Metadata, citation and similar papers at core.ac.uk

Provided by ChesterRep

University of

w14 Chester

This work has been submitted to ChesterRep — the University of Chester’s
online research repository

http://chesterrep.openrepository.com

Author(s): Kai Diethelm; Judith M Ford; Neville J Ford; Marc Weilbeer

Title: Pitfalls in fast numerical solvers for fractional differential equations

Date: 2006

Originally published in: Journal of Computational and Applied Mathematics

Example citation: Diethelm, K., Ford, J. M., Ford, N. J., & Weilbeer, M. (2006).
Pitfalls in fast numerical solvers for fractional differential equations. Journal of
Computational and Applied Mathematics, 186, 482-503

Version of item: Author’s preprint

Available at: http://hdl.handle.net/10034/11808


https://core.ac.uk/display/363994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Pitfalls in fast numerical solvers for fractional
differential equations

Kai Diethelm ! and Judith M. Ford 2 and Neville J. Ford? and
Marc Weilbeer !

Abstract

We consider the problem of implementing fast algorithms for the numerical solution
of initial value problems of the form z(®)(t) = f(t,z(t)), z(0) = o, where z(® is
the derivative of = of order « in the sense of Caputo and 0 < a < 1. We review some
of the existing methods and explain their respective strengths and weaknesses. We
identify and discuss potential problems in the development of generally applicable
schemes.

Keywords: fractional differential equation, high order method, backward differenti-
ation method.

AMS Subject Classifications: Primary 65L05; secondary 65106, 65R20, 26A33.

1 Introduction

This paper considers the properties of high order methods for the solution of fractional
differential equations. There is a growing demand for such methods from modellers whose
work leads to linear and nonlinear equations involving derivatives of fractional order and
yet there seems to be no well-understood method of reasonably high order that can be
used to generate a reliable approximate solution.
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Our investigations are motivated by a few classical and many very recent applications of
fractional differential equations. Among the classical problems we mention areas like the
modelling of the behaviour of viscoelastic materials in mechanics (studied since the 1980s
[35]) and applications of Abel-Volterra equations in superfluidity [24]. More recently frac-
tional calculus has been applied to continuum and statistical mechanics for viscoelasticity
problems, Brownian motion and fractional diffusion-wave equations [27] and the descrip-
tion of the propagation of a flame [21,23]. Newer studies are also done, among others, in
the area of modelling of soft tissues like mitral valves or the aorta in the human heart
[15]. Tt is evident that these applications require not only fast but in particular reliable
numerical methods.

In our earlier work we have presented (see [5,9,10,12,14]) several methods for the approx-
imate solution of differential equations of fractional order. In the main these have been
of low order, but they have nevertheless attracted interest because of the relative ease
of application and the reliable results that we have been able to give relating to conver-
gence and stability of the methods. We have also shown (see, for example, [10,13,14]) that
the underlying order of our methods may be improved (through extrapolation schemes)
leading to methods of higher order.

In the 1980s there was a surge of interest in developing higher order numerical methods
for Abel-Volterra integral equations (of which fractional differential equations form a sub-
class) and detailed theoretical results were given for these methods at that time. However
these so-called fractional multistep methods have proved to be of more theoretical than
practical use over the intervening two decades (although they have been included in the
NAG Fortran Library as a method to solve certain Abel-Volterra equations). One purpose
of this paper is to assess why this has been the case, and to give a clear direction to further
research that will lead to more practical methods for today’s applications.

This paper is structured as follows: first we describe in greater detail the class of problems
that we seek to solve and we set out clear objectives for a well-behaved numerical scheme,
then we review the available algorithms for the solution of these equations against the
objectives we have set. We consider the work published in the 1980s on fractional multistep
methods and review its strengths from a theoretical viewpoint and show how the methods
can be applied very effectively to the types of problems prevalent at that time. We consider
more recent model equations and highlight some of the pitfalls in trying to implement
fractional multistep methods in this case.

We conclude with some advice to users on the choice of numerical schemes for the solution
of particular types of equation. We also give a statement of the issues that we regard as
the most important for algorithm developers who wish to produce useful higher order
methods for practical application.



2 Objectives

We consider the solution of fractional differential equations of the form
2@ = f(t,2(t),  2B(zy) =2’ (k=0,1,...,[a] = 1), (1)

where o is some positive non-integer number. Here the notation z(® is used for the Caputo
type fractional derivative, defined by

«a . 1 ¢ m—a—1_.(m
2O (f) = m/o (t — 7)m=a=120m) (1) dr

where m := [a/].

One can also define the Caputo fractional derivative based on classical Riemann-Liouville
differential operators of fractional order oz > 0 which are defined by,
1 dm ot z(u)
D%x(t) := /
#(t) L(m—a)dt™ Jo (t —u)o—m+!

du

where m is the integer defined by m — 1 < o < m (see [28,34]). The standard (Riemann-
Liouville) approach [34, §42], is then to define the initial conditions for solving the frac-
tional differential equation in the form

da—k
dtafk

l‘(t)|t:0+:bk’ k:1,2,...,m=La+1J,

with given values b;. In other words we would need to specify some values of the fractional
derivatives of the function z. In practical applications, these values are frequently not
available, and it may not even be clear what their physical meaning is. By contrast
Caputo [4] suggested that one should incorporate the classical derivatives (of integer
order) of the function z, as they are commonly used in initial value problems with integer-
order equations, into the fractional-order equation, giving the alternative (equivalent)
formulation of the Caputo fractional differential equation as

(1) := D*(x — Tpoa[a])(t) = f(t,2(1)), (2a)

where T,,_1[x] is the Taylor polynomial of order (m — 1) for x, centered at 0. For a € N,
one simply defines x(“)(t) to be the usual differential operator of order a.. Then, one can
specify the initial conditions in the classical form

M) =2,  k=01,...,m-1. (2b)

For more details of the relationship between Caputo and Riemann-Liouville fractional
differential operators see [29].

In the common cases (which we shall mainly be concerned with here), we have « € (0, 1).
The functions x and f may in general be vectors but for our purposes here we shall gain all
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the appropriate insights by considering the scalar case. As we saw in our papers [7,8] the
vector case permits us to analyze also approximate methods for the solution of multi-term
fractional differential equations of the form

2@ () = f(t,z(t), 20 (), ..., 2@ (¢t)) (3)

(in combination with appropriate initial conditions), and for this reason we can regard the
insights presented in the current work as having wide application to linear and non-linear
fractional differential equations of both single and multiple orders.

The existing literature on fractional differential equations (and indeed on Abel-Volterra
integral equations) tends to focus on particular values for the order . The value o = %
is especially popular. This is because in classical fractional calculus, many of the model
equations developed used these particular orders of derivatives. In modern applications
(see, for example, [16]) much more general values of the order « appear in the equations
and therefore one needs to consider a little more carefully how methods can be chosen to

solve equations of more or less arbitrary order.

Perhaps the best way to set out our objectives for a good numerical scheme for fractional
differential equations is to base them on the well-established desirable characteristics
of solution methods for ordinary (integer-order) differential equations (see, for example,
[19,22]). Considerable research effort has been invested in schemes for ordinary differential
equations over many years and therefore to set our sights on the best features of existing
schemes for ordinary differential equations sets challenging targets for the solution of
fractional order equations where the underlying problems are less well understood and
the exact solution that we are attempting to approximate is typically less well-behaved
than in the integer order case.

Thus we desire numerical schemes that are convergent, consistent and stable (see, for
example, [22, pp. 21ff.] or [19, pp. 391ff.]). We also desire that our scheme should be
reasonably easy to program on a computer and that the resulting computer code should
execute reliably and reasonably quickly.

Most elementary numerical schemes are based on the use of a time step of fixed length.
Here the order of convergence of the numerical scheme is particularly important in that
it helps us to know how quickly the approximate solution at some fixed point in time ¢
will approach the exact solution as h — 0. To be precise: a numerical scheme with fixed
step length h > 0 has order p € N if

E(T) = sup |#n(t) — 2(t)] = O(A?) as h — 0 (4)

t€[0,T]

where Zp,(t) represents the approximate solution at ¢ € [0,7] evaluated using the step
length h.

In practice we can expect there to be some restriction on the order of convergence of
methods if we insist that they also exhibit the required stability properties (see, for ex-
ample, [19]). This is well documented. However the behaviour of the error in (4) is not
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so often made precise although it is well understood. The expression (4) means that the
error E(T) has an expansion whose dominant term has the form Aph?. Now until we know
something about the value of the constant Ar we cannot predict the size of the actual
error. Typically the value of Ay grows as T increases and one can use a Gronwall-type
inequality to estimate this value (see [19, p. 395]). In the case of an integer order equation
this leads to an estimate of the form

AT S 046KT (5)

illustrating the fact that the growth in the error as 7" increases is at an exponential rate
even though the actual error at any fixed point 7" will have an O(hP) convergence to zero
as h — 0. One can derive a corresponding Gronwall-type lemma for a fractional order
equation (see for example [8]) and in this case we have the relation

Ap < aE.(kT®) (6)

where « is the fractional order of the equation and where E,, represents the Mittag-Leffler
function with parameter a.

One concludes from this overview that order alone does not necessarily give a good guide
to the actual size of the error in a numerical approximation. Indeed, for some fixed h > 0
it can turn out that a lower order method gives a better approximation than a higher
order method. This would be the case, for example, when the respective values of Ap
were quite different in magnitude. The order of the method tells us rather how the error
will improve as successively smaller values of h > 0 are used. We should note also that
the theoretical order of the method is given only in the limit as A — 0 and therefore this
might not be seen in the values of h chosen for any specific experiment. Moreover we will
demonstrate that certain other effects play a significant role in this context. As we shall
see below, it is sometimes very difficult to calculate the weights of a numerical method
with high accuracy, and then it may happen that the errors introduced in this way spoil
the entire calculation. In particular it is possible that — in contradiction to what one
would expect — the results get significantly worse as we let h — 0 because the number
of steps increases, and since such errors are accumulated over the number of steps, the
effect is magnified.

Later on in this paper we shall consider also the expected execution time of a numerical
method. This is typically expressed in terms of the expected number of calculations in-
volved in running the algorithm to completion. We often therefore refer to a method as
being of order N* where we are using the value N = T'/h for some fixed T > 0. Now once
again we tend to assume that the time taken to compute the solution using a particular
method is dependent on the value of £ and easily forget to mention that the constant
multiplying the value N* may well differ significantly between different methods.

We are now in a position to define our objectives. We seek a numerical scheme that is

(1) convergent,
(2) consistent of some reasonable order h?,
(3) stable,



(4) reasonably inexpensive to run,
(5) reasonably easy to program.

In fact this last objective has been largely disregarded by previous authors. As we shall
see, it turns out to have a key role to play in this particular paper.

3 Fractional multistep methods

Historically, the fractional multistep methods of Lubich [25,26] were among the first meth-
ods to be introduced. We will recall their derivation and state some important properties
and then be concerned with their numerical implementation.

3.1 Analytical background

We first use the fact [6] that the initial value problem

2O = fta(t),  2(0) =, (7)

with 0 < av < 1 (we shall from now on restrict our attention to this particularly important
special case) is equivalent to the weakly singular Volterra equation

1 t o1
() = zo + m/0 (t — 7)1 f (7, (7)) dr. (8)

Therefore, we will first look at a class of methods for the numerical approximation for
convolution integrals of the form

e = et o)

The construction of these methods (see [26]) is based on the well known concept of linear
multistep methods for first order equations, which we assume to be given in terms of
their characteristic polynomials p and o. Using these two polynomials in z (the backward
difference operator) we can construct the generating function w(z) := o(1/2)/p(1/z) and
look at the Taylor expansion of its ath power,

RS .
o= (%) =L (10

thus defining (in an implicit way) the values w;, j =0,1,2,..; it is evident from eq. (10)
that they depend on the choice of «, but since « is constant, we have decided not to
denote this explicitly in order to keep the notation simple.
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The coefficients w; are called convolution weights. They can be used to construct a quadra-
ture formula
1 nh | n ]

w [ k= 1) () dr b S o).

I'(a) Jo o
and it can be shown that this method gives O(h?) accuracy if the underlying multistep
method is of the order p and the function ¢ is sufficiently smooth. However, in the ap-
plication that we have in mind the integrand function g is typically not smooth. To be
precise, if f is a smooth function then the solution of the fractional differential equation
(7) will have an asymptotic expansion of the form

z(t) = 3 et + o(t™>A) (11)
y€EA

as t — 0 where
A={y=j+Lla:jle{0,1,2,. . },vy<p-1}

with some suitable p > 0. Therefore, in order to construct a reasonable numerical method
for our problem, it is not sufficient only to look at the convolution weights. Rather we
need a second set of weights wy;, known as starting weights, which take into account the
asymptotic behaviour of the exact solution z near the origin (which is more complicated
than in the case of a first order equation), and are chosen in such a way that the quadrature
rule

1 nh n S
— / (nh— 1) g(r)dr &~ h* Y wp—jg(jh) + h* Y wyig(ih), (12)
() Jo j=0 j=0
(with some fixed s and n > s) is exact whenever g(¢) = 7 with v € A. Evidently, this
is (for fixed n) a linear system of equations that can be used to determine the starting
weights w,;, 7 = 0,1,...,s, since all the other quantities appearing in the equations are
known. The total number of equations is equal to the cardinality of the set A, and therefore
it is evident that the (as yet unspecified) parameter s must be chosen as s = card .A. We
thus find that the starting weights w,; are obtained by solving the linear system

: 1 nh n
@ (1h) = —— _ a—1_v o VY
h j;)wn](]h) F(a)/o (nh—7)*7'77dr = h*> w,;(jh)?, €A (13)

=0

The matrix of coefficients (a;;) = (h*(jh)7) of this system is an exponential Vandermonde
matrix (which is a generalized Vandermonde matrix with real exponents, see [31]) and
hence regular but not well conditioned. Its precise condition number depends on the value
of o in a very subtle way. For example, if & = 1/M with some integer M then it can be
rewritten by an obvious change of variables in the form of a classical Vandermonde matrix
which is mildly ill-conditioned. If, however, « = 1/M — € with some small |¢| and p > 2,
then the set A will contain the elements 1 and Ma =1 — Me, and hence the matrix will
have two almost identical columns and therefore an extremely bad condition number. An
additional aspect of this system is that, as already remarked in [26, §4.2], the evaluation
of the right-hand side of (13) suffers from cancellation of digits. As we shall see in the
later sections, the combination of these two problems may have serious adverse effects for
the entire scheme.



Assuming that we have calculated the starting weights in some way, we can use the
resulting quadrature formula as given in (12) to construct a scheme for the approximate
solution of the Volterra equation (8) according to (see [25])

Tp = T+ h* D> wnj f(Gh,x;) + h* Y wa; f(5h, x;) (n=1,2,...,N). (14)

It is evident from eq. (14) that the entire calculation process can be decomposed into two
phases, the starting phase n < s and the main phase n > s.

The s equations of the starting phase all contain the unknown approximations 1, xs, . . ., Ty,
and so we are dealing with a fully coupled nonlinear system of s equations in s unknowns.
There are essentially two different ways to get hold of the values xy, zo, ..., 2, We can ei-
ther try to solve the nonlinear system by a suitable algorithm (typically a Newton method,
assuming that proper starting values can be determined), or we can revert to a different
numerical scheme for the solution of the given fractional differential equation (19), use
this for the approximation of the solution at the points A, 2h, ..., sh and proceed to the
main phase with these instead of the solutions of the nonlinear system.

For the main phase, we can proceed in the usual step by step manner because the equations
are now uncoupled. That is, the nth equation contains x,, as the only unknown quantity
because we have computed z,2s,...,x,_1 in the previous calculations. Of course, in
the general case the equations will still be nonlinear, and so we will have to use a (one-
dimensional) Newton method to solve each of them individually.

Recalling our objectives 4 and 5 from §2 we next point out how the above theoretical
scheme was used to construct the fast algorithm in [18] for the case o = 1 and how it can
be transferred for other choices of a. We focus on the computation of the convolution and
starting weights since those are the parts where most problems arise.

3.2 Computation of quadrature weights

In [18] fast algorithms are developed for the computation of the convolution and starting
weights in the case a = % These methods are based in part on the Fast Fourier Transform
which will only perform well if the number of weights is chosen accordingly. While this is
not a major drawback, the use of Newton’s method for formal power series in [18, §3] for
the computation of the convolution weights is only applicable for the special cases where
« is a unit fraction. Thus for general choices of a € (0,1) a different method needs to be
developed.

Assuming that the generating function w(z) = o(1/z)/p(1/2) of the underlying non-
fractional linear multistep method is analytic (which is true for the backward differentia-
tion formulae (BDF) methods) one can prove using automatic differentiation techniques
(we refer to [30, §5] for some basic principles) that the convolution weights of the frac-
tional linear multistep method (i.e. the Taylor coefficients of the generating function w(z)
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to its ath power) can be computed by

1 !

wj = —— > [a(j — 1) — iwiu; . (15)

JUo ;=
Here the values u;, j = 0,1, 2, ... denote the Taylor expansion coefficients of the generating
function w(z) of the underlying non-fractional linear multistep method. In the case of the
classical (integer) BDF method of order p the generating function w(z) is a polynomial of
order p, given by

Formula (15) works equally well for all choices of a.. In particular the evaluation of formula
(15) is fast since all values u;, j = p+2,p+ 3,p+4,... are zero for a given order p and
therefore the sum in (15) consists of only p + 1 non-zero summands. Thus we have a fast
and easily implementable formula for the computation of the convolution weights. We
next focus on the computation of starting weights.

Except for the remarks in [18, §3] and [26, §4.2] about the ill-conditioning and cancellation
of digits in the equation system (13) not much is said about the computation of the starting
weights. The reason for this is the fact that even though the system (13) is ill-conditioned
and cancellation of digits occurs for larger numbers of mesh points, in the case a = %
a simple linear system solver produces starting weights for which the residual, given by
(18), is small. We shall see in §5 that even the case & = % exhibits some problems, and for
choices of a different from £ the problem of solving the system (13) so that the residual
stays small becomes more difficult. One therefore might try especially adapted algorithms

for the computation of the starting weights.

The equation system (13) is ill-conditioned in general but it also exhibits a special
Vandermonde-type structure. In the cases of a being a unit fraction the coefficient ma-
trix is a classical Vandermonde matrix. Hence an algorithm exploiting this structure may
prove useful. Given the fact that we have to solve the system (13) for as many right-hand
sides as mesh points in our quadrature, the use of the algorithm by Bjorck and Pereyra
[3] to obtain the inverse of the matrix seems well suited for cases where « is a unit frac-
tion: Their algorithm is fast, requiring only O(n?) arithmetic operations to solve a linear
equation system with n variables. More importantly Higham showed in [20] that if the
Bjorck-Pereyra algorithm is used to invert a classical Vandermonde matrix for which the
defining elements are positive and monotonically ordered (which is true for our system
(13)) the estimate

V= V7Y < Bnew|V7H + O(e) (16)

holds, where € is the machine precision and V~!is the inverse of the Vandermonde matrix
V' computed by the algorithm. The estimate (16) has to be understood componentwise
using the modulus of matrices, defined by |A| = (|a;;|). Even though O(n?) arithmetic
operations are required for the computation of the inverse using the Bjorck-Pereyra al-
gorithm, the method seems advantageous since the error bound (16) is independent of
the condition number of the Vandermonde matrix V. However, while theoretically the
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Bjorck-Pereyra algorithm seems to be well fitted for our problem, the practical implemen-
tation fails because the estimate (16) is dependent on the entries of the exact inverse V!
whose absolute values are getting exceedingly large in our cases due to the structure of
the exponential Vandermonde system.

A different approach to tackle the ill-conditioned equation system is the use of a non-
stationary iterative solver suited for our problem. The Generalized Minimum Residual
method (GMRES) by Saad and Schultz [33] seems to be the most promising (for further
reading we refer to the book [32] by Saad). Our choice is based on the fact that we are
primarily concerned with obtaining an approximate solution to (13) for which the residual
is small (see §5). GMRES has the property that the norm of the residual is minimized over
the current Krylov subspace at each iteration. In addition, the non-Hermitian nature of
the system rules out many of the cheaper alternatives and its denseness means that GM-
RES will be less expensive to apply than methods, such as Conjugate Gradient Squared
(CGS), that require more than one matrix-vector multiplication at each step (see [17,
§5.7]). In exact arithmetic GMRES will converge to the exact solution in no more than
n iterations, but its convergence behaviour in a finite-precision implementation is cur-
rently not well-understood, particularly for ill-conditioned problems, so we cannot predict
in advance whether or not the method will provide solutions to (13) with suitably small
residuals. A disadvantage of this approach compared with either direct solution by LU de-
composition or computation of the inverse matrix is that the iteration has to be repeated
for each different right-hand-side, rather than using the ready-computed LU factors or
inverse matrix to solve each system. Thus we expect this method to be considerably more
expensive in terms of computer time.

We investigated both standard GMRES and the slightly modified GMRES solver by
Walker [36] where the Householder transformation is used for the computation of the
Krylov space instead of the modified Gram-Schmidt orthonormalization. The justification
of this concept lies in the fact that the modified Gram-Schmidt orthonormalization can
fail to perform well if the vectors of the Krylov space are not sufficiently independent (as
they are especially in cases where the choice of a results in two almost identical columns).
Indeed, if @ = {qo,q1,---,qr_1} denotes the orthonormalized basis of the Krylov space
S computed by the modified Gram-Schmidt method with floating point arithmetic of
precision €y, then the following estimate holds (see Bjorck [2]):

Q'Q=1+E, |E|,~ eurs(S), (17)

where ky(S) denotes the (2-norm) condition number of the matrix S. However using
the Householder transformations yields under the same notation as in (17) the following
estimate (see Bjorck [2]):

QTQ:[+E7 ||E||2%6M:

which is independent of the condition number k5(S) of the original basis of the Krylov
space and thus it may give better results for our system:.

We did an experiment for the calculation of starting weights using the four methods
described above. All calculations were done in Matlab Version 6.5 in double precision. First
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we used a simple linear equation system solver (denoted by “lu” in the tables below) for the
computation of the starting weights. The Matlab backslash operator “\” was used, which
applies an LU decomposition on the coefficient matrix and then solves the corresponding
systems. Secondly a Matlab implementation of the the Bjorck-Pereyra algorithm (“bp”)
for inverting the Vandermonde matrix was tested for the cases where o was a unit fraction.
Last we did two tests using the GMRES algorithm: (a) we used the Matlab gmres function
(“gmres”), which uses the Gram-Schmidt orthonormalization; and (b) we implemented
the method of [36, Algorithm 2.2] (“gmresh”) in Matlab to check the GMRES algorithm
with Householder transformation. In both cases we used full (i.e. not re-started) GMRES
without preconditioning and with a stopping tolerance of le—16 (which was never, in
practice, achieved).

The following tables give the results of these experiments. The average residuals of the
first 1000 starting weights for the different methods are given for various choices of a.
The best value for each choice of a is marked in bold.

a o 5 i 5 5

lu 1.02e-04 | 5.61e-06 | 2.59e-07 | 3.66e-11 | 2.31e-14
bp 1.34e+33 | 9.79e+02 | 5.00e-03 | 9.59e-08 | 4.95e-12
gmres 1.01e-05 | 2.57e-06 | 4.39e-07 | 3.75e-11 | 1.56e-14
gmresh | 3.85e-06 | 2.63e-06 | 1.33e-07 | 2.26e-11 | 1.27e-13

Table 1

Average residuals for various numerical methods for the exponential Vandermonde system (13)

with « being a unit fraction.

a 0.49 0.51 2 : =

lu 1.12e-05 | 1.38¢-08 | 9.87e-13 | 1.43e-11 | 5.98e-12
gmres | 1.75e-06 | 6.92e-09 | 7.82e-13 | 5.04e-12 | 8.66e-12
gmresh | 1.76e-06 | 6.93e-09 | 3.1le-12 | 2.76e-11 | 4.0le-11

Table 2
Average residuals for various numerical methods for the exponential Vandermonde system (13)
with « not being a unit fraction.

Another important difference between using a standard solver or a GMRES method for
the starting weight computation is the actual distribution of the residual over the different
starting weights. We present a figure (Figure 1) showing the starting weights as well as
their residuals for the case oo = 11—0 and 10000 nodes for the two different system solvers.

On the basis of experiments that we have conducted with a number of different values for
a for which the above tables are just an extract, the following conclusions can be drawn:

e The Bjorck-Pereyra algorithm should not be used for the computation of the starting
weights. However, a different algorithm exploiting the special structure of the exponen-
tial Vandermonde matrix may give better results in the future.
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Fig. 1. Starting weights and residuals for o = % and N = 10000 computed by LU decomposition
and GMRES method, respectively. Each dot represents one starting weight or residual. All 31

starting weights for the nodes N =1,2,...,10000 are shown.

e The LU decomposition method gives a slightly worse result for the starting weights
than either of the GMRES methods. However, the computational time of the LU de-
composition is far below that of the GMRES methods. Therefore it has advantages
when attempting to implement a fast scheme.

e Both GMRES methods perform equally well. Each one has certain values of a where it
is advantageous compared to the other one. However, the Householder transformation
needs more computation time than the Gram-Schmidt orthonormalization. In cases
where the “best” results are needed and computation time is not the most important
factor, the GMRES method should be used.

e For almost all choices of a, none of the four methods produces starting weights which
are exact to machine precision. Therefore, in general, problems will arise in using any
of those weights in the quadrature as we will describe in more detail in Sections 5 and
6.

It is possible that the solution cost and/or the accuracy of the residuals computed using
the GMRES iterations could be improved by using a preconditioner. However, our (so far
rather limited) experiments using standard preconditioning techniques for dense matrices
(e.g. incomplete LU decomposition, diagonal and band approximation, wavelet compres-
sion) have been unsuccessful and in some cases have increased both the residual norm and
the computation time. Difficulties in designing an effective preconditioner for this system
are to be expected, since most standard preconditioners are based on approximating the
inverse of the system matrix, which we know cannot be done accurately in this case.
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Moreover, although theoretical results are not available for GMRES, it is known that, for
ill-conditioned systems, preconditioning is ineffective in improving the accuracy of other
Krylov subspace methods, such as Conjugate Gradients (see [17]).

4 Review of other existing algorithms

A number of other schemes for the approximate solution of the initial value problem (7)
has been proposed in the literature. In this section we shall briefly review those algorithms
and identify their strengths and weaknesses. In particular we will see that the performance
of most methods does not depend strongly on the precise choice of the order «a; small
changes in this parameter will usually give rise to insignificant changes in the behaviour
of the algorithm. This observation is in striking contrast to what we will see below for the
multistep methods.

As a first algorithm we mention the Adams-Bashforth-Moulton method introduced in
[11,12] and investigated in a more detailed way in [10,9]. The method is a general purpose
algorithm that is capable of handling any sort of function f on the right-hand side of eq.
(7). As described in [9] it typically exhibits O(h'*®) convergence (as above, h denotes
the step size of the algorithm under consideration). Therefore this algorithm cannot be
considered to be particularly fast (especially if a is close to 0), but it has its advantages in
being very simple to implement (both for linear and for nonlinear equations) and reliable.

An alternative is the backward differentiation formula of [5]. Notice that this method is
based on the idea of discretizing the differential operator in the given equation (7) by a
certain finite difference. If we apply Lubich’s approach described above to a generate the
fractional version of a classical BDF (for first-order equations), then this amounts to using
a different discretization of the differential operator, and so the two approaches are in effect
not equivalent. The approach of [5] has been investigated very thoroughly. In particular,
the main result of [5] was that under suitable assumptions we can expect an O(h>~%)
convergence behaviour (at least for linear problems, but the extension to the nonlinear
case can be done along the usual lines). Thus we do not have very fast convergence here
either, but now the most difficult case is if « is close to 1. In [13] we have seen how to
improve the performance of the method by an application of extrapolation principles. The
method itself has a simple structure (fully described in [5]) but it is implicit; therefore
its application to nonlinear problems requires the use of an algorithm for the solution of
nonlinear equations (such as, e.g., Newton’s algorithm combined with a suitable technique
to determine starting values for the iterative process).

5 Implementation of fractional multistep methods and examples

We now turn to the question of the effective practical implementation of the methods
described in §3. It has long been recognised that the key problem in their implementation
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is the calculation of the starting weights by solving the Vandermonde system (13) (see for
example, [1,18,26]) since the Vandermonde matrix is notoriously ill-conditioned. However,
the authors of previous works highlight that it is not the accurate calculation of the weights
that is important, but rather the value of the residuals

n n 1 t
RS waj(GR)T + > w, ;i (jh)T — —/ (t—s)*"'s7ds, 7€ WA, (18)
= =" I'(a) Jo

which correspond to the errors in calculating the values of the integrals of the functions
given in (11). To make this point clear, the Vandermonde system is ill-conditioned because
it is nearly a matrix of deficient rank. Now any errors in the solution (the starting weights)
that correspond to vectors in the kernel of the nearby matrix of deficient rank will lead
to very small errors in the calculation of the integral. Therefore, it is argued, errors in the
starting weights can be tolerated if the values of the residuals are small (i.e. to machine
precision) (see [18,26]). In fact the authors of the earlier works indicate that the residuals
may reasonably be assumed always to be small.

5.1 Two examples

We can see how this works quite effectively by means of the example problem

£ () = 7F?§zi2(;)t8‘“ - 37&: * Zg;#—aﬂ + 0+ 1) (19)

3 3
+ (5#‘/2 - t4> — z(t)*?

with initial condition z(0) = 0. We chose this equation as our test problem for this paper
because it is a nonlinear equation that nevertheless has a known exact analytical solution

of the form 9
x(t) = & — 3t4te/? 4 i (20)

for every o € (0,1).

In the first special case we solved (19) with a = % This is the type of problem dealt
with in the earlier literature and so we would hope that the fractional linear multistep
method would be effective. We used a 4th order BDF method as the basis for the fractional
multistep method. We used Matlab Version 6.5 in double precision for the calculations
and compared the approximate and exact solutions over various numbers (N) of grid
points on the interval [0, 1]. The starting values were obtained by iteration and can be
assumed to contain small errors. We tabulated the absolute errors at ¢ = 1 in each case
and estimated the order of convergence of the method. For reference purposes later, an
upper bound on the residuals (18) in this case was 2.3e—14 and so the residuals can be
regarded as being to machine precision. The numerical results are given in the left part of
Table 3. We can see immediately that the behaviour of the numerical method is exactly
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what we would want. The estimated order of convergence is as close to 4 as could be
expected and the method appears to perform well.

N error convergence order
N error convergence order

80 | 2.5000e-01
40 | 4.1127e-05

160 | 7.4594e-02 1.74
80 | 2.6325e-06 3.97

320 | 4.6450e-02 0.68
160 | 1.6624e-07 3.99

640 | 9.9320e-03 2.23
320 | 1.0435e-08 3.99

1280 | 1.9078e-04 5.70
640 | 6.5334e-10 4.00

2560 | 3.8214e-04 —1.00
Table 3

Errors at ¢t = 1 for example problem (19) with o = 1/2 (left) and o = 1/10 (right).

In the second example we repeated the calculations, this time for a = %. Now the residuals
are roughly 1.1e—04 which is not to machine precision. Of course the earlier authors had
no reason to check the situation for a = % since it was not at that time considered
important for calculations.

We can see immediately from the numerical data presented in the right part of Table 3
that the method has lost its order 4. In fact this is hardly surprising because the errors in
the integrals (represented by the residual values) are large compared to the overall error
of the method.

This example gives us the first indication that the residuals in (18) cannot in general be

relied upon to be small when we use values of a other than oo = %

5.2 Investigating the magnitude of the starting weights

In the earlier papers the condition |w,;] = O(n®~') is given as an important condition

on the starting weights for stability of the numerical scheme. Baker and Derakhshan ([1],
for example) point out that the starting weights will satisfy this condition for a range of
numerical schemes, including the BDF methods that we have been using. However they
assume that the Vandermonde system has been solved exactly. Therefore it is reasonable
for us to consider the values of |wy;| as n varies as one way of testing the likely performance
of our numerical schemes.

We present first a figure (Figure 2) showing how the calculated starting weights vary for
up to 60 grid points and a = % This illustrates the phenomenon that we would hope to
see and reflects the good performance of the BDF method in this case.

More surprising is the next figure (Figure 3). Here we present the starting weights for
o= % but for much larger numbers of grid points. We draw attention to the way in which
suddenly the method that is known to perform really well for small numbers of grid points
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Fig. 2. Starting weights for a = % and n = 10,11,...,60. Each line represents one column of
starting weights.
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Fig. 3. Starting weights for o = % and n = 1,2,...,100000. Each line represents one column of
starting weights.

exhibits behaviour that would suggest a poor approximate solution for a larger number
of grid points. We shall see below that this is indeed what will happen.

Now we present a figure similar to Figure 2 for & = 5= (Figure 4). This time we know

that the scheme performs badly and this is again reflected in the figure, which shows

the behaviour of a single starting weight. While the magnitude of the starting weight

decreases in the beginning as one would expect from the theory, the explosion we have
1 1

seen for the case a = 5 occurs for a = 0 much sooner. In addition the behaviour itself

becomes chaotic. Similar behaviour is observed for all 31 starting weights.
Finally we want to draw attention to the fact that there is some interaction between
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Fig. 4. Starting weight for a = 11—0 and n = 10,11,...,2500. Only the graph of the 15th starting
weight is drawn. The behaviour is typical of all 31 starting weights.

errors in the starting values and the errors in the starting weights which may be worthy
of further investigation. We solved equation (19) with o = % first using starting values
obtained in the usual iterative way and then we compared our solution with one calculated
using ezract starting values. The results (shown in Figure 5) indicate what we have found
in several examples we tried, namely that a solution based on exact starting values may
not display the same tendency to errors because of incorrect starting weights as would
one based on inexact starting values. Furthermore the error at £ = 1 produced by using
exact starting values is 4.52e—7. This is about as good as the error produced by using the
second order method with the same number of mesh points which is 6.05e—7 and thus
the second order method would have been the more reasonable choice for this problem.

Another important drawback in the case where the starting values were obtained in the
usual iterative way is that the algorithm stopped after 9850 steps since it returned a
negative value at this step and thus the evaluation of the right-hand side in the next
step would produce an imaginary number. The computation of the starting weights were
done using the Matlab backslash operator “\”. The GMRES method produced similar
behaviour when we increased the number of mesh points. For N = 10240 however, the
algorithm finished and produced an error of 2.29e—6 at ¢t = 1 using starting weights
computed by the Matlab “gmres” function.

A similar effect has been observed even in the much more well-behaved case a = % (see

Fig. 6): Here we have used the starting values obtained by perturbing the exact data by
a small amount (le—4). The number of grid points was 100000. It turns out that in this
case the numerical solution becomes negative at ¢ ~ 0.8, and so the algorithm breaks
down at this point.

We return to these drawbacks in our theoretical discussions of the next section.
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Fig. 5. Plot of the numerical solution (white line, dotted line) of example (19) with exact starting
values against the numerical solution (black funnel) with computed starting values and o =
p=4and N = 10240.
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Fig. 6. Plot of the true solution (solid line) of example (19) against the numerical solution
(dashed line) with parameters o = %, p=4and N = 100000 and small (10~%) perturbations in
starting values.

6 Analysis of errors arising from starting weights and starting values

In this section we continue our discussion of errors in solutions based on errors in the
starting weights and starting values. This time we approach the problem from a more
theoretical viewpoint.

For the sake of simplicity we shall concentrate on the approximation of the convolution
integral (9). This is in essence equivalent to solving a linear fractional differential equation.
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As we discussed earlier, in the case of nonlinear fractional differential equations we need
to employ, in addition, a nonlinear solver at each step. We do not concern ourselves with
these details here.

We assume a fractional linear multistep method with s starting values. We propose to
solve the equation over the interval [0, T] where T = Nh for some fixed h > 0.

The basic idea is as follows: we assume that the ezact starting weights w,; and convolution
weights w,_; would be recorded in an (N + 1) x (N + 1) matrix A according to

I | o
A= (21)
A21 A22

where I is an s x s identity matrix, Ay is the (N + 1 — s) x s matrix with (Ay);; =
Wstij + Wsri—j and Agy is the square (N + 1 — s) matrix with (Ag);; = w;_; for j <
and 0 otherwise. In practice we have perturbed weights leading to a matrix of the form
A+ B where B takes the special form

0 [0
B= (22)
Bay |0

where Bs; is the (N + 1 — s) x s matrix containing the errors in the starting weights
(Ba1)i,j = (Wsij — Wsyij). This highlights the fact that only the starting weights contain
errors.

The exact starting values are assumed to be stored as the first s elements in a solution
vector # € RV*! and the errors in the starting values are assumed to be stored in the first
s elements of the vector e € RV*!,

Now we are in a position to formulate our calculations in terms of the matrices A, B
and the vectors z,e: the approximate solution described in [25] is given by successive
multiplication of vector x by the matrix h® A. Fach successive multiplication by the matrix
h® A corresponds to evaluation of the next step in the convolution integral (starting from
step s). In total we need to pre-multiply by h*A a total of N — s + 1 times to complete
the solution over [0, T']. Thus we wish to calculate

J = (R*A)N 1=y, (23)
In fact, when we take the inevitable errors into account, we will actually evaluate
J=(h(A+ BNt 5(z 4 ) (24)

so the errors introduced by the starting values and starting weights we calculated are
given by the expression J — J.

Lubich [25,26] defined the starting weights in A in such a way that the method integrates
ezactly a set of s functions (see also §3 above). Each of these functions can be sampled at
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the values 0, h, 2h,3h, ..., (s—1)h to give a vector in R®. It is simple to see that the set of s
vectors of dimension s defined in this way spans R*. We extend each of these s-dimensional
vectors to an (N + 1)-dimensional vector by concatenating N + 1 — s zeros in the last
components to give us s linearly independent vectors that we shall call vy, vy,. .. v;.

By construction of the vectors v;, we can see that constants o, 8; can be found so that
x = Piv1 + ...+ Bsvs and e = yivg + .. YsUs.

This shows (by linearity) that successive multiplication by the matrix h*A evaluates
exactly both the propagation of the values in z (which we want) and the propagation of
the values in e (which we do not want).

Now we can turn our attention to the effect of multiplication by the matrix h*B. As
we constructed B it consists of the errors in the starting weights which we evaluated
in accordance with the methods of §3.2. In their paper [18], the authors say that the
residuals in the calculation of

n s 1 t
«@ b)Y « A hYY _ a-1_.vy
h ;wn](]h) +h ;me(]h) F(a)/o(t $)lsids, yeAd  (25)

need to be small. They assert (see also [26]) that this can happen even when the errors
in the starting weights themselves are not very small.

Now we can see that the residuals to which they refer are the same as the values obtained
by multiplying rows of B by vectors v;. Therefore the accuracy of the approximation of
ANFLsp by (A + B)N*175(z + €) hinges on the values of Bfv; for each vector v;.

We recall that Baker and Derakhshan [1] have shown that, for the numerical methods of
interest to us, the weights w,; satisfy

sup |wy;| = O(na’l)

0<j<n

as n — oo. (26)

It follows that ||Al; = O(N®) and ||h*Al|; = O(1). Thus we see that the calculation of
the solution using the ezact starting weights is stable with respect to small errors in the
starting values.

We can readily obtain an estimate for the worst case behaviour by evaluating (estimating)
||B||;. We know that ||A + B|| + ||A|| > ||B]| > ||A + B|| — ||A]| (for any norm) and that
|Al[1 = O(N*) . We have the matrix A + B and so we can evaluate ||A + B||; exactly.
If || B]|; is large then we know that certain combinations of v; will be magnified by that
factor. It is clear that ||B||; will be small if and only if all the residuals are small.

The above discussion shows us that if the value || B||; is not small then the values h*‘B‘x
and h**Bfe may become large. We wish to know whether they will in fact do this. For
insight we turn to the power method for calculating eigenvalues of a square matrix based
on repeatedly multiplying a starting vector by the given matrix. For the power method
we see that if the starting vector is chosen randomly, there is a probability unity that the
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dominant eigenvalue will be found. However if the starting vector is chosen so that there
is no component in the direction of the eigenvector with dominant eigenvalue then some
less prominent eigenvalue will be found. The situation in our problem is exactly parallel
with this. If the vector x (the starting vector) is chosen so that there is no component in
the direction along which the matrix B exhibits its dominant behaviour, then the error
produced by the dominant behaviour will not be visible in the solution. On the other
hand, the starting errors e are likely to be random and therefore with probability unity
will show up the dominant behaviour of the matrix B. In general, in the examples we
have been working with, h*(A + B) leads to an unstable solution operator with respect
to small changes in the starting values. As the reader will observe, we have been unable
to implement the stable BDFp method (at least for 4 < p < 6) developed theoretically
by Lubich, but have been forced instead to implement an unstable approximation to it.

In the examples of §5.1 we saw a case where putting in the starting vector with exact
initial values of the solution led to a good accurate solution, while putting in random
starting errors destroyed accuracy (recall Figure 6). We can see how this can happen
when we look at a section of the matrix of residuals. Almost all the residuals are quite
small and therefore it is comparatively easy to find starting values that do not pick up
the dominant (bad) behaviour. The random starting errors introduce all the dynamics of
the solution.

7 Conclusions

We discussed at the start of the paper what we required of a good numerical scheme for
fractional differential equations. The discussions of the two previous sections illustrate
the pitfalls that can arise when we implement fractional multistep methods in practice,
even though their good behaviour has been proved in theory. We have concentrated on
BDF methods here as the basis for our investigations following the advice of Baker and
Derakhshan [1] who indicated that they had not found any benefit in attempting to use
other possible linear multistep formulas. It is known that BDFs of order up to 6 are
A(¢)-stable for some ¢ > 0 and so these methods are the basis for our calculations here.

In the following diagrams we consider the computational cost of calculating the solution
to equation (19) in terms of the time taken for the total calculation, compared with the
error of the solution obtained. We present graphs for each of the methods BDF 1-6. In
all cases we recorded the respective error at the point ¢ = 1. The lines always display
the correlation between the computation time (horizontal axis) and the numerical error
(vertical axis; note the logarithmic scale). As can be expected the results of our previous
discussion show up in some untypical shapes in the graphs.

The left part of Figure 7 shows that for a = % and a reasonably small number of nodes,
BDF 1-4 methods are effective but BDF 5-6 show problems. The right part illustrates
how even BDF 4 begins to lose accuracy as the number of nodes used increases.
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Fig. 7. Left: Error vs. time: Computation time (in seconds) and the numerical error for Lu-
bich’s BDF method of order 1 (top) to 6 (bottom), applied to test equation (19) with o = §
and N = 500,600,...,3000. Right: Error vs. time: Same condition as the left figure but

N = 2500, 5000, ...,50000 for methods of order 1 to 4.
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Fig. 8. Error vs. time: computation time and the numerical error for Lubich’s BDF
method of order 1 (top) to 4 (bottom), applied to test equation (19) with @ = 0.49 and
N = 500, 1000, 1500, ..., 10000.

The corresponding behaviour for a = 0.49 is shown in Figure 8. We draw attention to
the fact that now that o # % the loss of good behaviour arises for much smaller numbers
of nodes for BDF 4. BDF 5 and 6 are not included in the diagram since their results are
even worse.
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