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Abstract

The multicellular nature of plants requires that cells should communicate in order to coordinate essential functions. This is
achieved in part by molecular flux through pores in the cell wall, called plasmodesmata. We describe the proteomic analysis
of plasmodesmata purified from the walls of Arabidopsis suspension cells. Isolated plasmodesmata were seen as membrane-
rich structures largely devoid of immunoreactive markers for the plasma membrane, endoplasmic reticulum and
cytoplasmic components. Using nano-liquid chromatography and an Orbitrap ion-trap tandem mass spectrometer, 1341
proteins were identified. We refer to this list as the plasmodesmata- or PD-proteome. Relative to other cell wall proteomes,
the PD-proteome is depleted in wall proteins and enriched for membrane proteins, but still has a significant number (35%)
of putative cytoplasmic contaminants, probably reflecting the sensitivity of the proteomic detection system. To validate the
PD-proteome we searched for known plasmodesmal proteins and used molecular and cell biological techniques to identify
novel putative plasmodesmal proteins from a small subset of candidates. The PD-proteome contained known
plasmodesmal proteins and some inferred plasmodesmal proteins, based upon sequence or functional homology with
examples identified in different plant systems. Many of these had a membrane association reflecting the membranous
nature of isolated structures. Exploiting this connection we analysed a sample of the abundant receptor-like class of
membrane proteins and a small random selection of other membrane proteins for their ability to target plasmodesmata as
fluorescently-tagged fusion proteins. From 15 candidates we identified three receptor-like kinases, a tetraspanin and a
protein of unknown function as novel potential plasmodesmal proteins. Together with published work, these data suggest
that the membranous elements in plasmodesmata may be rich in receptor-like functions, and they validate the content of
the PD-proteome as a valuable resource for the further uncovering of the structure and function of plasmodesmata as key
components in cell-to-cell communication in plants.
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Introduction

An important goal in plant biology is the identification of the

proteome of subcellular components and compartments. These

data provide the foundation for functional studies involving

additional and complementary approaches, e.g. cell biology and

genetics. An excellent example of such a goal is the proteome of

plasmodesmata (PD). PD are membrane-rich pores that bridge the

relatively rigid cell wall to connect adjacent plants cells. They

provide routes for the diffusion of small molecules from cell to cell,

and for the specific trafficking of larger proteins and nucleic acids

that collectively contribute to the regulation of development,

growth and defence [1,2]. Despite their importance in these

fundamental processes, PD have remained recalcitrant to

structural and functional dissection. Indeed, although they were

first observed by Tangl in plant tissues in 1897, to date we know of

only a handful of proteins that show a stable physical association

with PD (reviewed in [3,4]). Based conceptually upon the number

of proteins associated with the nuclear pore complex, which has

comparable functions in the translocation of small and large

molecules between cellular compartments, we and others [3,4]

have speculated that PD might contain many tens of proteins

involved in their architecture and operation.

PD are formed during cytokinesis following trapping of parts of

the endoplasmic reticulum (ER) in the developing phragmoplast

(defined as primary PD); secondary PD are also formed post-

cytokinetically across existing cell walls. The pore is lined by

plasma membrane (PM) that is continuous between adjacent cells.

The ER becomes tightly appressed into a central axial element

(desmotubule) in which the ER lumen is much diminished. The

surrounding cell wall is distinct in that it is pectin-rich and contains

variable deposits of b1,3 glucan (callose) around the neck region of

the PD channel (Fig. 1A). The current consensus is that the callose

collar forms a sphincter that physically limits molecular flux

through the inner pore [5–11].

The main hurdle to identifying PD proteins is their physical

location embedded in the complex matrix of the cell wall being

therefore refractory to simple biochemical isolation. This has

spawned a number of alternative approaches with mixed

successes [12–28]. Of these, the most successful have been the

immunological detection of candidate proteins and proteomic

approaches. The former has identified components of the
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cytoskeleton (actin, myosinVIII, centrin [14,19,22,24,26,27,29]),

ER-located calreticulin [12], and remorin [23]. For the latter, cell

walls have proven to be an effective fraction enriched for PD.

Hence, a cell wall fraction from tobacco led to the identification

of a PD-located kinase [20], and 1-D gel electrophoresis of salt-

eluted proteins from maize mesocotyl cell walls, identified a class

1 41 kDa reversibly glycosylated polypeptide (C1RGP2), which

associated with PD following ectopic expression as a fluores-

cently-tagged fusion protein [25,28]. C1RGP2 is also a Golgi-

associated protein; no function has yet been identified [15,28].

2-D gel separations of sub-cellular fractions from two cell types of

Chara, differentiated by the presence and absence of PD, also

identified a tropomyosin-like protein and RGP2 as PD-located

proteins [18,30]. In a refinement of the earlier cell fractionation

approaches, the Epel group [21] released PD from Arabidopsis cell

wall fractions using cellulase, separated extracted proteins by 1-D

gel electrophoresis, and identified a 45 kDa b-1,3 glucanase

(named A. thaliana beta-1,3-glucanase_putative Pd-associated

protein; AtBG_ppap) using in-gel proteolysis and ion-trap mass

spectrometry.

Figure 1. Isolation of plasmodesmata. The basic structure of plasmodesma (PD) is illustrated in Panel A. In addition to the key physical elements
of PM, ER, desmotubule in the wall, a speculative arrangement of actin spiralled around the desmotubule is shown. Panel B shows a negatively
stained electron micrograph of membranous PD (pellet P2 in M&M) collected after release from the cell wall following cellulase digestion, while Panel
C shows contamination of the PD with residual cell wall fibres, observed very occasionally. Scale bars = 100 nm. Panel D – Immunoblot analysis of
fractions harvested during PD isolation procedure. Proteins extracted from whole cells, cell walls (pellet P1 in M&M) and purified PD (pellet P2 in
M&M) were analysed using antibodies to the PD marker PDLP1, BiP (ER), Membrine11 (Golgi), PMA2 (PM) and P16 (chloroplast thylakoid envelope).
While PDLP was enriched through the isolation procedure, the other proteins diminished and were virtually undetectable in the final PD preparation.
Total cell extract: proteins extracted from 6 ml of Arabidopsis cell suspension lysate (corresponding to 0.6 ml of purified cell wall). Cell wall extract:
proteins extracted from 75 ml of purified cell walls (pellet P1). PD extract: proteins extracted from 375 ml of purified PD (pellet P2).
doi:10.1371/journal.pone.0018880.g001
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In our previous work [13], we established the proteome for cell

walls isolated from a culture of rapidly dividing Arabidopsis

suspension cells, using two-dimensional liquid chromatography

tandem mass spectroscopy (2D-LC MS/MS) of total extracted

proteins. The proteome, which included secreted and non-secreted

proteins, identified both known (e.g. AtBG_papp, RGP2,

calreticulin) and unknown PD proteins. From a total of 89 PM-

targeted membrane proteins lacking ER-retention signals [13],

new PD proteins were identified and comprised two families of

membrane-associated proteins, called PD-located proteins (PDLP;

[31]) and PD-callose-binding proteins (PDCB; [11]). These were

targeted to PD as fluorescently tagged protein fusions and

modified molecular flux through the channel following altered

protein accumulation. In this paper we describe the outcome of a

combination of our previous strategy with that described by Levy

et al [21], to purify and characterise PD from Arabidopsis

suspension cells. After using a more sensitive nano-LC ion-trap

MS/MS method, we report a list of identified proteins that best

describes to date the structural and functional proteome of PD

from Arabidopsis. The size and content of the list indicates that the

very sensitive technologies still reveal the presence of contaminant

proteins but also that the list contains many proteins with known

or inferred association with PD. Also, again focussing on

membrane-associated proteins and using subcellular targeting as

the criterion, we report the identification of several new putative

PD proteins. These include several receptor-like kinases and a

tetraspanin and, together with the identification of receptor-like

properties of the PDLP proteins [31], suggest that PD may

represent a membrane domain rich in receptor functions.

Results

PD isolation
The value of proteomics is strongly correlated with the purity of

the target in the samples analysed. For PD, this is a major

challenge since the membrane-rich structures and callose collars

are integral to the structure of the insoluble wall matrix.

Previously, we used isolated cell walls from Arabidopsis suspension

cultures as samples enriched for PD with respect to extraneous

cellular components. To achieve a higher level of PD enrichment

in this work, suspensions of cell walls were digested with a

commercial unpurified cellulase preparation and the released

membranous components collected by differential centrifugation.

Cell wall digestion gave approximately 70% digestion of cell wall

mass. This could not be increased by higher concentrations of

enzyme or longer digestion periods. Addition of pectin degrading

enzymes (e.g. polygalacturonase) reduced slightly the amount of

residual cell wall but gave no measurable improvement in protein

recovery (data not shown). Centrifugation of the digested mixture

at ,6000xg nevertheless separated the remaining visible insoluble

material from small particulate material retained in the superna-

tant, which could be collected using higher speed centrifugation.

Transmission electron microscopy of negatively stained samples of

the smaller material revealed vesicle-like structures of 50–100 nm

(Fig. 1B), which appeared to be composed of limited numbers of

concentric membrane layers. Occasionally, samples were contam-

inated with residual fibrillar material, probably remnants of cell

wall microfibrils (Fig. 1C). Immunoblot analysis of samples

collected sequentially during the PD isolation procedure showed

that the membranous sample was substantially free of contaminant

proteins representative of the endoplasmic reticulum (BiP), plasma

membrane (PMA2), Golgi (membrine11), and chloroplast (thyla-

koid P16), whilst showing a corresponding increase in the

abundance of PDLP1 (Fig. 1D).

PD Proteomics
As previously [13], we applied a LC-MS strategy to prepara-

tions of total protein extracted from purified PD; nano-LC-MS/

MS experiments were performed on an LTQ-OrbitrapTM mass

spectrometer. Since the aim was to determine the total protein

compliment, consecutive runs were made until the novel protein

detection was minimized (i.e. close to - .95% saturation). This

series of runs (13 in total) also included minor modifications to the

sample preparation (e.g. protease digestion conditions and length

of LC separation) and several biological and technical replicates.

For any one condition, reproducibility between technical replicates

was approximately 60–70% and between biological replicates,

approximately 50–70%. Protein identification was achieved by

reference to the TAIR 8 database using MASCOT, SEQUEST

and SCAFFOLD software. Using the criteria of greater than

99.0% probability of correct protein identification, for proteins

identified with at least two unique peptides, the total number of

proteins identified from these samples was 1341 (Table S1). We

refer to this as the PD-proteome.

Analysis of the PD-proteome
To analyse the list of 1341 proteins, we used a number of

bioinformatic tools, databases and literature sources, to obtain

information about predicted subcellular localizations, and func-

tional domains. Because of the high sensitivity of the Orbitrap

mass spectrometer used, we anticipated the detection of PD

proteins and a number of contaminant proteins. Given the acidic

composition of the extracellular matrix and that our enriched PD

fraction still contained very small amounts of undigested wall it

was possible that cytoplasmic proteins, bound to the cell wall

through ionic interactions, may also contribute to a pool of

potential contaminant proteins. Although classifying a protein as a

contaminant necessarily makes assumptions about the require-

ments for PD function, we judged that proteins from plastids,

mitochondria, nuclei and some classes of cytoplasmic proteins

would qualify. On this basis almost 35% of proteins were predicted

to be contaminants, with chloroplast proteins being the most

abundant (Fig. 2A). More than 10% (136) of all the proteins were

ribosomal, which could have originated from cytoskeleton-bound

polysomes anchored to the PM via actin filaments [32,33].

From information recorded in the Plant Proteome Database

(PPDB) we have observed that almost 75% of the proteins in the

PD-proteome have been described previously in other proteomic

studies. Approximately 40% are represented in PM proteomes

[34–40] and 12% in cell wall proteomes [13,41–43] (Table S2). In

our and other proteomes, a significant number of proteins were

recorded as being derived from multiple subcellular locations

(Table S2).

The PD-proteome was analysed with respect to gene ontology

(GO) terms for predicted functional categorization (represented by

three main subcategories: ‘GO Cellular components’, ‘GO

Molecular function’ and ‘GO Biological processes’) (Figure S1

and Table S3). To get a broad descriptive comparison with the

Arabidopsis cell wall proteome, the Cellular Component subcat-

egory of the GO was divided broadly into classes representing cell

wall proteins, membrane proteins associated with the secretion

pathway and potentially targeted to the cell periphery (Golgi, ER,

PM and PD – secretory membrane proteins), cytoplasmic proteins

(including, plastids, mitochondria, nuclei, cytosolic etc), and a

group for which no prediction could be made (unclassified). These

classes were compared with the cell wall proteome from Arabidopsis

suspension culture cells [13] (Fig. 2B). GO classifications for single

proteins may overlap between classes and so quantitative

comparisons between classes could not be made. In comparison
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with our published Arabidopsis cell wall data, the PD-proteome

showed a lower frequency of cell wall proteins and a higher

proportion of membrane proteins, consistent with the removal of

the cell wall by digestion before PD purification (Fig. 2B).

Surprisingly, despite additional washes associated with isolating

PD from digested cell walls the proportion of cytoplasmic proteins

was similar to that found for purified cell walls. Overall, 33% of

proteins present in the CW proteomic list were also present in the

PD-proteome. The overlap contained 30% contaminants and

,20% membrane-associated proteins. The latter group included

known PD proteins, PDLP1 [31], and AtBG_papp (At5g42100;

[21]).

Since PD represent membrane-rich structures, we analysed the

predicted membrane proteins in more detail with respect to their

domain structures and functions. Based upon prediction softwares

(TMHMM [44] and MEMSAT-SVM [45] and searches in

publicly available algorithms (e.g. Aramemnon, TAIR, ExpaSy

and NCBI sites), and excluding contaminant proteins, there are

279 membrane proteins (proteins with one or more transmem-

brane domains (TMD) excluding the hydrophobic signal peptide,

or a GPI anchor) in the PD-proteome, 21% of total proteins. The

group of membrane proteins potentially targeted to the PM (i.e.

with a signal peptide but lacking ER-retention signal) was

subdivided into type I, type II, multiple TMD, and GPI-anchored

proteins (Figure 3A). The most abundant sub-grouping was the

multiple TMD proteins (38%), followed by Type II proteins (26%),

Type I (23%) and GPI-anchor proteins (13%). For the type I class

of membrane proteins, 49% are receptor-like molecules (many

being receptor-like kinases; RLKs) and only 11% are involved in

transport (Fig. 3B).

As yet we can make few predictions as to the functional

categories of proteins that might occur tightly associated with PD.

Connected with our increased understanding of the nature of

molecules that transit the channel we might anticipate the

presence of chaperones for proteins and nucleic acids and the

potential for activities to provide energy for the transport process.

However, in reality we have very little idea as to which molecular

functions should be present.

Validation of the PD-proteome
The PD-proteome comprises 1341 proteins, a larger number

than might have been predicted from parallels drawn between PD

and the nuclear pore complex [46]. Despite the further

purification of PD away from the cell wall, and the enrichment

for membranous structures, we detected a significant number of

apparent contaminant proteins derived from cytoplasmic compo-

nents (including plastids, mitochondria, nuclei etc; Fig. 2A; Table

S2). However, our proteome analysis was qualitative, not

quantitative, and therefore does not reflect relative abundance.

We reasoned that the low variability between replicates might be

attributed to the large number of proteins detected with few (two

or three) peptides, which in turn reflected the sensitivity of the

Orbitrap detector and the presence of large numbers of proteins

with low abundance. For these classes of proteins, detection might

be stochastic and therefore variable between runs. Since the

overall objective was to use purified PD to reveal the spectrum of

novel proteins associated with PD, we also predicted that the

proteome should contain known PD proteins and that these might

be represented by the more abundant proteins. In theory, these

should have been amongst those proteins detected with the largest

number of tryptic peptides. The proteome contains a number of

known PD proteins, i.e. PDLP1 and PDLP6 [31], b1-3 glucanase

(AtBG_ppap; [21]) calreticulin [12,47] and remorin [23].

Surprisingly, these showed no correlation with the number of

detected peptides (Fig. 4) indicating that, despite PD purification,

these proteins may have been very different in their abundance in

our suspension cells relative to the tissues in which they were first

identified.

Figure 2. Analysis of the PD-proteome with respect to predicted subcellular localization and its comparison with the CW proteome.
(A) The 1341 proteins of the PD-proteome were classified as secreted proteins, integral membrane proteins processed through the secretory pathway
and targeted to Golgi, ER, PM and PD (‘secretory membrane’ proteins), GPI-anchor proteins, non-secreted membrane proteins, contaminant proteins
and ‘others’, where others are proteins without membrane association and not predicted to be secreted. The contaminant category includes those
proteins predicted to be targeted to chloroplasts, mitochondria and vacuoles. Transmembrane helices (using TMHMM [44]), signal peptides (SIGNALP
[83] and SIGNALP-HMM [84]), subcellular location (TARGETP [85]) chloroplast transit peptides (CHLOROP [86]), and GPI-anchoring signals (DGPI [87])
were predicted using software as indicated. (B) GO ‘cellular component’ analysis was used to compare the PD-proteome with the previously reported
[23] proteomic data for cell walls from Arabidopsis cell cultures (CW). The main cellular component categories; cell wall, secretory membrane,
cytoplasmic and unclassified, proteins, were obtained using GO Slim. (The ‘secretory membrane’ class in B is equivalent to the same class in panel A,
although it is defined using different software.) ‘Cytoplasmic’ includes plastid, chloroplast, mitochondria, nuclear, ribosome and cytosol proteins.
Unclassified category contains other cytoplasmic, other intracellular and unknown cellular categories. Dark gray bars represent PD-proteome and
light gray cell wall proteome.
doi:10.1371/journal.pone.0018880.g002
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Previously, we focussed our attention on secreted membrane

proteins lacking an ER-retention signal, mostly type I membrane-

and GPI-anchored proteins, as an entry point for our search for

novel PD proteins. For this work, in the absence of other

indicators, we validated the authenticity of the PD-proteome by

sampling a limited number of candidates from the class of

membrane proteins theoretically targeted to the cell periphery for

their potential to target to PD as fluorescent fusion proteins. We

chose initially to sample a GPI-anchored b1-3 glucanase, following

the precedent set by AtBG_ppap, and a number of the receptor-

like proteins since these were abundant in the PD-proteome and

PDLP had established a precedent for receptor functions at PD

[31]. Genes for six RLKs and the b1-3 glucanase were cloned and

expressed, using the CaMV 35S promoter, as translational fusions

to YFP or RFP following stable transformation into Arabidopsis.

Subcellular localization in leaf tissues was examined by confocal

laser scanning light microscopy. Fluorescent proteins that target

PD show a punctate distribution of fluorescence along the wall of

plant cells that reflect the distribution of individual PD channels

or, more commonly, the distribution of groups of PD in pit fields.

Typically, these fluorescent puncta show co-localisation with

aniline blue staining that identifies the callose deposits in the near-

cell wall. Cell walls surrounding epidermal pavement cells and the

interface between the lower epidermal wall and the subtending

mesophyll cell were examined. At this latter location a face-on

view of PD clusters in pit-fields is possible. Of the seven sampled

proteins, three showed a pattern of fluorescence consistent with

PD targeting (Table 1; Fig. 5). Of the six RLKs, three showed

uniform labelling of the PM (Table 1; Fig. 5 with PM labelling

with At5g59700 illustrated as an example); At4g27300 was

targeted to the ER. In contrast, a punctate pattern of fluorescence,

often combined with PM labelling, was identified for three of the

RLKs: At1gG56145, At4g21380, and At5g24010 (Fig. 5). In each

case, the punctuate fluorescence pattern showed co-localisation

with callose, revealed by aniline blue staining (Fig. S2). In some

cases, maximum projections of CSLM image stacks revealed the

connections with the subtending mesophyll cells (example

illustrated for At1g56145 in Fig. 5A). These genes encode LRR

class VIII RLK, an S-domain RLK and a Catharanthus roseus

RLK1-like protein, respectively (For a review of RLK class

structure see [48]). The b1-3 glucanase was targeted to the ER.

A random selection of eight candidates with diverse-predicted

or unknown functions was also tested (Table 1). Except for

expansin (At3g45970), which targeted to the apoplast and vacuole,

most (5/8) targeted to the PM or the ER. Two were targeted to

fluorescent puncta on the cell wall (Fig. 5B and C), and also co-

localised with callose (Fig. S2). These were proteins encoded by

At3g15480 and At3g45600. At3g15480 has three TMDs included

in a recognised domain (DUF 1218), but with no assigned

function. At3g45600 encodes a tetraspanin TET3; TET3 has four

TMD domains and has been implicated in the formation of

specialised domains (tetraspanin webs) on the PM of animal cells

[49].

Discussion

PD present particular challenges when it comes to their

molecular characterisation. Their location, embedded in the cell

wall matrix, their functional and structural diversity associated

with different symplastic boundaries in complex tissues, and their

essential nature in maintaining co-ordinated growth and develop-

ment, makes their study recalcitrant to a range of biochemical and

genetic approaches. We have found it effective to exploit the

physical and developmental simplicity of rapidly dividing and

readily dispersing suspension cells as a way of characterising

relatively uniform populations of primary PD in purified cell walls

[50]. PD released from cell walls after digestion of the wall matrix

showed the membrane-rich nature of the structures, represented

by the PM and ER components. Surprisingly, while immunoblot

analysis revealed enrichment of PDLP1 in the purified PD fraction

it did not detect significant amounts of marker proteins for PM or

ER. This indicates that while the PM and ER provide membrane

continuity between cells, the nature of these membranes within the

PD might be distinct. The PM in PD has been defined elsewhere

[23] as a domain with similarity to membrane rafts (or

microdomains) characterised by the presence of remorin and

GPI-anchor proteins that preferentially reside in sterol-rich

membrane domains. The ER may also be distinct in that it is

very tightly appressed, excluding the much of the lumen.

The low abundance of other marker proteins (for Golgi,

chloroplasts etc. detected by immunoblotting) showed that the

biochemical strategy followed was an effective method for

purifying PD. It was surprising then that proteomics detected

such a large number of proteins, many of which appeared to be

contaminants (e.g. derived from other cytoplasmic compartments).

One likely explanation is the higher sensitivity of the Orbitrap

technical platform and the qualitative nature of the assay, where

abundant and rare protein species are listed equally. An

Figure 3. Analysis of membrane proteins targeted to the cell periphery. Membrane proteins from the PD-proteome were classified into four
different categories (A): Type I membrane proteins (Type I), Type II membrane proteins (Type II), GPI- anchor proteins (GPI) and multiple
transmembrane domain proteins (Multiple TMD). Panel B shows the predicted functional Mapman categories for the membrane proteins.
doi:10.1371/journal.pone.0018880.g003
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alternative factor, however, is related to our relatively poor

understanding of the nature and operation of PD. Only a few

proteins have been shown to reside in PD and very few are

believed to be uniquely associated with PD. Hence, although we

have shown that PDLP1 is strongly localised to PD in leaves [31],

we also find that it has a more dispersed localisation pattern in

roots (unpublished data). Also, membrane proteins such as PDLP

may arrive at PD via the secretory pathway [51] and therefore

associate with the ER and Golgi in transit. Calreticulin and
C1RGP2 are targeted to PD but are also associated with the Golgi

[25]; remorin is similarly found in PD but is also distributed in

patches along the PM [23]. In addition to the physical association

with PD, there is a much larger selection of proteins that have a

functional association with PD but are found predominantly at

other subcellular locations. For example, the RNA helicase

proteins ISE1 and ISE2, which both affect trafficking through

Figure 4. Distribution of known PD proteins in the total PD-proteome. In the hope of identifying potential PD proteins on the basis of the
ease of proteomic detection (number of signature peptides), known PD proteins were placed upon a plot of the frequency of identified proteins
against detected peptides. No positive correlation was found indicating that PD proteins are very variable in the abundance in PD.
doi:10.1371/journal.pone.0018880.g004
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PD, and PD ontogeny [52], are found in mitochondria [53] and

cytoplasmic RNA granules respectively [54]. Also THIORE-

DOXIN-m (TRXm), which profoundly influences PD gating and

development, is a plastidial enzyme [55]. It remains possible that

in particular cell types such proteins may have a transient

association with PD. Lastly, non-cell-autonomous proteins (e.g.

some transcription factors; [56]) may have a transient interaction

with PD and may be captured when cells are plasmolysed prior to

cell wall and PD isolation. In summary, there is no a priori reason

why any protein in the PD-proteome list should be counted

initially as irrelevant in the context of PD structure/function,

although some (e.g. ribosomal proteins) intuitively may be less

likely candidates.

Encouragingly, the PD-proteome list contains a number of the

proteins, or likely orthologous proteins, for which experimental

evidence shows a physical protein association with PD; identifi-

cation of true orthologues, however, must remain speculative

pending appropriate experimental data (Table 2). Hence, PDLP1

and PDLP6, AtBG_papp, calreticulin, remorin, type III peroxi-

dases, several actins, and myosinVIII were identified in purified

PD. Additional proteins, identified using complementary biolog-

ical/experimental systems, have functions in common with

representatives in the PD-proteome. For many of these, evidence

for physical association with PD may not have been established.

Hence, callose synthases, pectin methyl esterases, eIF4A, acid

phosphatases, HSP70 were also identified (Table 2). A more useful

analysis, however, is achieved by focussing on proteins with

common biological roles.

Callose deposition and turnover in the near-cell wall is central to

the regulation of PD size exclusion limit (SEL). Hence, some b1,3

glucanases have a physical association with PD. Callose synthase 10

(GSL8) is specifically involved in callose deposition at PD

[7]. The PD-proteome contains callose synthases (At1g05570,

At4g03550, At2g36850), b1,3 glucanases (AtBG_PPAP (At5g42100),

At5g58090) and other enzymes described as participating in the

callose synthase complex (UDP-glycosyl transferases, At3g46650 &

At4g14090) [57].

We are also increasingly appreciating the importance of redox

control in the regulation of callose at PD and its impact on cell-to-

cell communication [53,55]. While the size exclusion limit and

development have been shown to be regulated indirectly by redox

status mediated by proteins located in plastids (GAT1; [55]) and

mitochondria (ISE1, [53]), a more direct effect mediated by PD-

located type III peroxidases has been suggested [58]. Peroxidases

have been found by immunolocalization in the vicinity of PD and

their location correlates with the presence of H2O2 [58]. The PD-

proteome includes several class III peroxidases (AtPer12,

At1g71695; AtPer30, At3g21770; AtPer44, At4g26010; AtPer45,

At4g30170; AtPer57, At5g17820; AtPer69, At5g64100) which

potentially are candidates to function as ROS generators in PD.

A number of other proteins with the potential to regulate cell

redox status are also found in the PD-proteome. The list is

extensive and includes oxygenases, oxidases, oxidoreductases and

thiol redoxins. For example, we found two type h thioredoxins

(TRXH5; At1g45145 and TRXH3; At5g42980). Previous studies

of some members of this family found that they interact with PD

and a role in the cell-to-cell and systemic transmission of redox

signals have been suggested [59,60]. The finding of these proteins

in the PD-proteome strengthens the hypothesis that cell redox

homeostasis is important for PD formation and function.

Protein trafficking to and through PD requires the support of

molecules with chaperone like activity. HSP70 homologues

isolated from pumpkin [61] have been shown to contain a short

variable region (SVR) at the C-terminus at which the lack of a

threonin seems to be responsible for their translocation through

the PD [61]. A closterovirus–encoded HSP70 homologue

(HSP70h) is also essential for protein translocation through

PD [62]; HSP70- Arabidopsis homologues AtHSC70.1 and

AtHSC70.3 are present at the PD proteome (At5g02500 and

At3g09440 respectively) and they also lack the threonine

aminoacid at the SVR, showing higher homology with those

pumpkin HSC70 proteins that are able to facilitate transport

through PD. Very recently, a chaperonin protein was identified

from a genetic screen for molecules that assist in the intercellular

Table 1. Experimental localization of selected candidates from the PD proteome.

AGI MW Description Localisation

AT1G56145 112 kDa LRR RLK PM and PD

AT1G73650 34 kDa Hypothetical protein - predicted oxidoreductase PM

AT3G15480 19 kDa Hypothetical protein containing a DUF1218 PM and PD

AT3G25290 43 kDa Auxin responsive family protein PM and ER

AT3G45600 32 kDa membrane protein of unknown function - tetraspanin PM and PD

AT3G45970 29 kDa expansin protein (ATEXLA1) Apoplast and vacuole

AT4G16120 73 kDa ATSEB1 – GPI anchored ER

AT4G21380 96 kDa S-domain RLK PM and PD

AT4G27300 92 kDa S-domain RLK ER

AT5G14030 21 kDa Translocon-associated protein beta (TRAPB) protein ER

AT5G24010
AT5G58090

92 kDa
52 kDa

CrRLK-like
b-1,3-glucanase – GPI anchored

PM and PD
ER

AT5G59700 92 kDa CrRLK-like PM

AT5G60320 75 kDa lectin RLK PM

AT5G61790 60 kDa Calnexin1 ER

aLRR: Leucine rich repeat, RLK: Receptor-like kinase, DUF: Domain of unknown function, CrRLK: Catharanthus roseus RLK; ER: Endoplasmic reticulum, PD:
Plasmodesmata; PM: Plasma membrane.

doi:10.1371/journal.pone.0018880.t001
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transport of homeodomain containing proteins (Dave Jackson,

Personal Communication). This chaperonin is predicted to be the

theta subunit of the heterometric TCP-1 complex involved in

protein folding [63]. The same chaperonin (At3g03960) and other

members of the TCP-1 complex (At1g24510 and At3g18190) are

present in the PD-proteome suggesting that the complex might be,

at least transiently, associated with the channel.

The identification of the receptor-like PDLP family of proteins

as PD components [31] raises the interesting prospect that

receptors with the potential to sense extracellular signals, through

their extracellular DUF26 domains, may influence the extent and/

or specificity of cell-to-cell communication through PD. Although

PDLP proteins lack an integral symplastic signalling module (e.g.

an active kinase domain) they could signal into the PD by

interaction with partner molecules providing the ancillary

function. DUF26 receptor-like kinases have been shown to be

responsive to salicylic acid [64] and DUF26 kinases are present in

the PD-proteome (PDLP1, PDLP6 and a novel receptor-like

kinase, At1g70520), although At1g70520 has not yet been tested

for PD-targeting.

Other RLKs are also present in the PD-proteome and a limited

survey of the potential for some of these to be PD-located proteins

has identified three (At1g56145, At4g21380 and At5g24010) that

target to PD when expressed transgenically as protein fusions to

fluorescent markers. These proteins represent three new PD

proteins to add to the current very limited list of PD components.

The frequency (from a very limited survey) with which these

proteins were identified suggests that the PD may represent a

receptor-rich domain and points to a previously unrecognised

potential for cell-to-cell communication to be influenced by factors

in the extracellular environment. Very recently, Jo et al [65]

reported preliminary evidence for the existence of six RLKs at PD

in rice suspension culture cells. These RLKs comprise two wall-

associated kinases, a lectin kinase and three LRR-kinases. None of

these kinases were direct homologues of the proteins identified in

this study. However, they do reinforce the view that PD represent

a receptor-rich domain. Unfortunately, there is no evidence in the

literature or from public collections of experimental data to

indicate what the ligands for any of these receptors might be.

From our sampling of the membrane complement of the PD-

proteome we also identified At3g15480 and TET3 as novel PD

proteins. At present there are no indications as to the function of

the protein encoded by At3g15480. In contrast, tetraspanins have

been proposed in animal systems to define PM microdomains,

called tetraspanin webs [66-68]. If equivalent structures also occur

in plants, this may further indicate that PM in PD has a highly

Figure 5. Novel PD proteins identified through their subcellular targeting. Transgenic expression of fluorescent fusion proteins and their
targeting to puncta on the cell wall identified five new PD proteins. Panels A–F show projections of confocal laser scanning microscopy z-series of
Arabidopsis leaf epidermal cells for YFP or mRFP fusions to the receptor-like kinases At1g56145(A, YFP), At4g21380(D, YFP), At5g24010 (E, RFP), and
At5g59700 (F, YFP), hypothetical protein At3g15480 containing a DUF1218 domain (B, YFP) and a tetraspanin At3g45600 (C, YFP). PD localisation
(arrowheads) is evident as punctae of fluorescence in the cell wall for images shown in A–E. For At1g56145 in (A), PD in pitfields at the epidermal-
mesophyll boundary are visible (arrows). Panel F illustrates the targeting of a non-PD RLK At5g59700 to the PM. Bars = 20 mm.
doi:10.1371/journal.pone.0018880.g005
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specialised organisation. From work with remorin (also present in

the PD-proteome), we know that the PM passing through PD may

also contain membrane raft microdomains [23,69] and it has been

proposed that membrane microdomains may provide the correct

environment for clustering of receptor-like activities [49,66,68,70].

The ER membrane contained within the desmotubule may also be

defined by the presence of specific proteins. Reticulons are

proteins that are associated with ER morphology, specifically in

Table 2. List of previously described PD proteins and their related proteins in the PD-proteome.

Std. Annotation Acc. No. No. Unique peptides % Protein Coverage

Proteins and orthologous proteins of known PD proteins

PDLP1 At5g43980 8 28.4

PDLP6 At2g01660 4 12.8

AtBG_PAP At5g42100 5 19.6

Callose synthase 10 (GSL8) At2g36850 16 11.5

Actin 1 At2g37620 2 42.4

Actin 3 At3g53750 2 42.4

Actin 7 At5g09810 16 55.7

Actin 8 At1G49240 6 48.5

Actin 11 At3g12110 2 48.8

Myosin VIIIA At1g50360 2 3.12

Myosin IXK At5g20490 3 3.69

PD-related proteins with functions in common with representatives in the PD proteome

Calreticulin At1g56340 3 8.25

AtPME1 (Pectin methyl esterase) At1g53840 2 4.44

Pectinesterase putative At2g47030 2 3.06

AtPME26 (Pectin methyl esterase) At3g14300 2 3.1

Pectinesterase putative At4g19410 2 10.2

Pectinesterase putative At5g45280 2 6.22

AtPAP10 (Purple acid phosphatase) At2g16430 20 53.6

AtPAP14 (Purple acid phosphatase) At2g46880 5 16.1

Acid phosphatase class B At1g04040 14 52.4

Acid phosphatase class B At5g44020 7 40.8

HSC70.1 (Heat shock cognate 70) At5g02500 22 39.2

HSC70.3 (Heat shock cognate 70) At3g09440 5 27.6

CalS1 (Callose synthase 1) At1g05570 2 8.26

ATGSL5 (Glucan synthase-like) At4g03550 11 7.81

Glycosyl hydrolase 17 protein At3g55430 2 6.46

eIF4A-1 At3g13920 2 29.4

eIF4A-2 At1g54270 15 36.7

UDP-glucoronosyl (glycosil transferase) At3g46650 2 8.22

UDP-glucoronosyl (glycosil transferase) At4g14090 2 5.26

AtPer12 (Class III peroxidase) At1g71695 5 18.4

AtPer30 (Class III peroxidase) At3g21770 2 10.9

AtPer44 (Class III peroxidase) At4g26010 6 21.3

AtPer45 (Class III peroxidase) At4g30170 3 10.2

AtPer57 (Class III peroxidase) At5g17820 7 32.3

AtPer69 (Class III peroxidase) At5g64100 2 9.37

Thioredoxin H3 At5g42980 2 28

Thioredoxin H5 At1g45145 2 16.9

DUF26 domain proteins

PDLP1 See above

PDLP6 See above

Protein kinase At1g70520 2 4.93

doi:10.1371/journal.pone.0018880.t002
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the constriction of ER tubules [71] and the identification of

reticulons B3 and B6 (At1g64090 and At3g61560) in the PD-

proteome raises the hypothesis that these proteins play a role in the

constriction of the desmotubule. Further fractionation of PD into

its constituent membrane components (ER, PM and membrane

rafts) would be a feasible practical strategy for more formal testing

of these hypotheses.

Value of the PD-proteome
PD have been notoriously difficult to dissect with respect to their

protein constituents. The existence of actual, inferred and

experimentally validated PD proteins in the PD-proteome is

testament to its potential in helping to overcome this barrier to

understanding the structure/function properties of PD. For our

experimental validation we selected a subset of 15 proteins to test

for subcellular targeting. This selection was not completely

random so does not allow extrapolation to the wider range of

proteins with respect to the abundance of actual PD proteins.

Nevertheless, the frequency of new PD proteins is highly

encouraging. Our experimental analysis focussed on membrane

proteins although membrane proteins constituted only 21% of the

total. Our definition of membrane proteins was one that required

an integral association and it seems very likely that some non-

membrane proteins or loosely associated membrane proteins could

also reside in PD, especially if they form complexes with integral

membrane proteins. The value of the proteome data is extended

through the use of alternative sources of complementary data. For

example, by using publically available resources for gene

expression (http://atted.jp; [72]) and protein-protein interaction

(AtPid, http://atpid.biosino.org/) data new functional networks of

proteins can be proposed that raise testable hypotheses. In

summary, this PD-proteome provides the community with a

valuable resource for cross-referencing from other PD-related

experimentation or for the generation of new hypotheses about the

functioning of these important cellular structures.

Materials and Methods

Preparation of plasmodesmata
Cell wall fractions from a rapidly dividing Arabidopsis thaliana

(ecotype Landsberg erecta) cell suspension cultures [50] were

treated with cell wall-degrading enzymes as described by Levy

et al. [21] with modifications. Briefly, purified cell walls [50] were

digested (1 ml per g of cell culture) with 0.7% w/v of cellulase R10

(Karlan) in digestion buffer (10 mM MES, pH 5.5, 4.4%

mannitol) [21] and a cocktail of protease inhibitors (Sigma) for

2 h at 37uC with 100 rpm shaking. After centrifugation at 5860 xg

for 5 min at 4uC, the supernatant and pellet (P1) fractions were

collected separately. P1 was washed in digestion buffer and the two

supernatants combined before centrifugation at 75600 xg for

40 min. The pellet was washed (10 mM MOPS, pH 7.5, 4.4%

mannitol) and the final pellet (P2) resuspended in a minimal

volume of buffer.

Immunoblot analysis
Proteins from total cell homogenates and PD fraction were

directly solubilised by boiling in 1X Laemmli buffer [73] for

5 min. Proteins from suspension culture cell walls were extracted

sequentially in aqueous- and phenol-based buffers, as described

previously [50]. Precipitated proteins were recovered by centrifu-

gation, washed twice with 100 mM ammonium acetate in

methanol and four times with 80% acetone. The protein pellet

was left to air dry, then resuspended into 1X Laemmli buffer for

5 min. Proteins were separated using 10% SDS-polyacrylamide

gel electrophoresis then blotted to PVDF membranes and analysed

with anti-serum specific for PDLP1 (1/1250; [31], immunoglob-

ulin-binding protein (BiP) (1/8000; [74]), Membrine11 (1/4000;

antibody provided by A.Hocquellet, L. Maneta-Peyret & P.

Moreau.), plasma membrane H+-ATPase (PMA2) (1/16000; [75])

and P16 (1/20000; [76]). Specific binding was visualised by

standard techniques.

Proteomic analysis
The protein pellet following extraction from isolated PD was

dissolved in either a minimal volume of 8M urea, 0.1 M Tris-HCl,

pH 8, or 0.5% Rapigest (Waters), 50 mM ammonium bicarbon-

ate. Rapigest samples were heated in a boiling water bath for

5 min. All samples were reduced, alkylated, and digested with

trypsin according to standard procedures. Digestion was halted by

addition of trifluoroacetic acid and 0.5%. Rapigest was removed

according to the manufacturer’s protocol. Samples, digested in

urea, were purified using OMIXH C18 tips (Varian Inc., Santa

Clara, USA) before loading to the nanoLC.

Nano-LC-MSMS experiments were performed on an LTQ-

OrbitrapTM mass spectrometer (Thermo Fisher Scientific Inc.,

Waltham, MA 02454, USA). For nanoLC, two different systems

were used: an AccelaTM HPLC (Thermo) with a flow splitter or a

nanoAcquity UPLCTM (Waters, Manchester, UK). The LC

systems were run at a flow rate of 250 nL min21 and coupled to

the mass spectrometer via an ion source (Proxeon, Odense,

Denmark) with a nanospray emitter (SilicaTipsTM, 10 mm, New

Objective, Woburn, MA 01801, USA). Samples were dissolved in

0.1% TFA and, on the nanoAcquity system, peptides were trapped

using a pre-column (SymmetryH C18, 5 mm, 180 mm 620 mm,

Waters) which was then switched in-line to an analytical column

(BEH C18,1.7 mm, 75 mm 6250 mm, Waters). Other runs were

performed with the AccelaTM HPLC (Thermo) equipped with a

trap column (C18 PepMapTM, Dionex, Camberley, UK) and a self-

packed analytical column (BEH C18, 1.7 mm, Waters, 75 mm

6200 mm). Peptides were separated and eluted with a gradient

of 5–45% acetonitrile in water/0.1%formic acid at a rate of

0.2% min21.

Mass spectrometry was operated in positive ion mode at a

capillary temperature of 200uC. The source voltage and focusing

voltages were tuned for the transmission of MRFA peptide (m/z

524) (Sigma-Aldrich, St. Louis, MO). Data-dependent analysis was

carried out in Orbitrap-IT parallel mode using CID fragmentation

on the seven most abundant ions in each cycle. Collision energy

was 35, and an isolation width of two was used. The Orbitrap was

run with a resolution of 30,000 over the range of m/z 350 to m/z

2000 with an MS target of 106 and 1 s maximum scan time. The

MS2 was triggered by a minimal signal of 2000 with an AGC

target of 36104 ions and 100 ms scan time.

For selection of 2+ an 3+ charged precursors, charge state and

monoisotopic precursor selection was used. Dynamic exclusion

was set to 1 count and 30 s exclusion time with an exclusion mass

window of 620 ppm. MS scans were saved in profile mode while

MSMS scans were saved in centroid mode.

Tandem mass spectra were extracted by BioWorks version 3.3.1

and mgf files were generated using a perl script (Matrixscience). All

samples were analyzed using Mascot (Matrix Science, London,

UK; version Mascot 2.2) and Sequest (ThermoFinnigan, San Jose,

CA; version 27, rev. 13).

Both Sequest and Mascot were set up to search the TAIR8

(20080413, 33024 entries) database, and both searches were done

with a parent ion mass tolerance of 5.0 ppm and a fragment ion

mass tolerance of 0.50 Da. Iodoacetamide derivative of cysteine

was specified in Mascot and Sequest as a fixed modification.
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Oxidation of methionine was specified in Mascot and Sequest as a

variable modification. Trypsin was designated as the protease and

up to two missed cleavages were allowed. Tair 8 uses database

entries for the Col-0 ecotype. Although our biological source

material was L-er ecotype, database entries for the L-er ecotype

are substantially fewer. L-er was selected for the suitability of the

suspension culture for the biochemical purification of cell walls.

The small sequence differences between Col-0 and L-er could

have resulted in slightly fewer peptides being identified but this was

outweighed by the benefit of the utility of the L-er suspensions and

the larger database resources for Col-0.

Scaffold (version Scaffold_2_04_00, Proteome Software Inc.,

Portland, OR) was used to validate MS/MS based peptide and

protein identifications. Peptide identifications were accepted if they

could be established at greater than 95.0% probability as specified

by the Peptide Prophet algorithm [77]. Protein identifications were

accepted if they could be established at greater than 99.0%

probability and contained at least 2 identified peptides. Protein

probabilities were assigned by the Protein Prophet algorithm [78].

Proteins that contained similar peptides and could not be

differentiated based on MS/MS analysis alone were grouped to

satisfy the principles of parsimony. To calculate false discovery rates

(FDR), the file was loaded into Scaffold version 3.00.3, and with the

specified settings a protein FDR of 0.1% and peptide FDR of 5.3

was obtained. This Scaffold file has been lodged with TRANCHE

(https://proteomecommons.org/tranche/). RAW Mascot files have

been lodged with TRANCHE, and data is available in the PRIDE

database [79] (www.ebi.ac.uk/pride). The data was converted using

PRIDE converter [80] (http://code.google.com/p/pride-converter).

Protein sequence feature prediction
Feature predictions for protein sequences in the proteomic

output were automated using local installations of several software

packages and Perl scripts. Because of the importance to this study

of identifying likely transmembrane domains we used two

independent programs; TMHMM [44] for fast processing of

candidates and then a second evaluation of TMHMM-positives

using the MEMSAT-SVM [45] tool. This has been shown to be

more accurate [45] but is more computationally intensive, relying

on a PSI-BLAST [81] search (versus UniProt [82]). MEMSAT-

SVM explicitly attempts to identify signal peptides, and in

conjunction with results of SIGNALP(-HMM) [83,84] these

helped to highlight possible false-positive TM regions near the

N-terminus. Both TMHMM and MEMSAT-SVM predict not

only positions of TM-domains, but also their topology; the end of

each predicted TM-segment is predicted to be ‘inside’ (cytoplas-

mic) or ‘outside’ (extracellular, or in the ER lumen depending on

the context). Here, we use ‘Type I’ to denote those proteins with a

single predicted TM domain with the N-terminus outside and

‘Type II’ to denote those predicted single-TM domain proteins

with the N-terminus inside. ‘Multiple TMD’ denotes those with

multiple TM domains. Additionally, we applied programs to

predict subcellular location (TARGETP [85]) and chloroplast

transit peptides in particular (CHLOROP [86]), and GPI-

anchoring signals (DGPI [87]). We also used our own Perl script

to search for C-terminal tetrapeptides (HDEL, KDEL, REEL)

indicating possible ER-retention. For individual candidates,

especially those with a GPI-anchor where fluorescent reporters

were inserted internally in the coding region, additional informa-

tion was collected using Aramemnon and tools available through

TAIR, Expasy and NCBI.

We obtained further functional annotations of our dataset from

the MapMan [88] and Gene Ontology (GO) [89] resources. Each

protein was placed in one of the MapMan ‘‘bins’’, using the online

search facility of the Plant Proteome Database (PPDB, [90]). Note

that terms attached by the GO Consortium to genes/proteins

summarize what is known from published experimental and/or

computational studies, as well as the results of automated

electronic annotation. It is therefore possible for seemingly

contradictory terms to be attached to the same protein, even

when supported by experimental evidence (for example, when a

protein has been identified in independent published studies of two

different organelles). Assessing GO terms of our proteins is

nevertheless useful for obtaining an overview of the functional and

spatial profile of a large dataset. To this end, we used the GO

Plant Slim developed by The Arabidopsis Information Resource

[91], rather than the highly detailed, complete Gene Ontology

when comparing proteome data sets.

Comparison of the PD-proteome with other published
proteomes

At a basic level, the online search facility of the Plant Proteome

Database (PPDB, [90]) was used to compare proteins identified in the

plasmodesmal proteome with proteins listed within the Proteomic

Publications collection. For specific comparisons with our previously

published [13] Arabidopsis cell wall proteome (89 secreted proteins

from a total of 792 proteins) we compared amino acid sequences since

the databases use different identifiers for the same sequence. We

looked for matching proteins by aligning pairs of proteins between

sets using NEEDLE from the EMBOSS package [92] with a

conservative global pairwise identity threshold of 95%.

Gene cloning and expression
Clones for the transient and transgenic expression of Arabidopsis

genes were generated using Gateway technology (Invitrogen).

Gene sequences were amplified by PCR using Phusion DNA

polymerase (NEB) from a genomic DNA or cDNA made from the

aerial tissues of Arabidopsis thaliana Col-0 plants, using Gateway

adaptor primers; primer sequences are available upon request.

Resulting DNA fragments were recombined into the entry vector

pDONR207 (Invitrogen). The sequence of the resulting pDONR

clone was verified by automated sequencing.

Validated entry clones were recombined with binary destination

vectors pB7FWG2,0, pB7RWG2,0 or pB7YWG2,0 clone [93]

providing expression from Agrobacterium T-DNA, using the

cauliflower mosaic virus 35S promoter upstream of coding fusions

to green fluorescent protein (GFP), red fluorescent protein (RFP)

or yellow fluorescent protein (YFP), respectively. GPI-anchored

proteins were tagged internally with m-Citrine following published

protocols [94]. Binary clones in Agrobacterium tumefaciens GV3101

were used for plant transformation [95].

Confocal microscopy
Plant tissue was imaged at room temperature using a Zeiss

LSM510 confocal microscope with an Argon ion laser. GFP and YFP

were excited at 488 nm, and the emitted light was captured at 495–

520 nm and 525–650 nm respectively. RFP was excited using

561 nm and emitted light captured at 590–630 nm. Images were

captured digitally and handled using the Zeiss LSM image browser

software. For callose staining, seedlings or mature leaves were

infiltrated with 0.1% aniline blue solution. Aniline blue fluorochrome

was excited at 405 nm and emitted light captures at 420–480 nm.

Sequential scanning was used to image aniline blue with YFP or RFP.

Supporting Information

Figure S1 Gene ontology (GO) terms for the predicted
functional categorization of the PD-proteome. The three
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main subcategories are represented: Cellular components (A),

Molecular function (B) and Biological Processes (C).

(TIF)

Figure S2 Colocalisation of fluorescent puncta with
callose. Leaf tissues stably expressing fluorescent protein fusions

(left panel) were stained with aniline blue (centre panel) to identify

sites of callose deposition. Colocalisation of the fluorescence (right

panel) supports these fluorescent puncta as the location of PD on

the wall. Similar patterns of staining were seen for proteins

encoded by At1g56145 (A), At3g15480 (B), At3g45600 (C),

At4g21380 (D) and At5g24010 (E). Bar = 10 mm.

(TIF)

Table S1 Complete list of PD-proteome sequence
identities (1341) with associated the proteomic informa-
tion. aIt should be noted that when paralogous proteins could not

be distinguished, all were included.

(XLS)

Table S2 PD-proteome with Mapman Bin functional
categories and predicted information on subcellular
localization and description of proteins in the Public
Proteome collection (PPDB) (ProteomicsPub. Column). a

CHLOR = Chloroplast protein; MIT = Mitochondrial protein;

VACUOL = Vacuolar protein; S = Secreted; SM = Secretory

membrane; NSnoTM = Nonsecreted no transmembrane protein;

NSTM = Non secreted transmembrane protein; GPI = GPI

anchor protein.

(XLS)

Table S3 PD-proteome with Gene Ontology descrip-
tions. a Comp = Cellular component; Proc = Biological pro-

cesses; Func = Functional categories. RAW Mascot files have

been lodged with TRANCHE (https://proteomecommons.org/

tranche/), and protein and peptide identifications with associated

spectra have been lodged with ‘PRIDE’ (http://www.ebi.ac.uk/

pride/easySubmitData.do).

(XLS)
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