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Abstract. CCTV (Closed-Circuit TeleVision) systems are broadly deployed in
the present world. To ensure in-time reaction for intelligent surveillance, it is a
fundamental task for real-world applications to determinethe gender of people
of interest. However, normal video algorithms for gender profiling (usually face
profiling) have three drawbacks. First, the profiling resultis always uncertain.
Second, the profiling result is not stable. The degree of certainty usually varies
over time, sometimes even to the extent that a male is classified as a female, and
vice versa. Third, for a robust profiling result in cases thata person’s face is not
visible, other features, such as body shape, are required. These algorithms may
provide different recognition results - at the very least, they will provide different
degrees of certainties. To overcome these problems, in thispaper, we introduce
an Dempster-Shafer (DS) evidential approach that makes useof profiling results
from multiple algorithms over a period of time, in particular, Denoeux’s cautious
rule is applied for fusing mass functions through time lines. Experiments show
that this approach does provide better results than single profiling results and
classic fusion results. Furthermore, it is found that if severe mis-classification
has occurred at the beginning of the time line, the combination can yield unde-
sirable results. To remedy this weakness, we further propose three extensions to
the evidential approach proposed above incorporating notions of time-window,
time-attenuation, and time-discounting, respectively. These extensions also ap-
plies Denoeux’s rule along with time lines and take the DS approach as a special
case. Experiments show that these three extensions do provide better results than
their predecessor when mis-classifications occur.

Keyword: Gender Profiling; Evidence Theory; Cautious Rule; Time-Window; Time-
Attenuation; Time-Discounting

1 Introduction

From the beginning of the 21st century, a massive investmenthas been established in
CCTV technology all over the world, e.g., Florida School BusSurveillance project [1],
Federal Intelligent Transportation System Program in the US [3], the First Glasgow
Bus Surveillance [21], Intelligent Surveillance Project [9, 12–14,17, 18, 16, 15], Air-
port Corridor Surveillance [2], etc. Currently, in the UK, more than four million CCTV



cameras have been operationally deployed. However, the impact of these CCTV sys-
tems on preventing anti-social behaviour and criminal events is not satisfactory. For
instance, assaults on passengers in public transportationsystems, especially on buses
and trains, are still a big problem. Although most of the incidents (also called events),
are recorded on video cameras, the systems do not provide desirable responses because
the data can hardly be actively analyzed in real-time. That is, CCTV cameras operate in
a kind of passive mode. They just collect enormous volumes ofdata with little further
utilization. Therefore, to make this technology more effective, CCTV systems have to
be active by introducing real-time analysis of video data and providing security alerts
such that undesirable behaviour can be stopped or prevented. This change in CCTV
capability will significantly increase the chance that offenders are caught in time which
brings great advantage in crime prevention.

A crucial and fundamental requirement for developing an active CCTV system is to
find and analyze the threat in the scene automatically, whichcan occur between indi-
viduals and undesirable behaviour between individuals andthe environment. Computer
vision research on this issue has mainly focused on gender/behaviour/action recogni-
tion. Based on statistics from criminology studies, most threats are caused by young
adolescent males. Hence, for automatic threat assessment,CCTV systems should be
able to provide gender and age information for people appeared in the video. In this
paper, we focus on the former.

The most obvious cue in determining a person’s gender is the appearance of their
face. However, for automatic classifiers this usually requires cooperative subjects who
are directly looking at the camera and at close range. For most security scenarios one
cannot assume this, as the person’s face may not be visible asthey are facing away from
the camera, or they may be too far away - the resulting low resolution making gen-
der discrimination difficult or impossible. Another obvious cue that can help overcome
these issues is that of body shape. However, generally automatic classifiers of body
shape are a less reliable indicator of gender than face-based classifiers. Furthermore,
for both types of classifiers, the output result always has some degree of uncertainty.
Secondly, when such classifiers are applied to video sequences, their output can vary
significantly with time - even to the extent that a person’s gender is incorrectly classi-
fied. Thirdly, the key to a robust solution is to use both face and body shape classifiers.
Ideally, we would like to use the face classifier result, provided it is detected, otherwise
we should resort to using the body shape result. However, this raises the issue of what
to do when the outputs of both classifiers are different. To overcome these problems,
an evidential (Dempster-Shafer’s (DS) theory of evidence)approach is proposed in this
paper that makes use of profiling results from multiple profiling algorithms using dif-
ferent human features (e.g., face, full body) over a period of time, in order to provide
robust gender profiling of subjects in video.

Imperfect information frequently occurs in video analyticprocesses. For example,
a person may be classified as male with a certainty of 85% by a gender profiling algo-
rithm. However, this does not imply that the person is femalewith a 15% certainty,
rather, we say that the 15% represents what is unknown about the gender, i.e., we
do not know how to distribute the remaining 15% between male and female. From
probability theory, this information can only be represented asp(male) ≥ 0.85 and
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p(female) ≤ 0.15 (or interval probabilities), which is difficult to use for reasoning.
Imperfect information is usually caused by ignorance or unreliability of the informa-
tion sources. For example, a camera may have a faulty gain control setting, illumination
could be poor, or the classifier training set may be unrepresentative. Any, or all, of these
can result in imperfect information which cannot be represented by probability mea-
sures. On the other hand, such imperfect information can be easily handled using an
evidential approach, namely, the Dempster-Shafer theory of evidence.

DS theory [4, 22, 10, 11] is a popular framework to deal with uncertain or incom-
plete information from multiple sources. This theory is capable of modelling incom-
plete information through ignorance. For combining difference pieces of information,
DS theory distinguishes two cases, i.e., whether pieces of information are from distinct,
or non-distinct, sources. Many combination rules are proposed for information from dis-
tinct sources, among which are the well-known Dempster’s rule [22], Smets’ rule [24],
Yager’s rule [29], and Dubois & Prade’s hybrid rule [6], etc.In [5], two combination
rules, i.e., the cautious rule and the bold disjunctive rule, for information from non-
distinct sources are proposed. Subsequently, we view gender profiling results from the
same classifier, e.g. face-based, at different times as being from non-distinct sources.
For profiling results from different classifiers, they are naturally considered as being
from distinct sources. Therefore, all of the problems mentioned above can be handled
within the DS framework.

In this paper, for gender profiling results from the same classifier at different time
points, Denoeux’s cautious rule [5] is used to combine them.For profiling results from
different classifiers (i.e., face profiling and full body profiling), Dempster’s rule [4, 22]
is introduced to combine them. And finally, the pignistic transformation is applied to
get the probabilities of the subject being male or female.

However, if severe mis-classification occurs at the beginning of the time line, De-
noeux’s rule may yield undesirable results. For instance, if a subject is classified as a
female with a certainty degree 0.98, and later on it is classified as a male with certainty
degrees from 0.85 to 0.95, then by Denoeux’s cautious rule, it will be always classified
as a female. In order to remedy this weakness, in this paper, we propose three exten-
sions on applying Denoeux’s rule through time lines, using notions of time-window,
time-attenuation, and time-discounting, respectively1. In the time-window extension,
Denoeux’s rule is applied only for the most recentn frames wheren is a pre-given
threshold depending on the time length. In the time-attenuation extension, the certainty
degree is reduced gradually by time at a pre-defined attenuation factor, and in the time-
discounting extension, the certainty degree is discountedbetween the previous certainty
degree and the current one by a discounting factor. Experiments show that these three
extensions do provide better results when mis-classifications occur, but they have to
pay the price of performing less accurate in other situations than the DS fusion method
proposed above. In summary, we can say these three extensions are more robust than
their predecessor.

1 In [25], a similar “forgetting” mechanism idea, calledMarkovian requirement, is discussed
such that when data are collected sequentially and time is meaningful, the order with which
data are collected should be considered.
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The DS theory is not a brand-new theory in the computer visioncommunity. In [27,
20], DS theory is used to improve Kalman/Particle filters. The uncertainty they consider
are not on classifications from different algorithms but thepositions.

Gender profiling with information from multiple sources is not a new issue in com-
puter vision, either. Shan et al. [23] fused gait and face features for improved gen-
der discrimination using canonical correlation analysis,a powerful tool that is well
suited to relating two sets of signals. Wang et al. [28] proposed a face representation
scheme in which a face is represented in terms of dense Scale Invariant Feature Trans-
form (d-SIFT) and shape contexts of the face image. In [30], face and gait information
is used for gender profiling. However, the fusion method is a very simple one, i.e.,
p = 0.5 ∗ pf + 0.5 ∗ pg wherepf is the probability of a subject being a male regarding
its face information andpg is the profiling probability on its gait information. In [7],
multi-view gait information (front-end and back-end) is used for gender profiling. This
paper also uses a simple fusion method that just adds the probabilities of the multi-view
gait profiling results, when the results are normalized to[0, 1]. Since we have compared
with the fusion method in [31] which is a better alternative than these two methods, in
this paper we do not compare with the two approaches.

The remainder of the paper will be organized as follows. In Section 2, we provide
the preliminaries on Dempster-Shafer theory. Subsequently, Section 3 introduces the
three extensions of the DS approach. In Section 4, we discussthe difficulties in gender
profiling in terms of scenarios. Section 5 provides experimental results which show our
extensions perform better than its predecessor and a classic fusion approach as well as
single profiling approaches. Finally, we conclude the paperin Section 6.

2 Dempster-Shafer Theory

For readers’ convenience, here we recall a few basic definitions and concepts in evi-
dence theory, or Dempster-Shafer’s theory of evidence.

There are three important functions in the DS theory: the basic belief assignment
(bba), the belief function (Bel) and the plausibility function (Pl). The bba maps the
power set to the interval [0,1], assigning 0 to the empty set and bba values summing up
to 1 for all the subsets of the power set.

Formally, we denoteΩ as a non-empty, finite set of elements, calledthe frame of
discernmentas follows:Ω = {w1, · · · , wn}.

Definition 1 A basic belief assignmentis a mappingm : 2Ω → [0, 1] such that

∑

A⊆Ω

m(A) = 1.

If
m(∅) = 0,

thenm is called amass function.

m(A) represents the basic belief assignment for a particular setA, indicating that
the chance that the truth element belongs to the setA, but to no particular subset of

4



A. That is, the value ofm(A) pertains only to the setA rather than any subset ofA.
Otherwise if we know the truth element belongs to some setB which is a subset ofA,
then this evidence would contribute tom(B) instead ofm(A).

For any bbam, if m(A) > 0, thenA is called a focal element ofm. LetFm denote
the set of focal elements ofm. A mass function with only a focal elementΩ is called a
vacuousmass function.

From a mass functionm, thebelief function (Bel) andplausibility function (Pl)
can be defined to represent the lower and upper bounds of the beliefs implied bym as
follows.

Bel(A) =
∑

B:B⊆A m(B) and
Pl(A) =

∑

C:C∩A 6=∅ m(C).
(1)

Belief functions and plausibility functions can be derivedfrom each other as follows:

Pl(A) = 1−Bel(A), (2)

whereA is the complement ofA.
In addition, we can computem from Bel (and hence fromPl by Equation 2) as

follows:
m(A) =

∑

B:B⊆A
(−1)|A−B|Bel(B) (3)

Here|A−B| is the difference of the cardinality between the two setsA andB.
In DS theory, we can combine accumulate information/evidence from multiple sources.

Many combination methods were proposed, among which the most well-known is the
Dempster’s rule of combination. Formally, letm1 andm2 be two mass functions over
Ω. The combination result ofm1 andm2 is a new mass functionm given as follows:

m(C) = (m1 ⊕m2)(C) =

∑

A∩B=C m1(A)m2(B)

1−
∑

A∩B=∅ m1(A)m2(B)
(4)

Note that in real-world applications, very likely sources are not always reliable. To
take this into account, in [22], adiscountingmethod was proposed that a mass function
should be discounted by a discounting rate to adapt the source reliability. Letm be a
mass function andr be a discounting rate such that0 ≤ r ≤ 1, the discounted mass
functionmr is described as follows:

mr(A) =

{

(1− r)m(A) A ⊂ Ω
r + (1− r)m(Ω) A = Ω

(5)

Herer = 0 indicates that the source is completely reliable andmr = m. If r = 1,
then it means that the source is totally unreliable.

Definition 2 Let m be a bba onΩ. A pignistic transformation ofm is a probability
distributionPm overΩ such that∀w ∈ Ω,Pm(w) =

∑

w∈A
1
|A|

m(A)
1−m(∅) where|A| is

the cardinality ofA.

Let ⊙ be the conjunctive combination operator (or Smets’ operator [24]) for any
two bbasm,m′ overΩ such that

(mø⊙m′)(C) =
∑

A⊆Ω,B⊆Ω,A∩B=C

m(A)m′(B), ∀ C ⊆ Ω. (6)
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A simple bbam such thatm(A) = x,m(Ω) = 1 − x for someA 6= Ω will be
denoted asAx. The vacuous bba can thus be noted asA0 for anyA ⊂ Ω. Note that this
notation, i.e.,Ax, is a bit different from the one defined in [5] in whichAx in our paper
should be denoted asA1−x in [5]. We use this notation instead of Denoeux’s notation to
simplify the description of our approach as can be shown by Definition 4 and Definition
5.

Similarly, for two setsA,B ⊂ Ω, A 6= B, let AxBy denote a bbam such that
m = Ax ⊙ By where⊙ is the conjunctive combination operator defined in Equation
(6).

It is easy to prove that anym = AxBy is:

m(∅) = xy,m(A) = x(1 − y),m(B) = y(1− x),m(Ω) = (1− x)(1 − y) (7)

In addition, when normalized,m in Equation 7 is changed tom′ as follows.

m′(A) =
x(1 − y)

1− xy
,m′(B) =

y(1− x)

1− xy
,m′(Ω) =

(1 − x)(1 − y)

1− xy
(8)

A bbam with m(Ω) = 0 is called adogmaticbba. Note that for any bbam such
thatm(Ω) = 0, the discounted bbamr with r > 0 is a non-dogmatic bba. Ifr is smaller
enough,mr is a good approximation ofm.

It is well-known thatA non-dogmatic bbam such thatm(Ω) > 0 can be uniquely
decomposed into the following form[22, 5]:

m = ⊙A⊂ΩA
x(A), x(A) ∈ [0, 1]. (9)

Also note that this decomposition can be extended to a dogmatic bba by discounting it
with discounting rateǫ and lettingǫ tend towards 0 [26, 5].

With this decomposition, the cautious combination rule proposed in [5] is defined
as follows.

Definition 3 (Denœux’s Cautious Combination Rule) Letm1 = ⊙A⊂ΩA
x1(A) and

m2 = ⊙A⊂ΩA
x2(A) be two bbas, then the combined bba by Denœux’s cautious com-

bination rule ism = ⊙A⊂ΩA
x(A) such that:x(A) = max(x1(A), x2(A)).

Remarks: Recall that a bbaAx here should be written asA1−x in [5]. From the cautious
combination rule in [5], the combination result of⊙A⊂Ω1−Ax1(A) and⊙A⊂Ω1−Ax2(A)

would be⊙A⊂ΩA
x′(A) such thatx′(A) = min(1− x1(A), 1 − x2(A)). Therefore, in

our format, we have the combination result⊙A⊂ΩA
x(A) such thatx(A) = 1−x′(A) =

max(x1(A), x2(A)).
For two bbasAx1By1 andAx2By2 , the cautious combination rule is reduced as

follows.

Lemma 1 LetAx1By1 andAx2By2 be two bbas, then the combined bba by Denœux’s
cautious combination rule is a bbaAxBy such that:x = max(x1, x2), y = max(y1, y2).
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Also, according to [5], form1 = Ax1By1 andm2 = Ax2By2 , the combined result
by Equation (4) is2

m12 = Ax1+x2−x1x2By1+y2−y1y2 (10)

3 Gender Recognition Scenario

In this section, we provide a detailed description of a gender profiling scenario, which
lends itself naturally to a DS approach.

Figure 1 shows three images taken from a video sequence that has been passed
through a video analytic algorithm for gender profiling. In this sequence, a female wear-
ing an overcoat with a hood enters the scene with her back to the camera. She walks
around the chair, turning, so that her face becomes visible,and then sits down.

Fig. 1. Three images taken from a video sequence

(a) (b) (c)

Fig. 1(a) shows that the subject is recognised by the full body shape profiling as a
male. Note that her face is not visible. In Fig. 1(b), the subject is classified as female by
the full body shape profiling algorithm. In Fig. 1(c), as she sits down, with her face vis-
ible, the face profiling algorithm classifies her as female, whilst the full body profiling
classifies her as male. Note that the full body profiling algorithm is not as reliable as the
face profiling algorithm. Conversely, full body profiling isalways possible whilst the
face information can be missing. That is why these two profiling algorithms should be
considered together. In addition, as full body profiling is not as robust, discount opera-
tions should be performed on the algorithm output (cf. Equation (3)). The discount rate
is dependent on the video samples and the training efficiency. For every video frame
in which a body (face) is detected, gender recognition results are provided. The full
body profiling algorithm and the face profiling algorithm, provided a person’s face is
detected, report their recognition results for every frameof the video, e.g., male with
95% certainty.

For a frame with only a body profiling result, for instance Fig. 1(a), the correspond-
ing mass functionm for body profiling will beMx whereM denotes thatthe person

2 In [5], the combined result ism12 = A
x1x2B

y1y2 , but recall that we use a slightly different
notation from [5].
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is classified as a maleandx is the mass value ofm({M}). The corresponding mass
function for face profiling isM0F 0 whereF denotes thatthe person is classified as a
female, or the vacuous mass function. Alternatively, we can refer to this as the vacuous
mass function.

Similarly, for a frame with both body profiling and face profiling, for instance Fig.
1(c), the corresponding mass function for body profiling will be Mx (or equivalently
MxF 0) and the mass function for face profiling isF y (or equivalentlyM0F y) where
x, y are the corresponding mass values. As time elapses, fusion of bbas by the cautious
rule or its three extensions are introduced, as shown by Lemma 1 and Definition 4 and
Definition 5. And when it comes to present the final profiling result, we use Dempster’s
rule to combine the two fused mass functions from the two recognition algorithms,
respectively. Namely, for the two bbasm1 = Mx1F y1 andm2 = Mx2F y2 , it is easy
to get that the combined resultm12 by Dempster’s rule is (normalized from the result
of Equation 10):

m12({M}) =
(x1 + x2 − x1x2)(1 − y1)(1− y2)

1− (x1 + x2 − x1x2)(y1 + y2 − y1y2)
,

m12({F}) =
(1− x1)(1− x2)(y1 + y2 − y1y2)

1− (x1 + x2 − x1x2)(y1 + y2 − y1y2)
,

m12(Ω) =
(1− x1)(1 − x2)(1 − y1)(1− y2)

1− (x1 + x2 − x1x2)(y1 + y2 − y1y2)
.

Finally, we use the pignistic transformation (Def. 2) for the final probabilities. That
is, p({M}) = m12({M}) + m12(Ω)/2 and p({F}) = m12({F}) + m12(Ω)/2.
Obviously, we will say the subject is a male ifp({M}) > p({F}), and a female
if p({M}) < p({F}). In very rare cases thatp({M}) = p({F}), we cannot know
whether it is male or female. Formally, we can write:

gender =







Male for p({M}) > p({F})
Female for p({M}) < p({F})
Unknown for p({M}) = p({F})

(11)

The following example illustrates the computation steps.

Example 1 Let us illustrate the approach by a simple scenario with two frames. In
the first frame, we have both body profiling (m1

b) and face profiling (m1
f ) results as

m1
b = M0.7F 0.3 andm1

f = M0.4F 0.6. In the second frame, we have the body profiling
(m2

b) result only, wherem2
b = M0.8F 0.2.

By Lemma 1, the fusion results by the cautious rule ismb = M0.8F 0.3 andmf =
M0.4F 0.6.

Then by Equation 10, we getmbf = M0.88F 0.72, which, when normalized, is

equivalent tombf ({M}) = 0.88(1−0.72)
1−0.88∗0.72 = 0.67, mbf ({F}) = 0.72(1−0.88)

1−0.88∗0.72 = 0.23,

mbf (Ω) = (1−0.88)(1−0.72)
1−0.88∗0.72 = 0.1.

And finally by pignistic transformation, we getp({M}) = 0.72 andp({F}) = 0.28
which indicates that the subject is a male.
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Actually, we can ease the computation by the following proposition.

Proposition 1 For m1 = Mx1F y1 andm2 = Mx2F y2 , p({M}) ≥ p({F}) if and
only if x1 + x2 − x1x2 ≥ y1 + y2 − y1y2.

Proof of Proposition 1: It is easy to see

p({M}) ≥ p({F})

⇐⇒ m12({M}) ≥ m12({F})

⇐⇒
(x1 + x2 − x1x2)(1 − y1)(1− y2)

1− (x1 + x2 − x1x2)(y1 + y2 − y1y2)
≥

(1 − x1)(1 − x2)(y1 + y2 − y1y2)

1− (x1 + x2 − x1x2)(y1 + y2 − y1y2)

⇐⇒ (x1 + x2 − x1x2)(1− y1)(1 − y2) ≥ (1− x1)(1− x2)(y1 + y2 − y1y2)

⇐⇒ (1− (1− x1)(1 − x2))(1 − y1)(1 − y2) ≥ (1 − x1)(1 − x2)(1− (1 − y1)(1 − y2))

⇐⇒ (1− y1)(1− y2) ≥ (1 − x1)(1 − x2)

⇐⇒ x1 + x2 − x1x2 ≥ y1 + y2 − y1y2.

In the program implementation, we can use Proposition 1 to simply the computa-
tion.

4 Three Extensions

In this section, we discuss three ways to weaken the influenceof past information within
the framework of DS theory, extended from the aforementioned DS approach using
Cautious rule, i.e., a time-window approach, a time-attenuation approach and a time-
discounting approach. In the time-window approach, we onlyconsider several recent
bbas. In the time-attenuation approaches, we introduce a time-attenuation factor and
use this factor to reduce the coefficients of the bbas by time.In the time-discounting
approach, we deploy a compromise way commonly used in machine learning areas
in which a discounting factor is used to balance between the previous bbas and the
current one. We aim to further compare these three approaches to find out the best
alternative for remedying the weakness of the Cautious rulewhen misleading happens
in the beginning.

Let⊕C be the operator defined by the Cautious rule. We define the three approaches
as follows.

Definition 4 (Time-Window Cautious Combination Rule) LetAx1By1 , · · · , AxnByn be
n successive bbas, then the combined bba by Time-Window cautious combination rule
of window sizet ismt = Axn−t+1Byn−t+1 ⊕C · · · ⊕C AxnByn .

That is, a time-window combination rule of window sizet only combines the recentt
bbas. Therefore if a male is mis-classified as a female with a certainty degree 0.98, then
aftert frames, it will not influence the classification result any more.

Definition 5 (Time-Attenuation Cautious Combination Rule) LetAx1By1 , · · · , AxnByn

ben successive bbas, then the combined bba by Time-Attenuationcautious combination
rule of attenuation factort, 0 < t < 1, ismt = Ax1t

n−1

By1t
n−1

⊕C · · · ⊕C AxnByn .
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That is, in this time-attenuation combination rule of attenuation factort, the coefficient
is reduced byt each time. Hence if a male is mis-classified as a female with a certainty
degree 0.98, and hence is represented asM0F 0.98, will be attenuated gradually that it
will not affect the cautious combination result for long since0.98tn will grow smaller
when0 < t < 1 andn increases.

Definition 6 (Time-Discounting Combination Rule) LetAx1By1 , · · · , AxnByn be n
successive bbas, then the combined bba by Time-Discountingcombination rule of atten-
uation factort, 0 < t < 1, ismt = Ax′

nBy′

n wherex′
i (resp.y′i) is defined recursively

as:x′
1 = x1, and

x′
i = (1− t)x′

i−1 + txi, i > 1 (resp. y′1 = y1, and y′i = (1− t)y′i−1 + tyi, i > 1).

That is, in this time-discounting combination rule of discounting factort, the coeffi-
cient is attenuated by the discounting factort between the previous coefficient and the
current one. This kind of discounting is commonly used in machine learning areas [19].
In addition we can see that actually Equation 5 also uses thisintuition. This kind of
discounting of course reduces the mis-classification quickly since thehistory is always
discounted each time.

Here we should notice that the time-window extension and thetime-attenuation
extension are generalizations to the DS fusion scheme sinceif the window size equals
to the number of frames or the attenuation factor is set to 1, then these two extensions
reduce to the DS fusion scheme.

Example 2 Let us illustrate the approach by a simple scenario with fourframes, and
there is a mis-classification in the first frame. In the first frame, the corresponding both
body profiling (m1

b) and face profiling (m1
f ) results asm1

b = M0.6 andm1
f = F 0.9

(mis-classification). In the second frame, there is only a body profiling (m2
b) result which

is m2
b = M0.7. Frame three is associated with body profiling (m3

b) and face profiling
(m3

f ) results asm3
b = F 0.4 andm3

f = M0.6, and frame four is associated with body
profiling (m4

b) and face profiling (m4
f ) results asm4

b = M0.6 andm4
f = M0.6.

By Lemma 1, the fusion results by the cautious rule aremb = M0.7F 0.4 andmf =
M0.6F 0.9.

By Definition 4 with window size 2, the fusion results by the time-window cautious
rule aremW

b = M0.6F 0.4 andmW
f = M0.6.

By Definition 5 with attenuation factor 0.95, the fusion results by the time-attenuation
cautious rule aremA

b = M0.6F 0.38 andmA
f = M0.6F 0.77.

By Definition 6 with discounting factor 0.9, the fusion results by the time-discounting
cautious rule aremD

b = M0.55F 0.04 andmD
f = M0.59.

Then by Equation 10, we getmbf = M0.88F 0.94, which, when normalized, is

equivalent tombf ({M}) = 0.88(1−0.94)
1−0.88∗0.94 = 0.31, mbf ({F}) = 0.94(1−0.88)

1−0.88∗0.94 = 0.65,

mbf (Ω) = (1−0.88)(1−0.94)
1−0.88∗0.94 = 0.04. And finally we getp({M}) = 0.33 andp({F}) =

0.67 which indicates that the subject is a female.
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Similarly, we havemW
bf = M0.84F 0.4, and hencemW

bf ({M}) = 0.84(1−0.4)
1−0.84∗0.4 =

0.76, mW
bf ({F}) = 0.4(1−0.84)

1−0.84∗0.4 = 0.10, mW
bf (Ω) = (1−0.84)(1−0.4)

1−0.84∗0.4 = 0.14 and
pW ({M}) = 0.83 andpW ({F}) = 0.17, which indicates that the subject is a male.

Also, we havemA
bf = M0.88F 0.857, and hencemA

bf ({M}) = 0.88(1−0.857)
1−0.88∗0.857 =

0.51, mA
bf ({F}) = 0.857(1−0.88)

1−0.88∗0.857 = 0.42, mA
bf (Ω) = (1−0.88)(1−0.857)

1−0.88∗0.857 = 0.07 and
pA({M}) = 0.55 andpA({F}) = 0.45 which also supports that the subject is a male.

For the time-discounting approach, we havemD
bf = M0.82F 0.04, and hencemD

bf ({M}) =
0.82(1−0.04)
1−0.82∗0.04 = 0.81, mD

bf ({F}) = 0.04(1−0.82)
1−0.82∗0.04 = 0.01, mA

bf (Ω) = (1−0.82)(1−0.04)
1−0.82∗0.04 =

0.18 andpA({M}) = 0.9 andpA({F}) = 0.1 which also supports that the subject is
a male.

Remarkably, from the definitions and computations above, itis obvious to see that
the DS fusion and the three extensions do not bring extra complexity. That is, given the
computational complexities of face and body profiling, the complexities of the proposed
fusion approaches are merely the sum of those for face and body profiling.

5 Experimental Results

In this section we compare fusion results obtained by a classic approach, a Dempster-
Shafer theory approach proposed in Section 3 and three of itsextension approaches
proposed in Section 4. As there are no benchmark datasets forboth body and face pro-
filing statistics, we simulate the output of both body and face classifiers on a sequence
containing a male subject (only a single subject). For the body classifier, the probability
of any frame being correctly classified as male/female is roughly 60-90%. For the face
classifier, only 75% of the available frames are randomly allocated as containing a face.
For each of these frames the probability of the frame being correctly classified as being
male/female is 85-100%. In both cases the values form({M}) andm({F}) are uni-
formly sampled from the ranges 0.6-0.9 and 0.85-1.0 for the body and face classifiers
outputs respectively.

As mentioned before, for gender profiling results from the same classifier at dif-
ferent time points, we use the cautious rule (Lemma 1) to combine them. For profiling
results from different classifiers (i.e., face profiling andfull body profiling), we use
Dempster’s rule (Equation (2)) to combine them. And finally,we apply the pignistic
transformation (Def. 2) to get the probabilities of the subject being male or female.

The classic fusion system introduced by Zhou et al. [31] includes a classifier namely
“EntropyBoost”, which uses the symmetric Kullback-Leiberdivergence to update the
learning weights within the standard GentleBoost algorithm. This classifier is able to
estimate the gender of a face image through principal component analysis (PCA) eigen-
values and the gender of a full body image through PiHOG feature calculation. Zhou’s
method takes the degrees of certainty as probabilities, i.e., they consider the face pro-
filing and the full body profiling outputptf andptb indicating the probabilities of faces
and full bodies being recognized as males at timet. Then it usesptb,f = ctfp

t
f + ctbp

t
b to

calculate the final probabilityptb,f at timet, wherectf andctb are the weights of the face
and full body profiling at timet, proportional to the feasibility of the two algorithms in
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the last twenty frames. As full body profiling is always feasible, suppose face profiling
can be appliedn times in the last twenty frames, then we have:

cb =
20

20 + n
, cf =

n

20 + n
.

In [31], Zhou et al. compared their fusion schema with several other approaches:
(1) a face based scheme with PCA eigenvalues with support vector machine (SVM)
(“FACE-PCA”), (2) a full body based approach with HOG features and SVM (“BODY-
HOG”), and (3) concatenated HOG features of face/body images with SVM (“CP-FB”),
and proved that their algorithm has a significantly higher accuracy than the above three
algorithms. Exemplar images of face and/or full body detections and corresponding
gender classification outcomes are shown in Figure 2, where Zhou’s algorithm allows
one to correctly detect genders on those images.

For this experimental simulation, the performance of the DSand classic (Zhou’s)
fusion schemes were characterised by the true positive rate:

TPR =
NPR

N

whereNPR is the number of frames in which the gender has been correctlyclassified
andN is the total number of frames in which the body/face is present. According to
the training on the sample videos, the discount rater for the full body profiling is set to
0.3. For comparison, we calculate theTPR value for the body classifier alone, the face
classifier, the DS fusion scheme and its three extensions, and the classic fusion scheme.

First we compare the DS approach result and the classic approach result. When ap-
plying the methods on the randomly-generated simulation data, the comparison results
are presented as follows.

Methods TotalFrame N NPR TPR (%)
Full Body 3100 31001872 60.4

Face 3100 23212178 93.8
Classic Method 3100 31002658 85.7
DS Approach 3100 31003014 97.2

Table 1: Comparison ofTPR for body classification, face classification, DS fusion and
classic fusion

Note that here the performance of full body or face recognition is generated ac-
cording to our simulation assumption. Various algorithms may provide different perfor-
mance values. However, in this paper, we ignore this difference since we are focusing
on the comparison of fusion approaches. Indeed the changingof performance values of
full body and face recognition does not affect the comparison result between our DS
fusion schema and the classic one.

From Table 1, we can see that the DS fusion scheme gives an increase of approxi-
mately 13.4% inTPR compared to the classic fusion scheme.
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Fig. 2. Examples of correct face/body detection and gender classification in six video sequences
using Zhou’s algorithm. Better viewed in color.

Now we show the experimental results on the three extensions. Here we first apply
the approaches to 58 simulations each with 50 frames (so there are 2900 total frames),
where a mis-classification occurs at the beginning. The comparison results are presented
as follows.

13



Methods N NPR TPR (%)
Full Body 29001606 55.4

Face 21592002 92.7
Classic Method 29002078 71.7
DS Approach 29002380 82.1

Time-Attenuation (0.95)29002194 75.7
Time-Attenuation (0.99)29002431 83.8
Time-Discounting (0.85)29002613 90.1
Time-Discounting (0.9)29002471 85.2
Time-Discounting (0.95)29002397 82.7

Time-Window (5) 29002586 89.2

Table 2: Comparison ofTPR for body classification, face classification, classic fusion,
DS fusion and its three extensions - Mis-Classification Cases.

From Table 2, we can see that the three extensions provide better results than the DS
fusion scheme, except when the attenuation factor is 0.95. This may be because setting
the attenuation factor to 0.95 reduces the certainty degrees too quickly. Also, we can
see that the time-window approach is better than the time-attenuation approach, whilst
for the time-discounting approach, its precision decreases when the discounting factor
increases. This is because in the discounting equationx′

i = (1−t)x′
i−1+txi, thehistory

informationx′
i−1 is an integrated value which is more reliable than the singlevaluexi,

so decreasing the contribution ofx′
i−1 will decrease the classification efficiency.

An example simulation result comparing the classic, DS, Time-Attenuation (0.99)
and Time-Window (5) approaches (since they are generalizations of the DS fusion
scheme) is shown in Figure 3. Figure 3 records data in a singleexample simulation
(50 frames). It shows that when frames increase, the correctly recognized subjects also
increases almost linearly.

Here we also show the result comparing the time-discountingapproach with dif-
ferent discounting factors in Fig. 4. Figure 4 shows the trend of TPR of the time-
discounting approach when the discounting factor increases from 0.05 to 0.95. We can
see that whent is increasing from 0.05 to 0.5,TPR is almost not affected, and from
t = 0.5, it decreases modestly, and fromt = 0.85, it decreases quickly. This can be
explained as whent ≤ 0.5, the contribution of thehistory is always predominant, so it
does not affect much, but when the contribution of thehistorydecreases, it indeed influ-
ence the classification results. So it justifies that for classification, we should consider
the previous history instead of keeping the current classification result only.

Now we apply the approaches to 20 simulations each with 150 frames (so there are
3000 total frames), where we do not assume mis-classification occurred at the begin-
ning. The comparison results are presented as follows.

14



Fig. 3. An Example Simulation

X-label: the discounting 

factor

Y-label: the TPR value

Fig. 4. Time-Discounting with Different Factors

Methods N NPR TPR (%)
Full Body 30001792 59.7

Face 22292125 95.3
Classic Method 30002490 83.0
DS Approach 30002899 96.6

Time-Attenuation (0.95)30002126 70.9
Time-Attenuation (0.99)30002401 80.0
Time-Discounting (0.85)30002706 90.2
Time-Discounting (0.9)30002583 86.1
Time-Discounting (0.95)30002501 83.4

Time-Window (5) 30002395 79.8
Time-Window (20) 30002552 85.1
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Table 3: Comparison ofTPR for body classification, face classification, classic fusion,
DS fusion and its three extensions - General Cases.

From Table 3, we can see that the three extensions perform worse than the DS fusion
scheme. This is not surprising since the former do not alwayshold the highest certainty
degree as in the DS fusion scheme. Table 3 also shows that whenthe attenuation factor
or the window size increases, the results improve. Actually, if the window size equals
to the number of frames or the attenuation factor is one, thenthese two extensions (i.e.,
the time-window extension and the time-attenuation extension) will provide the same
results as the DS fusion one. In addition, we can see that the time-discounting approach,
in this case, behaves better than the other two extensions. Also, comparing the results
in Table 2 and Table 3, we can find that the results of the time-discounting approach are
much more stable than those of the other two extensions. The reason is that in the time-
discounting approach, the influence of the mis-classification at the beginning disappears
more quickly than those of the other two extensions since thediscounting factors are
large (≈ 1).

6 Conclusion

In this paper, we have proposed how to combine gender profiling classifier results by
utilizing DS theory. We have used the cautious rule to combine gender profiling results
from the same classifier at different time points and used Dempster’s rule to combine
profiling results from different classifiers. Experimentalresults show that the introduc-
tion of the DS theory indeed improves profiling performance.In addition, to deal with
mis-classifications occurred at the beginning of the stream, we have proposed two fu-
sion methods by modifying the application of the Cautious rule, i.e., the time-window
fusion method and the time-attenuation fusion method. We also have proposed another
extension which is the time-discounting fusion method. Experimental results show that
these three extensions provide more robust results than other approaches, especially to
their predecessor DS fusion scheme.

We have mentioned that there are three problems that a classic gender profiling
system should deal with, i.e., uncertain profiling results,unstable results over time for a
gender profiling classifier, and different classifiers capturing different features. We have
shown that a DS-based approach handles these three issues ina seamless way.

From the experimental results, it suggests that the time-window fusion scheme per-
forms slightly better than the time-attenuation fusion scheme. But we think this conclu-
sion still depends on the choice of attenuation factor, window size and frame size. Also,
the time-discounting approach is more stable than the othertwo extensions.

For future work, we plan to apply the fusion schemes to profiling classifier results
generated from large-scale real video sequences. We will combine our work with those
of [23, 28] and others in order to improve the performance of our system to handle
partial occlusions or crowded situations. In addition, we are also exploiting ideas from
knowledge base merging [8].
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