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Pitfalls in fast numeri
al solvers for fra
tionaldi�erential equationsKai Diethelm 1 and Judith M. Ford 2 and Neville J. Ford 3 andMar
 Weilbeer 1Abstra
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onsider the problem of implementing fast algorithms for the numeri
al solutionof initial value problems of the form x(�)(t) = f(t; x(t)), x(0) = x0, where x(�) isthe derivative of x of order � in the sense of Caputo and 0 < � < 1. We review someof the existing methods and explain their respe
tive strengths and weaknesses. Weidentify and dis
uss potential problems in the development of generally appli
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hemes.Keywords: fra
tional di�erential equation, high order method, ba
kward di�erenti-ation method.AMS Subje
t Classi�
ations: Primary 65L05; se
ondary 65L06, 65R20, 26A33.
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Our investigations are motivated by a few 
lassi
al and many very re
ent appli
ations offra
tional di�erential equations. Among the 
lassi
al problems we mention areas like themodelling of the behaviour of vis
oelasti
 materials in me
hani
s (studied sin
e the 1980s[35℄) and appli
ations of Abel-Volterra equations in super
uidity [24℄. More re
ently fra
-tional 
al
ulus has been applied to 
ontinuum and statisti
al me
hani
s for vis
oelasti
ityproblems, Brownian motion and fra
tional di�usion-wave equations [27℄ and the des
rip-tion of the propagation of a 
ame [21,23℄. Newer studies are also done, among others, inthe area of modelling of soft tissues like mitral valves or the aorta in the human heart[15℄. It is evident that these appli
ations require not only fast but in parti
ular reliablenumeri
al methods.In our earlier work we have presented (see [5,9,10,12,14℄) several methods for the approx-imate solution of di�erential equations of fra
tional order. In the main these have beenof low order, but they have nevertheless attra
ted interest be
ause of the relative easeof appli
ation and the reliable results that we have been able to give relating to 
onver-gen
e and stability of the methods. We have also shown (see, for example, [10,13,14℄) thatthe underlying order of our methods may be improved (through extrapolation s
hemes)leading to methods of higher order.In the 1980s there was a surge of interest in developing higher order numeri
al methodsfor Abel-Volterra integral equations (of whi
h fra
tional di�erential equations form a sub-
lass) and detailed theoreti
al results were given for these methods at that time. Howeverthese so-
alled fra
tional multistep methods have proved to be of more theoreti
al thanpra
ti
al use over the intervening two de
ades (although they have been in
luded in theNAG Fortran Library as a method to solve 
ertain Abel-Volterra equations). One purposeof this paper is to assess why this has been the 
ase, and to give a 
lear dire
tion to furtherresear
h that will lead to more pra
ti
al methods for today's appli
ations.This paper is stru
tured as follows: �rst we des
ribe in greater detail the 
lass of problemsthat we seek to solve and we set out 
lear obje
tives for a well-behaved numeri
al s
heme,then we review the available algorithms for the solution of these equations against theobje
tives we have set. We 
onsider the work published in the 1980s on fra
tional multistepmethods and review its strengths from a theoreti
al viewpoint and show how the methods
an be applied very e�e
tively to the types of problems prevalent at that time. We 
onsidermore re
ent model equations and highlight some of the pitfalls in trying to implementfra
tional multistep methods in this 
ase.We 
on
lude with some advi
e to users on the 
hoi
e of numeri
al s
hemes for the solutionof parti
ular types of equation. We also give a statement of the issues that we regard asthe most important for algorithm developers who wish to produ
e useful higher ordermethods for pra
ti
al appli
ation. 2



2 Obje
tivesWe 
onsider the solution of fra
tional di�erential equations of the formx(�)(t) = f(t; x(t)); x(k)(x0) = x(k)0 (k = 0; 1; : : : ; d�e � 1); (1)where � is some positive non-integer number. Here the notation x(�) is used for the Caputotype fra
tional derivative, de�ned byx(�)(t) := 1�(m� �) Z t0 (t� �)m���1x(m)(�) d�where m := d�e.One 
an also de�ne the Caputo fra
tional derivative based on 
lassi
al Riemann-Liouvilledi�erential operators of fra
tional order � > 0 whi
h are de�ned by,D�x(t) := 1�(m� �) dmdtm Z t0 x(u)(t� u)��m+1duwhere m is the integer de�ned by m� 1 < � < m (see [28,34℄). The standard (Riemann-Liouville) approa
h [34, x42℄, is then to de�ne the initial 
onditions for solving the fra
-tional di�erential equation in the formd��kdt��kx(t)jt=0+ = bk; k = 1; 2; : : : ; m = b� + 1
;with given values bk. In other words we would need to spe
ify some values of the fra
tionalderivatives of the fun
tion x. In pra
ti
al appli
ations, these values are frequently notavailable, and it may not even be 
lear what their physi
al meaning is. By 
ontrastCaputo [4℄ suggested that one should in
orporate the 
lassi
al derivatives (of integerorder) of the fun
tion x, as they are 
ommonly used in initial value problems with integer-order equations, into the fra
tional-order equation, giving the alternative (equivalent)formulation of the Caputo fra
tional di�erential equation asx(�)(t) := D�(x� Tm�1[x℄)(t) = f(t; x(t)); (2a)where Tm�1[x℄ is the Taylor polynomial of order (m� 1) for x, 
entered at 0. For � 2 N,one simply de�nes x(�)(t) to be the usual di�erential operator of order �. Then, one 
anspe
ify the initial 
onditions in the 
lassi
al formx(k)(0) = x(k)0 ; k = 0; 1; : : : ; m� 1: (2b)For more details of the relationship between Caputo and Riemann-Liouville fra
tionaldi�erential operators see [29℄.In the 
ommon 
ases (whi
h we shall mainly be 
on
erned with here), we have � 2 (0; 1).The fun
tions x and f may in general be ve
tors but for our purposes here we shall gain all3



the appropriate insights by 
onsidering the s
alar 
ase. As we saw in our papers [7,8℄ theve
tor 
ase permits us to analyze also approximate methods for the solution of multi-termfra
tional di�erential equations of the formx(�k)(t) = f(t; x(t); x(�1)(t); : : : ; x(�k�1)(t)) (3)(in 
ombination with appropriate initial 
onditions), and for this reason we 
an regard theinsights presented in the 
urrent work as having wide appli
ation to linear and non-linearfra
tional di�erential equations of both single and multiple orders.The existing literature on fra
tional di�erential equations (and indeed on Abel-Volterraintegral equations) tends to fo
us on parti
ular values for the order �. The value � = 12is espe
ially popular. This is be
ause in 
lassi
al fra
tional 
al
ulus, many of the modelequations developed used these parti
ular orders of derivatives. In modern appli
ations(see, for example, [16℄) mu
h more general values of the order � appear in the equationsand therefore one needs to 
onsider a little more 
arefully how methods 
an be 
hosen tosolve equations of more or less arbitrary order.Perhaps the best way to set out our obje
tives for a good numeri
al s
heme for fra
tionaldi�erential equations is to base them on the well-established desirable 
hara
teristi
sof solution methods for ordinary (integer-order) di�erential equations (see, for example,[19,22℄). Considerable resear
h e�ort has been invested in s
hemes for ordinary di�erentialequations over many years and therefore to set our sights on the best features of existings
hemes for ordinary di�erential equations sets 
hallenging targets for the solution offra
tional order equations where the underlying problems are less well understood andthe exa
t solution that we are attempting to approximate is typi
ally less well-behavedthan in the integer order 
ase.Thus we desire numeri
al s
hemes that are 
onvergent, 
onsistent and stable (see, forexample, [22, pp. 21�.℄ or [19, pp. 391�.℄). We also desire that our s
heme should bereasonably easy to program on a 
omputer and that the resulting 
omputer 
ode shouldexe
ute reliably and reasonably qui
kly.Most elementary numeri
al s
hemes are based on the use of a time step of �xed length.Here the order of 
onvergen
e of the numeri
al s
heme is parti
ularly important in thatit helps us to know how qui
kly the approximate solution at some �xed point in time twill approa
h the exa
t solution as h ! 0. To be pre
ise: a numeri
al s
heme with �xedstep length h > 0 has order p 2 N ifE(T ) := supt2[0;T ℄ j~xh(t)� x(t)j = O(hp) as h! 0 (4)where ~xh(t) represents the approximate solution at t 2 [0; T ℄ evaluated using the steplength h.In pra
ti
e we 
an expe
t there to be some restri
tion on the order of 
onvergen
e ofmethods if we insist that they also exhibit the required stability properties (see, for ex-ample, [19℄). This is well do
umented. However the behaviour of the error in (4) is not4



so often made pre
ise although it is well understood. The expression (4) means that theerror E(T ) has an expansion whose dominant term has the form AThp. Now until we knowsomething about the value of the 
onstant AT we 
annot predi
t the size of the a
tualerror. Typi
ally the value of AT grows as T in
reases and one 
an use a Gronwall-typeinequality to estimate this value (see [19, p. 395℄). In the 
ase of an integer order equationthis leads to an estimate of the form AT � �e�T (5)illustrating the fa
t that the growth in the error as T in
reases is at an exponential rateeven though the a
tual error at any �xed point T will have an O(hp) 
onvergen
e to zeroas h ! 0. One 
an derive a 
orresponding Gronwall-type lemma for a fra
tional orderequation (see for example [8℄) and in this 
ase we have the relationAT � �E�(�T �) (6)where � is the fra
tional order of the equation and where E� represents the Mittag-Le�erfun
tion with parameter �.One 
on
ludes from this overview that order alone does not ne
essarily give a good guideto the a
tual size of the error in a numeri
al approximation. Indeed, for some �xed h > 0it 
an turn out that a lower order method gives a better approximation than a higherorder method. This would be the 
ase, for example, when the respe
tive values of ATwere quite di�erent in magnitude. The order of the method tells us rather how the errorwill improve as su

essively smaller values of h > 0 are used. We should note also thatthe theoreti
al order of the method is given only in the limit as h! 0 and therefore thismight not be seen in the values of h 
hosen for any spe
i�
 experiment. Moreover we willdemonstrate that 
ertain other e�e
ts play a signi�
ant role in this 
ontext. As we shallsee below, it is sometimes very diÆ
ult to 
al
ulate the weights of a numeri
al methodwith high a

ura
y, and then it may happen that the errors introdu
ed in this way spoilthe entire 
al
ulation. In parti
ular it is possible that | in 
ontradi
tion to what onewould expe
t | the results get signi�
antly worse as we let h ! 0 be
ause the numberof steps in
reases, and sin
e su
h errors are a

umulated over the number of steps, thee�e
t is magni�ed.Later on in this paper we shall 
onsider also the expe
ted exe
ution time of a numeri
almethod. This is typi
ally expressed in terms of the expe
ted number of 
al
ulations in-volved in running the algorithm to 
ompletion. We often therefore refer to a method asbeing of order Nk where we are using the value N = T=h for some �xed T > 0. Now on
eagain we tend to assume that the time taken to 
ompute the solution using a parti
ularmethod is dependent on the value of k and easily forget to mention that the 
onstantmultiplying the value Nk may well di�er signi�
antly between di�erent methods.We are now in a position to de�ne our obje
tives. We seek a numeri
al s
heme that is(1) 
onvergent,(2) 
onsistent of some reasonable order hp,(3) stable, 5



(4) reasonably inexpensive to run,(5) reasonably easy to program.In fa
t this last obje
tive has been largely disregarded by previous authors. As we shallsee, it turns out to have a key role to play in this parti
ular paper.3 Fra
tional multistep methodsHistori
ally, the fra
tional multistep methods of Lubi
h [25,26℄ were among the �rst meth-ods to be introdu
ed. We will re
all their derivation and state some important propertiesand then be 
on
erned with their numeri
al implementation.3.1 Analyti
al ba
kgroundWe �rst use the fa
t [6℄ that the initial value problemx(�)(t) = f(t; x(t)); x(0) = x0; (7)with 0 < � < 1 (we shall from now on restri
t our attention to this parti
ularly importantspe
ial 
ase) is equivalent to the weakly singular Volterra equationx(t) = x0 + 1�(�) Z t0 (t� �)��1f(�; x(�)) d�: (8)Therefore, we will �rst look at a 
lass of methods for the numeri
al approximation for
onvolution integrals of the form 1�(�) Z t0 (t� �)��1g(�) d�: (9)The 
onstru
tion of these methods (see [26℄) is based on the well known 
on
ept of linearmultistep methods for �rst order equations, whi
h we assume to be given in terms oftheir 
hara
teristi
 polynomials � and �. Using these two polynomials in z (the ba
kwarddi�eren
e operator) we 
an 
onstru
t the generating fun
tion !(z) := �(1=z)=�(1=z) andlook at the Taylor expansion of its �th power,(!(z))� =  �(1=z)�(1=z)!� = 1Xj=0!jzj; (10)thus de�ning (in an impli
it way) the values !j, j = 0; 1; 2; : : :; it is evident from eq. (10)that they depend on the 
hoi
e of �, but sin
e � is 
onstant, we have de
ided not todenote this expli
itly in order to keep the notation simple.6



The 
oeÆ
ients !j are 
alled 
onvolution weights. They 
an be used to 
onstru
t a quadra-ture formula 1�(�) Z nh0 (nh� �)��1g(�) d� � h� nXj=0!n�jg(jh);and it 
an be shown that this method gives O(hp) a

ura
y if the underlying multistepmethod is of the order p and the fun
tion g is suÆ
iently smooth. However, in the ap-pli
ation that we have in mind the integrand fun
tion g is typi
ally not smooth. To bepre
ise, if f is a smooth fun
tion then the solution of the fra
tional di�erential equation(7) will have an asymptoti
 expansion of the formx(t) = X
2A 

t
 + o(tmaxA) (11)as t! 0 where A := f
 = j + `� : j; ` 2 f0; 1; 2; : : :g; 
 � p� 1gwith some suitable p > 0. Therefore, in order to 
onstru
t a reasonable numeri
al methodfor our problem, it is not suÆ
ient only to look at the 
onvolution weights. Rather weneed a se
ond set of weights wnj, known as starting weights, whi
h take into a

ount theasymptoti
 behaviour of the exa
t solution x near the origin (whi
h is more 
ompli
atedthan in the 
ase of a �rst order equation), and are 
hosen in su
h a way that the quadraturerule 1�(�) Z nh0 (nh� �)��1g(�) d� � h� nXj=0!n�jg(jh) + h� sXj=0wnjg(jh); (12)(with some �xed s and n � s) is exa
t whenever g(t) = t
 with 
 2 A. Evidently, thisis (for �xed n) a linear system of equations that 
an be used to determine the startingweights wnj, j = 0; 1; : : : ; s, sin
e all the other quantities appearing in the equations areknown. The total number of equations is equal to the 
ardinality of the setA, and thereforeit is evident that the (as yet unspe
i�ed) parameter s must be 
hosen as s = 
ardA. Wethus �nd that the starting weights wnj are obtained by solving the linear systemh� sXj=0wnj(jh)
 = 1�(�) Z nh0 (nh� �)��1� 
 d� � h� nXj=0!n�j(jh)
 ; 
 2 A: (13)The matrix of 
oeÆ
ients (aij) = (h�(jh)
i) of this system is an exponential Vandermondematrix (whi
h is a generalized Vandermonde matrix with real exponents, see [31℄) andhen
e regular but not well 
onditioned. Its pre
ise 
ondition number depends on the valueof � in a very subtle way. For example, if � = 1=M with some integer M then it 
an berewritten by an obvious 
hange of variables in the form of a 
lassi
al Vandermonde matrixwhi
h is mildly ill-
onditioned. If, however, � = 1=M � � with some small j�j and p � 2,then the set A will 
ontain the elements 1 and M� = 1�M�, and hen
e the matrix willhave two almost identi
al 
olumns and therefore an extremely bad 
ondition number. Anadditional aspe
t of this system is that, as already remarked in [26, x4.2℄, the evaluationof the right-hand side of (13) su�ers from 
an
ellation of digits. As we shall see in thelater se
tions, the 
ombination of these two problems may have serious adverse e�e
ts forthe entire s
heme. 7



Assuming that we have 
al
ulated the starting weights in some way, we 
an use theresulting quadrature formula as given in (12) to 
onstru
t a s
heme for the approximatesolution of the Volterra equation (8) a

ording to (see [25℄)xn = x0 + h� nXj=0!n�jf(jh; xj) + h� sXj=0wnjf(jh; xj) (n = 1; 2; : : : ; N): (14)It is evident from eq. (14) that the entire 
al
ulation pro
ess 
an be de
omposed into twophases, the starting phase n � s and the main phase n > s.The s equations of the starting phase all 
ontain the unknown approximations x1; x2; : : : ; xs,and so we are dealing with a fully 
oupled nonlinear system of s equations in s unknowns.There are essentially two di�erent ways to get hold of the values x1; x2; : : : ; xs: We 
an ei-ther try to solve the nonlinear system by a suitable algorithm (typi
ally a Newton method,assuming that proper starting values 
an be determined), or we 
an revert to a di�erentnumeri
al s
heme for the solution of the given fra
tional di�erential equation (19), usethis for the approximation of the solution at the points h, 2h, . . . , sh and pro
eed to themain phase with these instead of the solutions of the nonlinear system.For the main phase, we 
an pro
eed in the usual step by step manner be
ause the equationsare now un
oupled. That is, the nth equation 
ontains xn as the only unknown quantitybe
ause we have 
omputed x1; x2; : : : ; xn�1 in the previous 
al
ulations. Of 
ourse, inthe general 
ase the equations will still be nonlinear, and so we will have to use a (one-dimensional) Newton method to solve ea
h of them individually.Re
alling our obje
tives 4 and 5 from x2 we next point out how the above theoreti
als
heme was used to 
onstru
t the fast algorithm in [18℄ for the 
ase � = 12 and how it 
anbe transferred for other 
hoi
es of �. We fo
us on the 
omputation of the 
onvolution andstarting weights sin
e those are the parts where most problems arise.3.2 Computation of quadrature weightsIn [18℄ fast algorithms are developed for the 
omputation of the 
onvolution and startingweights in the 
ase � = 12 . These methods are based in part on the Fast Fourier Transformwhi
h will only perform well if the number of weights is 
hosen a

ordingly. While this isnot a major drawba
k, the use of Newton's method for formal power series in [18, x3℄ forthe 
omputation of the 
onvolution weights is only appli
able for the spe
ial 
ases where� is a unit fra
tion. Thus for general 
hoi
es of � 2 (0; 1) a di�erent method needs to bedeveloped.Assuming that the generating fun
tion !(z) = �(1=z)=�(1=z) of the underlying non-fra
tional linear multistep method is analyti
 (whi
h is true for the ba
kward di�erentia-tion formulae (BDF) methods) one 
an prove using automati
 di�erentiation te
hniques(we refer to [30, x5℄ for some basi
 prin
iples) that the 
onvolution weights of the fra
-tional linear multistep method (i.e. the Taylor 
oeÆ
ients of the generating fun
tion !(z)8



to its �th power) 
an be 
omputed by!j = 1ju0 j�1Xi=0[�(j � i)� i℄!iuj�i: (15)Here the values uj, j = 0; 1; 2; : : : denote the Taylor expansion 
oeÆ
ients of the generatingfun
tion !(z) of the underlying non-fra
tional linear multistep method. In the 
ase of the
lassi
al (integer) BDF method of order p the generating fun
tion !(z) is a polynomial oforder p, given by pXj=1 1j (1� z)j :Formula (15) works equally well for all 
hoi
es of �. In parti
ular the evaluation of formula(15) is fast sin
e all values uj, j = p+ 2; p+ 3; p+ 4; : : : are zero for a given order p andtherefore the sum in (15) 
onsists of only p+ 1 non-zero summands. Thus we have a fastand easily implementable formula for the 
omputation of the 
onvolution weights. Wenext fo
us on the 
omputation of starting weights.Ex
ept for the remarks in [18, x3℄ and [26, x4.2℄ about the ill-
onditioning and 
an
ellationof digits in the equation system (13) not mu
h is said about the 
omputation of the startingweights. The reason for this is the fa
t that even though the system (13) is ill-
onditionedand 
an
ellation of digits o

urs for larger numbers of mesh points, in the 
ase � = 12a simple linear system solver produ
es starting weights for whi
h the residual, given by(18), is small. We shall see in x5 that even the 
ase � = 12 exhibits some problems, and for
hoi
es of � di�erent from 12 the problem of solving the system (13) so that the residualstays small be
omes more diÆ
ult. One therefore might try espe
ially adapted algorithmsfor the 
omputation of the starting weights.The equation system (13) is ill-
onditioned in general but it also exhibits a spe
ialVandermonde-type stru
ture. In the 
ases of � being a unit fra
tion the 
oeÆ
ient ma-trix is a 
lassi
al Vandermonde matrix. Hen
e an algorithm exploiting this stru
ture mayprove useful. Given the fa
t that we have to solve the system (13) for as many right-handsides as mesh points in our quadrature, the use of the algorithm by Bj�or
k and Pereyra[3℄ to obtain the inverse of the matrix seems well suited for 
ases where � is a unit fra
-tion: Their algorithm is fast, requiring only O(n2) arithmeti
 operations to solve a linearequation system with n variables. More importantly Higham showed in [20℄ that if theBj�or
k-Pereyra algorithm is used to invert a 
lassi
al Vandermonde matrix for whi
h thede�ning elements are positive and monotoni
ally ordered (whi
h is true for our system(13)) the estimate jV̂ �1 � V �1j � 5n�MjV �1j+O(�2M) (16)holds, where �M is the ma
hine pre
ision and V̂ �1 is the inverse of the Vandermonde matrixV 
omputed by the algorithm. The estimate (16) has to be understood 
omponentwiseusing the modulus of matri
es, de�ned by jAj = (jaijj). Even though O(n3) arithmeti
operations are required for the 
omputation of the inverse using the Bj�or
k-Pereyra al-gorithm, the method seems advantageous sin
e the error bound (16) is independent ofthe 
ondition number of the Vandermonde matrix V . However, while theoreti
ally the9



Bj�or
k-Pereyra algorithm seems to be well �tted for our problem, the pra
ti
al implemen-tation fails be
ause the estimate (16) is dependent on the entries of the exa
t inverse V �1whose absolute values are getting ex
eedingly large in our 
ases due to the stru
ture ofthe exponential Vandermonde system.A di�erent approa
h to ta
kle the ill-
onditioned equation system is the use of a non-stationary iterative solver suited for our problem. The Generalized Minimum Residualmethod (GMRES) by Saad and S
hultz [33℄ seems to be the most promising (for furtherreading we refer to the book [32℄ by Saad). Our 
hoi
e is based on the fa
t that we areprimarily 
on
erned with obtaining an approximate solution to (13) for whi
h the residualis small (see x5). GMRES has the property that the norm of the residual is minimized overthe 
urrent Krylov subspa
e at ea
h iteration. In addition, the non-Hermitian nature ofthe system rules out many of the 
heaper alternatives and its denseness means that GM-RES will be less expensive to apply than methods, su
h as Conjugate Gradient Squared(CGS), that require more than one matrix-ve
tor multipli
ation at ea
h step (see [17,x5.7℄). In exa
t arithmeti
 GMRES will 
onverge to the exa
t solution in no more thann iterations, but its 
onvergen
e behaviour in a �nite-pre
ision implementation is 
ur-rently not well-understood, parti
ularly for ill-
onditioned problems, so we 
annot predi
tin advan
e whether or not the method will provide solutions to (13) with suitably smallresiduals. A disadvantage of this approa
h 
ompared with either dire
t solution by LU de-
omposition or 
omputation of the inverse matrix is that the iteration has to be repeatedfor ea
h di�erent right-hand-side, rather than using the ready-
omputed LU fa
tors orinverse matrix to solve ea
h system. Thus we expe
t this method to be 
onsiderably moreexpensive in terms of 
omputer time.We investigated both standard GMRES and the slightly modi�ed GMRES solver byWalker [36℄ where the Householder transformation is used for the 
omputation of theKrylov spa
e instead of the modi�ed Gram-S
hmidt orthonormalization. The justi�
ationof this 
on
ept lies in the fa
t that the modi�ed Gram-S
hmidt orthonormalization 
anfail to perform well if the ve
tors of the Krylov spa
e are not suÆ
iently independent (asthey are espe
ially in 
ases where the 
hoi
e of � results in two almost identi
al 
olumns).Indeed, if Q = fq0; q1; : : : ; qk�1g denotes the orthonormalized basis of the Krylov spa
eS 
omputed by the modi�ed Gram-S
hmidt method with 
oating point arithmeti
 ofpre
ision �M, then the following estimate holds (see Bj�or
k [2℄):QTQ = I + E; kEk2 � �M�2(S); (17)where �2(S) denotes the (2-norm) 
ondition number of the matrix S. However usingthe Householder transformations yields under the same notation as in (17) the followingestimate (see Bj�or
k [2℄): QTQ = I + E; kEk2 � �M;whi
h is independent of the 
ondition number �2(S) of the original basis of the Krylovspa
e and thus it may give better results for our system.We did an experiment for the 
al
ulation of starting weights using the four methodsdes
ribed above. All 
al
ulations were done in Matlab Version 6.5 in double pre
ision. First10



we used a simple linear equation system solver (denoted by \lu" in the tables below) for the
omputation of the starting weights. The Matlab ba
kslash operator \n" was used, whi
happlies an LU de
omposition on the 
oeÆ
ient matrix and then solves the 
orrespondingsystems. Se
ondly a Matlab implementation of the the Bj�or
k-Pereyra algorithm (\bp")for inverting the Vandermonde matrix was tested for the 
ases where � was a unit fra
tion.Last we did two tests using the GMRES algorithm: (a) we used the Matlab gmres fun
tion(\gmres"), whi
h uses the Gram-S
hmidt orthonormalization; and (b) we implementedthe method of [36, Algorithm 2.2℄ (\gmresh") in Matlab to 
he
k the GMRES algorithmwith Householder transformation. In both 
ases we used full (i.e. not re-started) GMRESwithout pre
onditioning and with a stopping toleran
e of 1e�16 (whi
h was never, inpra
ti
e, a
hieved).The following tables give the results of these experiments. The average residuals of the�rst 1000 starting weights for the di�erent methods are given for various 
hoi
es of �.The best value for ea
h 
hoi
e of � is marked in bold.� 110 15 14 13 12lu 1.02e-04 5.61e-06 2.59e-07 3.66e-11 2.31e-14bp 1.34e+33 9.79e+02 5.00e-03 9.59e-08 4.95e-12gmres 1.01e-05 2.57e-06 4.39e-07 3.75e-11 1.56e-14gmresh 3.85e-06 2.63e-06 1.33e-07 2.26e-11 1.27e-13Table 1Average residuals for various numeri
al methods for the exponential Vandermonde system (13)with � being a unit fra
tion.� 0:49 0:51 23 45 910lu 1.12e-05 1.38e-08 9.87e-13 1.43e-11 5.98e-12gmres 1.75e-06 6.92e-09 7.82e-13 5.04e-12 8.66e-12gmresh 1.76e-06 6.93e-09 3.11e-12 2.76e-11 4.01e-11Table 2Average residuals for various numeri
al methods for the exponential Vandermonde system (13)with � not being a unit fra
tion.Another important di�eren
e between using a standard solver or a GMRES method forthe starting weight 
omputation is the a
tual distribution of the residual over the di�erentstarting weights. We present a �gure (Figure 1) showing the starting weights as well astheir residuals for the 
ase � = 110 and 10000 nodes for the two di�erent system solvers.On the basis of experiments that we have 
ondu
ted with a number of di�erent values for� for whi
h the above tables are just an extra
t, the following 
on
lusions 
an be drawn:� The Bj�or
k-Pereyra algorithm should not be used for the 
omputation of the startingweights. However, a di�erent algorithm exploiting the spe
ial stru
ture of the exponen-tial Vandermonde matrix may give better results in the future.11



Fig. 1. Starting weights and residuals for � = 110 and N = 10000 
omputed by LU de
ompositionand GMRES method, respe
tively. Ea
h dot represents one starting weight or residual. All 31starting weights for the nodes N = 1; 2; : : : ; 10000 are shown.� The LU de
omposition method gives a slightly worse result for the starting weightsthan either of the GMRES methods. However, the 
omputational time of the LU de-
omposition is far below that of the GMRES methods. Therefore it has advantageswhen attempting to implement a fast s
heme.� Both GMRES methods perform equally well. Ea
h one has 
ertain values of � where itis advantageous 
ompared to the other one. However, the Householder transformationneeds more 
omputation time than the Gram-S
hmidt orthonormalization. In 
aseswhere the \best" results are needed and 
omputation time is not the most importantfa
tor, the GMRES method should be used.� For almost all 
hoi
es of �, none of the four methods produ
es starting weights whi
hare exa
t to ma
hine pre
ision. Therefore, in general, problems will arise in using anyof those weights in the quadrature as we will des
ribe in more detail in Se
tions 5 and6.It is possible that the solution 
ost and/or the a

ura
y of the residuals 
omputed usingthe GMRES iterations 
ould be improved by using a pre
onditioner. However, our (so farrather limited) experiments using standard pre
onditioning te
hniques for dense matri
es(e.g. in
omplete LU de
omposition, diagonal and band approximation, wavelet 
ompres-sion) have been unsu

essful and in some 
ases have in
reased both the residual norm andthe 
omputation time. DiÆ
ulties in designing an e�e
tive pre
onditioner for this systemare to be expe
ted, sin
e most standard pre
onditioners are based on approximating theinverse of the system matrix, whi
h we know 
annot be done a

urately in this 
ase.12



Moreover, although theoreti
al results are not available for GMRES, it is known that, forill-
onditioned systems, pre
onditioning is ine�e
tive in improving the a

ura
y of otherKrylov subspa
e methods, su
h as Conjugate Gradients (see [17℄).4 Review of other existing algorithmsA number of other s
hemes for the approximate solution of the initial value problem (7)has been proposed in the literature. In this se
tion we shall brie
y review those algorithmsand identify their strengths and weaknesses. In parti
ular we will see that the performan
eof most methods does not depend strongly on the pre
ise 
hoi
e of the order �; small
hanges in this parameter will usually give rise to insigni�
ant 
hanges in the behaviourof the algorithm. This observation is in striking 
ontrast to what we will see below for themultistep methods.As a �rst algorithm we mention the Adams-Bashforth-Moulton method introdu
ed in[11,12℄ and investigated in a more detailed way in [10,9℄. The method is a general purposealgorithm that is 
apable of handling any sort of fun
tion f on the right-hand side of eq.(7). As des
ribed in [9℄ it typi
ally exhibits O(h1+�) 
onvergen
e (as above, h denotesthe step size of the algorithm under 
onsideration). Therefore this algorithm 
annot be
onsidered to be parti
ularly fast (espe
ially if � is 
lose to 0), but it has its advantages inbeing very simple to implement (both for linear and for nonlinear equations) and reliable.An alternative is the ba
kward di�erentiation formula of [5℄. Noti
e that this method isbased on the idea of dis
retizing the di�erential operator in the given equation (7) by a
ertain �nite di�eren
e. If we apply Lubi
h's approa
h des
ribed above to a generate thefra
tional version of a 
lassi
al BDF (for �rst-order equations), then this amounts to usinga di�erent dis
retization of the di�erential operator, and so the two approa
hes are in e�e
tnot equivalent. The approa
h of [5℄ has been investigated very thoroughly. In parti
ular,the main result of [5℄ was that under suitable assumptions we 
an expe
t an O(h2��)
onvergen
e behaviour (at least for linear problems, but the extension to the nonlinear
ase 
an be done along the usual lines). Thus we do not have very fast 
onvergen
e hereeither, but now the most diÆ
ult 
ase is if � is 
lose to 1. In [13℄ we have seen how toimprove the performan
e of the method by an appli
ation of extrapolation prin
iples. Themethod itself has a simple stru
ture (fully des
ribed in [5℄) but it is impli
it; thereforeits appli
ation to nonlinear problems requires the use of an algorithm for the solution ofnonlinear equations (su
h as, e.g., Newton's algorithm 
ombined with a suitable te
hniqueto determine starting values for the iterative pro
ess).5 Implementation of fra
tional multistep methods and examplesWe now turn to the question of the e�e
tive pra
ti
al implementation of the methodsdes
ribed in x3. It has long been re
ognised that the key problem in their implementation13



is the 
al
ulation of the starting weights by solving the Vandermonde system (13) (see forexample, [1,18,26℄) sin
e the Vandermonde matrix is notoriously ill-
onditioned. However,the authors of previous works highlight that it is not the a

urate 
al
ulation of the weightsthat is important, but rather the value of the residualsh� nXj=0!n�j(jh)
 + h� nXj=0wn;j(jh)
 � 1�(�) Z t0 (t� s)��1s
 ds; 
 2 A; (18)whi
h 
orrespond to the errors in 
al
ulating the values of the integrals of the fun
tionsgiven in (11). To make this point 
lear, the Vandermonde system is ill-
onditioned be
auseit is nearly a matrix of de�
ient rank. Now any errors in the solution (the starting weights)that 
orrespond to ve
tors in the kernel of the nearby matrix of de�
ient rank will leadto very small errors in the 
al
ulation of the integral. Therefore, it is argued, errors in thestarting weights 
an be tolerated if the values of the residuals are small (i.e. to ma
hinepre
ision) (see [18,26℄). In fa
t the authors of the earlier works indi
ate that the residualsmay reasonably be assumed always to be small.5.1 Two examplesWe 
an see how this works quite e�e
tively by means of the example problemx(�)(t)= 40320�(9� �)t8�� � 3�(5 + �=2)�(5� �=2)t4��=2 + 94�(� + 1) (19)+ �32t�=2 � t4�3 � x(t)3=2with initial 
ondition x(0) = 0. We 
hose this equation as our test problem for this paperbe
ause it is a nonlinear equation that nevertheless has a known exa
t analyti
al solutionof the form x(t) = t8 � 3t4+�=2 + 94t� (20)for every � 2 (0; 1).In the �rst spe
ial 
ase we solved (19) with � = 12 . This is the type of problem dealtwith in the earlier literature and so we would hope that the fra
tional linear multistepmethod would be e�e
tive. We used a 4th order BDF method as the basis for the fra
tionalmultistep method. We used Matlab Version 6.5 in double pre
ision for the 
al
ulationsand 
ompared the approximate and exa
t solutions over various numbers (N) of gridpoints on the interval [0; 1℄. The starting values were obtained by iteration and 
an beassumed to 
ontain small errors. We tabulated the absolute errors at t = 1 in ea
h 
aseand estimated the order of 
onvergen
e of the method. For referen
e purposes later, anupper bound on the residuals (18) in this 
ase was 2:3e�14 and so the residuals 
an beregarded as being to ma
hine pre
ision. The numeri
al results are given in the left part ofTable 3. We 
an see immediately that the behaviour of the numeri
al method is exa
tly14



what we would want. The estimated order of 
onvergen
e is as 
lose to 4 as 
ould beexpe
ted and the method appears to perform well.N error 
onvergen
e order40 4.1127e-0580 2.6325e-06 3.97160 1.6624e-07 3.99320 1.0435e-08 3.99640 6.5334e-10 4.00
N error 
onvergen
e order80 2.5000e-01160 7.4594e-02 1.74320 4.6450e-02 0.68640 9.9320e-03 2.231280 1.9078e-04 5.702560 3.8214e-04 �1:00Table 3Errors at t = 1 for example problem (19) with � = 1=2 (left) and � = 1=10 (right).In the se
ond example we repeated the 
al
ulations, this time for � = 110 . Now the residualsare roughly 1:1e�04 whi
h is not to ma
hine pre
ision. Of 
ourse the earlier authors hadno reason to 
he
k the situation for � = 110 sin
e it was not at that time 
onsideredimportant for 
al
ulations.We 
an see immediately from the numeri
al data presented in the right part of Table 3that the method has lost its order 4. In fa
t this is hardly surprising be
ause the errors inthe integrals (represented by the residual values) are large 
ompared to the overall errorof the method.This example gives us the �rst indi
ation that the residuals in (18) 
annot in general berelied upon to be small when we use values of � other than � = 12 .5.2 Investigating the magnitude of the starting weightsIn the earlier papers the 
ondition jwnjj = O(n��1) is given as an important 
onditionon the starting weights for stability of the numeri
al s
heme. Baker and Derakhshan ([1℄,for example) point out that the starting weights will satisfy this 
ondition for a range ofnumeri
al s
hemes, in
luding the BDF methods that we have been using. However theyassume that the Vandermonde system has been solved exa
tly. Therefore it is reasonablefor us to 
onsider the values of jwnjj as n varies as one way of testing the likely performan
eof our numeri
al s
hemes.We present �rst a �gure (Figure 2) showing how the 
al
ulated starting weights vary forup to 60 grid points and � = 12 . This illustrates the phenomenon that we would hope tosee and re
e
ts the good performan
e of the BDF method in this 
ase.More surprising is the next �gure (Figure 3). Here we present the starting weights for� = 12 but for mu
h larger numbers of grid points. We draw attention to the way in whi
hsuddenly the method that is known to perform really well for small numbers of grid points15
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Fig. 2. Starting weights for � = 12 and n = 10; 11; : : : ; 60. Ea
h line represents one 
olumn ofstarting weights.
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Fig. 3. Starting weights for � = 12 and n = 1; 2; : : : ; 100000. Ea
h line represents one 
olumn ofstarting weights.exhibits behaviour that would suggest a poor approximate solution for a larger numberof grid points. We shall see below that this is indeed what will happen.Now we present a �gure similar to Figure 2 for � = 110 (Figure 4). This time we knowthat the s
heme performs badly and this is again re
e
ted in the �gure, whi
h showsthe behaviour of a single starting weight. While the magnitude of the starting weightde
reases in the beginning as one would expe
t from the theory, the explosion we haveseen for the 
ase � = 12 o

urs for � = 110 mu
h sooner. In addition the behaviour itselfbe
omes 
haoti
. Similar behaviour is observed for all 31 starting weights.Finally we want to draw attention to the fa
t that there is some intera
tion between16
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Fig. 4. Starting weight for � = 110 and n = 10; 11; : : : ; 2500. Only the graph of the 15th startingweight is drawn. The behaviour is typi
al of all 31 starting weights.errors in the starting values and the errors in the starting weights whi
h may be worthyof further investigation. We solved equation (19) with � = 110 �rst using starting valuesobtained in the usual iterative way and then we 
ompared our solution with one 
al
ulatedusing exa
t starting values. The results (shown in Figure 5) indi
ate what we have foundin several examples we tried, namely that a solution based on exa
t starting values maynot display the same tenden
y to errors be
ause of in
orre
t starting weights as wouldone based on inexa
t starting values. Furthermore the error at t = 1 produ
ed by usingexa
t starting values is 4:52e�7. This is about as good as the error produ
ed by using these
ond order method with the same number of mesh points whi
h is 6:05e�7 and thusthe se
ond order method would have been the more reasonable 
hoi
e for this problem.Another important drawba
k in the 
ase where the starting values were obtained in theusual iterative way is that the algorithm stopped after 9850 steps sin
e it returned anegative value at this step and thus the evaluation of the right-hand side in the nextstep would produ
e an imaginary number. The 
omputation of the starting weights weredone using the Matlab ba
kslash operator \n". The GMRES method produ
ed similarbehaviour when we in
reased the number of mesh points. For N = 10240 however, thealgorithm �nished and produ
ed an error of 2:29e�6 at t = 1 using starting weights
omputed by the Matlab \gmres" fun
tion.A similar e�e
t has been observed even in the mu
h more well-behaved 
ase � = 12 (seeFig. 6): Here we have used the starting values obtained by perturbing the exa
t data bya small amount (1e�4). The number of grid points was 100000. It turns out that in this
ase the numeri
al solution be
omes negative at t � 0:8, and so the algorithm breaksdown at this point.We return to these drawba
ks in our theoreti
al dis
ussions of the next se
tion.17
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Fig. 5. Plot of the numeri
al solution (white line, dotted line) of example (19) with exa
t startingvalues against the numeri
al solution (bla
k funnel) with 
omputed starting values and � = 110 ,p = 4 and N = 10240.
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Fig. 6. Plot of the true solution (solid line) of example (19) against the numeri
al solution(dashed line) with parameters � = 12 , p = 4 and N = 100000 and small (10�4) perturbations instarting values.6 Analysis of errors arising from starting weights and starting valuesIn this se
tion we 
ontinue our dis
ussion of errors in solutions based on errors in thestarting weights and starting values. This time we approa
h the problem from a moretheoreti
al viewpoint.For the sake of simpli
ity we shall 
on
entrate on the approximation of the 
onvolutionintegral (9). This is in essen
e equivalent to solving a linear fra
tional di�erential equation.18



As we dis
ussed earlier, in the 
ase of nonlinear fra
tional di�erential equations we needto employ, in addition, a nonlinear solver at ea
h step. We do not 
on
ern ourselves withthese details here.We assume a fra
tional linear multistep method with s starting values. We propose tosolve the equation over the interval [0; T ℄ where T = Nh for some �xed h > 0.The basi
 idea is as follows: we assume that the exa
t starting weights wnj and 
onvolutionweights !n�j would be re
orded in an (N + 1)� (N + 1) matrix A a

ording toA = 0B� Is 0A21 A22 1CA (21)where Is is an s � s identity matrix, A21 is the (N + 1 � s) � s matrix with (A21)i;j =ws+i;j + !s+i�j and A22 is the square (N + 1 � s) matrix with (A22)i;j = !i�j for j � iand 0 otherwise. In pra
ti
e we have perturbed weights leading to a matrix of the formA+B where B takes the spe
ial formB = 0B� 0 0B21 01CA (22)where B21 is the (N + 1 � s) � s matrix 
ontaining the errors in the starting weights(B21)i;j = (ws+i;j� ~ws+i;j). This highlights the fa
t that only the starting weights 
ontainerrors.The exa
t starting values are assumed to be stored as the �rst s elements in a solutionve
tor x 2 RN+1 and the errors in the starting values are assumed to be stored in the �rsts elements of the ve
tor e 2 RN+1 .Now we are in a position to formulate our 
al
ulations in terms of the matri
es A;Band the ve
tors x; e: the approximate solution des
ribed in [25℄ is given by su

essivemultipli
ation of ve
tor x by the matrix h�A. Ea
h su

essive multipli
ation by the matrixh�A 
orresponds to evaluation of the next step in the 
onvolution integral (starting fromstep s). In total we need to pre-multiply by h�A a total of N � s + 1 times to 
ompletethe solution over [0; T ℄. Thus we wish to 
al
ulateJ = (h�A)N+1�sx: (23)In fa
t, when we take the inevitable errors into a

ount, we will a
tually evaluate~J = (h�(A+B))N+1�s(x + e) (24)so the errors introdu
ed by the starting values and starting weights we 
al
ulated aregiven by the expression ~J � J:Lubi
h [25,26℄ de�ned the starting weights in A in su
h a way that the method integratesexa
tly a set of s fun
tions (see also x3 above). Ea
h of these fun
tions 
an be sampled at19



the values 0; h; 2h; 3h; : : : ; (s�1)h to give a ve
tor in Rs . It is simple to see that the set of sve
tors of dimension s de�ned in this way spans Rs . We extend ea
h of these s-dimensionalve
tors to an (N + 1)-dimensional ve
tor by 
on
atenating N + 1 � s zeros in the last
omponents to give us s linearly independent ve
tors that we shall 
all v1; v2; : : : vs.By 
onstru
tion of the ve
tors vi, we 
an see that 
onstants �j; �j 
an be found so thatx = �1v1 + : : :+ �svs and e = 
1v1 + : : : 
svs:This shows (by linearity) that su

essive multipli
ation by the matrix h�A evaluatesexa
tly both the propagation of the values in x (whi
h we want) and the propagation ofthe values in e (whi
h we do not want).Now we 
an turn our attention to the e�e
t of multipli
ation by the matrix h�B. Aswe 
onstru
ted B it 
onsists of the errors in the starting weights whi
h we evaluatedin a

ordan
e with the methods of x3.2. In their paper [18℄, the authors say that theresiduals in the 
al
ulation ofh� nXj=0!n�j(jh)
 + h� sXj=0wnj(jh)
 � 1�(�) Z t0 (t� s)��1s
 ds; 
 2 A (25)need to be small. They assert (see also [26℄) that this 
an happen even when the errorsin the starting weights themselves are not very small.Now we 
an see that the residuals to whi
h they refer are the same as the values obtainedby multiplying rows of B by ve
tors vj. Therefore the a

ura
y of the approximation ofAN+1�sx by (A+B)N+1�s(x+ e) hinges on the values of B`vj for ea
h ve
tor vj.We re
all that Baker and Derakhshan [1℄ have shown that, for the numeri
al methods ofinterest to us, the weights wnj satisfysup0�j�n jwnjj = O(n��1) as n!1: (26)It follows that kAk1 = O(N�) and kh�Ak1 = O(1). Thus we see that the 
al
ulation ofthe solution using the exa
t starting weights is stable with respe
t to small errors in thestarting values.We 
an readily obtain an estimate for the worst 
ase behaviour by evaluating (estimating)kBk1. We know that kA + Bk + kAk � kBk � kA + Bk � kAk (for any norm) and thatkAk1 = O(N�) . We have the matrix A + B and so we 
an evaluate kA + Bk1 exa
tly.If kBk1 is large then we know that 
ertain 
ombinations of vj will be magni�ed by thatfa
tor. It is 
lear that kBk1 will be small if and only if all the residuals are small.The above dis
ussion shows us that if the value kBk1 is not small then the values h�`B`xand h�`B`e may be
ome large. We wish to know whether they will in fa
t do this. Forinsight we turn to the power method for 
al
ulating eigenvalues of a square matrix basedon repeatedly multiplying a starting ve
tor by the given matrix. For the power methodwe see that if the starting ve
tor is 
hosen randomly, there is a probability unity that the20



dominant eigenvalue will be found. However if the starting ve
tor is 
hosen so that thereis no 
omponent in the dire
tion of the eigenve
tor with dominant eigenvalue then someless prominent eigenvalue will be found. The situation in our problem is exa
tly parallelwith this. If the ve
tor x (the starting ve
tor) is 
hosen so that there is no 
omponent inthe dire
tion along whi
h the matrix B exhibits its dominant behaviour, then the errorprodu
ed by the dominant behaviour will not be visible in the solution. On the otherhand, the starting errors e are likely to be random and therefore with probability unitywill show up the dominant behaviour of the matrix B. In general, in the examples wehave been working with, h�(A + B) leads to an unstable solution operator with respe
tto small 
hanges in the starting values. As the reader will observe, we have been unableto implement the stable BDFp method (at least for 4 � p � 6) developed theoreti
allyby Lubi
h, but have been for
ed instead to implement an unstable approximation to it.In the examples of x5.1 we saw a 
ase where putting in the starting ve
tor with exa
tinitial values of the solution led to a good a

urate solution, while putting in randomstarting errors destroyed a

ura
y (re
all Figure 6). We 
an see how this 
an happenwhen we look at a se
tion of the matrix of residuals. Almost all the residuals are quitesmall and therefore it is 
omparatively easy to �nd starting values that do not pi
k upthe dominant (bad) behaviour. The random starting errors introdu
e all the dynami
s ofthe solution.
7 Con
lusionsWe dis
ussed at the start of the paper what we required of a good numeri
al s
heme forfra
tional di�erential equations. The dis
ussions of the two previous se
tions illustratethe pitfalls that 
an arise when we implement fra
tional multistep methods in pra
ti
e,even though their good behaviour has been proved in theory. We have 
on
entrated onBDF methods here as the basis for our investigations following the advi
e of Baker andDerakhshan [1℄ who indi
ated that they had not found any bene�t in attempting to useother possible linear multistep formulas. It is known that BDFs of order up to 6 areA(�)-stable for some � > 0 and so these methods are the basis for our 
al
ulations here.In the following diagrams we 
onsider the 
omputational 
ost of 
al
ulating the solutionto equation (19) in terms of the time taken for the total 
al
ulation, 
ompared with theerror of the solution obtained. We present graphs for ea
h of the methods BDF 1-6. Inall 
ases we re
orded the respe
tive error at the point t = 1. The lines always displaythe 
orrelation between the 
omputation time (horizontal axis) and the numeri
al error(verti
al axis; note the logarithmi
 s
ale). As 
an be expe
ted the results of our previousdis
ussion show up in some untypi
al shapes in the graphs.The left part of Figure 7 shows that for � = 12 and a reasonably small number of nodes,BDF 1-4 methods are e�e
tive but BDF 5-6 show problems. The right part illustrateshow even BDF 4 begins to lose a

ura
y as the number of nodes used in
reases.21
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Fig. 7. Left: Error vs. time: Computation time (in se
onds) and the numeri
al error for Lu-bi
h's BDF method of order 1 (top) to 6 (bottom), applied to test equation (19) with � = 12and N = 500; 600; : : : ; 3000. Right: Error vs. time: Same 
ondition as the left �gure butN = 2500; 5000; : : : ; 50000 for methods of order 1 to 4.
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Fig. 8. Error vs. time: 
omputation time and the numeri
al error for Lubi
h's BDFmethod of order 1 (top) to 4 (bottom), applied to test equation (19) with � = 0:49 andN = 500; 1000; 1500; : : : ; 10000.The 
orresponding behaviour for � = 0:49 is shown in Figure 8. We draw attention tothe fa
t that now that � 6= 12 the loss of good behaviour arises for mu
h smaller numbersof nodes for BDF 4. BDF 5 and 6 are not in
luded in the diagram sin
e their results areeven worse.Referen
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