculate the orientation of the coplanar set

of points.

2.2.3. Plane adjustment and calculation of the normal vector

Note that, subsequently, a parameters calibration will be performed in this paper. Once
all those subsets of coplanar points have been found, the next step is the calculation of
the best-fit adjustment plane. The algebraic expression is shown in eq (3), where A, B,
C are the three components of the unit normal vector to the plane and D gives the

perpendicular distance from the origin to the plane.
Ax+ By+ Cz+D=0 [A,B,C,D]eR

©)
Some authors such as Gigli and Casagli (2011) calculate the plane equation by the
singular value decomposition (SVD). In our case, since the PCA has been calculated in

a previous step ef-eur-analysis, the plane is defined in a more efficient way through the

eigenvector V; (4).

V, =(A,B,C)

4
Summarizing, at this section, we have computed the orientation of the previously
identified sets. The next step is to calculate the most representative orientations of the

3D points and their k nearest neighbours.

2.3. Part B: statistical analysis of the planes

The subsequent methodology Fhis—part is based on the expected parallelism of the
normal vectors associated to the points. Let’s consider a set of points ; associated to a
point (P;) that belongs to a discontinuity defined by an unknown plane . If « is the
best-fit plane of 0, the orientations of the planes « and 7 must-are expected to be close.
Similarly, let’s consider a different subset Q; with the same size than Q; associated to a

point (P;) member of P. This set is-also part of the 7 plane and it is possible to calculate

12
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its best-fit plane B8 and the three planes (7, @ and ) having a close orientation (Figure

4).

The statistical analysis ef-the-density—of-the—peles—was is performed by means of the

stereographic projection of the planes poles. In order to define the main discontinuity
sets: (a) we calculated a normal vector for each plane and converted it to stereographic
projection (Lisle, 2000); and (b) we calculated the density of the poles for each region

of the stereographic projection; and (c) we calculated the local maxima.

2.3.1. Density estimation

Kernel density estimation (KDE) is a non-parametric way to estimate the probability
density function of a random variable. In order to estimate the multivariable
nonparametric density function, Silverman (7/986) demonstrated a higher performance
using KDE than using classic histograms. Thus, the method implementation uses the
Matlab kde function kde2d (Botev et al., 2010) by a Gaussian kernel. This script allows:
(a) the automatic calculation of the width of the kernels (e.g. bandwidth); and (b) the

computation of their density.

(a)

13
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Figure 5. (a) Raw Data 3D view of a 5 cm side cube, 60.488 points. Plotted data were scanned at laboratory
using a microlidar; (b) Normal vector poles stereographic projection, knn=15. Side and edge poles zones are
labelled.(c) and (d) Density estimation via kernels, isolines each 2%. Netice Note that the identification of the
main discontinuity sets is able to filter out the normal vectors calculated at the edges between planes.

Figure 5b shows the stereographic projections of the poles of the normal vector of an
experimental dataset consisting in a five centimetres side cube scanned at laboratory
using a 3D digitizer (Vivid 3D, Konica Minolta). Note that for the cube shown in Figure
5b the poles show three main orthogonal discontinuity sets (J1: 223.87°/4.07°; J2:
021.03°/89.47°, J3:290.91°/89.62°). Figure 5c also shows the calculated density
function using the kde method. In this figure, the normal vector poles are clearly

clustered into three orthogonal discontinuity sets as it was expected;—seo-tis—needed-to

At this point, the density of the poles is known. Therefore, we can identify the peaks

which reasonably represent the orientations of the 3D point cloud and its neighbours.

2.3.2. Semi-automatic set identification
In this step, the method assigns a principal orientation to every single point in the point
cloud. If the method detects that the point is not represented by any principal

orientation, there will be no assignment.

asstened- The scheme of this step is summarized in Figure 6. Usually, the density

function analysis shows many local maximums, but only a few are principal poles,
which is due to the fact that the existence of reading errors and singular points of curved
surfaces imply the dispersion of the poles. Hence, two requirements, which can be user-

supervised, allow us to define a local maximum as a principal pole:

a) Condition num. 1 (Cone filter): the user defines a certain value (y}—whieh—is

smaler—than—or-equalte The angle formed by two principal vectors must be
higher than this value forman-inter-nermal-angle.

14
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ACCEPTED MANUSCRIPT

b) Condition num. 2 (max. poles filter): The user indicates the maximum number of
discontinuity sets (n,) that can be established. The system filters and accepts the

n, principal planes with higher density.

Pole 1 Ppal Poles inside
. Pole 1 the cone

Ppal Pole 1 Ppal Pole 1

: olei P P . o p Polei oles inside
o : HS Pl . ne -
P + P i th
ole i+1 IPolei Ppal Pole i Y, filter 1. he cone

v, filter

: : . Poles inside
Ppal Pole m Ppal Pole np P Polen

Pole n

Principal poles calculation Poles assignement

Figure 6. Scheme of the discontinuity set calculation.

Figure 7 shows the poles density function of aa a cube in which peaks are numbered
from the highest to the lowest value of the density function (knn=10 and 7,,,=20%). In
Figure 7a the density function obtained applying no filters shows many local maxima
(labelled from 1 to 20-9). By accepting a minimum y; value of 20°, a cleaner plot of the
principal planes is obtained (Figure-7b). Specifically, the relevance of discontinuity sets
1, 2 and 3 on the other is obvious, thus the maximum number of discontinuity sets is set

to 3 (Figure 7¢ b).

Figure 7. Poles density of the cube shown in figure 2, (a) non-filtered{b)-eption-num-1-conefilter-using
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¥.=20%e)(b)cone filter (y;=20°) and max. poles filter(n,=3). Netice Note that the labels (J; to Jy) indicate the
location of the calculated relative maximums. Isolines are plotted each 2%.

The next step consists in-of the segmentation of the point cloud: we assign a label to
each point of the point cloud according to the closest principal families. For every single
point, we look for the discontinuity set that provides the minimum angle () between the
associated normal vector and the assigned principal plane normal vector. A threshold is
then defined in order to limit the maximum allowed value (7). As an example, Figure 8
shows the application of these criteria for the recognition of the discontinuity sets of the
cube. Points are classified according to their closest poles in Fig 8a; a threshold is then

defined in Fig 8b (5, = 30°), classified points are automatically filtered out.

(b)

Figure 8. Stereographic representation of the principal poles assignment of the cube dataset (a) Non-filtered poles,
59.705 poles; (b) y=30° cone filtered, 57.134 poles. Netiee Note that this step is able to filter out the normal vectors
calculated at the edges between planes.

At this point, we have identified the principal orientations of the 3D point cloud and its
neighbours. The corresponding orientation has been assigned to each point depending
on the point and its neighbours’ orientation. We then discarded those points having an
orientation considerably different to any principal pole (i.e. higher than y). Since we
have extracted the points belonging to a discontinuity set, the next step is to identify the

3D point clusters of each DS.
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2.4. Part C: Cluster analysis
Given a discontinuity set i it is necessary to find its data subset R; whose points are
grouped according to planar clusters (Figure 9).The obtained clusters are members of

the discontinuity set / which are defined in the space through hits its plane equation (3).

a) [ b) Caicuated clanien €) Cavatnd cuters

1630
1700,
1107

| 04

T30 g~

Figure 9. Identification of the different clusters for the three automatically recognized sets of planes of the cube
shown in figure 2.-Netiee Note (left figure) that only the upper face of the hexaedron is recognized by the software
because no points are available from the lower face, which is a shadow area for LiDAR.

2.4.1. Clustering

For the clustering of the 3D datasets, we employed the “Density-Based Scan Algorithm
with Noise” (DBSCAN) (Ester et al., 1996). This clustering algorithm for class
identification in spatial databases has been proven in a previous successful application
in the processing of LiDAR point clouds (Tonini and Abellan, 2014). This algorithm
requires as input the following parameters: (a) ¢, which is the maximum distance
between two points to consider them as neighbours; (b) Min-pts, which is the minimum
number of neighbours of point ¢ to consider g as a core point. It is known that large
differences in densities might affect the application of automatic methods applieations
(Ester et al., 1996; Lato et al., 2010). Although in order to develop this algorithm it is
assumed that density of the point cloud is homogeneous, the effects of heterogeneous

density of measurements on the results will be analysed later.

Ester et al. (1996) recommend to set the parameter min-pts equal to 4. In addition, &
should be determined considering the distance of the 4t neighbour for each
discontinuity set. The method calculates all the 4t neighbour distances for all the
accepted points members of a diseontinuity—set principal plane. ¢ can be considered as
the mean, maximum or other statistically representative values. Maximum value should

be inappropriate because of the existence of noisy extreme values. As the method works
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with raw data, the number of distances is high enough to consider a normal distribution,
so the proposed & value is the 4t neighbour distances mean plus two standard

deviations.

A real case cluster analysis may find a high number of small clusters. It is possible that
the user is only interested in big clusters so the method offers the option of discarding
small clusters stating a selection threshold named parameter points per cluster,
hereinafter ppc. Thus, only clusters sized by a number of points equal or higher than ppc

will be in the output.

At this point, we have calculated the spatial clusters of each discontinuity set. The next
step is to calculate the plane equations of these discontinuities to mathematically define

the planes.

2.4.2. Plane generation

Plane generation is carried out as follows: given (a) a set of points which belong to a
discontinuity set i —hereinafter R— and (b) a set of points members of a cluster j
which constitute a subset of R;—hereinafter R;—, then (c) we will find the best-fit plane

of R;;, which plane equation can be defined by the algebraic expression (5):
Ayxx+B,xy+C,xz+D; =0
®)

k
We apply the PCA to the k points P which have coordinates (Xijk, Yijk, zijk),and are
Y

members of the no empty set R;;, obtaining the principal vectors V3 .The parameters 4;;,

Bjj and Cj; are calculated using eq.(4). It is also possible to calculate these parameters
using the normal vector of the discontinuity set principal pole, so all the clusters will
exactly have the same orientation. The independent term D;; of the plane equation (3) is

computed by the least square method which is mathematically defined by (6)

A__ n B n C n

__ k_ g k_ 7§ k
D, = inj Z%j Zzij

n o n o n o

(6)
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448  Where n is the cluster size of R;;. The relations between the indexes are shown in Figure 10.

Raw data
P

Principal
plane id: i,
Ri

Cluster id:
i Rij

Pointid: k,
Pijk

449

450 Figure 10: Relations between indexes.

451  2.4.3. Error fitting checking

452 Once the R; plane equation has been calculated, it is convenient to check the quality of

453  the data fitting. Given that I}3 =1 as-reg:(4), the fitting error er; is defined as the point

454 plane distance (7).

455 et = Ax, “+D

ik

k k
+By, +Cz

ik

456 )

457  Therefore the errors er;; associated to the cluster R;; can be defined by eq.(7). The set er;;

L4
458  must satisfy two characteristics: the value of its module |er;| must be minimum (this

459  will be satisfied as the equation is calculated by the least mean square method) and the

460  value of its standard deviation o (er;) must be reasonably low smalt-enough.

461 3. Results for case study A: Sensitivity analysis and calibration

462 {easestudy-A)

463 A sensitivity test and calibration of the proposed methodology, consisting in finding the
464  proper parameter values in order to obtain satisfactory results, is discussed in detail in

465  next subsections. The main steps followed for the calibration are: (a) definition of an
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experimental test and scanning of regular geometrical figures; (b) analysis of the surface
for planar sides and for non-planar surfaces such as edges and vertexes; (c) test of the
method with all the figures separately using the chosen values; (d) analysis and

discussion of the results.

3.1. Coplanarity test calibration: influence on the number of

neighbours

The number of neighbours inn and the maximum deviation 7 (2) are the first
parameters used for the coplanarity test calibration. Given a planar surface and its scan
data P;, the deviation 7 for each subset O; member of P; can be calculated. This process
is carried out changing the value of knn, thus 7, can be analysed. It is very important
to set a value of 77, that discards only real noise data in order to avoid the loss of
valuable information. A small value of 7., may consider normal points as noise due to

instrumental error, surface roughness or surface curvature.

The performed sensibility test (Figure 11) uses the PCA to each Q;, which is a subset
with j neighbours. For each point i and its neighbours j, the deviation 7; (eq.(2)) is
calculated. In order to avoid outliers the 1% lower and upper tails are removed. The

final step is calculating the mean £(7;) and the standard deviation o(7;).
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Figure 11. Model calibration scheme.

3.1.1. Plane surfaces analysis

This analysis consists of the method execution for sets extracted from known plane

surfaces. The main data characteristics of the sets are:

e All the surfaces have the same area but different density of points.

e Planes 1, 2, 3 and 4 are vertical planes.

e Plane 5 is a horizontal plane with a higher standard deviation (o) than the
vertical planes due to a plane over representation, as stated in data acquisition
section.

e Due to the large number of data, the representative value of the deviation (1)) is

the mean £(7;) plus three sigmas, o(7;;) (Figure 12a).
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Figure 12. (a) calibration of the parameters myax and knn for plane surfaces, (b) calibration of the parameters
nand knn for no planar sets

This calibration study shows that generally:

o With low values of knn the values of 7 are usually high. This correlation tends to
decrease when knn grows.

e The data bias becomes less important as the knn grows.

3.1.2. Non-coplanar points analysis: edges and vertexes

In order to identify the deviation (77) for the non-coplanar sets —i.e. the edges and
vertex—, three sets containing two edges and one vertex have been selected and
analysed (Figure 12b). The results of this calibration indicate that the mean error is

lewer higher on vertexes and edges than on planes;—and—that-the—eonvergence—error
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3.2. Number of neighbours and deviation tolerance determination
For a straightforward planar feature detection, non-planar features (such as edges and
vertex) should be labelled and discarded according to a combination of two different
parameters: 77, and knn . The calibration test (Case study A) pointed out about the
convenience of choosing a high value of inn and a low value of 7,,, in order to

optimize this segmentation. Thus, a sensitivity analysis on the combination of both

parameters was carried out. The-ealibrationpeinted-thatfor-plane 5;the-values knn=30

—109% caverad tha 00 Q0/ of ha Nithorurice the mean foa adoe onld
A H0%—€covered 9% data—O W 3 o3 d would

The Micro LiDAR case study shows that low numbers of knn (e.g. k<15) retained
significant noise in pole calculation. By contrast, a larger number of neighbours (e.g.
knn>30) significantly smoothed local curvature. Regarding 7, parameter, values
below 15% produced the discard of good candidates to coplanar points, whereas values
above 25% generated the admittance of edge points and coplanar points. Accordingly,
knn values ranging from 15 to 30 were selected as an optimal compromise between

accuracy and resolution. Similarly, the optimal nmax value was defined in around 20%.

3.3. Influence of knn in the dispersion of the pole planes

The number of knn neighbours significantly affects to the pole dispersion in the
stereoplot, as can be neticed seen in Figure 13. Considering knn=(5, 10, 20, 30) and
Nmax=1, all the poles of the top side of the cube are computed and the density function is
plotted. This surface was intentionally chosen because it is horizontal, As—+this-surface

was—intentionally-defined-as-herizontal;-so the nermalveeter—principal pole must be in

the centre of the stereoplot —Dip=0° for all the dip direction values—.
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Figure 13.Influence of the number of neighbours in the scattering of the poles for a single plane (cube datasets,
horizontal plane). Poles density of the plane 5, i.e. the upper side of the cube,was calculated with different
values of knn: (a) Knn=5; (b) knn=, 10; (c) knn=20; (d) knn= 30. Isolines are plotted each 5%

The result of this calibration (Figure 13) indicates that, as the knn parameter grows, the
calculated normal vectors tend to be less scattered around the mean value, meaning a

greater precisions obtained when increasing the number of neighbour points.

This effect happens because all the points belong to the same flat surface. When the
points belong to a non-planar surface, such as a very irregular curved surface, the

principal pole would not have to converge to a point as knn grows.

3.4. Pole dispersion effects in the cluster analysis

Cluster analysis requires constant density of points in order to obtain homogeneous
results (Ester et al., 1996). This analysis shows that, in some particular cases, the poles

dispersion in the stereoplot can negatively affect the cluster analysis.
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Let’s consider a particular case to show this effect. If two adjacent surfaces have very
close orientations and at least one surface is highly affected by bias, cluster analysis

may provide poor results.

Sparse points define planes with orientations not close enough to the principal plane, so
it could be closer to the adjacent surface orientation. Thus, sparse poles could be

assigned to anether-discontinaity—set-other principal pole and the cluster analysis will

extend the cluster to other surface areas or will consider them as noise.

If the icosahedron is considered, adjacent sides form an angle of 42° approximately. If
the surface points’ bias is high, the discontinuity set assignment could be wrong. The
analysis pointed that that if knn=15 some points that belong to a surface were assigned
to the adjacent one by the cluster analysis. When knn was set to 30, the planes
concentrated around the principal pole with less deviation. Therefore, the poles were

assigned to points correctly and the cluster analysis offered a good result.

3.5. Proposal of the optimal parameters

The previous performed analyses from well-known regular figures using 3D digitizer
data allowed us to conclude that the optimal processing parameters for the different
processing stages are: (a) For the step A —planes detection—, we set knn=30 and
max=20% as optimal parameters; (b) For the Part B —Statistical analysis and poles
assignment to discontinuity sets—, we determined »;=20° n, =20; — and »=30°

Finally, (c) for the part C—Cluster analysis— we defined the optimal value of ppc =50.

Figure 14 shows the case ef-study of an icosahedron processed using the above listed

parameters. As i#t—can be seen, the analysis has—suecessfully—allowed to—obtain

successfully obtained the different clusters of this Platonic solid.

25



571

572
573
574
575
576

577
578
579
580
581
582

583

584
585
586
587
588

589
590
591

592
593
594

(c) : (d) : (e)

U} g (9) Sl (h) SeT=T (i) R i)
/ \
(k) = 0} g ey (n) TR (0)

Figure 14.lcosahedron scan results. a) 3D points and discontinuity sets coloured plot, b) 3D data plot, c)
calculated poles stereoplot, d) density function plot and discontinuity sets identification, e) poles assigned to
discontinuity sets plot, f) — 0) calculated clusters. Note that only ten clusters (faces) have been recognized
because the additional ten clusters (faces) were in a shaded area of the scan and as a consequence no data were
obtained from them.

With the proposed parameters, all the geometrical solid objects were successfully
processed. Reasonably good results were obtained: (a) the orientation of each face
matches with the compass lectures; furthermore, (b) the visual analysis inspection
showed that outliers and non-planar parts of the objects (edges and vertex) were
properly segmented and discarded. In the following section, these parameters will be

used in a real case (Case study B).

4. Results for case study B: Application to a real roadcut {ease
study B}

Once the methodology has been applied and calibrated using regular geometrical
figures, the next step consists in the application of the methodology to a real case of
study. The datasets —which are publically available at Rockbench.org (Lato et al.,

2013)—consist of a 3D point cloud on a quartzitic roadcut in Ouray (Colorado).

Since the point cloud was acquired from a single station, no alignment artefacts were
detected. Thus the knn value was set in 15 and 7, to 20% based on the above

discussion of calibration.

During the analysis, the method detected five principal discontinuity sets (Figure 15b
and Table 2). This figure shows that despite thefaet-that J; is the vastest most visible

outcrop, there are other discontinuity sets less represented (i.e. J», J3, J4 and Js). As the
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method searehes-searched local maximum values, the J,, J3, J4 and Js sets where were
identified.
the-stereoplot-closeness-toJ,-it-was-disearded- A visual analysis of the results pointed
out that the J; orientation (249,04/36,66; Figure 15b) seems to successfully represent the

stratification plane.

(b)

Figure 15.(a) Scattered point cloud . (b) Normal vector density plot of the different planes. Five principal poles
were found: J; (249/37), J, (172/83), J5 (137/78), J4 (093/49) and Js (288/68). Isolines are plotted each 1,25%.

In order to obtain good cluster visualization the maximum number of points per cluster
(ppc) was set to 500. Each cluster has associated an equation (eq. (5)). Table 2 provides
the details of the planes adjustment analysis.

Table 2: Results: application of the proposed methodology to the studied roadcut (Case study B). Dip

orientation and dip are in degrees. Error is calculated by eq. (7.. See the orientation and location of the
discontinuity sets in Figure 16 and Figure 17 respectively.

Discontinuity < . Number of Number of | Mean Error, | Std. Dev.
Azimuth? | Dip? .

set clusters points (m) Error (m)
iR 249,04 36,66 59 558.921| 2,61x10*| 1,43x10*
IR 172,29 83,16 14 36.781| 2,59x10*| 1,36x 10
IR 137,33 77,87 56 135.858| 1,10x10°| 1,42x 10"
1 092,96 48,74 34 96.348| 1,67x10*| 1,08x 10™
Js 288,45 68,22 57 196.613| 2,38x10*| 2,13x 10"
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Figure 16.a) Picture showing the section of the scanned area, b) segmented 3D point cloud: discontinuity set
assignment (families J1, J2, J3, J4 and J5) to each point; the points not associated to any family are not
represented

Figure 17. Clusters identification in a section of the Case Study B. a) One colour per discontinuity set with all
clusters labelled, b) J1, ¢) J2, d) J3, ) J4 and f) J5 sets representation using one colour per cluster.

As an output data example of cluster computation, a crop of the surface shown in Figure

16b has been analysed. This window shows the five discontinuity sets and different
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clusters. In Figure 17a, we observe the results of the point cloud segmentation: several
labelled clusters, whose planes are mentioned in Table 3, are shown with different
colour labelling. sermne-of-the-clusters—of-theselected-areahave beenlabeled-and-their
. Note that sets J;

(represented in Figure 17b by point labels 11 to 17; Table 3), J; (represented in Figure
17d by point labels 31 to 33; Table 3) and J4 (represented in Figure 17e by point labels
41 to 43; Table 3) are almost perpendicular. This can also be observed in Figure 16b.

So, the proposed methodology defines the scanned surface by algebraic expressions

following eq.(3).

Table 3.Cluster equations identified from the rock mass crop shown in Figure 15.

Parameters of the cluster equation:
Point label | Discontinuity . Ax+By+Cz+D=0 (eq. (5))
(Figure 17) set id Cluster id
A B C D

11 2 -0.576 -0.254 0.777 16.247
12 49 -0.770 -0.180 0.612 20.752
13 15 0.551 0.198 -0.811 -14.102
14 J 3 -0.554 -0.173 0.814 13.056
15 26 -0.550 -0.203 0.810 13.369
16 5 0.553 0.196 -0.810 -12.713
17 4 -0.522 -0.139 0.841 11.055
21 13 -0.348 0.930 0.118 2.999

22 8 0.230 -0.945 -0.232 -2.657
23 = 6 0.339 -0.941 0.003 -6.033

24 3 0.109 -0.968 0.227 -3.548
31 1 0.681 -0.720 0.129 -12.309
32 J3 24 0.746 -0.654 0.128 -15.079
33 19 0.589 -0.808 -0.005 -12.748
41 7 0.885 -0.117 0.451 -22.315
42 N 1 0.768 -0.014 0.640 -19.203
43 2 0.738 -0.086 0.670 -17.861
51 9 0.810 -0.535 -0.239 -18.112
52 s 1 0.904 -0.255 -0.343 -20.759
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633 Figure 18. Best-Fit planes extraction of some selected set of points, using Polyworks

644  Discontinuity orientations measured on field were not available for this case study.
645  Therefore, the results were validated by comparing our method with the classical
646  approach for normal vector estimation, meaning the best fit plane to a subset of points
647  was calculated according to Fernandez (2005). Two different indicators were used
648  (Table 2): (a) The mean error for the different discontinuity sets and their associated
649  standard deviations were analysed and included in Table 2; (b) Furthermore, we
650  computed several best-fit planes using Polyworks and compared them with the result (o
651  angle). The extracted vectors (EV) and the method vectors (MV) are almost parallel
652  (Table 4). Nevertheless, the discontinuity J; shows the highest angle difference, which
653  was expected due to its surface irregularity. In-other-words;J;-and-J,-angle-depends-on

654  thesize-and-thelocation-oftheplane-extraction.

648  We finally performed a visual checking of the recognized discontinuities, where each
649  point was coloured according to its discontinuity set or its cluster. Despite the intrinsic
650  waviness of the discontinuities, results agree with the observed field relationships true

651  (Figure 16 and Figure 17).

651 Table 4. Validation of the proposed method through comparison of our method with classical best-fit
652 plane using Polyworks. The second column shows the cluster orientation corresponding to the Table 3
653 label
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Discontinuity

Plane orientation using

Plane orientation using
the proposed method

Angle between

set classical approach (Figure 18)  (Figure 17 and Table 3) planes (2)
Jq 249.18/40.23 (Plane 11) 246.24/39.02 (Label 11) 2
Ja 264.23/57.02 (Plane 12) 256.86/52.30 (Label 12) 8
)y 263.97/41.91 (Plane 13) 070.26/35.80 (Label 13) 11
) 252.58/36.53 (Plane 14) 252.68/35.48 (Label 14) 1
Jq 248.71/36.98 (Plane 15) 249.74/35.91 (Label 15) 1
IR 254.77/29.86 (Plane 16) 070.47/35.92 (Label 16) 6
)y 249.85/35.94 (Plane 17) 255.12/32.72 (Label 17) 4
), 338.68/82.35 (Plane 21) 339.47/83.25 (Label 21) 1
1 347.47/79.01 (Plane 22) 166.33/76.58 (Label 22) 3
J, 341.04/89.50 (Plane 23) 160.20/89.86 (Label 23) 1
), 353.50/76.40 (Plane 24) 173.55/76.85 (Label 24) 0
J3 314.10/77.18 (Plane 31) 136.59/82.58 (Label 31) 6
)3 302.36/75.92 (Plane 32) 131.25/82.67 (Label 32) 11
Js 330.19/83.01 (Plane 33) 143.91/89.70 (Label 33) 10
Js 286.12/58.91 (Plane 41) 097.55/63.22 (Label 41) 9
Js 274.18/51.09 (Plane 42) 091.07/50.19 (Label 42) 3
1 277.22/46.42 (Plane 43) 096.64/47.97 (Label 43) 2
Js 305.04/77.62 (Plane 51) 123.42/76.15 (Label 51) 2
Js 290.16/66.99 (Plane 52) 105.75/69.94 (Label 52) 5

5. Conclusions

In this work a new method for the semi-automatic calculation of the orientations and
position of rock mass discontinuities from 3D LiDAR data is presented. The method is
based on the: (a) the-calculation of the normal vector using PCA; (b) the removal of
anomalous points through the creation of a coplanarity test; (c¢) the semi-automatic
identification of the main discontinuity sets using a KDE analysis; (d) the-assignment of
each point to a given main family set (or to a noise); and (e) the automatic extraction of

single discontinuities using DBSCAN algorithm.

A complete sensitivity analysis of the parameters has been carried out as well, playing a
key role on the method, and showing the strong influence that the number of neighbours

has in the quality of the method, both for planar features, edges and vertex.
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The method has been tested using three sources of information —synthetic data, 3D
digitized and Terrestrial LiIDAR scans— showing a good adaptability of the method to
the different sources of information. The case study A allowed us to validate the method
and to provide a range of values for the method’s parameter, which were then
successfully applied in case study B. Furthermore, the method has been tested with
more than two million points in a Intel Core i3-350M, 8GB DDR3 RAM with a total
processing time of 5307 seconds (Table 5). The slowest step is the coplanarity test,
which increases the execution time geometrically as the inn parameter grows. In
addition, it was necessary to adapt the DBSCAN algorithm to large point clouds.
Finally, our experience indicates that it is not recommended to analyse a huge number
of points in the same test since principal orientations could be masked due to an excess

of poles in stereoplot.

Step CPU time () %
Part A: local curvature calculation 4277 80.59%
Part B: statistical analysis 2 0.04%
Part C: cluster analysis 1028 19.37%
Total: 5307 100.00%

Table 5. CPU time

One of the strengths of the method consists in using the original information contained
in the 3D points during all the process, instead of commonly used approaches that
utilise 2.5D interpolated surface model. Fhus;—our—method—is—able—to—analyse

i e e-g e e Although a great
improvement in workflow automation is obtained using the proposed methodology, a
solid ‘background in structural geology and rock mechanics together with the use of
useful material such as field pictures and visual recognition of the results is required for

an optimum application of the proposed method.

Further research lines point to a continuous software development in order to
automatically obtain geomechanical parameters (e.g. spacing, persistence, etc.) from the
scanned rock masses; furthermore, we support the development of a more reproducible
research thanks to the new trend in code and data sharing under Creative-Commons

license (e.g. www.reproducibleresearch.net). In order to contribute to the latter, the
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complete 3D RAW and processed datasets are will-be publically available in our

website (www.3D-landslide.com/discontinuity).
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809 Table 1. Properties of the Case study B datasets

Physical Setting Roadcut
Location (close mijr. City) Ouray, Colorado
Lithology Quartzite
Scanner Optech
Laser Type Time of flight
Year scanned 2004
# of scan locations 4
Point spacing <2cm
Number of points 1,515,722
Collected by John Kemeny
Dataset 10a

810
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Table 2: Results: application of the proposed methodology to the studied roadcut (Case study B). Dip
orientation and dip are in degrees. Error is calculated by eq. (9). See the orientation and location of the
discontinuity sets in Figure 16 and Figure 17 respectively.

Discontinuity . . Number of Number of | Mean Error | Std. Dev.
Azimuth? | Dip? .

set clusters points (m) Error (m)
) 249,04 36,66 59 558.921| 2,61x10*| 1,43x10"
) 172,29 83,16 14 36.781 2,59x% 10* 1,36x 10™
)3 137,33 77,87 56 135.858 1,10x 10° 1,42x 10"
Ja 092,96 48,74 34 96.348 1,67x 10* 1,08x 10™
Js 288,45 68,22 57 196.613| 2,38x10™*| 2,13x 10™
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Table 3.Cluster equations identified from the rock mass crop shown in Figure 15.

Parameters of the cluster equation:
Point label | Discontinuity ] Ax+By+Cz+D=0 (eq. (5))
(Figure 17) setid Cluster id
A B C D

11 2 -0.576 -0.254 0.777 16.247
12 49 -0.770 -0.180 0.612 20.752
13 15 0.551 0.198 -0.811 -14.102
14 )y 3 -0.554 -0.173 0.814 13.056
15 26 -0.550 -0.203 0.810 13.369
16 5 0.553 0.196 -0.810 -12.713
17 4 -0.522 -0.139 0.841 11.055
21 13 -0.348 0.930 0.118 2.999

22 8 0.230 -0.945 -0.232 -2.657
23 = 6 0.339 | -0.941 0.003 -6.033
24 3 0.109 -0.968 0.227 -3.548
31 1 0.681 -0.720 0.129 -12.309
32 )3 24 0.746 -0.654 0.128 -15.079
33 19 0.589 -0.808 -0.005 -12.748
41 7 0.885 -0.117 0.451 -22.315
42 A 1 0.768 -0.014 0.640 -19.203
43 2 0.738 -0.086 0.670 -17.861
51 9 0.810 -0.535 -0.239 -18.112
52 s 1 0.904 -0.255 -0.343 -20.759
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820 Table 4. Validation of the proposed method through comparison of our method with classical best-fit
821 plane using Polyworks. The second column shows the cluster orientation corresponding to the Table 3

822 label

Plane orientation using

Discontinuity Plane orientation using the proposed method Angle between

set classical approach (Figure 18)  (Figure 17 and Table 3) planes (2)
Ja 249.18/40.23 (Plane 11) 246.24/39.02 (Label 11) 2
IR 264.23/57.02 (Plane 12) 256.86/52.30 (Label 12) 8
) 263.97/41.91 (Plane 13) 070.26/35.80 (Label 13) 11
) 252.58/36.53 (Plane 14) 252.68/35.48 (Label 14) 1
Ja 248.71/36.98 (Plane 15) 249.74/35.91 (Label 15) 1
IR 254.77/29.86 (Plane 16) 070.47/35.92 (Label 16) 6
) 249.85/35.94 (Plane 17) 255.12/32.72 (Label 17) 4
) 338.68/82.35 (Plane 21) 339.47/83.25 (Label 21) 1
J, 347.47/79.01 (Plane 22) 166.33/76.58 (Label 22) 3
J, 341.04/89.50 (Plane 23) 160.20/89.86 (Label 23) 1
), 353.50/76.40 (Plane 24) 173.55/76.85 (Label 24) 0
J3 314.10/77.18 (Plane 31) 136.59/82.58 (Label 31) 6
Js 302.36/75.92 (Plane 32) 131.25/82.67 (Label 32) 11
Js 330.19/83.01 (Plane 33) 143.91/89.70 (Label 33) 10
Js 286.12/58.91 (Plane 41) 097.55/63.22 (Label 41) 9
Jg 274.18/51.09 (Plane 42) 091.07/50.19 (Label 42) 3
Ja 277.22/46.42 (Plane 43) 096.64/47.97 (Label 43) 2
Js 305.04/77.62 (Plane 51) 123.42/76.15 (Label 51) 2
Js 290.16/66.99 (Plane 52) 105.75/69.94 (Label 52) 5
823
824
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Step Computing time (s) %

Part A: local curvature calculation 4277 80,59%

Part B: statistical analysis 2 0,04%

Part C: cluster analysis 1028 19,37%

Total: 5307 100%

826 Table 5. CPU time

827
828
829
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