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Abstract  

 The analysis of long-term irrigation performance series is a valuable tool to improve 

irrigation management and efficiency. This work focuses in the assessment of irrigation 

performance indices along years 1995 to 2008, and the cause-effect relationships with 

irrigation modernization works taking place in the 4000 ha surface-irrigated La Violada 

Irrigation District (VID). Irrigation management was poor, as shown by the low mean 

seasonal irrigation consumptive use coefficient (ICUC = 51%) and the high relative 

water deficit (RWD = 20%) and drainage fraction (DRF = 54%). April had the poorest 

irrigation performance because corn (with low water demand in this month) was 

irrigated to promote its emergence, whereas winter grains (with high water demands in 

this month) were not fully irrigated in water-scarce years. Corn, highly sensitive to 

water stress, was the crop with best irrigation performance because it was preferentially 

irrigated to minimize yield losses. The construction of a new elevated canal that 
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decreased seepage and drainage fractions, the entrance in operation of six internal 

reservoirs that would increase irrigation scheduling flexibility, and the on-going 

transformation from surface to sprinkler irrigation systems are critical changes in VID 

that should lead to improved ICUC, lower RWD and lower DRF. The implications of 

these modernization works on the conservation of water quantity and quality within and 

outside VID is further discussed. 

Keywords: Evapotranspiration, irrigation management, consumptive use, water deficit, 

drainage fraction, water quantity, water quality. 

1. Introduction 

Part I of this work (Barros et al., 201x) presented a long-term, sequential water 

balance analysis in La Violada Irrigation District (VID) that identified and quantified 

the most important water balance components in this district. Based on these water 

inputs and outputs, Part II of this work calculates several irrigation performance indices 

for the assessment of water management as affected by irrigation improvements that 

have taken and will take place following irrigation modernization in VID. 

Irrigation performance indices may help to quantify the beneficial and non 

beneficial uses of irrigation water (Molden 1997; Haie and Keller 2008). Based on the 

classical definition of irrigation efficiency given by Israelsen and Hansen (1962) as the 

fraction of irrigation water consumed by crops, several modifications that take into 

account hydrological issues have been developed (Keller and Keller, 1995; Burt et al. 

1997; Seckler et al. 2003; Perry et al. 2009; Lecina et al. 2010; Perry, 2011). Rao (1993) 

made an extensive review on indicators of irrigation performance, summarizing and 

synthesizing the most useful indicators used in reports and publications. Jensen (2007) 

reviewed and summarized the evolution and recent modifications of the irrigation 
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efficiency indices. Bos and Nugteren (1990) presented the most widely accepted 

concepts and definitions of irrigation efficiencies, defining various efficiencies 

associated with different components of the water delivery system. Bos et al. (1994) 

made a framework for assessing irrigation management and showed different 

methodologies for recommending performance indicators. Molden (1997) and Molden 

and Sakthivadivel (1999) endeavoured to create a common terminology for water 

accounting, distinguishing between water consumption and water delivery, and 

provided a guide of indicators for a better comparison of the performance of irrigation 

systems. 

Many case studies on irrigation performance have been carried out using 

irrigation indices. Several were focused at the plot level in different crops, like rice 

(Humphreys et al. 2005), alfalfa (Hanson et al. 2007), and sunflower (Connor and Jones 

1985), with the target of producing more with less water, whereas others were focused 

at the irrigation district level. Lorite et al. (2007) developed a model that simulates 

water balances and irrigation performances at the plot and irrigation district levels. 

Karatas et al. (2009) assessed the irrigation performance of several water user 

associations using remote sensing techniques to measure evapotranspiration from 

satellite data, and Krinner et al. (1994) presented a method for estimating efficiency in 

several Spanish irrigation systems. In the Ebro River Basin (North-East Spain), with 

more than 800000 ha of irrigated land, several studies analyzed irrigation efficiencies at 

the irrigation district level (Tedeschi et al. 2001; Cavero et al. 2003; Dechmi et al. 2003; 

Isidoro et al. 2004; Lecina et al. 2005; García-Garizábal et al. 2009; Lecina et al. 2010). 

However, studies dealing with a long-term analysis of irrigation performance at 

the irrigation district level and its evolution with changes in crop patterns, irrigation 

practices, irrigation modernization and climatic variability are lacking. This work 
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analyzes the irrigation performance in La Violada Irrigation District (VID), where water 

balances have been performed since the 80’s. Faci et al. (2000) analyzed irrigation 

management in the hydrological year 1994 through the seasonal irrigation performance 

index (SIPI), defined as the seasonal percentage of the net irrigation requirements (NIR) 

to the volume of irrigation water delivered to crops. The average SIPI was 70%, 

indicating that the volume of irrigation water was higher than the NIR. These authors 

concluded that irrigation management in VID was poor due to long irrigation intervals 

and delay times in water delivery, low ditch discharges (average of 69 L/s) and marginal 

areas with deficit irrigation which caused crop water stress. 

Based on these conclusions, Playán et al. (2000) analysed different irrigation 

modernization scenarios where management and irrigation methods were modified with 

the goal of increasing irrigation efficiency. The best results were obtained for a SIPI of 

77%, which resulted in a reduction in diversions of 14.4 Mm3/year. This relatively high 

SIPI was obtained by a combination of blocked-end flood irrigation with an increased 

discharge of 200 L/s, and a change to sprinkler irrigation in areas where surface 

irrigation could not attain 50% efficiency. Isidoro et al. (2004) analysed irrigation 

performances for the 1995-1998 hydrological years through a district-scale water 

balance. The seasonal average irrigation consumptive use coefficient (ICUC; Burt et al. 

1997) was low (48%) due to low distribution and delivery efficiencies. Furthermore, the 

actual crop evapotranspiration (ETa) was 16% lower than the maximum achievable crop 

ETc indicating that crop water-stress was significant in VID, in particular in areas with 

shallow and low water holding capacity soils. 

Based on these and other studies performed in VID, several structural and 

management improvements detailed in the next section have taken place or will take 

place following the irrigation modernization in this district. This provides a unique 
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opportunity to identify and quantify how these improvements affect irrigation water use 

by analyzing a continuous data base gathered in the district from 1995 to 2008 (i.e., 

before and after the implementation of these improvements). 

The objectives of part II of the work performed in VID are to (i) analyze the 

water balance components and its evolution along fourteen irrigation seasons (1995 to 

2008), (ii) assess irrigation performance through several crop, irrigation and drainage 

indices, and (iii) relate changes in these indices with improvements that have taken 

place during the last years in this irrigation district. 

2. Description of La Violada irrigation district (VID)  

VID is located in the middle Ebro River Basin (north-eastern Spain). The total 

surface of VID is 5282 ha, the irrigable land is about 4000, and the 1995-2008 average 

irrigated land was 3565 ha. VID is surrounded by the Monegros, Sta. Quiteria and 

Violada canals (Fig. 1), and it is integrated in the 57112 ha Monegros I irrigation 

scheme. 

The climate of VID is Mediterranean, dry, subhumid and mesothermic, with 

precipitations concentrated in spring and autumn, and with maximum temperatures of 

38ºC in July and August. Mean annual values for the period 1995-2008 were 422 mm 

(precipitation), 14ºC (temperature) and 1166 mm (ET0, Penman-Monteith reference 

evapotranspiration). 

The drainage system of the study area consists of a dense network of open 

ditches and buried pipe drains. There are two main drainage courses (Valsalada and 

Artasona ditches) that converge to make up La Violada Gully (Fig. 1). Since the district 

is underlain by an impervious clay stratum (Faci et al. 1985; ITGE, 1995), deep 

percolation is negligible and all or most drainage waters are intercepted and exported 
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through this Gully, where a gauging station (D-14, Fig. 1) measures the flow of water 

exiting VID. 

Faci et al. (2000) and Playán et al. (2000) presented a detailed description of the 

distribution system and irrigation management in VID. The district is irrigated from 11 

turnouts in Monegros Canal, 16 in Violada Canal and 19 in Santa Quiteria canal. The 

most widely adopted irrigation system is flood-irrigation with blocked-end borders. The 

original delivery system was designed in the 1930’s to supplement irrigation to winter 

cereals. The mean ditch capacity (69 L/s) is insufficient to meet the crop water 

requirements of more water-demanding crops, like corn and alfalfa that developed in the 

80’s. This new crop pattern and the absence of any internal water storage capacity at 

that time forced the Almudevar Water User Association (CRA) to operate the system on 

a fixed-schedule, continuous basis (24 hours a day). Hence, distribution and on-farm 

efficiencies were poor and farmer’s irrigation practices were laborious and problematic. 

In the 80’s and 90’s CRA improved some conveyance structures (concrete lining 

and use of pipes in some irrigation ditches) and the Confederación Hidrográfica del 

Ebro (CHE) improved the rating curves and the accuracy of water delivery through the 

irrigation gates (Isidoro and Aragües, 2006). In the last decade, major structural and 

management improvements have taken place in VID related with the on-going Spanish 

modernization of irrigation districts, new water policies and increasing water-scarce 

years: 

(i) Construction of the new elevated La Violada canal that replaced the old Canal 

seriously affected by seepage. The new canal rendered service in the 2003 

irrigation season, eliminating its seepage and affecting the flow regime of La 

Violada Gully. 
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(ii) Intense reuse of drainage waters for irrigation (around 2 hm3 per year according 

to CRA) in years 1999, 2005 and 2006 by means of a new internal reservoir that 

collects the drainage waters of the Artasona ditch (Fig. 1). 

(iii) Irrigation restrictions in years 1999 and 2005 due to severe water limitations 

following winter seasonal droughts. 

(iv) Construction of six internal irrigation reservoirs with a total storage capacity of 

around 0.6 hm3 that allow for a greater flexibility, changes from fixed to on 

demand irrigation, and increased irrigation efficiencies. Four small reservoirs 

with a total capacity of 0.2 hm3 were operative since 1998, whereas the 

remaining reservoirs will operate after the new pressurised irrigation systems 

will enter in service in 2010. 

(v) Starting 2008, the flood irrigation systems are being transformed into 

pressurized system (mainly solid set sprinklers) through the commitments of the 

Spanish National Irrigation Plan (MARM, 2010). It is envisaged that this 

transformation will have a major impact on the water balance components and 

irrigation performance in the district. 

Figure 2 presents the yearly irrigated area and the most important crops grown in 

VID (in percent of total irrigable land) during the 1995-2008 study period. During 

1995-98 the most important crops were corn (50% of total), alfalfa (21%) and winter 

grains (13%). Other secondary crops were rice, sunflower, orchards (pepper) and fruit 

trees. During 1999-2004 there was a decrease in corn (mean of 30%) and an increase in 

alfalfa (mean of 37%) due to the installation of a new alfalfa hay processing plant in 

Almudévar in 2000. During 2005-2008 a sharp reduction in corn (mean of 5%) along 

with an increment in winter grains (mean of 30%) took place due to water limitations, 
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particularly in 2005, and the on-going irrigation modernization. The relatively low 

irrigated and high not cultivated areas in 1999 and 2005 were due to water restrictions, 

whereas those in 2008 were due to an intensification of the modernization works in this 

year. 

3. Materials and methods 

3.1. Irrigation season and monthly irrigation performance indices for VID 

In part I of this work (Barros et al., 201x), the VID water balance components 

were calculated on a monthly basis for each 1995 to 2008 hydrological year. This 

monthly values, expressed in volume of water per unit of irrigated land (mm), were 

aggregated to obtain the main water balance components for the 1995-2008 April to 

September irrigation seasons (Fig. 3). 

Based on these irrigation season and monthly values, the following irrigation 

performance indices were calculated for each 1995-2008 study year: 

(1) Relative water deficit (RWD), percent difference between the maximum 

(ETc) and the actual (ETa) crop evapotranspiration over the maximum ETc: 

                               
c

ac

ET

ETET 
 100RWD                                                 (1) 

The RWD for a given crop is linearly related to the relative reduction in crop 

yield (Doorenbos and Kassam, 1979). 

(2) Irrigation consumptive use coefficient (ICUC; Burt et al., 1997), percent 

ratio of the volume of irrigation water consumptively used (CU) to the 

irrigation water available for the consumption of crops: 
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where CU = ETa – Pe (Pe is the effective precipitation defined below that is 

discounted from ETa to take into account only the consumptive use of crops 

arising from irrigation), I = irrigation, and ΔWs = change in soil water 

content for the study period. A theoretical ICUC of 100% would indicate 

that the volume of irrigation applied (plus the decrease in soil water content) 

was used completely for crop transpiration (consumptive use). 

(3) Drainage fraction (DRF): percent ratio of the irrigation return flows (Q*) to 

the total water delivered to the system (I + P): 

PI

*Q


100DRF                                                      (3) 

where Q* is the outflow minus the lateral inflows to the gully (Barros et al., 

201x). Since virtually all Q* generated in VID is collected in La Violada 

gully and is reused downstream, DRF is equivalent to the recoverable 

runoff/percolation fraction defined by Lecina et al. (2010) and Perry (2011). 

All the terms in these equations were presented and discussed in Barros et al. 

(201x), except the effective precipitation (Pe) that was estimated from the daily soil 

water balance, thus taking into account actual management practices (irrigation 

scheduling and applied volumes) and average soil properties: 

(a) In days when P is the only water input to the soil, Pe was calculated as:  

Pe = P               if    Ws + P < FC                                  (4) 

Pe = FC – Ws     if     Ws + P > FC                                 (5) 
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where Ws is the soil water content and FC is field capacity. Playán et al. (2000) 

estimated an average FC of 294 mm and an average permanent wilting point 

(WP) of 199 mm for the soils in the district. 

(b) In days when both I and P take place, Pe was calculated as: 

PI

)W(FC
PP s

e 



 

                                                   (6) 

In addition to these irrigation performance indices, the crop’s net irrigation 

requirement (NIR) or irrigation water needed to fully satisfy crop water needs (Krinner 

et al. 1994) was calculated as:  

NIR = ETc - Pe                                                    (7) 

3.2. Irrigation season performance indices for each crop 

The average 1995-2008 irrigation season performance indices were calculated 

for the three most important crops grown in VID (corn, alfalfa and winter grain) and for 

sunflower because of its unique management. The growing periods (sowing to 

harvesting dates) for each crop were taken from Allen et al. (1998) and from interviews 

to farmers, except in corn where the beginning of the growing period was taken as 1 

April (i.e., before sowing in 20 April) to include the usual pre-sowing irrigations given 

in VID in the 1990’s (Isidoro et al. 2004). 

The water balance terms used to calculate these indices were Is (irrigation 

established by the average irrigation calendar), D (drainage or excess water above field 

capacity) ETc, ETa, Pe and ∆Ws along the growing period of each crop. These terms 

were established through daily soil water balances performed for each crop (Barros et 

al., 201x) based on the actual soil properties in VID (Playán et al., 2000), the irrigation 
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depths and schedules obtained in farmers interviews (Isidoro et al. 2004; Barros et al. 

201x) and the analysis of water delivery records (Faci et al. 2000) (Table 1). 

4. Results and discussion 

4.1. Irrigation season water balances 

Figure 3 summarizes the main inputs (irrigation I, precipitation P, and canal 

seepage CS) and outputs (outflow in La Violada gully originating from the irrigated 

land Q* and actual crops evapotranspiration ETa) of the water balances performed in the 

1995-2008 irrigation seasons and its 1995-2008 average plus one standard deviation. 

The major input in all years was I, with a 1995-2008 average of 756 mm, equivalent to 

67% of total inputs. With some exceptions, the second major input was P, with an 

average of 231 mm, equivalent to 20% of total inputs. CS values were around 200 mm 

in the 1998-2002 period, and decreased to values below or around 100 mm in the 2003-

2008 period. The average CS was 131 mm, equivalent to 12% of total inputs. The term 

other inputs (OI = surface runoff + canal releases + municipal wastewaters), not shown 

in Fig. 3, was low in all years, with an average of 40 mm, equivalent to 4% of total 

inputs. 

Total 1995-2008 input average was 1130 ± 225 mm (mean ± standard 

deviation), with significant differences (P<0.001) in 1995-2004 (1250 mm average) and 

2005-2008 (832 mm average). The main reasons for the lower 2005-2008 total input 

were (i) lower irrigation volumes due to water shortages in 2005 and 2006, (ii) a shift in 

crop patterns from high (corn and alfalfa) to low (winter grains) water-demanding crops 

(Fig. 2), (iii) lower canal seepages due to the new elevated Violada canal operative in 

2003, and (iv) higher not cultivated land in 2008 (Fig. 2) due to an intensification of 

modernization works. 
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Total 1995-2008 output average was 1188 ± 257 mm, with 581 mm for Q* (49% 

of total) and 566 mm for ETa (48% of total) (Fig. 3). Total outputs were also 

significantly different (P < 0.001) in 1995-2004 (1326 mm) and 2005-2008 (843 mm). 

The lower 2005-2008 outputs were due to lower drainage volumes derived from the 

already mentioned lower inputs, and lower ETa due to a shift from corn to winter grains 

and a higher proportion of not cultivated land. 

The 1998-2008 irrigation season average change in soil water content (ΔWs) was 

-29 ± 26 mm, a minor value compared to the rest of terms in the equations where this 

variable was included. 

All the irrigation season water balance errors were lower than 10%, except in 

1995 (-20%) and 1996 (-16%), two of the three years without CS estimates. The 1995-

2008 average error was -51 mm, equivalent to -4% of total outputs. This low error gives 

confidence to the estimated water balance terms and allows for a sensible assessment of 

irrigation performance in VID. 

4.2. Irrigation season performance indices 

Fig. 4 shows the NIR, consumptive use (CU) and the performance indices RWD, 

ICUC and DRF calculated in each 1995-2008 irrigation season. The 1995-2008 average 

NIR was 537 ± 88 mm. Variability among years (Fig. 4a) was associated to variability 

in cropping patterns and effective precipitation. The lowest NIR values were found in 

years predominant in winter grains (2007 and 2008, Fig. 2) and in year 1997, when Pe 

reached a maximum value of 245 mm. In contrast, high NIR values were obtained in 

years with low seasonal Pe as 1995 (97 mm), 1998 (132 mm) and 2001 (113 mm). 

The 1995-2008 average relative water deficit (RWD) was high (20 ± 6%), 

indicating that the available water was insufficient to meet the maximum ETc even 
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though the volumes of irrigation were higher than the NIR. The highest RWD values 

occurred in the last years (except in 2008, the year with the lowest irrigated area due to 

intensification of modernization works) due to irrigation restrictions, especially in the 

driest 2005 year (Fig. 4b). The lowest RWD values occurred in the nineties, years with 

highest irrigation and precipitation volumes (Fig. 3). The high RWD values found in 

VID showed that water stress was significant, particularly in drought years, a constraint 

that should be alleviated with the on-going transformation of irrigation into sprinkler 

systems. 

The 1995-2008 average irrigation consumptive use coefficient (ICUC) was 51%, 

and the highest ICUC (67%) was attained in the drought 2005 year (Fig. 4c). The 

intense reuse of drainage waters for irrigation in 2005 and 2006 also explains their high 

ICUC values, since the actual volume of water delivered to the fields was significantly 

higher than the volume billed by CRA. Nevertheless, these ICUC values were very low 

compared to SIPI values of 92% (Tedeschi et al. 2001) and 94% (Cavero et al. 2003) 

found in sprinkler-irrigated districts of the middle Ebro River Basin. Previous works 

(Playán et al. 2000) point to the shift from surface to sprinkler irrigated systems to 

increase SIPI in VID. 

The 1995-2008 average drainage fraction (DRF) was very high (57%) and 

significantly (P<0.005) higher in 1995-2002 (DRF = 63%) than in 2003-2008 

(DRF = 49%) (Fig. 4d). An important reason for the lower DRF in the last period was 

the entrance in operation of the new elevated La Violada canal in 2003 that eliminated 

the high seepage (CS) of the old canal. Thus, discounting CS in the calculation of DRF, 

the 1998-2008 average DRF was 41% and without significant differences between these 

periods. The lowest DRF of 30% obtained in 2005 was consistent with the intense 

drainage water reuse of about 65 mm and a lower applied irrigation volume in this year. 
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The irrigation season performance indices obtained in the fourteen-years study 

period showed that irrigation management in VID was poor, mainly due to the high 

irrigation depths given to relatively low water-retention soils (95 mm according to 

Playán et al. 2000). The low average ICUC (51%), pointed to an inadequate irrigation 

management in VID. The drought and the intense reuse of drainage waters in 2005 and 

2006 led to higher ICUC and reduced DRF. However, RWD did not decrease, but 

reached its maxima (33% in 2005 and 30% in 2006) showing that higher ICUC did not 

imply a better water use.  

The high RWD values found in VID were mostly due to fixed irrigation 

schedules imposed by an insufficient capacity of the irrigation distribution network 

(Faci et al. 2000). The construction of the internal reservoirs could reduce RWD by 

providing a higher irrigation flexibility (i.e., decreased irrigation intervals and proper 

timings of irrigation to each crop) if they were accompanied by an increase in the 

capacity of the irrigation ditches. However, only four reservoirs with a total capacity of 

0.2 hm3 (accounting for 37% of the total storage capacity) were in operation since 1998, 

and the capacity of the irrigation ditches has not been increased. The change to sprinkler 

irrigation systems, where irrigation depths and dates can be established by the system’s 

managers, along with the construction of the two remaining largest internal reservoirs 

(total capacity of 0.6 hm3) should provide for an increase in irrigation efficiencies and a 

decrease in crop’s water deficits. 

 As previously indicated, a significant infrastructure improvement has been the 

construction of the new elevated Violada canal that entered in service in 2003. As 

compared with the old and deteriorated Violada canal, the new canal reduced the 

amount of seepage (CS) by an average of 38 %, equivalent to a conservation of water in 

the canal of 5.0 Mm3 in the irrigation season and 6.1 Mm3 in the hydrological year 
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(Barros et al. 201x). These lower seepages significantly reduced DRF after 2003, and 

further decreases are expected following the modernization of the irrigation system 

because of the inherent higher irrigation efficiencies of the new sprinkler systems. 

Increased irrigation efficiencies will have important benefits within VID because 

the volume of water allocated and its cost to farmers will decrease. In contrast, the 

corresponding decreases in drainage fractions will decrease the volume of water in La 

Violada gully, a recoverable resource that is beneficially used downstream. Hence, 

savings of water in the Gállego river basin will be negligible. This conclusion has been 

substantiated in previous works that showed that increased irrigation efficiencies have a 

minor impact in water conservation at the watershed scale, and that this concept is not 

appropriate for assessing the hydrological impact of irrigation at the watershed scale 

(Willardson et al., 1994; Perry, 1999; Perry et al., 2009; Jensen, 2007; Lecina et al., 

2010; Perry, 2011). 

Nevertheless, increasing irrigation efficiencies in VID will have an additional 

off-site benefit from the point of view of water quality. The soils in VID are high in 

gypsum, so that salinity in drainage waters is relatively constant and close to gypsum 

saturation (Faci et al. 1985). Hence, the mass of salts exported through La Violada gully 

to the Gállego river are almost proportional to the volume of drainage waters (Isidoro et 

al. 2006a) that will decrease with higher irrigation efficiencies. The final result would 

be that water quality in the Gállego river downstream of La Violada gully will benefit 

from these reduced salt loads. The low actual irrigation efficiencies and low salt 

concentrations in irrigation water (EC < 0.4 dS m-1) allow to increase these efficiencies 

without compromising crop yields due to root-zone salt stress. Also, the quality of the 

non-diverted or non-seeped water is conserved and maintains the high quality of the 



 16

irrigation water because it is not mixed with the low quality drainage waters in La 

Violada gully. 

4.3. Monthly irrigation performance indices 

The 1995-2008 monthly averages of I, P, ETc, ETa, NIR, and the irrigation 

performance indices RWD, ICUC and DRF are presented in Figure 5. The lowest I were 

found at the beginning (April and May) and end (September) of the irrigation season 

(Fig. 5a), when ETc, ETa and NIR were also lowest (Figs. 5b, c). The highest irrigation 

volumes were given in June, July and August, the months with maximum alfalfa and 

corn development, maximum ETa and maximum NIR. The average crop water deficit 

(ETc - ETa) was 24 mm/month, with the highest values found in April (ETc - ETa = 44 

mm) following the insufficient irrigation given to winter cereals in some years. 

The lowest ICUC was obtained in April (35%), when corn with a very low ETa 

was generally irrigated to obtain soil water contents adequate for sowing, promote its 

emergence and stand establishment, and minimize soil crusting These pre-sowing (and 

post-sowing) corn irrigations were very high due to the limitations of the irrigation 

system, leading to enhanced drainage and lower consumptive fraction (Fig. 5c). ICUC 

in May increased to a value of 57% because corn was generally not irrigated (and thus I 

was lower; Fig. 5a), and the crop used the water previously stored in the soil from the 

April irrigations. The combination of monthly ICUC estimations with the I (Fig. 5a) and 

ETa (Fig. 5b) observations in April and May reveal the crop use in May of the soil water 

storage derived from this excess April applications. The highest variability in April 

ICUC (Fig. 5e) follows from the halt in the use of this high volume pre-sowing 

irrigation after 2000, with the introduction of new sowing techniques. High volume pre-
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sowing irrigation was thus an avoidable practice leading to high drainage volumes in 

April and to the leaching of the N fertilizer applied at pre-sowing (Isidoro et al., 2006b). 

ICUC remained relative constant in June-August and decreased in September, 

when irrigation was about 90 mm whereas NIR was below 50 mm. It is expected that 

sprinkler irrigation will increase ICUC in VID, particularly in April, because lower 

irrigation depths will be attainable to minimize soil crusting. 

The monthly DRF values were high, nearly constant and close to 60% along 

April to August, and increased to 70% in September (Fig 5f) due to the discharge of the 

aquifer to La Violada Gully along this month (Barros et al. 201x). These high DRF 

monthly values reflect the actual poor irrigation management in VID. 

4.4. Crop’s irrigation performance indices 

Table 2 summarizes the 1995-2008 irrigation season average volumes of 

irrigation (Is), evapotranspiration (ETc and ETa), net irrigation requirement (NIR), 

consumptive use of water (CU), and the RWD, ICUC and DRF irrigation performance 

indices for the most important crops grown in VID (corn, alfalfa and winter grains) and 

for sunflower. The volumes of Is, ETc, ETa and NIR were highest in alfalfa, the crop 

with the longest growing season (Table 1), followed by corn, sunflower and winter 

grains. Winter grains presented the highest irrigation standard deviation because water 

availability in spring was affected by the spring rains and the number of irrigations, both 

quite variable between years. In years with water scarcity (as 2005), a normal practice 

was to apply one or no irrigation to winter grains. The same occurred in 2008 with the 

irrigation transformation works: farmers preponderantly cultivated winter grains that 

could not be fully irrigated. The relatively high Is standard deviation in corn was mainly 

due to the irrigation applications in April mainly in the early years of the study period. 



 18

Corn had the lowest relative water deficit (14%) and sunflower the highest 

(44%), whereas the rest of crops had intermediate values (24-27%). Yield decreases are 

assumed to be proportional to water deficits through the yield response factor ky (0.9 for 

alfalfa, 1.25 for corn, 1.0 for winter grains and 0.95 for sunflower; Doorenbos and 

Kassam 1979). Based on water deficits and these yield response factors, the actual 

yields were 76% (alfalfa), 82% (corn) and 76% (winter grains) of potential yields under 

no water stress. Since corn is most sensitive to water stress (highest ky) and has the 

highest production costs, farmers applied water preferentially to this crop to minimize 

RWD and yield losses. In contrast, sunflower had the highest RWD, with actual yields 

as low as 58% of potential yields, because the benefits of this crop arise mainly from 

subsidies established by the European Agricultural Policy (EAP) that does not take 

yields into account. For this reason, the so-called “EAP-sunflower” was poorly irrigated 

and fertilized to minimize costs and obtain the maximum net benefits from their 

subsidies. 

Corn had the highest ICUC (53%), a value representative of those found in the 

middle Ebro River basin for surface irrigation (Faci et al. 2000). Alfalfa had the lowest 

ICUC (41%) because the average irrigation depth was much higher than its water 

requirements (Table 2). DRF was highest in alfalfa and sunflower (52%) and lowest in 

winter grains (34%). 

5. Conclusions 

The water balances performed in the surface-irrigated La Violada Irrigation 

District (VID) along fourteen irrigation seasons (years 1995 to 2008) closed with yearly 

errors below 10% in most years, giving confidence to the water balance terms and 

allowing for a sensible assessment of irrigation performance in VID. 
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Total inputs decreased significantly (P<0.001) during the last study years (2005-

2008) due to water shortages in 2005 and 2006, a shift from high (corn and alfalfa) to 

low (winter grains) water-demanding crops, lower canal seepages due to the new 

elevated Violada canal operative in 2003, and higher non-cultivated land due to the 

2008 irrigation modernization works. 

 Total outputs also decreased significantly in 2005-2008 due to lower inputs, 

lower drainage due to decreased canal seepages, an intensification of drainage water 

reuse in some water-shortage years, and lower crop water demands due to a shift from 

corn to winter grains and a higher proportion of non-cultivated land. In particular, the 

new elevated Violada canal was a sound investment since it eliminated seepages 

equivalent to 5.0 Mm3 of water (i.e., 18% of the mean irrigation volume) during the 

irrigation season. Since these seepages result in increasing flows in La Violada gully 

that could be beneficially used downstream (i.e., recoverable losses), its suppression did 

not entail an increase in water availability at the watershed scale. However, the 

decreased seepages from La Violada Canal preserved the quality of the overall water 

resources in the Gállego basin. 

  The seasonal-average irrigation performance indices indicate that irrigation 

management was poor, with low irrigation consumptive use coefficient (ICUC) and 

high relative water deficit (RWD) and drainage fraction (DRF) values due to high 

irrigation depths and fixed irrigation schedules given to the relatively low soil-water 

holding capacity VID soils. The highest ICUC values in 2005 and 2006 were coupled to 

highest RWD, showing that higher irrigation efficiencies were linked to higher crop 

water deficits in these water-shortage years. 
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 The monthly irrigation performance indices show that April was the month with 

the poorest irrigation management (i.e., highest RWD and lowest ICUC) because corn, 

with negligible water demands in this month, was irrigated in some years to minimize 

soil crusting and promote its emergence and plant establishment, whereas winter grains, 

with high water demands in this month, were not fully irrigated in water-shortage years. 

The new sprinkler systems being installed in VID should drastically ameliorate 

irrigation management in April by decreasing irrigation depths in corn that will increase 

ICUC, and by increasing irrigation in winter cereals that will decrease RWD. 

 The crop’s irrigation performance indices show that sunflower had the highest 

RWD because its profit arises from European subsidies rather than from yield benefits. 

Corn was the best irrigated crop (relatively low RWD and DRF, and high ICUC) 

because farmers preferentially irrigate this sensitive crop to water stress to maximize 

yields and economic returns. In contrast, alfalfa was poorly irrigated and about half of 

the water applied was lost as drainage, emphasizing for the need to reduce irrigation 

depths and accommodate irrigation intervals to alfalfa water needs. 

  The long-term series irrigation performance data along with irrigation 

management information allowed establishing cause-effect relationships. The entrance 

in operation of all the internal reservoirs and the change to sprinkler irrigation systems 

following year 2008 would increase irrigation efficiencies and decrease crop water 

deficits in VID. Although these modernization works will not imply water savings at the 

watershed scale, they would lead to a more efficient irrigation management; lower water 

allocated to VID, higher farmer’s revenues, lower drainage outflows and salt loads, and 

improved water quality in the Gállego river that will benefit downstream users. 
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Table 1. Mean ± standard deviation values of the average irrigation calendar (number of 

irrigations, depth of each irrigation, irrigation interval, and date of first irrigation), 

sowing and harvesting dates and length of the growing season used in the soil water 

balances for the main crops grown in VID. 

 Irrigation Dates 

 
Num
ber 

Depth 
(mm) 

Interval 
(days) 

Date of first 
irrig. 

Sowi
ng 

Harvest
ing 

Length of 
growing 

season (days)

Corn 9±1 110 ± 20 13±1 14-Apr ± 21
20-
Apr 

07-Oct 170 

Alfalfa* 10±1 130 ± 30 13±1 30-Mar ± 15
15-
Mar 

20-Nov 250 

Winter 
grains 

1±1 150 ± 10 30-40 16-Mar ± 10
01-
Nov 

5-Jun 217 

Sunflowe
r 

3 150 ± 50 30 20-May ± 10
15-
Apr 

12-Sep 133 

* For alfalfa, the sowing and harvesting dates correspond to the beginning and end of 
the vegetative period 
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Table 2. 1995-2008 mean ± standard deviation values of irrigation established by the 

average irrigation calendar (Is), maximum crop evapotranspiration (ETc), actual crop 

evapotranspiration (ETa), net irrigation requirements (NIR), consumptive use of 

irrigation water (CU), relative water deficit (RWD), irrigation consumptive use 

coefficient (ICUC) and drainage fraction (DRF), for the main crops grown in VID. 

 Is ETc ETa NIR CU RWD 
ICU

C DRF 

 mm % 

Corn 
990 ± 14

3 826±38 
707±3

6 657± 65
538± 

57 14±4 53±7 45±6 

Alfalfa 
1163 ± 8

3 
1006±6

4 
731±4

4 
760±11

1 
485± 

63 27±7 41±3 52±2 

Winter 
Grains 

236 ± 15
2 537±28 

408±5
2 293±68 164±70 24±9 51±6 34±13

Sunflower  450 ± 0 688±35 
382±4

4 571±67 265±12 44±8 50±2 52±3 
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Figure 1. Location of La Violada Irrigation District (VID) in the middle Ebro river 

basin (Spain): Violada, Monegros and Sta. Quiteria Canals; drainage network and 

Valsalada and Artasona Ditches; Violada Gully and D-14 Gauging station; irrigable and 

non irrigable areas. The location of the internal reservoirs and meteorological station are 

also shown. 
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Figure 2. Irrigated area and distribution of main crops and not cultivated areas in VID 

for the 1995-2008 irrigation seasons.  
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Figure 3. Main terms of the water balance for the 1995-2008 VID irrigation seasons: 

irrigation (I), precipitation (P) and canal seepage (CS) expressed as positive inputs; 

outflow originating from the irrigated land (Q*) and actual crop evapotranspiration 

(ETa) expressed as negative outputs. Bars indicate one standard deviation of the 1995-

2008 average values. 
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Figure 4. Net irrigation requirements (NIR) and irrigation performance indices for the 

1995-2008 VID irrigation seasons: RWD = relative water deficit index; ICUC = 

irrigation consumptive use coefficient; DRF = drainage fraction index. 
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Figure 5. Monthly averages and standard deviations for the 1995-2008 VID irrigation 

seasons of: irrigation (I), precipitation (P), maximum crop evapotranspiration (ETc), 

actual crop evapotranspiration (ETa), net irrigation requirements (NIR) and the 

irrigation performance indices RWD, ICUC and DRF.   

 
 


