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Abstract 

Gravity changes occurring during the initial stage of the 2011–2012 El Hierro submarine 

eruption are interpreted in terms of the pre-eruptive signatures during the episode of unrest. 

Continuous gravity measurements were made at two sites on the island using the relative 

spring gravimeter LCR gPhone-054. On September 15, 2011, an observed gravity decrease of 

45 µGal, associated with the southward migration of seismic epicenters, is consistent with a 

lateral magma migration occurred beneath the volcanic edifice, an apparently clear precursor 

of the eruption that took place 25 days later on October 10, 2011. High-frequency gravity 

signals also appeared on October 6–11, 2011, point to an interaction between a magmatic 

intrusion and the ocean floor was occurring. These important gravity changes, with 

amplitudes varying from 10 to -90 µGal, during the first three days following the onset of the 

eruption are consistent with the northward migration of the eruptive focus along an active 

eruptive fissure. An apparent correlation of gravity variations with body tide vertical strain 

was also noted, which could indicate that concurrent tidal triggering occurred during the 

initial stage of the eruption.  

 

Keywords: El Hierro; continuous gravity; volcanic unrest; submarine eruption; volcanic 

precursor 
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1. Introduction 

 Gravity measurements are usually taken on active volcanoes to monitor their activity, 

identify the precursory signals of new eruptions, and constrain the nature of unrest [Rymer 

and Williams-Jones, 2000; Furuya et al., 2003; Gottsmann et al., 2006; Crescentini et al., 

2007; Bonafede and Ferrari, 2009]. Gravity variations caused by volcanic sources can range 

from one to several hundred µGal (1 µGal = 10
-8

 ms
-2

) and may occur at any time during 

phases of volcanic activity [Bonvalot et al., 1998; Greco et al., 2008]. After subtracting the 

solid-earth and ocean-tide effects (and, likewise, any meteorological/hydrological 

perturbations) from the gravity records, the corresponding residuals are useful for detecting 

volcanic signals and as an effective volcano-monitoring tool if combined with other 

geodetic/geophysical parameters such as seismicity, deformation and geochemical data. 

Furthermore, time variations in the observed Earth-tide parameters (other than the lunisolar 

gravitational attraction) could indicate ground deformation processes occurring as a result of 

volcanic events [Berrino et al., 2006]. Along with certain other observational techniques, the 

analysis of continuous gravity measurements allows the temporal evolution of volcanic 

processes to be studied, and can make an important contribution to the investigation of 

subsurface mass redistributions and density changes, magmatic processes, and changes in 

elevation and seismicity.  

Several studies using continuous gravity measurements have been carried out on 

different islands of the Canary archipelago since 1987, all with the aim of improving our 

understanding of the Earth’s crustal response to tidal forces in volcanic areas and of gathering 

gravity signals related to volcanic/seismic activity during periods of quiescence [Vieira et al., 

1991; Arnoso et al., 2000; 2001; 2011]. However, to the knowledge of the authors, studies 

based on continuous gravity variations during an active volcanic process in the Canary 

Islands had hitherto not been undertaken.  

From the onset of seismic activity in July 2011, various geodetic and geophysical 

parameters were placed under continuous observation on El Hierro. The Spanish IGN 

implemented a surveillance network consisting of four GPS stations, progressively increased 

to a total of 12 stations, nine seismic stations (two of which are a permanent part of the 

volcano IGN monitoring network in the Canary Islands), several geochemical techniques 

(Radon concentration, CO2 flux, groundwater parameters) and three magnetometers [López et 

al., 2012]. A tiltmeter network was also installed to monitor ground deformations [Arnoso et 

al., 2012], whilst a control gravity network, in place since 2003, was used to study gravity 

variations in terms of subsurface mass/density changes due to volcanic activity. Additionally, 
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another GPS network with a total of six stations was installed by the local agency ITER 

[Sagiya et al., 2012], and also operative was a GPS antenna (FRON), which had been erected 

by the GRAFCAN (Cartographical Service of the Government of the Canary Islands) in 

2010. 

To complement this monitoring network we installed a permanent gravimeter to conduct 

continuous gravity measurements. Time gravity variations associated with seismic-volcanic 

processes can make a significant contribution to real-time volcano monitoring and, in 

particular, to the investigation of magma dynamics and subsurface processes during episodes 

of unrest. The data thus generated can also provide important constraints on the geometry of 

subsurface structures beneath the volcanic edifice and on the source of unrest. In this paper, 

we document the continuous gravity measurements carried out on El Hierro during the unrest 

episode preceding the submarine eruption that occurred in 2011–2012. Although the gravity 

measurements that began in late July 2011 have continued to the present, we concentrate our 

study on the period between August 6, 2011 and October 15, 2011 in order to encompass the 

main part of the unrest episode and the first days of the eruption. This allows us to identify 

and analyze the main gravity anomalies that occurred during the building up of the eruption. 

We describe here the methodology used and the data obtained, and then discuss them in terms 

of the magma movements occurring inside the upper lithosphere and in the volcanic edifice.  

 

2. Background information on the geology of El Hierro and the 2011–2012 submarine 

eruption  

El Hierro is the youngest and westernmost of the Canary Islands, a group of volcanic 

ocean islands located on the Atlantic side of the African plate, 150 km off the coast of 

Morocco (Figure 1). They originated as a result of an intra-plate magmatic episode lasting 

over 40 Ma [Araña and Ortiz, 1991] that gave rise to Holocene volcanism on all of these 

islands. El Hierro is a composite shield structure created by a combination of different 

volcanic edifices, which rises from 4000 m b.s.l to a maximum altitude of 1501 m a.s.l. and 

has a surface area of about 279 km
2 

[Guillou et al., 1996; Carracedo et al., 2001]. The 

onshore geology of El Hierro shows three giant lateral collapses, namely Las Playas, El Julan 

and El Golfo (Figure 1), and the San Andrés fault (on the NE flank of the island) that could 

correspond to an aborted lateral collapse [Day et al., 1997]. El Hierro has three well-defined 

ridges lying at 120º that concentrate all the Holocene volcanism, the most recent being the 

southern ridge that extends for about 40 km with a height of 2000 m  above the sea floor 
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[Münn et al., 2006]. Recent geodetic and gravimetric studies have investigated the crustal 

structure of El Hierro using gravity inversion [Montesinos et al., 2006], as well as its elastic 

response to body-tide forces [Arnoso et al., 2011]. Most recently, Gorbatikov et al. [2013] 

have studied the deep crustal structure of El Hierro using a micro-seismic sounding technique 

to create a 3D velocity model of the island’s internal structure, which has revealed the 

existence of several local heterogeneities, as already noted by Montesinos et al [2006]. In 

fact, Gorbatikov et al. [2013] highlight the existence of a reservoir of solidified magma to a 

depth ranging between 15–25 km, located at the northwest of El Hierro, and connected with 

the formation of the younger part of the island. Other subsurface shallow structures identified 

as well by the density contrast model of Montesinos et al. [2006], seem associated to the 

southward migration of hypocenters along the contact surface of this reservoir and a high-

velocity structure, which divides two large low-velocity bodies, one of them containing the 

solidified magma accumulation zone. 

The 2011–2012 submarine eruption on El Hierro was preceded for nearly three 

months by an intense seismic swarm and important ground deformations, as reported by 

López et al. [2012] and Ibáñez et al. [2012]. These authors state that seismic unrest started on 

July 19, although dozens of local events had already been detected two days beforehand. 

More than 12000 localized earthquakes occurred up to the onset of the submarine eruption on 

October 10, the largest of which was of magnitude 4.3 MbLg according to the earthquake 

catalogue of the Spanish Instituto Geográfico Nacional (IGN). Initially, the seismicity was of 

low magnitude (< 3.0 MbLg) and two months after the beginning of the period of unrest, the 

earthquakes were still mostly focused on the north of the island at depths of 10–15 km 

(Figure 2a). In mid-September, seismicity began to migrate towards the south of the island 

and a slight increase of up to 17 km in the hypocentral depth was observed. In addition, both 

the magnitude of the earthquakes and the ground deformation rate increased during this 

period. By late September 2011, most of the earthquakes were located offshore to the 

southwest of the island, but with greater magnitudes. Early October, various episodes of 

deflation-inflation were noted by the GPS stations of the IGN network at different sites on the 

island. Variations in other geophysical parameters such as differences in magnetic 

observations at different stations and several peaks in 
222

Rn concentration were also observed 

[López et al., 2012]. Then, the hypocenters migrated southeastwards through the submarine 

flank of the southern ridge and a MbLg 4.3 event occurred on October 8 at a depth of 12 km 

and 1.5 km from the coast (Figure 1). Only few shallow (14 km depth) earthquakes 
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followed this event (Figure 2b), suggesting that the magma approached the surface at the 

onset of the submarine eruption asseismically [Martí et al., 2013]. The eruption started on 

October 10 at 04:15 UTC. At this point, a harmonic tremor signal appeared on the seismic 

records and continued for several weeks until the end of the eruption. The high-amplitude 

tremor signal overlapped the gravity records during the first days after the onset of the 

eruption. The eruption lasted for 4.5 months and constructed a new 220-m high volcanic 

edifice about 1 km in diameter at the base, which reaches 300 m b.s.l. at a distance of 1.8 km 

from the coast [Rivera et al., 2013]. 

 

3. Methodology and data acquisition 

 We acquired continuous gravity measurements from two different locations collected 

during different stages in the seismo-volcanic processes taking place between August 6, 2011 

and October 15, 2011. The first observation site, LA (Figure 1), was located in the north of 

the island around El Golfo embayment in a private house in the village of Los Llanillos at 

276 m a.s.l. The gravimeter was installed in the cellar on concrete base of 40 cm thick. The 

site was selected for its proximity to the seismic swarm that was located in this area at the 

beginning of the seismic process (Figure 1). A GPS antenna belonging to the IGN geodetical 

network [López et al., 2012] was installed directly above the gravimeter on the house roof 

during the same observation period. 

 Due to the southwards migration of the seismic activity, the gravimeter was moved to 

a second site in the village of El Pinar at the end of September 2011. The site, Aula de la 

Naturaleza (AU) (Figure 1), is located near the geographic center of the island at 950.5 m 

a.s.l and 6.5 km SE from the site LA (Figure 1). The gravimeter was installed on a concrete 

pillar fixed to the bedrock at a depth of 30 cm inside a small room where it was protected 

from humidity and air currents. No GPS antenna was available at this site, although two 

relatively close permanent GPS stations belonging to the IGN network, HI01and HI08 

(Figure 1), were installed 4 and 1 km away, respectively. In addition, a short base-length bi-

axial tiltmeter (model Applied Geomechanics 701-2A) that records tilts in two orthogonal 

horizontal directions was positioned on a pillar next to the gravimeter from the end of 

September 2011 onwards [Arnoso et al., 2012]. 

 Previous tidal gravimetry studies had been conducted using a LaCoste & Romberg 

Graviton-EG spring gravimeter at site AU during 2008 [Arnoso et al., 2011]. This provided 

us with a priori knowledge of the site's possibilities, as well as the stability and quality of the 

gravimetric measurements it could generate. Thus, we expected that the comparison of the 
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tidal observations with the theoretical body-tide models at this site could be carried out with 

an accuracy of 0.1%, as reported by Arnoso et al. [2011]. Details of the observations at sites 

LA and AU are summarized in Table 1. 

 The gravimeter used in this study was a Micro-g LaCoste’s gPhone, an updated 

version of the classical LaCoste & Romberg (LCR) zero-length spring (model G) gravimeter, 

which has a double-oven thermal system that provides more precise temperature stability, a 

new beam-nulling system, a true vacuum seal that is completely insensitive to buoyancy 

changes due to atmospheric changes, and 0.1 μGal resolution in the frequency domain (see 

http://www.microglacoste.com/relativemeters.php). Many studies have confirmed the 

stability and accuracy of spring-type gravimeters when detecting gravity variations in active 

volcanic areas and the LaCoste&Romberg and Scintrex gravimeters are the most commonly 

used [Brown et al., 1991; Budetta and Carbone, 1997; Berrino et al, 2000; Carbone and 

Greco, 2007]. In order to study the performances of the meter in terms of resolution, 

accuracy, noise level, and long-term stability the gPhone-054 used here was compared to the 

superconducting gravimeter SG-C026 at site J9 in Strasbourg (France) during 2008 [Riccardi 

et al., 2011]. Conclusion achieved from this gravimetric comparison showed that the 

gravimeter behavior both in the tidal and seismic bands is satisfactory, even better than 

standard spring gravimeters (zero-length metal or quartz-type sensors). However, the 

instrumental drift rate is still greater than in a superconducting gravimeter and some 

uncertainties may be present in drift modeling when gravity fluctuations are small. 

Nevertheless, most uncertainties can be solved if meteorological perturbations can be 

modeled with enough accuracy and drift behavior is closely controlled or, as in the case of 

this study, long-term gravity variations are sufficiently large to be distinguished from other 

known and easily modeled effects.  

 It is well known that the time-variable gravity signal is composed of different 

contributing signals [Torge, 1989] including solid Earth tides, which add tens of µGal to the 

amplitude signal and can be easily modeled by different software packets depending on the 

final desired application [Dierks and Neumeyer, 2002]. Ocean tidal loading, atmospheric 

loading, and polar motion are other known factors that are included in the gravity signal. To 

achieve a residual gravity signal with the greatest geophysical significance, other parameters 

are usually sampled together with the gravity records. The core gravity sensor of the gPhone 

by design should be slightly influenced by environmental effects such as air pressure and 

temperature variations that in turn increase the non-linear drift problem, which is decisive for 

the purposes of volcano monitoring [Budetta and Carbone, 1997; Berrino et al. 2006, Greco 
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et al., 2012; Crossley et al., 2013]. During this study, raw gravity data were sampled at 1 Hz 

frequency. Other parameters were also measured at different sampling rates: leveling 

instrument, atmospheric pressure, internal pressure sensor, air temperature, internal sensor 

temperature, humidity. Rainfall data indicated that no significant precipitation fell during the 

observation period and so the corresponding gravity effect was not evaluated.  

 Although the most important limitation of spring gravimeters is still the unpredictable 

drift behavior occurring during long-term observations, previous results gathered with a LCR 

gPhone-054 gravimeter operating at the J9 gravimetric observatory in Strasbourg (IPGS-

EOST, France) confirmed suitable drift rates of a maximum of about 10 µGal/day and quick 

drift stabilization after installation. As well, no significant differences in its drift-rate 

evolution were observed over time [Riccardi et al., 2011]. After its testing in Strasbourg, the 

gPhone-054 was moved to the atmospheric observatory of Izaña (Spanish AEMET) on the 

island of Tenerife (Canary Islands, Spain) for 1.5 years, where its stabilized drift-rate 

behavior was within the range of 0 to 2.0 µGal/day for the year before it was installed on El 

Hierro (Figure 3). This behavior fit in with the manufacturer´s guidelines, which indicate that 

after 1-2 years, the drift rate should fall substanlially (gMonitor User´s Manual, 2008).  The 

instrumental drift changed drastically at sites LA and AU on El Hierro just before and during 

the period corresponding to the submarine volcanic eruption. After the eruption ended, the 

drift rate stabilized at an average value of about –1.0 ±0.5 µGal/day. To model the instrument 

drift from the signal showed in Figure 4, a linear fit was applied to the observed gravity data, 

after spikes and tilt-induced gravity effect were removed. Except for the first week after the 

installation of the gravimeter when the best fit corresponds to a second-degree polynomial 

(Figure 4c).  

 To attain the residual gravity signal, that is, the time gravity variation free of 

perturbations, several corrections were applied. Following a common procedure for 

processing time gravity series [Hinderer et al., 2007; Crossley et al., 2013], the residual 

gravity, gres, can be expressed as 

 

(1) 

 

where gobs is the observed gravity data and gm all known modeled signals. Thus, contributions 

from solid Earth and ocean tides, atmospheric pressure, meteorological effects (air 

temperature, humidity), polar motion and drift have to be subtracted from the recorded 

res mobs
g g g 
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gravity series. 

The largest signal in the observed gravity data is produced by Earth tides. Tidal 

deformation of the Earth represents the elastic response of its body to gravitational 

accelerations produced by the Moon and the Sun and, to a lesser extent, other celestial bodies. 

The tidal forces can be described with high reliably and precision and, commonly, solid Earth 

and ocean tides are modeled with  a high accuracy. Gravimeters measure tidal gravity 

variations at the Earth’s surface with very high signal-to-noise ratio. Those variations, which 

occasionally may exceed 250 µGal, are a source of noise for many other geophysical 

measurements. The analysis of tidal gravimetric observations provides amplitude ratios and 

phase differences, in terms of the tidal waves that represent the response of the Earth’s body 

to tidal forces, between observed amplitudes and phases and they respective theoretical 

calculations. Harmonic analysis methods are the most common approach used to model the 

tidal signal. Thus, a multiple regression model in the time domain is derived from a multiple 

input-single output system, through [Neumeyer, 2010, Wenzel, 1997] 

 

                   
 
                

   
                                                        

(2) 

 

where yl represents the gravity observation at a time t, Aj, and j are the amplitudes and 

phases of the tidal waves for frequencies j (e.g. calculated from a tide generating potential), 

zm(t) is the additional signal included in the regression model (as for instance the air 

pressure). The amplitude factor Hj, the phase shift j and the regression parameter Rm, are 

the unknowns estimated by least square fit of the observations. Here, we have used the 

software packages VAV [Venedikov et al., 2003] and ETERNA [Wenzel, 1996] that are 

widespread applied for tidal analysis purposes. Performance of both packages is similar when 

tidal parameters are estimated, although some differences exist in the filtering of the gravity 

data and in the treatment of statistics of the signal [Dierks and Neumeyer, 2002]. Thus, a 

previously calculated tidal model [Arnoso et al., 2011] was used for testing tidal gravimetry 

results with the gPhone-54 at sites AU and LA and was then used to subtract body-tide and 

ocean-tide loading effects for computation of residual gravity. 

Atmospheric pressure contribution to gravity signal is spread over a wide spectral 

domain and its magnitude can reach a value of about 30 µGal at certain locations. 

Atmospheric pressure effect is usually reduced from gravity signal estimating an empirical 
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transfer function (known as barometric admittance) between gravity and local air pressure 

changes. The 90% of the total pressure effect can be removed using the empirical approach 

and an approximate barometric admittance of about –0.3 µGal/hPa is commonly retrieved for 

continental stations, away from the coastlines [Spratt, 1982]. In our case, a local atmospheric 

correction was applied by adjusting the respective scalar coefficient for each observation site 

using the software VAV, which fits the gravity-pressure admittance together with the tidal 

parameters [Venedikov et al., 2003]. The admittances were found to be –0.32 ±0.04 and –0.34 

±0.02 µGal/hPa for LA and AU, respectively. Those admittance factors are used to subtract 

the atmospheric pressure contribution from the raw gravity data when computing the residual 

gravity.  

The gravity effect of the polar motion, the so-called pole-tide, is a consequence of the 

small movements of the Earth’s rotation axis within the Earth. The gravity fluctuation, gp, 

for a site at the Earth’s surface can be computed using the time series of instantaneous pole 

coordinates (x(t), y(t)) at time t, provided by the International Earth Rotation Service (IERS) 

with a resolution of 1 day, through [Melchior, 1993] 

 

       
                                       

(3) 

 

where a is the geocentric radius, (, ) the geographic coordinates and  the mean rate of 

Earth’s rotation Here        
 

 
  is the second degree gravimetric amplitude factor, in 

which h and k are the Love numbers for the body tides. The peak to peak amplitude of the 

gravity effect thus calculated for the observing period was about 3.2 µGal. 

 Instrumental effects related to meteorological perturbations such as those produced by 

rainfall and variations in air temperature and humidity were expected to be very low in the 

short observation periods, during which the gravity residuals underwent remarkable changes. 

Correlation between relative air humidity and temperature can be often significant and the 

gravimeter response depends on the different construction types and of their electrostatic 

feedback system [El-Wahabi et al., 1997; 2000; Palinkas, 2006; Hegewald et al., 2011]. 

Figure 4g show the residual gravity signal observed at LA and AU sites during the periods 

where remarkable changes were observed, together with the respective local air temperature 

variations. In none of the cases presented here, a correlation was found with these 

meteorological parameters. Air temperature variations at the observing sites, however, 
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influence the gravimeter levels. It is well known that instrument tilts can produce apparent 

gravity changes, which can lead to variations in instrumental drift behavior and therefore may 

mask other geophysical signatures related to volcanic activity [Riccardi et al., 2009]. The tilt-

induced gravity effect Δg when the gravimeter’s axis of measurement is tilted an angle  with 

respect to the vertical plumbline, is given by  

 

                   (4) 

 

where g0 is the local gravity. For small angles, expressing cos in terms of Taylor’s series 

expansion, it can be followed [Hinderer et al., 2007] 

 

   
 

 
   

       (5) 

 

Assuming g0 = 9.8 ms
-2

 and expressing  in radians the dependency of gravity on tilt changes 

can be expressed as follows g/2
=4.9 ms

-2
/rad

2
. It means that if the gravimeter is tilted by 

100 µrad will induce a reduction in gravity of 4.9 µGal. 

Other significant contribution of the observed gravity signal come from the hydrology 

(water table, soil moisture, and rainfall). Thus, changes in water storages, soil moisture or 

groundwater can influence gravimetric observations by up to tens of µGal. Its determination 

becomes complex due to its variability, produced by water balance at observing sites, as well 

as to the length scales that makes necessary to investigate the soil moisture conditions in the 

vicinity of the gravimeter site [Hinderer et al., 2007; Harnisch and Harnisch, 2006]. In our 

case, however, no effects of hydrology were corrected due to the absence of rivers and/or 

water reservoirs, together with the extremely dry conditions of the island during the 

observation period.  

 Following the procedure described above, the respective residual gravity was obtained 

at the observation sites LA and AU after modeling with some confidence all known signals. 

The effects produced by tilts, atmospheric pressure and polar motion were all calculated and 

reduced from observed gravity data. Solid Earth and ocean tides, as well as instrument drift, 

were modelled following the harmonic analysis method, and likewise were subtracted from 

the observed gravity. Then, the gravity signatures due to the studied seismo-volcanic unrest 

that preceded the El Hierro eruption could be studied by interpreting these remaining gravity 

residuals. 
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4. Observed anomalies 

 Remarkable gravity changes were found in the gravity residuals (i.e. after removing 

body and ocean tides and gravity changes induced by tilts and atmospheric pressure effects) 

during the different periods before the onset of the eruption at both sites LA and AU. 

 From the date of the installation of the gravimeter (6 August 2011) until September 

15, few fluctuations were observed in the residual gravity signal (Figure 4g) of small 

amplitude (±2 µGal). During this period, seismicity was concentrated at the north of the 

island and at about 11 km in depth. The lack of a significant time correlation with other 

geophysical or geodetic changes hindered the identification and interpretation of those small 

anomalies in the gravity records. 

On September 15 at 16:37 UTC a remarkable change in the trend of the residual gravity 

signal was recorded at site LA that ranged from 0 to 24 µGal/day (Figure 4g). From 11.40 

UTC onwards on September 17 (i.e. 43 hours later) the trend was reduced to 1 µGal/day and 

the gravity signal decreased almost linearly for a total amount of about 45 µGal during those 

two days. The beginning of this anomaly coincided with a 100 µrad offset of the gravimeter’s 

longitudinal level. However, no significant changes were observed in either the transversal 

level or the other instrumental data recorded at the same time. The vertical displacement of 

the GPS antenna installed at the same observation site increased by about 0.3 cm during same 

days (Figure 4e), which coincided with the general trend observed at other GPS stations on 

the island [see López et al., 2012] following the inflation episode preceding the eruption. 

There was no evidence of any type of anthropogenic noise at the time, although we cannot 

discard this possibility. We checked the gravimeter’s response to other similar tilt changes to 

rule out incorrect leveling. All experiences done showed us that the instrument drift suffered 

only noteworthy changes after power failures or transportation. Even in the worst testing case 

(that it, driving a shock on the gravimeter whilst operating), no changes in the instrument 

drift is observed. Moreover, instrument drift never exceeds 10 µGal/day during the observing 

periods up to date. Therefore, although the tilt of the longitudinal level could have a purely 

instrumental origin, the results of the test performed did not explain such large variations in 

the gravity residuals and so we assumed that phenomena related to seismo-volcanic activity 

were responsible for the gravity variations occurring during this period. In a similar context, 

tilt changes of tens of microradians ranging from hours to days were reported by Bonaccorso 

and Gambino [1997] during activity on the volcano Etna as a consequence of magma 
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displacements preceding and accompanying the beginning of the 1991–1993 eruption. Figure 

5 shows an example of co-located measurements made at AU site by both levels of gPhone-

054 and the bi-axial tiltmeter Applied Geomechanics 701-2A (AGI) installed there. After 

removing contributions from tides and diurnal temperature variations, only the X-axis of AGI 

exhibits a tilt offset of about 0.4 µrad during the occurrence of the MbLg4.3 earthquake of 

October 8, 2011 [Arnoso et al., 2012]. Similarly, the longitudinal level displays an offset of 

0.7 µrad, which is coherent with tiltmeter signal, and thus indicating the capability of the 

gravimeter levels to detect real tilt changes. Therefore, the effect of a ground deformation of 

volcanic origin could be present on the tilt recorded by the longitudinal level of gPhone-054 

during September 15 at LA site. Unfortunately, no other tiltmeters that could have confirmed 

these fast ground deformations were installed on El Hierro during this period. However, 

although the seismic activity showed no increase in the magnitude, number of events, or any 

substantial variation in the depth of the epicenters, a clear southward migration (Figure 2a) 

did take place from the second half of September onwards, as was confirmed recently by 

Dominguez et al. [2014].  

 Possible earthquake-induced gravity changes from continuous observations at site AU 

were observed during the seismic swarm stage on October 7 and 8, 2011. The magnitudes of 

the seismic events of the whole unrest episode peaked and the IGN network recorded a 

sequence of earthquakes with magnitudes exceeding MbLg 3.6 (Figure 1). Two step-like 

gravity increase (positive step) of 2.5 µGal are clearly visible on the residual gravity signal 

during those days (Figure 5a).By contrast, the positive step of October 8
th

 coincided in time 

with the event of magnitude MbLg 4.3 recorded by the IGN seismic network whose epicenter 

was located at a depth of 12 km about 8 km from site AU and could be interpreted in terms of 

co-seismic gravity changes. 

A new anomaly detected on the residual gravity coincided with the start of the 

volcanic tremor, assumed to correspond to the onset of the eruption [Martí et al., 2013]. 

Figure 6a shows the gravity signal observed at site AU during the first days of the eruption, 

from October 8–15, 2011. The effect of the volcanic tremor is clearly visible on the gravity 

record from October 10 onwards and induced a high level of background noise. To study the 

gravity signal, we calculated the respective residual gravity and then filtered it using a cut-off 

frequency of 24 cpd (cycles per day) and a window length of 480 data points. This enabled us 

to observe a clear change in the trend of the residual gravity, from 0 to 25 µGal/day since 

the onset of the tremor on October 10, even though the gravimeter’s levels were running 
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without significant variation despite being highly influenced at high frequencies by the 

volcanic tremor. This trend continued for just one day, until October 11 at 05:00 (UTC). 

Then, the trend of the residual gravity curve changed drastically, that is, episodic gravity 

changes varying from 10 to 90 µGal were observed over the next two days (see Figure 6), 

during which time neither substantial ground tilts nor height change (as measured by GPS 

network Spanish IGN) were observed at site AU (see Figures 4b and 4e, respectively).  

Finally, in addition to the anomalies described above it is also worth mentioning the 

anomalies detected in the high-frequency band of the gravity signal. In the spectrum 

computed from the original 1-Hz record of the gPhone-054 in the five days prior to the onset 

of the tremor (up to October 10), the amplitude of the observed gravity signal at frequencies 

between 0.05–0.4 Hz, known as the microseismic band [Longuet-Higgins, 1950], increased 

up to 2.5 times (see Figure 7). On October 6–8 and until the occurrence of the MbLg 4.3 

earthquake, the amplitudes corresponding to the frequencies between 0.25 and 0.40 Hz 

reached the highest value. Usually, perturbations in this frequency band are due to 

meteorological effects. From a few hours before the MbLg 4.3 event and up to the beginning 

of the volcanic tremor on October 10, a well-defined frequency signal appeared that was 

located around a narrow band centered on 0.2 Hz, and which became more evident on 

October 9 (Figure 7-right). This well-defined signal is known as the secondary peak of the 

microseismic band and it does not appear often at the gravity records. Meteorological 

conditions during this period were stable and air pressure, temperature, humidity and wind 

speed do not show any significant variation (Spanish Meteorological Agency, http:// 

www.aemet.es). 

 

5. Modeling time gravity variations 

- September 15
th

 to 17
th

, 2011: 45μGal gravity decrease. 

We want to explain the observed anomaly on the residual gravity found at site LA 

during September 1517. We assume that it is due to magma migration following the 

seismological interpretation by [Martí et al., 2013]. As we mentioned above, vertical 

displacement measured by the GPS on September 15–17 was negligible at LA, that is, the 

free air gradient effect corresponding to 0.3 cm of vertical displacement is not enough to 

explain the gravity decrease of 45 µGal (an elevation change of about 15 cm would be 

required). Also, González et al. [2013] used Interferometric Synthetic Aperture Radar 

(InSAR) technique to model ground deformation to constrain the dynamics associated with 

the magmatic activity during the pre-eruptive and coeruptive phases of the 2011-2012 El 
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Hierro submarine eruption. Their result does not assess any clear ground deformation around 

LA site for the days 1517 of September. Moreover, the interferograms calculated by those 

authors do not exhibit a deformation pattern at LA during the complete period of southward 

seismic migration (mid-September to early October). Therefore, the lack of vertical ground 

deformation makes difficult to explain the gravity decrease recorded at this observing site. 

However, it is more likely that both a mass loss (Bouguer effect) related to magma drainage 

and a density decrease due to the fracturing could produce such gravity variation. 

Accordingly, we provide the respective models based on mass loss and density decrease 

process. On the one hand, we modelled the gravity decrease assuming a mass loss due to the 

magma migration through dikes. The associated gravity effect can be approximately 

calculated as if produced by a 2-D vertical sheet [Nettleton, 1976] 

 

(6) 

 

 

where G is the Universal Gravitational Constant (6.674210
-11

 m
3
kg

-1
s

-2
) and ρ the density 

change; w and h are, respectively, the thickness and the vertical length of the sheet; z is the 

depth of the upper part of the sheet and d the horizontal distance (Figure 8). We have 

considered a dike of 5000 m of vertical length and 10 m thick, at a distance to the gravimeter 

site LA based on the seismicity occurred prior to September 15
th

. The values for the gravity 

effect thus calculated, placing the dike at different depths and depending on the density 

contrast are shown in Figure 9c. Thus, for instance, if we select a density contrast of –250 

kg/m
3
 the gravity variation found at 12 km depth is of about –25 μGal. The model establishes 

several possibilities to achieve a gravity value based on the selected density contrast and for 

the depths ranging between 10 to 12 km. 

On the second hand, we want to model the gravity variation due to density decrease. 

Thus, we take into account the available data from the IGN seismic catalogue up to 

September 15, 2011, and consider the fact that 90% of the events (MbLg > 1) were located 

between latitudes 27°.7211N–27°.7819 N. Then, we approached the seismicity path as 

follows: i) The distance between these coordinates was divided by bands spaced every 50 m, 

from north to south, so that the minimum width of the band contained enough events to 

perform a reasonable statistical analysis; ii) the mean value and the standard deviation within 

each band were calculated for the respective hypocenters contained therein; iii) these mean 
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values were fitted to a straight line with an azimuth of 149º E located at a depth of 11 km; 

and, finally, iv) the volume occupied by seismic events was defined with prisms spaced every 

50 m, from north to south, centered on the previously calculated line (point iii), with sides 

bounded by the mean value of the standard deviation in each direction (Figure 9a) 

a). Now, we supposed that mass migrating southward through dikes or sills to a 

deeper level would have produced changes in the gravity as magmatic material filled the 

different density contrasts of the medium. Therefore, it is reasonable to assume that part of 

the gravity variation recorded during September 15 to 17 was a consequence of a density 

decrease (redistribution of mass) provoked by a geophysical process along the fractured zone 

that was limited by the modeled volume occupied by the seismic events (point iv). To explain 

this behavior, the theoretical gravity variation due to a decrease in the density of the 

subsurface masses was calculated. By taking into account different subsurface models, the 

density of the prismatic structures defined previously (point iv) was substituted by a new 

density. Then, the Nagy [1969] formulation taking into account both the old and new density 

values was applied to calculate the gravity attraction at site LA. This approach was applied in 

two different cases (Figure 9d): a) The first case was based on the previous subsurface 

density model used by Montesinos et al. [2006], which was obtained by gravimetric inversion 

techniques. Former density values for each prism were taken from this model and then 

replaced by new ones; b) in the second case, we used a simpler model assuming that the 

previous density was the same for each prism and a mean density value of 2510 kg/m
3
 was 

adopted for the whole subsurface of the island [Montesinos et al., 2006]. Consequently, 

considering the previous gravity change modeled by the mass loss effect, a variation of 

density between 2400 to 2510 kg/m
3
 due to the fracturing would produce a gravity decrease 

of about 0 to 20 µGal (see Figure 9d), which should be considered to attain the observed 

gravity variation of –45 µGal. 

 In both of the above cases, the density of the defined fractured area decreased (Figure 

9d). This fact is consistent with the migration of magma into a deeper area in the south of the 

island. Bearing in mind that long-term drift in the gPhone-054 is small [Riccardi et al. 2011], 

and that part of the modeled linear drift could correspond to seismo-volcanic process, the 

impact on the residual gravity is minimal and about 10 µGal. This difference is not enough to 

vary our reasoning, that is, that the southwards migration of seismicity and the subsequent 

redistribution of subsurface mass caused a density decrease. This fact, and the gravity 

decrease produced by mass loss due to magma migration were both the most probable causes 

of the diminishing residual gravity signal.  
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- October 7
th

 to 8
th

, 2011: co-seismic gravity changes 

 The gravity change we observed on October 8, 2011, coincided in time (20:34h UTC) 

with the most important seismic event during the whole episode of unrest, which has been 

interpreted as the moment two days later that a path for the magma to the surface was opened 

and provoked the submarine eruption [López et al., 2012; Perez-Torrado et al., 2012; Martí 

et al., 2013]. Other gravity change of similar amplitude, and coinciding with the occurrence 

of various seismic events of magnitude MbLg > 3.6 recorded 20 hours before (Figure 5a), 

could be likewise related with the rupture process and magma ascent to the surface. Approach 

of these co-seismic gravity changes is feasible through calculation of the responses of a 

multi-layered viscoelastic-gravitational half-space to point dislocation sources [e.g., Wang et 

al., 2006]. However, gaps in coverage of the IGN seismic network due to size and geometry 

of El Hierro Island increase the uncertainty in the model of the focal mechanism. 

Furthermore, a recent study by Dominguez Cerdeña et al. [2014] that considerably improves 

the previous hypocentral location of the seismic swarm preceding the submarine eruption, 

provide errors of 4.7 ±2.1 km in a horizontal sense and 4.3 ±1.8 km in depth, with 90% 

confidence. Then, seismic moment tensor solution for the MbLg 4.3 earthquake does not allow 

an accurate definition of the rupture length that matches the focal mechanism. This fact 

introduces large uncertainties in the theoretical calculation and prevent us to obtain a 

reasonable calculation of the co-seismic gravity effect. 

 

- October 10
th

 to 13
th

, 2011: gravity variations during the eruption onset 

 The eruption started at 04:15 (UTC) on October 10, 2011, when a harmonic tremor 

signal showed up in the seismic records of the IGN stations [López et al., 2012]. The 

seismicity prior to the tremor signal indicates that the initial eruptive vent was probably 

located about 5 km offshore, on the submarine flank of the island’s southern ridge (see Figure 

1). However, no eruptive proof (i.e. fragments of lava bombs) or any other observational 

evidence pertaining to these initial stages of the eruption were observed on the surface until 

two days later. Martí et al. [2013] pointed to the magma ascended through a dike on the 

southern ridge and that during the first three days of the eruption the eruptive focus migrated 

northwards for about 3 km along the eruptive fissure until it intersected a NE-SW regional 

normal fault; from this moment on, a central conduit was generated and the construction of a 

cone began. 

 Taking into account the fact that no significant variations in height were observed and 
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that the gravimeter leveling seemed only to be altered by the high frequencies caused by the 

tremor, most of the gravity anomaly detected on October 10–13 can be linked to subsurface 

redistributions of mass. Similar anomalies in the gravity signal were reported, for instance, by 

Branca et al. [2003] and Carbone et al. [2007] when describing a short-lived explosive event 

that marked the onset of the 2002 eruption on Etna. In that case, the observed gravity 

decrease (about -400 µGal) was interpreted as a magmatic intrusion occurring after the 

development of a fracture system located about 1 km from the gravity station. In our case, 

assuming that the MbLg 4.3 earthquake on October 8 opened a fracture, the gravity changes 

observed on October 10–12 at site AU (about 10–12 km from the volcano) would be related 

to changes in subsurface mass provoked by the opening of the eruptive fracture and by the 

movement of magma along it. Using the equation (6), we approximately calculated the 

associated gravity effect as if produced by a 2-D vertical sheet. Based on the previous 

density-contrasts model obtained by Montesinos et al., [2006], the host rock density was 

taken to be 2510 kg/m
3
. Thus, the gravity variation that reached site AU was computed for a 

variable distance (d) from the source, assuming a vertical length of 5000 m according to the 

model of density contrasts around the location of the volcanic eruption (Figure 10). There, the 

interface between different low- and high-density structures close to the new volcano edifice 

indicated a clear northwest-southeast alignment, coinciding with the fracture indicated by 

Martí et al. [2013]. Such structures in the density contrasts are not preserved below a depth of 

6000 m (see Figure 5 in Montesinos et al., 2006) and so the dike cannot be modeled with 

such precision at any further depth. 

 Our results for the gravity effect thus calculated are given as a function of the distance 

between the gravimeter site and the vertical sheet (i.e. an approximation of a dike) and for 

varying thicknesses of 3–10 m (Figure 11). The gravity values for the distances 9500–12000 

m from the gravimeter site assuming a 5–7-m-thick dike are about –80 to –40 µGal. They are 

consistent with the observed gravity variations (Figure 6a), the change in the distance being 

justified by the northward migration of the eruptive focus (i.e. towards site AU) by about 3 

km during the first days of the eruption, as described by Martí el al. [2013]. 

 Looking in detail at Figure 6a, it can be seen that on October 11–13, 2011, the 

residual gravity variations fluctuated considerably and reached –90 µGal at noon on October 

11 and at the beginning of October 12. Superimposed on the residual gravity curve, Figure 6b 

shows the body tide vertical strain calculated for site AU for the same time period. An 

apparent correlation between the two curves can be seen for the diurnal frequencies. We 

propose that the residual gravity variations recorded at site AU during the first three days of 
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the eruption might have been influenced by tidal strain. At that moment, a displacement along 

the eruptive fissure could have occurred, followed by a compression of different parts of the 

plumbing system due to its progressive decompression and magma withdrawal. This fact is 

coherent with and could explain the gravity variation observed at site AU during the initial 

stages of the eruption, in which periodic tidal strain could have played an important role. 

However, the quantification of the potential role of the periodic tidal strain in the triggering 

of the eruption would require a more precise analysis that is beyond the purpose of this study. 

 

- High-frequency gravity signal of October 6
th

 to 11
th

, 2011. 

According to Longuet-Higgins [1950], the frequency band 0.10.3 Hz corresponds to 

the secondary microseismic peak. The spatial origin of this peak seems to be due to both 

coastal and deep-ocean sources [Cessaro, 1994; Chevrot et al., 2007] and the amplitude of 

the signal can be correlated with sources of different origin such as bathymetry, ocean-wave 

height, wind, storms, and hurricanes [e.g. Kedar et al., 2008]. Regardless of the origin, the 

final effects are pressure pulses at sea, which propagate to the sea floor and then generate 

microseismicity. In our case, as mentioned above, the MbLg4.3 earthquake on October 8 

probably opened the fissure that the magma used to ascend to the surface. The dramatic 

descent of the number of seismic events during the next two days (Figure 2b) also gives 

credibility to this assertion. Moreover, the magma ascended in an aseismic way with a 

velocity of 0.13 ms
-1

 on these days [Martí et al., 2013]. Thus, a pressure overload on the 

seabed and the magmatic intrusion could have generated pressure pulses, which could have 

been the source of the observed high-frequency signal in the gravity records recorded before 

the onset of the eruption. This high-frequency signal found in the gravity records during the 

days before the submarine volcanic eruption at El Hierro suggests that these pressure pulses 

were probably not caused by atmospheric/oceanic effects but, rather, by the interaction of 

magmatic activity and the ocean. Similar cases have been described since the 1930s from the 

volcano Aso [e.g. Sassa, 1935; Kubotera, 1974; Kawakatsu. et al., 2000; Zeng et al., 2011]. 

However, more data (e.g. seismic, atmospheric pressure, tide gauges) still need to be 

analyzed if we want to fully understand the nature of the source of this signal and thus be able 

to connect it with a possible precursory signal. 

 

6. Discussion 

Gravity variations recorded by the gPhone-054 on El Hierro have provided an 
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interesting map of the time evolution of the gravity field during the various phases of the 

unrest episode that preceded the submarine eruption in 2011–2012.  

 Up to September 15, 2011, only small variations in the residual gravity had been 

observed, most generated by seismic swarms that coincided with the main phase of magma 

accumulation at the base of the oceanic crust (1215 km b.s.l.) in the north of the island 

[Martí et al., 2013]. However, from September 15–17 onwards, a significant gravity decrease 

was observed at site LA (Figure 4g), coinciding with the initiation of the southward migration 

of seismicity and a slight increase in depth of the hypocentral location. In principle, this 

gravity change could be due to either (i) the redistribution of mass at depth caused by magma 

migration, (ii) variation in density, or (iii) a large variation in the height at the observation 

site. A combination of these three increases the number of possible sources of the gravity 

changes and so joint interpretation with other geodetic/geophysical data is necessary. One 

likely solution discussed above implies delimiting the disturbed area (the fractured zone) by 

locating the hypocenters and decreasing the host rock density value there (Figure 9d). Under 

these conditions, different processes could cause a change in the density. However, 

southward seismic migration to deeper crustal levels (after this period) is consistent with 

magma transport or drainage away from the gravimetric site occurred. Thereafter, gravity 

variation continued decreasing in magnitude, albeit at a lower rate, probably due to the 

remoteness of the seismicity. 

 On October 7–8, 2011, the gravimeter’s levels underwent a series of rapid 

displacements linked to a seismic swarm characterized by several MbLg > 3 events. Two 

increments of about 3 µGal in the amplitude of the residual gravity were recorded at site AU 

(Figure 5a), within a time interval of 20 hours. Although co-seismic gravity effect was not 

evaluated, the magnitude of those gravity changes coinciding with the MbLg 4,3 event seems 

connected with the beginning of the rupture process regarding the magma ascent to the 

surface. From October 8 01:00 UTC onwards, lower magnitude events continued at the same 

location and no significant gravity variation was recorded. During this period, most of these 

events were concentrated in a narrow area to the south of the island. It is likely that the 

magma found a stress barrier here and began to generate differential stresses in its search for 

another path. It seems plausible that this path was provided by the effect of the MbLg 4.3 event 

on October 8 at 20:34 UTC. In the previous section, the co-seismic gravity change associated 

with that event (about 2.4 µGal) was explained according to a tectonic process connected to 

the opening of the fracture, which allowed magma to reach the surface. Furthermore, during 
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the next two days shallower seismic events were recorded by the IGN stations, which 

indicates that the magma was rising. Likewise, a clear 0.2 Hz peak was identified in the high-

frequency gravity signal (Figure 7), also recorded by the gPhone-054 at site AU. This 

frequency is usually associated with the secondary microseismic peak [Longuet-Higgins, 

1950] and can be attributed to atmospheric perturbations. In this case, however, and in 

accordance with Martí et al. [2013], this signal should be interpreted as due to overpressure 

pulses generated by the magma when ascending to the surface prior to the onset of the 

eruption. The beginning of the submarine eruption was recorded by the gPhone-054 at site 

AU since the volcanic tremor was superimposed on the gravity signal (Figure 6a) from 

October 10 onwards. Firstly, a change in the trend of the residual gravity was clearly seen, 

decreasing at a rate of 25 µGal/day until October 11. We correlated this gravity anomaly with 

a main degassing phase throughout the fractured upper crust as the magma approached the 

surface and thus generated a density decrease and the tremor. Secondly, from October 11 at 

04:41 UTC to October 12, the residual gravity signal reflected a change in the volcanic 

process, which was apparently correlated with tidal strain forces (Figure 6b). It is feasible that 

the tidal vertical strain partially drove the process until the final outflow conduit (i.e. the 

eruptive fissure) was completely open. During this time, the magnitude of the gravity 

decrease can be modeled as a 5–7-m-thick and 5-km-long dike intrusion varying in distance 

from the gravimeter depending on the northward migration of the eruptive focus (about 3 km) 

during the first days of the eruption [Martí el al., 2013]. Although no significant changes 

were observed in the respective tilt excursion, the noisy response in the gravimeter’s levels 

was due to the tremor. A closer look at Figure 6a reveals a rapid stabilization of the gravity 

signal from noon onwards on October 12, followed by a small upward jump of about 30 

µGal, most probably caused by the complete opening of the outflow conduit. This fact could 

have reduced the pressure of the internal conduit and, consequently, caused the tremor to 

decrease in amplitude. 

 

7. Conclusions 

 The potential of continuous gravity measurements carried out in active volcanic areas 

has been shown by the case of the 2011–2012 El Hierro (Canary Islands) submarine eruption. 

The recorded continuous gravity variations provide reliable data for modeling subsurface 

density changes, as well as magma movements during volcanic unrest. In this case, and in 

combination with other geodetic/geophysical techniques, a LaCoste & Romberg gPhone-054 

spring gravimeter was used to monitor the activity during the unrest episode that started on 
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July 17, 2011. Various episodes of magma accumulation and migration occurring several 

kilometers from the observation sites were accompanied by significant gravity variations that 

we analyzed in four different stages: (i) magma accumulation in the north of the island, (ii) 

southward magma migration, (iii) magma ascent to the surface, and (iv) the eruption onset 

and the northward migration of the eruptive focus. Therefore, the recorded gravity variations 

are coherent with the causes of the unrest episode and can be understood as clear precursors 

of the submarine eruption that finally started on October 10, 2011 on the southern ridge of El 

Hierro. Additionally, the observations during the first days of the eruption, which exhibited 

an apparent correlation with body tide vertical strain, are consistent with the opening of the 

active fissure and the northwards migration of the eruptive focus.  

 

Acknowledgements 

Projects CGL2011-25494 and CGL2011-16144-E of the Spanish Ministry of Economy and 

Competitiveness and European Commission VULMAC-MAC/2.3/A7 (INTERREG) and 

VUELCO (FT7 Theme: ENV.2011.1.3.3-1; Grant 282759) partially supported this research. 

The authors are grateful to all colleagues from the Spanish IGN for their assistance in the 

maintenance of the LCR gPhone-054 during the observation period. We are also greatly 

indebted to every resident and to Cabildo Insular of El Hierro for helping with our research 

activities at site AU. The English text was revised and corrected by Michael Lockwood. 

Authors greatly acknowledge the comments given by Dr. L. Chardot and an anonymous 

reviewer that improved substantially the manuscript. 

 

  



©2014 American Geophysical Union. All rights reserved. 

REFERENCES 

Araña, V., and R. Ortiz (1991), The Canary Islands: Tectonics, Magmatism and Geodynamic 

Framework. In: A.B. Kampunzu and R.T. Lubala (Editors), Magmatism in Extensional 

Structural Settings. The Phanerozoic African Plate. Springer-Verlag, Germany, pp. 209-

249. 

Arnoso, J., J Fernández, R. Vieira, E. J. Vélez, A. P. Venedikov, (2000). Results of tidal 

gravity observations in Tenerife, Canary Islands. Bulletin d’Information des Marees 

Terrestres, 132, 10283–10290. 

Arnoso J., J. Fernández and R. Vieira (2001), Interpretation of tidal gravity anomalies in 

Lanzarote, Canary Islands, J. Geodyn., 31 (4), 341-354, doi: 10.1016/S0264-

3707(01)00003-5. 

Arnoso, J., M. Benavent, M. S. Bos, F. G. Montesinos and R. Vieira (2011), Verifying the 

body tide at the Canary Islands using tidal gravimetry observations, J. Geodyn., 51 (5), 

358-365, doi: 10.1016/j.jog.2010.10.004. 

Arnoso, J., F. G. Montesinos, M. Benavent, E. J. Vélez (2012), The 2011 volcanic crisis at El 

Hierro (Canary Islands): monitoring ground deformation through tiltmeter and 

gravimetric observations, Geophys. Res. Abst., 14, EGU2012-5373. 

Berrino, G. (2000), Combined gravimetry in the observation of volcanic processes in 

Southern Italy, J. Geodyn., 30 (3), 371-388, doi: 10.1016/S0264-3707(99)00072-1. 

Berrino, G., G. Corrado, and U. Riccardi (2006), On the capability of recording gravity 

stations to detect signal coming from volcanic activity: the case of Mt. Vesuvius, J. 

Volcanol. Geotherm. Res., 150 (1-3), 270-282, doi: 10.1016/j.jvolgeores.2005.07.015. 



©2014 American Geophysical Union. All rights reserved. 

Bonaccorso, A. and S. Gambino (1997), Impulsive tilt variations at Mount Etna Volcano 

(1990-93), Tectonophysics, 270 (1-2), 115-125, doi: 10.1016/S0040-1951(96)00172-2. 

Bonafede, M. and C. Ferrari (2009), Analytical models of deformation and residual gravity 

changes due to a Mogi source in viscoelastic medium, Tectonophysics, 471 (1-2), 4-13, 

doi: 10.1016/j.tecto.2008.10.006. 

Bonvalot, S., M. Diament and G. Gabalda (1998), Continuous gravity recording with Scintrex 

CG-3M meters: a promising tool for monitoring active zones, Geophys. J. Int., 135 (2), 

470-494, doi: 10.1046/j.1365-246X.1998.00653.x. 

Branca, S., D. Carbone and F. Greco (2003), Intrusive mechanism of the 2002 NE-Rift 

eruption at Mt. Etna Italy inferred through continuous microgravity data and 

volcanological evidences, Geophys. Res. Lett., 30 (20), 2077, doi: 

10.1029/2003GL018250. 

Brown, G.C. and H. Rymer (1991), Microgravity monitoring at active volcanoes: A review of 

theory and practice Cahier du Centre Européen de Géodynamique et de Séismologie, 4, 

279-304. 

Budetta, G. and D. Carbone (1997), Potential Application of the Scintrex CG-3M gravimeter 

for monitoring volcanic activity: results of field trials at St. Etna, Sicily, J. Volcanol. 

Geotherm. Res., 76 (3-4), 199-214, doi: 10.1016/S0377-0273(96)00080-7. 

Carbone, D. and F. Greco (2007), Review of microgravity observations at Mt. Etna: a 

powerful tool to monitor and study active volcanoes, Pure Appl. Geophys., 164, 769-

790, doi: 10.1007/s00024-007-0194-7. 

Carracedo, J. C., E. R. Badiola, H. Guillou, J. de la Nuez and F. J. Perez-Torrado (2001), 

Geology and volcanology of La Palma and El Hierro, Western Canaries, Estud. Geol., 



©2014 American Geophysical Union. All rights reserved. 

57, 175-273. 

Cessaro, R. K. (1994), Sources of primary and secondary microseisms, Bull. Seism. Soc. Am., 

84 (1), 142-148. 

Chevrot, S., M. Sylvander, S. Benahmed, C. Posolles, J. M. Levèvre, and D. Paradis (2007), 

Source locations of secondary microseisms in western Europe: Evidence for both coastal 

and pelagic sources, J. Geophys. Res., 112, B11301, doi: 10.1029/2007JB005059. 

Crescentini, L. and A. Amoruso (2007), Effects of crustal layering on the inversion of 

deformation and gravity data in volcanic areas: An application to the Campi Flegrei 

caldera, Italy, Geophys. Res. Lett., 34, L09309, doi: 10.1029/2007GL029919. 

Crossley, D., J. Hinderer, and U.Riccardi (2013), The measurement of surface gravity, Rep. 

Prog. Phys., 76, 046101, doi: 10.1088/0034-4885/76/4/046101. 

Day, S.J., J.C. Carracedo and H. Guillou (1997), Age and geometry of an aborted rift flank 

collapse: the San Andres fault system, Geol. Mag., 134 (4), 523-537, doi: 

10.1017/S0016756897007243. 

Dierks, O. and J. Neumeyer (2002), Comparison of Earth tides analysis programs, Bull. 

Inform. Marées Terrestres, 135, 10669-10688. 

Domínguez Cerdeña, I., del Fresno, C. and Gomis Moreno, A. (2014). Seismicity patterns 

prior to the 2011 El Hierro eruption. Bulletin of the Seismological Society of America, 

104, 567-575; doi:10.1785/0120130200 

El Wahabi, A., H. J. Dittfeld and Z. Simon (2000), Meteorological influence on tidal 

gravimeters, Bull. Inform. Marees Terrestres, 133, 10403-10414. 

El Wahabi, A., B. Ducarme, M. Van Ruymbeke, N. d’Oreyè and A. Somerhausen (1997), 



©2014 American Geophysical Union. All rights reserved. 

Continuous gravity observations at Mount Etna Sicily and correlations between 

temperature and gravimetric records, Cahiers du Centre Europeen de Geodynamique et 

de Seismologie, 14, 105-119. 

Furuya, M., S. Okubo, W. Sun, Y. Tanaka, J. Oikawa, H. Watanabe and T. Maekawa (2003), 

Spatio-temporal gravity changes at Miyakejima Volcano, Japan: Caldera collapse, 

explosive eruptions and magma movement, J. Geophys. Res., 108, B42219, doi: 

10.1029/2002JB001989. 

gMonitor User’s Manual (2008). gMonitor Gravity Data Acquisition and Processing 

Software. 

González, P. J., S. V. Samsonov, S. Pepe, K. F. Tiampo, P. Tizzani, F. Casu, J. Fernández, A. 

G. Camacho, and E. Sansosti (2013), Magma storage and migration associated with the 

2011–2012 El Hierro eruption: Implications for crustal magmatic systems at oceanic 

island volcanoes, J. Geophys. Res. Solid Earth, 118, 4361–4377, doi:10.1002/jgrb.50289 

Gorbatikov, A. V., F. G. Montesinos, J. Arnoso, M. Yu Stepanova, M. Benavent and A. A. 

Tsukanov (2013), New Features in the subsurface structure model of El Hierro Island 

(Canaries) from low-frequency microseismic sounding: an insight into the 2011 seismo-

volcanic crisis, Surveys in Geophysics, 34 (4), 463-489, doi: 10.1007/s10712-013-9240-

4. 

Gottsmann, J., L. Wooller, J. Martí, J. Fernández, A. G. Camacho, P. J. Gonzalez, A. Garcia, 

and H. Rymer (2006), New evidence for the reawakening of Teide volcano, Geophys. 

Res. Lett., 33, L20311, doi: 10.1029/2006GL027523. 

Greco, F., C. Carmisciano, C. Del Negro, I. Loretti, A. Sicali, P. Stefanelli (2008), Seismic-

induced accelerations detected by two coupled gravity meters in continuous recording 



©2014 American Geophysical Union. All rights reserved. 

with a high sample rate at Etna volcano, Annals of Geophysics, 51 (1), 87-103, doi: 

10.4401/ag-4441. 

Greco, F., G. Currenti, G. D’Agostino, A. Germak, R. Napoli, A. Pistorio and C. Del Negro 

(2012), Combining relative and absolute gravity measurements to enhance volcano 

monitoring, Bull. Volcanol., 74 (7), 1745-1756, doi: 10.1007/s00445-012-0630-0. 

Guillou H., J. C. Carracedo, F. Perez-Torrado and E. Rodríguez Badiola (1996), K-Ar ages 

and magnetic stratigraphy of a hotspot induced, fast-grown oceanic island: El Hierro, 

Canary Islands, J. Volcanol. Geotherm. Res., 73 (1-2), 141-155, doi: 10.1016/0377-

0273(96)00021-2. 

Harnisch, G. and Harnisch, M. (2006), Hydrological influences in long gravimetric data 

series, Journal of Geodynamics, 41(1-3), 276-287. 

Hegewald, A., G. Jentzsch and T. Jahr (2011), Influence of temperature variations on the 

noise level of the data of the LaCoste and Romberg Earth tide gravity meter ET18, 

Geochem. Geophys. Geosyst., 12, Q04005, doi: 10.1029/2010GC003432. 

Hinderer J., Crossley D. and Warburton R. J. (2007) Superconducting gravimetry Treatise on 

Geophysics vol 3 (Geodesy) ed T Herring, Gen. ed G Schubert (Amsterdam: Elsevier) 

pp 65–122. 

Ibáñez J. M., S. De Angelis, A. Díaz-Moreno, P. Hernández, G. Alguacil, A. Posadas and N. 

Pérez (2012), Insights into the 2011–2012 submarine eruption off the coast of El Hierro 

(Canary Islands, Spain) from statistical analyses of earthquake activity, Geophys. J. Int., 

191, 659-670, doi: 10.1111/j.1365-246X.2012.05629.x. 

Kawakatsu H., S. Kaneshima, H. Matsubayashi, T. Ohminato, Y. Sudo, T. Tsutsui, K. Uhira, 

H. Yamasato and D. Legrand (2000), Aso94: Aso seismic observation with broadband 



©2014 American Geophysical Union. All rights reserved. 

instruments, J. Volcanol. Geotherm. Res., 101 (1-2), 129-154, doi: 10.1016/S0377-

0273(00)00166-9. 

Kedar, S., M. Longuet-Higgins, F. Webb, N. Graham, R. Clayton and C. Jones (2008), The 

origin of deep ocean microseisms in the North Atlantic Ocean, Proc. R. Soc. London, 

Ser. A, 464 (2091), 777-793, doi: 10.1098/rspa.2007.0277. 

Kubotera, A. (1974). Volcanic tremors at Aso volcano, In: L. Civetta, G. Gasparini, G. 

Luongo and A. Rapolla, Physical volcanology, Elsevier, Amsterdam, pp 29-48. 

Longuet-Higgins, M. S. (1950), A theory of the origin of microseisms, Phil. Trans. R. Soc. 

A., 243, 1-35, doi: 10.1098/rsta.1950.0012. 

López, C., M. J. Blanco, R. Abella, B. Brenes, V. M. Cabrera, B. Casas, I. Domínguez, A. 

Felpeto, M. Fernández de Villalta, C. del Fresno, O. García, M. J. García-Arias, L. 

García-Cañada, A. Gomis, E. González-Alonso, J. Guzmán, I. Iribarren, R. López, N. 

Luengo, S. Meletlidis, M. Moreno, D. Moure, J. Pereda, C. Rodero, E. Romero, S. 

Sainz-Maza, M. A. Sentre, P. A. Torres, P. Trigo and V. Villasante (2012), Monitoring 

the volcanic unrest of El Hierro (Canary Islands) before the onset of the 2011–2012 

submarine eruption, Geophys. Res. Lett., 39 (13), L13303, doi: 10.1029/2012GL051846. 

Martí, J., V. Pinel, C. López, A. Geyer, R. Abella, M. Tárraga, M. J. Blanco, A. Castro and C. 

Rodriguez (2012), Causes and mechanisms of El Hierro submarine eruption (2011-2012) 

(Canary Islands), J. Geophys. Res., 118 (3), 823-839, doi: 10.1002/jgrb.50087. 

Melchior, P., (1983). The Tides of the Planet Earth, second ed. Pergamon Press, Oxford, 641 

pp. 

Montesinos F. G., J. Arnoso, M. Benavent and R. Vieira (2006), The crustal structure of El 

Hierro (Canary Islands) from 3-D gravity inversion, J. Volcanol. Geotherm. Res., 150 (1-



©2014 American Geophysical Union. All rights reserved. 

3), 283-299, doi: 10.1016/j.jvolgeores.2005.07.018. 

Münn S., Walter T.R. and Klügel A. (2006), Gravitational spreading controls rift zones and 

flank instability on El Hierro, Canary Islands, Geol. Mag., 143 (3), 257-268, doi: 

10.1017/S0016756806002019 . 

Nagy, D. (1969), The gravitational attraction of a right rectangular prism, Geophysics, 31 (2), 

362-371, doi: 10.1190/1.1439779. 

Nettleton, LL. (1976). Gravity and magnetics in oil prospecting. McGraw-Hill (New York), 

464p. 

Neumeyer, J. (2010). Superconducting gravimetry. In G. Xu (ed.), Sciences of Geodesy –I, 

Springer-Verlag, pp 339-413, doi 10.1007/978-3-642-11741-1_10 

Pálinkás, V. (2006). Precise tidal measurements by spring gravimeters at the Station Pecný. J. 

Geodyn., 41, 14-22, doi:10.1016/j.jog.2005.08.013 

Perez-Torrado, F. J., J. C. Carracedo, A. Rodríguez-González, V. Soler, V. R. Troll and S. 

Wiesmaier (2012), La erupción submarina de La Restinga en la isla de El Hierro, 

Canarias: Octubre 2011-Marzo 2012, Estud. Geol., 68 (1), 5-27, doi: 

10.3989/egeol.40918.179. 

Riccardi U., J. Hinderer, J. P. Boy and Y. Rogister (2009), Tilt effects on GWR 

superconducting gravimeters, J. Geodyn., 48 (3-5), 316-324, doi: 

10.1016/j.jog.2009.09.001. 

Riccardi, U., S. Rosat and J. Hinderer (2011), Comparison of the Micro-g LaCoste gPhone-

054 spring gravimeter and the GWR-C026 superconducting gravimeter in Strasbourg 

(France) using a 300-day time series, Metrologia, 48, 28-39, doi: 10.1088/0026-



©2014 American Geophysical Union. All rights reserved. 

1394/48/1/003. 

Rivera J., G. Lastras, M. Canals , J- Acosta., B. Arrese, N. Hermida, A. Micallef, O. Tello, D. 

Amblas, 2013, Construction of an oceanic island: Insights from the El Hierro (Canary 

islands) 2011–2012 submarine volcanic eruption: Geology 41, p. 355–358, 

doi:10.1130/G33863.1. 

Rymer, H. and G. Williams-Jones (2000), Volcanic eruption prediction: Magma chamber 

physics from gravity and deformation measurements, Geophys. Res. Lett., 27 (16), 2389-

2392, doi: 10.1029/1999GL011293. 

Sagiya, T., J. Barrancos, D. Calvo, E. Padrón., G. H. Hernández, P. A. Hernández, N. Pérez 

and J. M. P. Suárez (2012), Crustal deformation during the 2011 volcanic crisis of El 

Hierro, Canary Islands, Revealed by Continuous GPS Observation, Geophys. Res. Abst., 

14, EGU2012-10243. 

Sassa, K. (1935), Volcanic micro-tremors and eruption–earthquakes (Part I of the geophysical 

studies on the volcano Aso), Mem. Coll. Sci., Kyoto Imp. Univ., Ser. A., 18 (5), 255-293. 

Spratt, R.S. (1982). Modelling the effect of atmospheric pressure variations on gravity. 

Geophysical Journal of the Royal Astronomical Society, 71, 173–186. 

Torge, W., (1989). Gravimetry. Walter de Gruyter Publishing Co. 

Venedikov A. P., J. Arnoso and R. Vieira (2003), VAV: A program for tidal data processing, 

Computer and Geosciences, 29 (4), 487-502, doi: 10.1016/S0098-3004(03)00019-0. 

Vieira, R., M. Van Ruymbeke, J. Fernández and C. Toro (1991), The Lanzarote Underground 

Laboratory, Cahiers du Centre Europeen de Geodynamique et de Seismologie, 4, 71-86. 

Wang R., F. Lorenzo-Martín and F. Roth (2006), PSGRN/PSCMP a new code for calculating 



©2014 American Geophysical Union. All rights reserved. 

co and post-seismic deformation, geoid and gravity changes based on the viscoelastic-

gravitational, Computers and Geosciences, 32 (4), 527-541, doi: 

10.1016/j.cageo.2005.08.006. 

Wenzel, H.-G. (1996). The nanogal software: Earth tide data processing package ETERNA 

3.30. Bull. Inform. Marées Terrestres 124, 9425-9439 

Wenzel, H.-G. (1997). Analysis of Earth tide observations. In Wilhelm, Zürn, Wenzel (Eds.). 

Lecture notes in Earth Sciences. Tidal Phenomena. Springer, pp. 59-75 

Zeng, X. F. and S.D. Ni (2011), Correction to “A persistent localized microseismic source 

near the Kyushu Island, Japan”, Geophys. Res. Lett., 38, L16320, doi: 

10.1029/2011GL048822. 

  



©2014 American Geophysical Union. All rights reserved. 

 

Figure 1. Relief map of El Hierro (Canary Islands) showing its main structural features 

(embayments of El Golfo, El Julan, and Las Playas, as well as the triple-armed volcanic rift 

system). The observation sites of Aula de la Naturaleza (AU) and Los Llanillos (LA) are 

indicated. The GPS references used are also given (HI01, HI02, HI08). The volcano icon 

indicates the approximate location of the submarine eruption. Small dots show the location of 

the seismic events of magnitude MbLg > 3.6 (white color) recorded on October 7, 2011. As 

well, the MbLg 4.3 earthquake (yellow color) of October 8, 2011, is indicated. 
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Figure 2. Magnitude and depth of the earthquakes recorded by the IGN seismic stations from 

the beginning of the unrest until the eruption onset (a), and a detailed view from October 1 

onwards (b). The dashed line indicates the eruption onset; the shallowest earthquakes 

recorded before the beginning of the eruption are circled. 
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Figure 3. (Top) Weekly drift rates of the gPhone-054 gravimeter at sites in Strasbourg 

(France) and on Tenerife (Canary Islands, Spain) before its installation on El Hierro. Also 

given are the drift rates recorded by the gPhone-054 at the observation sites LA and AU from 

the beginning of the unrest episode on El Hierro. The dotted vertical lines indicate the period 

in which the tremor signal was observed at the seismic stations during the submarine eruption 

between October 10, 2011 and February 17, 2012. The dotted horizontal lines delimit the 

average instrument drift during different periods of stability. (Bottom). Raw gravity data 

observed at the same observing sites shown on the upper panel. The modeled instrument drift 

is superimposed to the observed curve. 
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Figure 4. (a) Raw gravity data observed at LA and AU sites. (b) Signal recorded by 

longitudinal and transversal levels of gPhone-054. The tilt-induced (included temperature 

effect on the levels) gravity effect is also displayed. (c) Observed gravity data corrected from 

spikes and tilt-induced effects. Superimposed curve is the polynomial drift. (d) Air pressure 

and temperature variation observed at the respective LA and AU sites. (e) Vertical (RMS ± 

0.25 cm) and horizontal (RMS ± 1.5 cm) GPS displacements measured at LA and HI08 sites, 

obtained through daily solutions processed in double-difference mode. (f) Variations in the 

depth and latitude of the earthquakes recorded by the IGN seismic stations on El Hierro 

Island. (g). Residual gravity (reduced for Earth and ocean tides, meteorological effects, and 

polar motion and tilt-induced effect) with instrument drift removed, as well as the low-pass 
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filtered, calculated from the gPhone-054 gravimeter records at sites LA and AU. The vertical 

rectangles mark the periods corresponding to the studied residual gravity anomalies. The gap 

after September 29 indicates the period of gPhone-054 stabilization, as it was moved to the 

observing site AU. 
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Figure 5. (a) Variation of the residual gravity, air temperature and respective tilt changes of 

the longitudinal (Long) and transversal (Trans) levels of the gPhone-054 during October 7-8, 

2011, at site AU. The earthquakes of magnitude MbLg > 2 preceding the onset of the 

submarine eruption are also shown. The inset zooms the Long level during the MbLg4.3 event. 

(b) Tilts measured by biaxial AGI tiltmeter at AU during the MbLg 4.3 earthquake. The inset 

zooms the effect of the earthquake on the X-axis. 
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Figure 6. (a) Raw gravity sequence acquired by the gPhone-054 gravimeter at site AU on 

October 8–15, 2011; the gravity effect due to the volcanic tremor is clearly seen on the signal, 

along with the earthquake spikes. The inset shows the location of site AU (top). Vertical 

displacements (RMS ±0.15 cm) measured at the two nearest GPS stations (middle). Variation 

of the residual gravity, drift-removed and low-pass filtered at site AU (bottom). Dashed line 

indicates the time of the eruption onset. (b) Detailed view of the residual gravity variations on 

October 10–14, 2011; the body tide vertical strain (expressed in nstr, 1 nanostrain unit = 10
-9

) 

computed for the same period is superimposed (see text for details). 
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Figure 7. (Left) Moving window spectrum of high-frequency gravity signal recorded by the 

gPhone-054 gravimeter at site AU from September 30 to October 17, 2011. The square 

groups the frequency range 0.25–0.4 Hz, which was disturbed on October 6–8. (Right) 

Detailed view of the moving spectrum on October 8–11, showing the 0.2-Hz frequency signal 

(dashed line) that appeared and lasted until the beginning of the submarine eruption on 

October 10, date on which the volcanic tremor is clearly visible. Solid line indicates the time 

of the MbLg 4.3 earthquake. 
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Figure 8. Geometry of a 2-D vertical sheet used to model the gravity effect produced by the 

eruptive fissure on October 10–13, 2011.  
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Figure 9. (a) Map of El Hierro showing the profile AA’ indicating the path described by the 

southwards seismic migration on September 15–17, 2011. The solid horizontal lines show the 

latitudinal boundaries used to approach the host rock-density variation. (b) For the same 

period of time, (top) the variations in the depth and latitude of the earthquakes recorded by 

the IGN seismic stations on El Hierro, and (down) the residual gravity with drift removed, as 

well as low-pass filtered, calculated from the gPhone-054 gravimeter records at site LA. (c) 

Gravity variations as modelled by the attraction of a vertical sheet considering different 

density contrast values. Shadow area marks the gravity values for the depths of 10 to 12 km 

b.s.l. (d) The two model approaches used to describe the host rock-density variation in the 

calculation of the gravity attraction. The first case (top) simulates different density values for 

each prism taking into account the density distribution used by Montesinos et al. (2006). The 

second case (below) uses the same density value for all prisms. The inlets show the gravity 

attraction computed using the two host rock-density model approaches compared to the 

observed gravity change recorded by the gPhone-054 gravimeter at site LA on September 

15–17, 2011. Shadow area marks the density values according to the modelled gravity 

variation.  
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Figure 10. (Top) Detailed shaded relief map of the south of El Hierro. Observation site AU, 

the village of La Restinga, and the location of the submarine eruption are indicated, along 

with the epicenters of the shallow earthquakes (see Figure 6) before the onset of the eruption. 

The solid line marks the NW-SE alignment of the subsurface contrast density structures that 

coincides with the eruptive fracture. (Bottom) Vertical section of an E-W profile of El Hierro 

showing the hypocenters and differentiated high- and low-density contrast bodies based on 

the density contrast model of Montesinos et al. (2006). The dike location comes from results 

from this study.  
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Figure 11. Gravity values computed based on the distance between site AU and the vertical 

sheet for different thicknesses. Values within the dashed square and for the 5–7 m thickness 

are most consistent with observations. 
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Table 1. Location of the two observing sites in El Hierro and the observation period. 

Geographic latitude and longitude positive in the North and East directions, respectively, and 

altitude referred above the sea level. 

 

Site Latitude () Longitude () Altitude (m) Period of observation 

LA 27.750 18.040 276.0 2011 08 06 – 2011 09 29 

AU 27.714 17.988 950.5 20110929 - 

 

 

 

 


