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Abstract 

Background: Preventing risk factor exposure is vital to reduce the high burden from lung 

cancer. The leading risk factor for developing lung cancer is tobacco smoking. In Australia, 

despite apparent success in reducing smoking prevalence, there is limited information on 

small area patterns and small area temporal trends. We sought to estimate spatio-temporal 

patterns for lung cancer risk factors using routinely collected population-based cancer data.  

Methods: The analysis used a Bayesian shared component spatio-temporal model, with male 

and female lung cancer included separately. The shared component reflected lung cancer risk 

factors, and was modelled over 477 statistical local areas (SLAs) and 15 years in Queensland, 

Australia. Analyses were also run adjusting for area-level socioeconomic disadvantage, 

Indigenous population composition, or remoteness. 

Results: Strong spatial patterns were observed in the underlying risk factor estimates for both 

males (median Relative Risk (RR) across SLAs compared to the Queensland average ranged 

from 0.48-2.00) and females (median RR range across SLAs 0.53-1.80), with high risks 

observed in many remote areas. Strong temporal trends were also observed. Males showed a 

decrease in the underlying risk across time, while females showed an increase followed by a 

decrease in the final two years. These patterns were largely consistent across each SLA. The 

high underlying risk estimates observed among disadvantaged, remote and indigenous areas 

decreased after adjustment, particularly among females. 

Conclusion: The modelled underlying risks appeared to reflect previous smoking prevalence, 

with a lag period of around 30 years, consistent with the time taken to develop lung cancer. 

The consistent temporal trends in lung cancer risk factors across small areas support the 

hypothesis that past interventions have been equally effective across the state. However, this 

also means that spatial inequalities have remained unaddressed, highlighting the potential for 

future interventions, particularly among remote areas.  

 

Keywords 

Lung cancer, risk factor, tobacco smoking, Bayesian methods, spatio-temporal analysis, 

shared component model 
 

1. Introduction 

 

Due to its high incidence and low survival, lung cancer is the leading cause of cancer-related 

death in Australia.[1] More males are affected by this disease than females.[1] Most lung 

cancers are caused by cigarette smoking, accounting for around 65% of lung cancers among 

females and 90% among males.[2] Other modifiable risk factors include exposure to air 

pollution, radon, asbestos and certain heavy metals.[3]  

 

In the absence of effective early diagnostic tools or treatments for advanced lung cancer,[4] 

preventing the initiation of lung cancer by reducing exposure to risk factors is vital. In 

particular, there has been much progress in reducing the prevalence of tobacco smoking in 

many developed countries.[5] Between 1964 and 2010, the percentage of Australians who 

smoked cigarettes decreased from 43% to 15%,[6] although the prevalence of smoking 

among females increased until around the late 1970s, when it started to decline.[7] Yet this 

smoking prevalence varies geographically, with people living in rural and disadvantaged 

areas more likely to smoke.[1] However these geographical data are often compromised by 

small numbers and a reliance on self-reported surveys. This limits the ability to understand 

small area patterns of smoking prevalence, particularly over time.  
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Given the lack of data on most risk factors at the spatial level, recent work has sought to 

model selected cancers jointly to extract spatial or spatio-temporal estimates of the common 

underlying risk factor components. Where high quality, population-based cancer registry data 

are available, this can be used to obtain objective risk factor estimates. When a cancer has 

similar risk factors for both sexes, but a differential impact across space and/or time, there 

may be benefit in jointly modelling one cancer type and dividing into sex-specific 

components, e.g. male and female lung cancer. This joint modelling is often conducted using 

a shared component model. 

 

The premise of the shared component model, as first proposed by Knorr-Held and Best,[8] 

was to jointly model the relative risk by dividing into separate components, including  one 

common to both diseases (e.g. representing the underlying risk factor exposure), as well as 

residual variation components (one for each disease). This enables information to be 

borrowed between diseases. In this model the shared component acts as a surrogate for 

spatially structured unobserved risk factors common to both diseases.[8] The model has been 

extended by incorporating covariates,[9] adjusting the number of components,[9] increasing 

the number of diseases,[10] and including temporal trends.[11, 12] The joint modelling of 

multiple cancers at the spatial or spatio-temporal level has commonly been applied within a 

Bayesian context.[8, 11]  

 

When there is only one shared component in these models, this component provides an 

estimate of all the risk factors common to the included diseases. However, when a particular 

risk factor is prominent in developing disease, such as tobacco smoking with lung cancer, 

underlying risk estimates are likely to reflect the most prominent risk factor. 

 

Our aims were to apply Bayesian spatio-temporal shared component models to routinely 

collected, population-based male and female lung cancer data to: 

 

1. Infer the spatio-temporal patterns of underlying lung cancer risk factors in 

Queensland. 

 

2. Determine how known influences (socioeconomic, remoteness and Indigenous status) 

impact on the modelled underlying risk factor patterns. 

 

3. Identify geographical areas where the temporal underlying risk factor pattern differed 

from the pattern for total Queensland. 

 

2. Methods 

 

2.1 Data 

Lung cancers diagnosed among Queensland residents between 1997 and 2011 were sourced 

from the Queensland Cancer Registry,[13] a population-based cancer registry with high-

quality data covering the entire state of Queensland. Australian legislation requires this 

Registry to be notified of every invasive cancer diagnosed in a Queensland resident, 

excluding only keratinocytic skin cancers. Ethical approval was obtained from Queensland 

Health (approval number: HREC/09/QHC/25).  

 

Details about patients’ usual residence at diagnosis was provided at the statistical local area 

(SLA) level. Geocoding was used to match the residence at diagnosis to the 2006 SLA 
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definition, thus overcoming limitations of changing geographical boundaries over time. In 

2006 there were 478 SLAs, with a median population of 5,723.  

 

Population estimates based on the 2006 SLA boundaries were obtained from the Australian 

Bureau of Statistics, for each SLA, year and 5-year age groups up to 85+ years. Due to zero 

population counts in one SLA for several years during the time period of interest, only 477 

SLAs were used in our analyses (population range in 2006: 78 to 74,804). 

 

Each SLA was assigned a value for area-level socioeconomic disadvantage (3 categories 

(Advantaged: top 20%, Middle SES: middle 60%, Disadvantaged: lowest 20%), defined 

using the Index of socioeconomic advantage and disadvantage (IRSAD) from the Australian 

Bureau of Statistics Socioeconomic Indexes For Areas (SEIFA), remoteness (Urban (Major 

city), Regional (Inner/Outer regional) and Remote (Remote/Very remote) based on the 

Accessibility/Remoteness Index of Australia+), and Indigenous population (2 categories 

based on 2006 census data: <10% or ≥10%). 

 

2.2 Model 

Most shared component models use a standard Poisson likelihood, as is appropriate for rare 

and non-contagious diseases. However, when area-specific count data are particularly sparse, 

an alternative formulation allowing for excess zero counts may be preferred. Therefore, we 

extended previous approaches by incorporating and comparing alternate distributions for the 

counts within the shared component framework. Specifically, we compared four alternative 

variants of the Poisson count distribution:[14, 15] 

 

1. Poisson      𝑂𝑑𝑖𝑗~Poisson(𝜌𝑑𝑖𝑗𝐸𝑑𝑖𝑗) 

2. Negative binomial    𝑂𝑑𝑖𝑗~Poisson(𝑥𝑑𝜌𝑑𝑖𝑗𝐸𝑑𝑖𝑗) where 𝑥𝑑~Gamma(𝑟𝑑, 𝑟𝑑)  

3. Zero-inflated Poisson (ZIP) 𝑂𝑑𝑖𝑗~Poisson ((1 − 𝑢𝑑𝑖𝑗)𝜌𝑑𝑖𝑗𝐸𝑑𝑖𝑗) if 𝑂𝑑𝑖𝑗>0 

4. Poisson hurdle 𝑂𝑑𝑖𝑗~Poisson (
(1−𝑢𝑑𝑖𝑗)

1−exp (−𝜌𝑑𝑖𝑗𝐸𝑑𝑖𝑗)
𝜌𝑑𝑖𝑗𝐸𝑑𝑖𝑗) if 𝑂𝑑𝑖𝑗>0 

 

where 𝑂𝑑𝑖𝑗  are the observed lung cancer counts for each sex d=1,2 (representing males and 

females, respectively), i=1,2…477 areas and j=1,2…15 years, 𝜌𝑑𝑖𝑗 is commonly referred to 

as the relative risk[16] and 𝐸𝑑𝑖𝑗  represents expected counts. To enable comparisons over time, 

the expected counts were calculated using the sex- and age-specific Queensland lung cancer 

incidence rates in 1997-99. In the negative binomial model, here expressed as a Poisson-

gamma mixture for comparability, 𝑟𝑑 is the sex-specific overdispersion parameter, which 

forms the shape and scale parameters in the gamma distribution, while the 𝑢𝑑𝑖𝑗 is the 

probability of zero in the ZIP and hurdle models. 

 

The Poisson hurdle model separates the zeros from anything above zero, modelling counts 

under a truncated Poisson distribution. The ZIP model can be considered a special type of 

hurdle model. Here the zero counts are separated into excess (those above what is expected 

under a Poisson distribution) and non-excess zeros (those expected under a Poisson 

distribution).  

 

Using a modified version of the shared component model from Richardson et al,[11] 

the log relative risk for each of these models was then expressed as: 
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log (𝜌𝑑𝑖𝑗)  = 𝛼𝑑 + 𝜇𝑑𝑖𝑗                                                                                

 

The sex-specific intercept is given by 𝛼𝑑, while the space-time structure is modelled through 

𝜇𝑑𝑖𝑗, which represents exposure to the risk factors for lung cancer, here referred to as the 

underlying risk factor component. 

 

The underlying risk component is separated into several components so that spatial clustering 

and temporal trends can be presented separately. Log RRs of the underlying risk factor 

component for males (𝜇1𝑖𝑗) are constrained to capture the shared spatial and temporal trends, 

while the log RRs of the underlying risk factor estimates for females (𝜇2𝑖𝑗) include additional 

terms providing the sex differential, as follows:  

 

𝜇1𝑖𝑗 = 𝜆𝑖𝛿 + 𝜉𝑗𝜅 + 𝜙1𝑖𝑗                                                                       

         

𝜇2𝑖𝑗 =
𝜆𝑖

𝛿
+

𝜉𝑗

𝜅
+ 𝛽𝑖 + 𝛾𝑗 + 𝜙2𝑖𝑗 

 

where 𝜆𝑖represents the common spatial pattern for SLAi, 𝛽𝑖 gives the female spatial 

difference (the sex-space interaction) for SLAi, 𝜉𝑗 is the shared time trend for calendar yearj, 

and 𝛾𝑗 the female temporal difference (the sex-time interaction) for calendar yearj. A sex-

specific residual term 𝜙𝑑𝑖𝑗 was also included for the i
th

 SLA and j
th

 year combination. The 

terms 𝛿  and 𝜅 are scaling parameters, enabling different risk gradients between sexes.[11]  

 

Prior distributions were assigned to each parameter as follows: the spatial components (𝜆𝑖, 

𝛽𝑖) had a conditional autoregressive (CAR) prior with neighbours based on adjacent SLAs, 

while temporal parameters had a one-dimensional CAR prior (𝜉𝑗, 𝛾𝑗) with neighbours 

consisting of the immediately previous and subsequent time periods. Because the CAR prior 

smooths the log RRs, spatio-temporal patterns can be recovered even when data are sparse. A 

zero-mean multivariate normal distribution with covariance matrix Σ was assigned to 𝜙𝑑𝑖𝑗. 

This term captures additional spatio-temporal variation in each disease that is not explained 

by the other terms. To improve convergence, a centered parameterisation was used with the 

distribution specified on 𝜇𝑑𝑖𝑗, rather than directly on 𝜙𝑑𝑖𝑗. For identifiability, and as there 

were only 15 time periods, 𝜅 was fixed at a value of one.[11] Finally, log 𝛿 was described by 

a normal distribution, and 𝛼𝑑 by a normal distribution with large variance. Refer to the 

Appendix for further details on priors. 

 

To explore the impact of factors known to be associated with the prevalence of the main risk 

factor for lung cancer, tobacco smoking, covariates for area-level socioeconomic 

disadvantage, remoteness, and Indigenous population were added to the linear predictor. 

 

All models were run with single chain Markov Chain Monte Carlo (MCMC) using Stata 

version 13.1 (StataCorp LP, College Station, Texas, USA) interfaced with WinBUGS 1.4 

(Imperial College and Medical Research Council, UK). The first 300,000 iterations were 

discarded as burn-in, and a further 50,000 iterations monitored (with every tenth iteration 

kept).  

 

2.3 Sensitivity analyses 
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We compared three commonly used versions of the hyperparameter distributions on the 

variance component of the spatial and temporal parameters for each of the four count 

distributions to check the influence exerted by priors on the results: 

Version 1: Gamma on the inverse variance (ie.  precision), 𝜏 ~ Γ(0.5, 2000)  

Version 2: Uniform on the standard deviation, 𝜎 ~ U(0.1,100) 

Version 3: Uniform on the standard deviation, 𝜎 ~ U(0.1,20) 

 

These equate to means and variances on the precision of (10,1000) for the gamma 

distribution (version 1), and on the standard deviation of (50,4990) for version 2 and (10,198) 

for version 3. These distributions deliberately aim to be non-informative to minimise the risk 

of substantive influence on the estimates produced. 

 

All gave similar estimates and uncertainty measures for most parameters, so after examining 

deviance cumulative distribution functions, convergence trace and density plots, we selected 

version three.  Uniform distributions on the standard deviation have been recommended as 

more robust than gamma distributions on the precision,[17] and the tighter boundaries 

minimised convergence issues. 

 

One concern when examining diseases such as cancer is the potential influence of patient 

migration. People may have been exposed to an environmental or personal risk factor in one 

location, but then moved residence prior to diagnosis. Since information on residential history 

was not available before diagnosis, a sensitivity analysis was conducted to estimate the 

impact of changing location. Three alternatives were compared assuming up to a 10%, 20% 

and 40% population movement between SLAs. This internal migration was approximated by 

randomly increasing or decreasing the expected incidence count in each SLA up to the 

desired percentage, while constraining the overall count to match the Queensland total. The 

adjusted risk estimates for each scenario were categorised as low (<0.909), average (0.909-

<1.10), and high (1.10+), and then these categories compared to those from the original 

scenario (0% migration). 

 

Given the data sparseness, a sensitivity analysis was conducted to ascertain if the modelled 

small area temporal trends were likely to reflect only the average trend due to inadequate data 

for individual SLAs. A modified version of the model was run with data aggregated by five 

broad remoteness groupings. No local spatial smoothing was performed between these areas, 

and the Poisson count distribution was used. All other model details remained the same. 

 

2.4 Model comparison 

The deviance information criterion (DIC) is widely used in comparing Bayesian hierarchical 

models. However, it has a tendency to under-penalise complex models unless the effective 

number of parameters is much smaller than the number of independent observations, which 

may not occur in disease mapping.[18] 

 

In light of this, we considered a collection of criteria representing different features of model 

fit – the overall goodness of fit (via the median squared predicted error (MSPE), Bayesian 

predictive p-value and L-criterion,[19] all of which compare model estimates against the 

data), the effective number of parameters (model complexity, defined as pD, which is the 

mean deviance minus the deviance at the mean of the posteriors and a component of 

DIC),[20] and the predictive distribution (via the conditional predictive ordinance 

(CPO)).[21] Lower values generally indicate better model fit, apart from Bayesian p-values 

(ideal is 0.5), or CPO, where many very low values suggest poor fit.[21] 
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3. Results 

The median number of observed lung cancer cases by SLA in 2011 was 2 for males (range: 0 

to 29) and 1 for females (range: 0 to 25). The proportion of SLAs with no lung cancer cases 

diagnosed ranged from 33% (males) and 56% (females) in 1997 to 28% and 39% in 2011 

among males and females, respectively. Further details on the study cohort are available in 

Table 1. 

 

The different model distributions produced similar results for the majority of parameters, 

although the shared underlying risk factor estimates occasionally differed in very sparsely 

populated areas. There was minimal difference in model goodness of fit between the models 

(Table 2), but a slight preference for the negative binomial formulation based on pD. Results 

presented are from the negative binomial model. 

 

Mapping the underlying risk factor component showed strong spatial variation throughout 

Queensland (Figure 1). The median SLA-specific underlying relative risks ranged across the 

State from 0.48 to 2.00 for males (exp(𝜆)), and 0.53 to 1.80 for females (exp(𝜆 + 𝛽)). When 

females were compared to males (exp(𝛽)), many regions had similar risks (Figure 1). 

However, there were higher risk factor estimates among females in some urban South East 

areas, and lower risks among females in selected remote areas (Figure 1). 

 

There was also strong evidence of trends across time in the underlying risk component 

(Figures 2-3). Males (exp(𝜉)) showed a decrease in the underlying risk across time, while 

females (exp(𝜉 + 𝛾)) showed an increase followed by a decrease in the final two years 

(Figure 4). These patterns were practically universally consistent across each SLA. When 

data were aggregated by remoteness groupings, the same broad trend (exp(𝜇)) was observed 

across each remoteness group (Figure 4).   

 

The high underlying risk factor estimates observed among disadvantaged, remote and 

indigenous areas decreased after adjustment, particularly among females (Figure 5). 

Specifically, areas with a high Indigenous proportion largely explained the increased risk 

among disadvantaged and remote areas for females. 

 

Risk factor estimates remained quite similar even after allowing for hypothetical migration 

patterns (Figure 6). As the proportion of migration increased, greater differences from the 

initial estimates were observed. However, even allowing for up to 40% migration, few spatial 

underlying risk factor estimates changed between the broad categories of low, average or 

high risk. Both males and females had 6% of SLAs change from a higher to a lower category, 

while for males, 5% of SLAs moved from a lower to a higher category, and 9% of SLAs 

among females  

 

4. Discussion  

 

This population-based study found strong evidence for differences by region of residence and 

across time in the shared underlying lung cancer risk factors. These patterns and trends are 

consistent with known trends in tobacco smoking prevalence.[22]
 
Almost all areas followed a 

similar trend to that observed in the underlying risk factors overall (males decreasing and 

females increasing before recently decreasing). 

 

Tobacco smoking is the leading risk factor for developing lung cancer in Australia,[22] and 

the detected underlying risk factor component is likely to strongly reflect past smoking 
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patterns. Other key risk factors such as radon and/or air pollution exposure have very low 

levels in Australia.[1] However, some caution is required since 10-15% of lung cancers are 

diagnosed among non-smokers.[23]  

  

Patterns in the underlying risk factors by remoteness, socioeconomic disadvantage or areas 

with a high Indigenous population are also consistent with that reported for tobacco 

smoking.[22] Surveys have suggested around 50% of Indigenous Australians smoke 

cigarettes.[24] Our results showed the increased risk in many disadvantaged or remote areas 

was diminished or annulled after adjusting for the Indigenous composition. This contrasted 

with the more minor changes observed after adjusting for remoteness or socioeconomic 

disadvantage.  

 

This methodology also allows trends over time for each region to be obtained. When data are 

very sparse, region-specific trends may simply reflect the overall average, so our consistent 

trends should be interpreted with caution. However, our sensitivity analysis using five broad 

remoteness groupings also obtained consistent temporal trends across these regions, 

supporting the hypothesis that the temporal patterns were consistent across most areas of 

Queensland.   

 

This is the first time the consistency in trends over time for lung cancer risk factors has been 

demonstrated at the small-area level within the Australian context. Tobacco smoking 

information reported in early surveys was not able to be analysed by small-area geographic 

regions, and it has been unclear how trends across time varied across small regions. The 

similar trends  across time obtained for these small areas is consistent with the suggestion that 

smoking-related interventions were  equally effective across the different regions  of 

Queensland. Given that smoking-related interventions have incorporated state- or nation-wide 

price increases, public awareness of the health risks and advertising restrictions,[7] this 

consistency in trends is not surprising. 

 

Recently, small-area estimates of smoking prevalence were released for 2007-2008 across 

Australia based on modelled self-reported survey data.[25] A current smoker was defined as 

smoking cigarettes, cigars or pipes at least once a week. Although Queensland estimates were 

not available for many rural and remote SLAs, or sometimes only provided by aggregated 

SLAs, the results showed that smoking prevalence was generally higher outside of Brisbane.  

This also agrees with 2011-2012 self-reported daily smoking estimates across 73 larger 

Queensland regions, with results released for 43 regions.[26] Of the remote areas with 

available estimates, most showed higher smoking prevalence, while many urban areas tended 

to have lower estimates.  

 

The similarity of our geographical patterns to these recent results suggests past geographic 

differentials haven’t changed. Despite the overall decrease across time for males and more 

recently, females, many remote and rural areas are likely to continue to have higher smoking 

prevalence for many years into the future, unless preventive and remedial efforts are targeted 

at these areas. Given that population-wide intervention programs have been shown to be more 

cost effective in tobacco control,[27] potential interventions should aim to address the 

prevailing social norms and practices, rather than an individualistic approach.[28] This may 

include addressing the higher density of tobacco outlets and lower cigarette prices in 

socioeconomically disadvantaged areas.[29]     
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Although there are advantages in using population-based cancer data to understand risk factor 

patterns, there are also limitations. Only past estimates can be obtained, as the lag period 

between exposure and development of cancer suggests our underlying risk estimates are 

likely to reflect smoking prevalence up to 30 years previously.[3]
 
Although theoretically all 

cancers with smoking as a risk factor could be included to obtain estimates, we found 

including a less common cancer (oesophageal), despite a strong link to smoking, decreased 

the precision of the estimates. This might reflect the influence of other key risk factors on 

oesophageal cancer, such as alcohol intake,[30] or the sparseness of our data. In addition to 

tobacco smoke exposure, it is possible that these patterns reflect the impact of other risk 

factors (despite their rarity in the Australian context) that may also be captured in the 

underlying exposure component. 

 

The similarity of smoking patterns and lung cancer patterns raises the question of whether our 

latent component is simply detecting lung cancer, rather than an estimate of underlying 

exposure. In our model, the lung cancer relative risk (𝜌𝑑𝑖𝑗) is dependent on the sex specific 

intercept, any included covariates, and our latent component. The intercept terms consistently 

differed from one, with resultant differences in the relative risk estimates of lung cancer and 

latent components. 

  

The novelty of our approach is two-fold. Firstly, a review of the literature found no published 

comparisons of these four alternate count distributions in a fully Bayesian spatio-temporal 

shared component model. We are also not aware of these models being applied to such sparse 

data before, resulting both from the Australian context with its relatively small population 

across a large land area, and examining annual time periods. 

 

The small difference in model fit between the Poisson model and the three models allowing 

for excess zeros (negative binomial, ZIP and hurdle Poisson) at first seemed counter-intuitive 

given the large proportion of zeros. This is likely to be influenced by both the random effects 

included in the model, which allow for overdispersion, and the comparatively large number 

of cases observed in some SLAs. 

 

Both the ZIP and Poisson hurdle models can be considered mixture models, and we found 

that some underlying exposure estimates did not converge as well as under Poisson or 

negative binomial. The assumptions of a hurdle model (that zeros represent an inability to 

have a positive result) is questionable, although in our modelling of 𝜇 we assumed all areas 

and time periods had the ability to have lung cancer diagnosed, equating to assuming that all 

areas/time periods had a positive count. The negative binomial distribution was slightly 

preferred, but was the most computationally intensive model, taking twice as long as the  

Poisson model to run. If time had been an issue, the Poisson distribution could have been 

used instead in this study. 

 

Many variations on this model are possible, either by adjusting the included components 

(inserting and/or removing terms), or using alternative priors. For instance, we explored using 

a first-order autoregressive (AR(1)) prior instead of a CAR prior on the temporal 

components, which would have only smoothed based on the previous time period. This prior 

is useful when the aim is to extrapolate into the future. However, our aim was to identify 

smoothed patterns, and the larger uncertainty around estimates and less smoothing under the 

AR(1) resulted in preferring the CAR prior.  We also considered including a shared spatio-

temporal interaction term 𝜈𝑖𝑗. However, estimates were all close to 1, so the additional model 

complexity was not justified.   



10 
 

Similar methodology could be used to explore spatio-temporal variation in other disease risk 

factors. For instance, trends and patterns in diet-related influence were examined in Greece 

using a factor analysis model containing six cancers with particular dietary factors as 

recognised risk factors.[12] Obesity has strong links to several cancers, and this may be a 

useful approach to obtain temporal and small-area estimates of obesity, which can be poorly 

self-reported.  

 

In conclusion, these shared component models have provided evidence supporting the 

similarity of temporal trends in lung cancer risk factors across small geographical areas, 

consistent with the hypothesis that past interventions designed to reduce lung cancer risk 

factors have been equally effective across the state. However, this consistency  in  temporal 

trends also means that current inequalities in these risk factors between areas have remained 

unaddressed, highlighting the potential for future interventions targeting the social norms and 

practices of people living in rural and remote areas.  

 

 

 

Appendix 

Prior distributions (expressed as mean, precision): 

      

𝛼𝑑~Normal(0, 0.001) 
 

[
𝜇1𝑖𝑗

𝜇2𝑖𝑗
] ~MVN ([

𝜂1𝑖𝑗

𝜂2𝑖𝑗
] , Σ−1) 

 

𝛌~CARNormal(𝑊, 𝜏𝜆) 
 

𝛃~CARNormal(𝑊, 𝜏𝛽) 

 

𝛏~CARNormal(𝑄, 𝜏𝜉) 

 

𝛄~CARNormal(𝑄, 𝜏𝛾) 

 

log𝛿~Normal(0,0.2) 

 

MVN=Multivariate Normal, CARNormal=Conditional Autoregressive Normal. 

 

Note that by centering log𝛿 around 0, we are assuming that any value of 𝛿 is as likely as any 

value of 1/𝛿.[8] This would allow the indices for the sexes to be switched and still the same 

posterior distributions to be obtained for each sex, as the posterior distribution on 𝛿 would 

change to the reciprocal.  

 

Hyperprior distributions: 

 

 

Σ−1~Wishart ([
0.01 0

0 0.01
] , 2) 

 
1

√𝜏𝜆

~Uniform(0.1,20) 
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1

√𝜏𝛽

~Uniform(0.1,20) 

 
1

√𝜏𝜉

~Uniform(0.1,20) 

 
1

√𝜏𝛾

~Uniform(0.1,20) 

 

The Wishart distribution is the conjugate for the precision parameter of the multivariate 

normal distribution, and is treated as a multivariate chi-squared distribution.  
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Table 1: Study cohort and population characteristics, 1997-2011 

 Population Lung 

cancer 

cases 

Median 

IRSAD 

percentile 

N SLAs  N SLAs with 

high 

indigenous 

population 

Total Queensland 57,990,293 26,664 50.5 477 55 

      

Sex      

  Male 28,937,540 17,313       

  Female 29,052,753 9,351       

      

Age structure      

  0-49 years 41,254,096 1,334       

  50-64 years 9,781,744 7,402       

  65-79 years 5,226,054 13,111       

  80+ years 1,728,399 4,817       

      

Years      

  1997-99 10,215,429 4,491       

  2000-02 10,734,471 4,810       

  2003-05 11,491,585 5,152       

  2006-08 12,338,515 5,898       

  2009-11 13,210,293 6,313       

      

Socioeconomic (IRSAD)      

  Advantaged (top 20%) 9,164,720 2,952 90 95 0 

  Middle SES (middle 60%) 41,412,012 19,383 50.5 286 10 

  Disadvantaged (lowest 20%) 7,413,561 4,329 11 96 45 

      

Remoteness (ARIA+)      

  Urban 33,456,103 15,034 71 252 0 

  Regional 21,443,351 10,239 35.5 144 6 

  Remote 3,090,839 1,391 14.5 81 49 

      

Indigenous population      

  High (10%+) 2,416,775 1,185 6 55 55 

  Other (<10%) 55,573,518 25,479 56 422 0 

ARIA+=Accessibility/Remoteness Index of Australia plus; IRSAD=Index of Socioeconomic Advantage and 

Disadvantage; SLA=Statistical Local Area 

Notes:  IRSAD percentiles are Queensland-specific, and high values indicate socioeconomic advantage. 

 IRSAD, ARIA+ and Indigenous population are defined based on SLA characteristics in 2006.  
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Table 2: Comparison of model fit measures under the final prior choice 

 MSPE Bayesian PPV L-criterion Effective 

number of 

parameters 

% 

CPO 

<0.01 
 Males Females Males Females  

Poisson 2.38 1.25 0.60 0.63 12888.4 574.2 0.8 

Negative binomial 2.45 1.25 0.60 0.64 13101.2 388.2 0.9 

ZIP 2.83 1.40 0.60 0.65 13753.2 518.8 1.1 

Poisson hurdle 2.51 1.32 0.60 0.64 13159.8 n.a. 1.0 

ZIP=Zero-inflated Poisson; n.a.=not available 

MSPE= Median squared predicted error, ie. (O-m)
2
. 

Bayesian PPV=predictive p-value, calculated as the probability of m>O, and ideally equal to 0.5. 

L-criterion=(sum of square root of (variance(m) + difference  from observed value(i.e. O-m)^2)). 

Effective number of parameters calculated as the posterior mean of the deviance minus the deviance of the 

posterior means (a component of Deviance Information Criterion (DIC). DIC is not calculated for hurdle 

models). 

CPO=Conditional predictive ordinate, also known as the leave-one-out predictive density as it represents the 

posterior probability of observing the value of Oi when the model is fitted to all data except Oi. Approximated 

here using the harmonic mean of the inverse likelihood of Oi. Very low values may represent outliers/influential 

observations. Model fit is considered adequate if few values are <0.01. 
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Figure 1: Spatial variation in the underlying risk factor component by sex. 

Note: Relative risk=1 corresponds to the specified Queensland average risk in 1997-99 (ie. males, females and the female: 

male differential, respectively). 
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Figure 2: Median relative risk of the male underlying risk component across time (exp(𝜇1𝑖𝑗)) 

 
 

 
Note: Relative risk=1 corresponds to the Queensland male average risk in 1997-99. 
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Figure 3: Median relative risk of the female underlying risk component across time 

(exp(𝜇2𝑖𝑗)) 

 

 
 
Note: Relative risk=1 corresponds to the Queensland female average risk in 1997-99
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Figure 4: Time trends in the underlying risk by sex. 

 
Notes: RR=Relative Risk 

            Black line is the median, blue shading represents the 80% credible interval. 
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            Total Queensland results produced by the model based on statistical local areas (SLAs). 

Results by remoteness produced by the model with broad remoteness groups replacing SLAs. 

 

 

 

 

 

Figure 5: Relative risk (RR) of the underlying risk factor component before and after model 

adjustment, by remoteness, socioeconomic position and Indigenous population composition. 
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Figure 6: The median underlying risk with 80% credible intervals assuming up to x% migration by 

sex.  

 
RR=Relative Risk; SLA=Statistical Local Area 

Note: SLAs ranked by the order in Figure 1 (0% migration) to enable comparison. 

 

 

 


