
Comparing Error Minimized Extreme Learning Machines and
Support Vector Sequential Feedforward Neural Networks for

Classification Problems

Enrique Romero and René Alquézar

Abstract— Recently, error minimized extreme learning ma-
chines (EM-ELMs) have been proposed as a simple and efficient
approach to build single-hidden-layer feedforward networks
(SLFNs) sequentially. They add random hidden nodes one
by one (or group by group) and update the output weights
incrementally to minimize the sum-of-squares error in the
training set. Other very similar methods that also construct
SLFNs sequentially had been reported earlier with the main
difference that their hidden-layer weights are a subset of the
data instead of being random. By analogy with the concept
of support vectors original of support vector machines (SVMs),
these approaches can be referred to as support vector sequential
feedforward neural networks (SV-SFNNs). An experimental
study on ten benchmark classification data sets, comparing
EM-ELMs and SV-SFNNs, was carried out under the same
conditions for the two models. Although both models have the
same (efficient) computational cost, a statistically significant
improvement in generalization performance of SV-SFNNs vs.
EM-ELMs was found in six out of the ten benchmark problems.

I. INTRODUCTION

Feed-forward Neural Networks (FNNs) are a popular
machine learning approach for classification and regression
problems with very interesting properties (see, for example,
[2]). As a specific type of FNNs, the single-hidden-layer
feedforward networks (SLFNs) play an important role in
practical applications. Since the optimal number of hidden
nodes is problem dependent and unknown in advance, users
usually choose the number of hidden nodes by trial-and-error.
Once the architecture is fixed, an iterative learning algorithm
such as back-propagation gradient descent is usually applied
to adjust the weights in the output and hidden layers simul-
taneously.

There exist, however, FNN models that construct the
network sequentially, so that the number of hidden units is
a result of the learning process rather than being fixed a
priori. For a review of constructive FNNs see, for example,
[8]. Recently, error minimized extreme learning machines
(EM-ELMs) have been proposed as a simple and efficient
approach to build SLFNs sequentially [4]. EM-ELMs are an
incremental extension of the previously presented extreme
learning machines (ELMs) [6]. Both methods use random
hidden nodes and find the output weights to minimize the

This work was supported in part by the Ministerio de Ciencia e Innovación
(MICINN), under project TIN2009-13895-C02-01.

Enrique Romero is with the Departament de Llenguatges i Sistemes
Informàtics, Universitat Politècnica de Catalunya, Spain.

René Alquézar is with the Institut de Robòtica i Informàtica Industrial,
CSIC-UPC, Barcelona, 08028 Spain (e-mail: ralquezar@iri.upc.edu).

sum-of-squares error in the training set by solving a linear
system of equations. The specific features of EM-ELMs with
respect to ELMs are that they add random hidden nodes one
by one (or group by group) and update the output weights
incrementally in an efficient way by taking advantage of the
incremental construction of the hidden-layer output matrix
involved in the linear system.

Other very similar methods that also construct SLFNs
sequentially had been reported earlier ([3], [14], [11]). They
all find the optimal linear weights of the output layer by
solving the same linear system. In fact, the idea of adding
random hidden units was already stated in the Sequential
Approximation with Optimal Coefficients and Interacting
Frequencies (SAOCIF) algorithm ([10], [11]) as a possible
strategy to be used and, as shown in [11], the solution of
the linear system can be computed efficiently thanks to the
incremental construction of the hidden-layer output matrix.
The EM-ELMs and SAOCIF with random selection strategy
can easily be shown to be equivalent (see Section II).

Another strategy proposed in [10], [11] to be used within
SAOCIF was to take hidden-layer weights always as a subset
of the data (input strategy). In this case, the resulting method
is equivalent to the Orthogonal Least Squares Learning
algorithm [3] and to Kernel Matching Pursuit with pre-
fitting [14]. All of them select the hidden-layer weights
among the input vectors. By analogy with the concept of
support vectors original of support vector machines (SVMs)
[13], these approaches can be referred to as support vector
sequential feedforward neural networks (SV-SFNNs) [12].

SV-SFNNs and SVMs were compared experimentally in
[12]. Very similar accuracies were found, although compu-
tational times were lower for SVMs. Regarding the number
of support vectors, SV-SFNNs constructed models with less
hidden units than standard SVMs and in the same range
as ”sparse” SVMs [7]. On the other hand, EM-ELMs were
compared in [4] with other sequential algorithms, namely
resource allocation network (RAN) [9] and minimum re-
source allocation network (MRAN) [15], as well as with the
original ELMs [6]. EM-ELMs obtained better performance
and less training time than RAN and MRAN, and a similar
performance but less training time than ELMs.

This work focuses on the comparison of EM-ELMs (i.e.
SAOCIF with random strategy) and SV-SFNNs (i.e. SAOCIF
with input strategy). An experimental study on ten bench-
mark data sets for classification problems is presented in
which the two methods are compared in the same conditions

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36156156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and using the same software. Since both approaches can be
adjusted to have the same computational cost (each candidate
weight vector for a hidden unit is either generated randomly
or selected randomly among the input vectors), the goal is
finding out whether there is any difference in generalization
performance between EM-ELMs and SV-SFNNs. In other
words, does the use of inputs (support vectors) as hidden unit
weights provide any advantage over pure random selection?

Although it may be argued that the input strategy is using
some sort of information present in the training data (to set
the hidden-layer weights) whereas the random strategy is
not, this does not necessarily imply that the generalization
performance of the former has to be better than that of
the latter. Therefore, an empirical comparative study on a
wide range of problems is interesting to assess this point.
Moreover, it should be noted that, on one hand, EM-ELMs
have been proposed to build SLFNs as an alternative superior
(due to their simplicity, efficiency and effectiveness) to
common neural net approaches like backpropagation gradient
descent [4] and, on the other hand, input vectors are rarely
used as hidden-layer weights in SLFNs, especially in the case
of additive units (i.e. two-layer perceptrons).

II. BACKGROUND

The output function of an SLFN (i.e. a fully connected
FNN with a single hidden layer of Nh units and m linear
output units) can be expressed as a linear combination of
simple (basis) functions:

fNh
(x) = λ0 +

Nh∑
i=1

λi ϕ (ωi, bi, x) (1)

where ωi ∈ Rn and bi ∈ R are the learning parameters
of the hidden units, λi ∈ Rm are the output-layer weights
connecting the i-th hidden unit to the m output units, ϕ is
the activation function of the hidden units, ϕ(ωi, bi, x) is the
output of the i-th hidden unit with respect to the input x, and
λ0 ∈ Rm denotes the bias terms (if any) of the linear output
units.

Although a lot of activation functions ϕ (even not neuron
alike) can be used that allow universal approximation capa-
bility, the more usual choices are the Gaussian RBF applied
to a distance between an input vector and a centre

ϕ (ωi, bi, x) = gau (bi ||x − ωi||) (2)

and the sigmoid (e.g. hyperbolic tangent) applied to a scalar
product of the input and weight vectors (this will be referred
to as a sigmoid additive unit [4])

ϕ (ωi, bi, x) = tnh (ωi · x + bi) . (3)

For Gaussian RBF units, ωi ∈ Rn and bi ∈ R+ are the
centre and the impact factor of the i-th RBF unit. For sigmoid
additive units, ωi ∈ Rn is the weight vector connecting the
input layer to the i-th hidden unit and bi ∈ R is the bias of
the i-th hidden unit. In our experiments presented in Section

III, a third activation function has also been tested, the sin
applied to the scalar product (i.e. a sin additive unit)

ϕ (ωi, bi, x) = sin (ωi · x + bi) . (4)

For a given set of training examples {(xj , tj)}L
j=1 ⊂ Rn×

Rm, if the outputs of the network are equal to the targets,
we have

fNh
(xj) =

Nh∑
i=1

λi ϕ (ωi, bi, xj) = tj , j = 1, . . . , L. (5)

Equation (5) can be written compactly as

Hλ = T (6)

where H is an L×Nh matrix called the hidden-layer output
matrix of the network (Hji = ϕ (ωi, bi, xj)), λ is an Nh×m
matrix containing the output-layer weights, and T is an L×m
matrix containing the target values in the training set. The
output layer biases can be added by including in H a first
column with a fixed value of 1 (and increasing Nh by 1).

Normally, the number of training examples L will be much
greater than the number of hidden units Nh and an exact
solution of (6) cannot be expected. Then, the usual cost
function in SLFNs (and in general in FNNs) is the sum-
of-squares error

E =
1
2

L∑
j=1

||fNh
(xj) − tj ||2. (7)

It is well known (e.g. [2]) that, to minimize E, the optimal
output-layer weights can be computed as

λ̂ = H†T where H† =
(
HT H

)−1
HT (8)

is the pseudo-inverse (or Moore-Penrose generalized inverse)
of the hidden-layer output matrix H. The sum-of-squares
error can be expressed as

E(H) =
1
2
||Hλ − T||2 =

1
2
||HH†T − T||2. (9)

A. Error Minimized Extreme Learning Machines (EM-
ELMs)

Huang et al. [5] have shown that SLFNs with random
weights in the hidden layer have universal approximation
capability for many different choices of the activation
function, including the ones stated in eqs. 2 to 4. Based on
this result, they propose the ELMs learning algorithm [6],
which can be summarized as follows:

Algorithm for ELMs: Given a set of training examples
{(xj , tj)}L

j=1 ⊂ Rn × Rm, the hidden-layer activation
function ϕ (ω, b, x), and an a-priori fixed number Nh of
hidden units:

1) randomly assign hidden-unit parameters (ωi, bi), i =
1, . . . , Nh

2) calculate the hidden-layer output matrix H
3) calculate the output-layer weight matrix λ using (8)

In order to avoid the need of setting in advance the
number Nh of hidden units and to reduce the training
computational time, a fast sequential extension of the ELMs
algorithm called EM-ELMs has been recently reported by
Feng et al. [4].

Algorithm for EM-ELMs: Given a set of training examples
{(xj , tj)}L

j=1 ⊂ Rn × Rm, the maximum number of hidden
units Nmax, and the expected learning accuracy ε:

1) Initialization phase:
- initialize the SLFN with a small group of N0 randomly

generated hidden units (ωi, bi), i = 1, . . . , N0

- calculate the hidden-layer output matrix H0

- calculate the corresponding output error
2) Recursively growing phase:

- let k := 0
- while Nk < Nmax and E(Hk) > ε do

- let k := k + 1
- randomly add δNk hidden units to the existing SLFN;

the total number of hidden units becomes
Nk = Nk−1 + δNk and the corresponding hidden-layer
output matrix Hk = [Hk−1, δHk], where δHk contains
the new δNk columns computed

- the output-layer weights λ are updated as

λk = H†
kT =

[
Uk

Dk

]
T, where

Dk =
((

I − Hk−1H†
k−1

)
δHk

)†
and

Uk = H†
k−1 (I − δHkDk)

- end while

B. Sequential Approximation with Optimal Coefficients and
Interacting Frequencies (SAOCIF)

A rather general constructive method for SLFNs, called
SAOCIF, was proposed in [10], [11] by Romero and
Alquézar. The specific features of SAOCIF are: i) the
optimal (in a least squares sense) output-layer weights are
recalculated each time a hidden unit is added by solving
a linear equations system, and ii) the added hidden unit
is selected among a set of candidates taking into account
its interaction with the previously added hidden units (i.e.
to minimize together the training error). The SAOCIF
algorithm can be described as follows:

Algorithm for SAOCIF: Given a set of training examples
{(xj , tj)}L

j=1 ⊂ Rn × Rm, the maximum number of hidden
units Nmax, a strategy to generate the candidates, the
maximum number of candidates for any hidden unit Cmax,
and the expected learning accuracy ε:

- let N := 0 // in this case, N is equivalent to both k
and Nk in EM-ELMs, because δNk = 1 for SAOCIF

- let H0 = []
- repeat

- let N := N + 1
- let c := 0 // c is the number of valid candidates tested

for the N th hidden unit

- while c < Cmax do
- generate a candidate (ω, b) for the N th hidden unit

with the given strategy, and store in a temporary
matrix H the corresponding hidden-layer output
matrix H = [HN−1, δH], where δH contains the
new column computed

- find the optimal output-layer weights λ = H†T for
the current candidate (ω, b) using the incremental
method described in [11] (and equivalent to the
incremental method described in the algorithm
for EM-ELMs)

- if the current candidate is considered valid (linear
system without numerical problems, etc) then
- let c := c + 1
- calculate the corresponding output error

E(H) = 1
2 ||HH†T − T||2

- if E(H) is the minimum error found for the
tested candidates in the current loop then
- let (ωN , bN) = (ω, b); λN = λ; HN = H

- end if
- end if

- end while
- until N = Nmax or E(HN) 6 ε

Note that if we set Cmax = 1 and a random strategy to
generate the candidates in the SAOCIF algorithm and we set
δNk = 1 (for all k) in the algorithm for EM-ELMs, then
both algorithms are equivalent.

C. Support Vector Sequential Feed-forward Neural Networks
(SV-SFNNs)

Apart from the random strategy, other possibilities are
allowed in the SAOCIF approach to generate the candidates.
In particular, let us define the input strategy as the one
in which the candidates are only selected among the input
examples in the training set; more precisely, ω = xj , for
some j not already used, and b is a constant depending on the
activation function (e.g. b = 1 for RBF units and b = 0 for
additive units). Then, if we set Cmax = L−N+1 and generate
the candidates using the input strategy, then the resulting
method, which has been called SV-SFNNs [12], is equivalent
to the Orthogonal Least Squares Learning (OLSL) algorithm
[3] and to Kernel Matching Pursuit with pre-fitting (KMP-
prefit) [14]. Actually, OLSL was only proposed for RBF
units and KMP-prefit for kernel-based activation functions,
while SAOCIF with input strategy permits as well any other
activation function with universal approximation capabilities
(e.g. sinusoidal additive units).

III. COMPARING EM-ELMS AND SV-SFNNS

This section compares EM-ELMs with SV-SFNNs and
explains the methodology followed in the experiments.

A. Compared Methods

At first, the computational cost of the EM-ELMs algorithm
is lower than that of the original SV-SFNNs defined in the

TABLE I
FEATURES OF THE CLASSIFICATION BENCHMARK DATA SETS

Data Set #Inputs #Classes #Examples
Australian 43 2 690
Gene 120 3 3175
German 56 2 1000
Ionosphere 34 2 351
Iris 4 3 150
Satimage 36 6 6435
Segment. 16 7 2310
Sonar 60 2 208
Vehicle 18 4 846
Wine 13 3 178

previous section, just because in EM-ELMs the inner while
loop of SAOCIF is not carried out. However, in order to
make a comparison as fair as possible, we can easily adjust
both methods to work in the same conditions and taking
the same computation time, with the only difference residing
on whether the candidates are randomly generated or taken
randomly from the input patterns (i.e. random versus input
strategy).

To this end, we have defined two settings. In the former,
Cmax = 1, so the original EM-ELMs are confronted with
a very limited version of SV-SFNNs in which a randomly
selected input (not the best) yields the single candidate. In
the latter, Cmax = 59, so an extended version of EM-ELMs
(with the upgrade of selecting the best random candidate
among Cmax at each step) is confronted with a not so limited
version of SV-SFNNs in which not the best of the remaining
candidates but the best of a randomly selected subset (of size
Cmax) of the remaining candidates is added. The choice of
Cmax = 59 is justified because, in order to obtain a candidate
that is with probability 0.95 among the best 5% of all
candidates, a random subset of size dlog0.05/log0.95e = 59
suffices.

B. Software

We have used our own implementation in C setting the al-
gorithm parameters as explained in the preceding paragraph.

C. Data Sets

Ten benchmark data sets of classification problems from
the UCI repository [1] were used for the comparison, namely
Australian Credit, Gene, German Credit, Ionosphere, Iris,
Satimage, (Image) Segmentation, Sonar, Vehicle and Wine.
The features of these data sets are summarized in Table I.

D. Methodology

• Preprocessing Categorical attributes were converted to
dummy variables. The rest of the attributes were scaled
to mean zero and variance one.

• Activation functions Three types were used: Gaussian
RBF (2), sigmoid additive (3) and sin additive (4) units,
but with a further multiplicative positive parameter γ
introduced for a wider search. Specifically, γ multiplies
the distance ||x − ωi|| in the RBF units and the scalar
product ωi · x in the additive units.

• Parameters and model selection A hidden-unit candi-
date weight vector was not considered valid if the as-
sociated linear equations system could not be solved or
if the 1-norm of the solution (the output-layer weights)
was greater than a certain value M . This can be seen as
a form of regularization. M was set to 1024. We fixed
Nmax = 99 and ε = 0, so that Nmax hidden units are
always added. In order to get an adequate value for the
γ parameter, a search was performed ranging γ from
2−10 to 25. The same search was performed for all the
models, and repeated for every activation function.

• Model training and testing The methods were trained
and tested over 30 training-validation-test different ran-
dom partitions (80% training, 10% validation, 10% test)
of the whole data set. For every configuration (defined
by a given strategy, Cmax, activation function and γ), the
networks with the lowest errors in the validation subsets
were selected as the final models. The accuracies of
the final models were given by the average accuracies
measured in the test subsets. The sizes of the final
models are defined by their average number of hidden
units.

E. Experimental Results
Tables II and III show the accuracies of the best final

models (among all γ) for the two strategies (input and
random) and the three activation functions tried (Gaussian
RBF, sin additive, sigmoid additive) using the methodology
previously described for the ten UCI data sets studied. Table
II displays the results of the methods for Cmax = 1, where the
input strategy is fully comparable to EM-ELMs, and Table
III displays the results for Cmax = 59. It can be observed
that Iris and Wine data sets correspond to easy problems
that have been learnt perfectly using both strategies. For the
other eight data sets, test accuracies look similar between
the two strategies in some cases and a superior performance
of the input strategy can be appreciated in the rest. The
best values for each strategy and data set are marked in
bold; not surprisingly, all of them are included in Table
III (i.e. they have been obtained using Cmax = 59). In
order to obtain an objective statistical measure, a Student’s
t-test was applied to each data set to check if the difference
between the best mean results of the two strategies was
statistically significant (p-value = 0.05, i.e. confidence of
95%). In six of the data sets (Australian Credit, Gene,
Ionosphere, Satimage, Segmentation, Sonar) the t-test gave a
significant difference with a superior mean accuracy of the
input strategy, whereas no significant difference was found
in the other ones (German Credit and Vehicle).

Tables IV and V show, for Cmax = 1 and Cmax = 59
respectively, the average number of hidden units in the
final models selected for each combination of strategy and
activation function. Although no clear trend is observed about
the number of hidden units selected by both strategies (it
depends quite a lot on the specific activation function), the
input strategy seems to need more units than the random
strategy in the case of Gaussian RBF hidden units (this can be

TABLE II
COMPARISON OF AVERAGE TEST ACCURACY - ONE CANDIDATE

Gaussian RBF Sin MLP Sigmoid MLP
Data Set Input Rand. Input Rand. Input Rand.
Australian 83.86 83.00 83.67 83.14 84.25 83.48
Gene 84.71 83.38 84.75 83.13 84.82 82.95
German 77.37 78.23 77.73 77.20 77.83 77.10
Ionosphere 93.87 90.19 90.10 88.67 90.19 88.67
Iris 100 99.11 100 99.78 100 99.56
Satimage 82.98 80.57 79.17 77.73 79.40 77.62
Segment. 86.62 81.65 86.42 86.08 86.70 86.39
Sonar 89.83 80.83 77.17 76.17 77.50 75.83
Vehicle 85.48 85.52 86.11 84.80 85.87 85.20
Wine 99.61 100 99.80 100 100 100

TABLE III
COMPARISON OF AVERAGE TEST ACCURACY - BEST OF 59 CANDIDATES

Gaussian RBF Sin MLP Sigmoid MLP
Data Set Input Rand. Input Rand. Input Rand.
Australian 84.49 83.48 83.77 83.43 85.02 83.82
Gene 86.60 86.05 86.34 85.86 86.36 85.92
German 77.13 78.33 77.60 77.30 78.03 77.37
Ionosphere 93.90 90.67 89.52 88.67 90.00 88.83
Iris 100 100 100 100 100 100
Satimage 86.35 83.31 82.83 77.56 81.73 77.50
Segment. 88.56 83.39 86.61 86.64 87.30 86.83
Sonar 96.50 81.83 87.67 76.67 75.00 74.17
Vehicle 86.67 85.56 86.87 86.11 86.75 86.63
Wine 100 100 100 100 100 100

TABLE IV
AVERAGE NUMBER OF HIDDEN UNITS - ONE CANDIDATE

Gaussian RBF Sin MLP Sigmoid MLP
Data Set Input Rand. Input Rand. Input Rand.
Australian 43.53 30.33 25.17 37.40 61.33 44.90
Gene 97.07 98.87 97.40 98.60 97.20 98.00
German 40.47 43.23 44.53 33.87 36.77 36.80
Ionosphere 73.10 40.63 19.40 24.30 14.97 24.60
Iris 55.97 31.63 3.87 3.60 3.87 3.67
Satimage 95.30 96.80 97.93 97.13 95.47 97.73
Segment. 41.53 25.90 63.10 74.30 53.40 82.07
Sonar 66.53 64.00 47.67 43.97 38.13 42.10
Vehicle 74.77 38.00 67.30 61.73 64.03 63.97
Wine 11.57 11.77 7.73 10.00 7.90 10.90

TABLE V
AVERAGE NUMBER OF HIDDEN UNITS - BEST OF 59 CANDIDATES

Gaussian RBF Sin MLP Sigmoid MLP
Data Set Input Rand. Input Rand. Input Rand.
Australian 50.63 23.33 15.53 32.67 24.93 21.77
Gene 95.23 89.87 90.33 87.07 88.33 84.80
German 12.20 12.20 12.97 14.23 13.83 16.90
Ionosphere 65.73 29.03 10.40 12.10 12.53 12.67
Iris 19.13 4.50 3.87 2.97 3.97 2.77
Satimage 97.67 89.73 96.23 96.83 95.40 97.43
Segment. 95.83 32.00 75.33 63.57 91.87 68.27
Sonar 88.27 55.43 31.17 10.57 25.13 21.13
Vehicle 81.73 37.13 44.80 50.77 58.37 54.27
Wine 4.90 7.13 5.00 6.13 5.13 6.23

seen easily in Table V). Regarding the number of candidates,
final models obtained with Cmax = 1 usually have more
hidden units than those obtained with Cmax = 59.

IV. CONCLUSIONS AND FUTURE WORK

The experimental comparison between EM-ELMs and SV-
SFNNs presented in the paper draws two interesting conclu-
sions that can be further investigated in future research. The
first one is that selecting the hidden-layer weights as a subset
of the input data, even if this selection is done randomly,
yields better generalization results than selecting them in a
purely random manner from scratch (like EM-ELMs do). As
discussed at the end of Section I, this is not an obvious result.
Indeed, the average accuracies obtained by the two strategies
were very similar in four of the benchmark problems, but
SV-SFNNs showed a statistically significant improvement
in generalization performance in the other six. One might
ask whether there is any noticeable difference between these
two groups of classification problems. With the exceptions
of the German credit and the Segmentation problems, data
sets with a higher number of variables (see Table I and
imagine for instance an arbitrary threshold of 20 inputs)
were the ones in which SV-SFNNs outperformed EM-ELMs.
Although this can be considered as a reasonable result, which
may be justified by the difficulty in finding adequate decision
boundaries in high-dimensional input spaces from randomly
distributed hidden-layer weights, the underlying hypothesis
needs further validation in future studies.

The second conclusion of the study is that, independently
of the strategy used (input or random), the number of candi-
dates for the hidden-layer weights is a parameter that controls
the trade-off between the generalization performance, the
computational cost and the number of hidden units of the
final models. In general terms, by increasing the number of
candidates at each step of the sequential algorithm (recall that
in the originally proposed EM-ELMs this number is 1), the
generalization is improved and the final number of hidden
units is reduced at the expense of a higher training time.

REFERENCES

[1] A. Asuncion and D. J. Newman. UCI machine learning reposi-
tory, 2007. University of California, Irvine, School of Information
and Computer Science. http://www.ics.uci.edu/∼mlearn/
MLRepository.html.

[2] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press Inc., New York, 1995.

[3] S. Chen, C. F. N. Cowan, and P. M. Grant. Orthogonal Least
Squares Learning Algorithm for Radial Basis Function Networks.
IEEE Transactions on Neural Networks, 2(2):302–309, 1991.

[4] Feng G., G. B. Huang, Q. Lin, and R. Gay. Error Minimized Extreme
Learning Machine with Growth of Hidden Nodes and Incremental
Learning. IEEE Transactions on Neural Networks, 20(8):1352–1357,
2009.

[5] G. B. Huang, L. Chen, and C. K. Siew. Universal Approximation using
Incremental Constructive Feedforward Networks with Random Hidden
Nodes. IEEE Transactions on Neural Networks, 17(4):879–892, 2006.

[6] G. B. Huang, Q. Y. Zhu, and C. K. Siew. Extreme Learning Machine:
Theory and Applications. Neurocomputing, 70(1-3):489–501, 2006.

[7] S. S. Keerthi, O. Chapelle, and D. DeCoste. Building Support Vector
Machines with Reduced Classifier Complexity. Journal of Machine
Learning Research, 7:1493–1515, 2006.

[8] T. Y. Kwok and D. Y. Yeung. Constructive Algorithms for Structure
Learning in Feedforward Neural Networks for Regression Problems.
IEEE Transactions on Neural Networks, 8(3):630–645, 1997.

[9] J. Platt. A Resource-Allocating Network for Function Interpolation.
Neural Computation, 3(2):213–225, 1991.

[10] E. Romero and R. Alquézar. A New Incremental Method for Function
Approximation using Feed-forward Neural Networks. In International
Joint Conference on Neural Networks, volume 2, pages 1968–1973,
2002.

[11] E. Romero and R. Alquézar. A Sequential Algorithm for Feed-
forward Neural Networks with Optimal Coefficients and Interacting
Fr equencies. Neurocomputing, 69(13-15):1540–1552, 2006.

[12] E. Romero and D. Toppo. Comparing Support Vector Machines and
Feed-forward Neural Networks with Similar Hidden-layer Weights .
IEEE Transactions on Neural Networks, 18(3):959–963, 2007.

[13] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-
Verlag, NY, 1995.

[14] P. Vincent and Y. Bengio. Kernel Matching Pursuit. Machine Learning,
48(1-3):165–187, 2002. Special Issue on New Methods for Model
Combination and Model Selection.

[15] L. Yingwei, N. Sundararajan, and P. Saratchandran. A Sequential
Learning Scheme for Function Approximation using Minimal Radial
Basis Function Neural N etworks. Neural Computation, 9(2):461–478,
1997.

