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Fuzzy EMG Classification for Prosthesis Control
Francis H. Y. Chan, Yong-Sheng Yang, F. K. Lam, Yuan-Ting Zhang, and Philip A. Parker

Abstract—This paper proposes a fuzzy approach to classify
single-site electromyograph (EMG) signals for multifunctional
prosthesis control. While the classification problem is the focus
of this paper, the ultimate goal is to improve myoelectric system
control performance, and classification is an essential step in the
control. Time segmented features are fed to a fuzzy system for
training and classification. In order to obtain acceptable training
speed and realistic fuzzy system structure, these features are
clustered without supervision using the Basic Isodata algorithm
at the beginning of the training phase, and the clustering results
are used in initializing the fuzzy system parameters. Afterwards,
fuzzy rules in the system are trained with the back-propagation
algorithm. The fuzzy approach was compared with an artificial
neural network (ANN) method on four subjects, and very similar
classification results were obtained. It is superior to the latter in
at least three points: slightly higher recognition rate; insensitivity
to overtraining; and consistent outputs demonstrating higher
reliability. Some potential advantages of the fuzzy approach over
the ANN approach are also discussed.

Index Terms—Classification, electromyography (EMG), fuzzy
logic, neural network, prosthesis.

I. INTRODUCTION

E LECTROMYOGRAPHY (EMG) pattern recognition
has been applied in controlling prosthetic devices for

amputees [4], [6]. The control is based on the fact that am-
putees still have the phantom of functions and hence are able
to generate a repeatable (although perhaps gradually varying)
EMG pattern corresponding to each of the functions. In the
past decades, much research has been done on the recognition
of EMG signals [4]–[10], [13], [16], most of which has been
reviewed by Hudgins, etc. [5], [6] The main prosthesis control
functions of interest were flexion and extension of the forearm
and pronation and supination of the wrist respectively. The hand
actions such as hand opening and grasping, and finger bending
were also of some interest. In order to differentiate these control
functions, investigators developed various EMG features which
include EMG signal amplitude, zero-crossing [5], [13], [16],
EMG frequency characteristics [7]–[9], and coefficients of
an EMG autoregressive model [4]. The classification tools
covered linear discriminate functions [13], [16], neural net-
works [5], [8], [9], and fuzzy systems [7]. Researchers have

Manuscript received November 24, 1998; revised April 19, 1999 and May
20, 2000. This work is supported in part by The University of Hong Kong RGC
Grants.

F. H. Y. Chan, Y.-S. Yang, and F. K. Lam are with the Department of Electrical
and Electronic Engineering, The University of Hong Kong, Hong Kong.

Y.-T. Zhang is with the Department of Electrical Engineering, Chinese Uni-
versity of Hong Kong, Hong Kong.

P. A. Parker is with the Department of Electrical Engineering, University of
New Brunswick, Fredericton, NB, Canada.

Y.-S. Yang is now with Odyssey Software and Consulting in Federal Way,
Washington, USA.

Publisher Item Identifier S 1063-6528(00)07302-X.

TABLE I
TYPICAL EMG CLASSIFICATION

SYSTEMS

applied different kinds of mathematical models and pattern
recognition techniques to the problem; however, they are not
yet commercially available. Table I gives a brief summary of
some typical EMG recognition systems.

EMG classification systems as listed above suffer from one or
more of the following drawbacks: large number of electrodes;
sensitivity to electrode displacement; low recognition rate; per-
ceivable delay in control (delay 300 ms; a 200 to 300 ms in-
terval is a clinically recognized maximum delay that users find
acceptable before they get frustrated with the slow response of
the prosthesis [17]). The system proposed by Hudginset al. [5]
has solved most of the above difficulties; however, its recog-
nition rate is subject-dependent, ranging from 70 to 98%. We
have used the same ANN method as that in [5] with data sets
from the same four subjects and achieved similar classification
results to those reported by Hudgins’ paper. However, we noted
that the success of the method is chiefly due to the appropriately
selected features.

Fuzzy logic systems are advantageous in biomedical signal
processing and classification. Biomedical signals are not always
strictly repeatable, and may sometimes even be contradictory.
One of the most useful properties of fuzzy logic systems is that
contradictions in the data can be tolerated. Furthermore, using
trainable fuzzy systems, it is possible to discover patterns in data
which are not easily detected by other methods, as can also be
done with neural network. Finally, the experience of medical
experts can be incorporated. It is possible to integrate this in-
complete but valuable knowledge into the fuzzy logic system
due to the system’s reasoning style, which is similar to that of a
human being. This is a significant advantage over the artificial
neural network (ANN). In order to search for an improved so-
lution to the EMG classification problem, this paper proposes a
new fuzzy approach for EMG recognition based on most of the
same time-segmented features as used by Hudginset al.[5]; the
results are compared to those of the ANN method [5].

Hudginset al. [5] applied electrodes consisting of a single
differential channel with an active electrode over each of the
biceps brachii and triceps muscles (for further detail re elec-
trodes see [5]). They used segmented features of EMG signals
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Fig. 1. EMG classification strategy by ANN approach.

and an ANN for one-site multi-functional prosthetic control.
The classification strategy is illustrated in Fig. 1. The four func-
tions to be classified and controlled were: 1) elbow extension, 2)
elbow flexion, 3) wrist pronation, and 4) wrist supination. The
system’s correct classification rate was between 70 and 98%
among 80 test patterns presented after an initial training of the
network. The EMG signal was acquired by a single bipolar elec-
trode pair placed at the biceps and the triceps. The moving av-
erage of the signal was monitored. When a threshold was ex-
ceeded, 200 samples (at 1 kHz sampling rate) of EMG samples
were stored. The EMG signals were divided into several time
segments to preserve pattern structure, and features were ex-
tracted from these segments. The features included mean ab-
solute value (MAV), mean absolute value slope (MAVSLP),
number of zero-crossings (ZC), slope sign changes (SSC), and
wave length or wave complexity (WC) [5]. These time-seg-
mented features were fed to a three-layer ANN which was able
to generalize from a small training data set (typically 20 trials
of each function for training). The hidden-layer contained eight
nodes, as derived from the performance vs. hidden node number
curve acquired via experiments. Each output in the output layer
corresponded to one function. The required output was set to
0.9 for function selected and 0.1 for others in the training phase.
Based on experiments, we use 0.4 as the activation threshold so
that the maximum output of the network has to exceed 0.4 for
the activated function. The ANN method was successfully re-
produced so that our fuzzy approach can be compared to it.

Section II of this paper introduces the trainable fuzzy system,
presents our fuzzy EMG classification scheme, and details
why and how we have improved the fuzzy system. Section III
presents experimental results with fuzzy EMG classification
and comparative analysis with the ANN method. Section IV
presents analysis of the fuzzy system’s superiority, training
time comparison, and the overtraining problem.

II. EMG CLASSIFICATION WITH A TRAINABLE FUZZY LOGIC

SYSTEM

In the last decade soft computing, mainly composed of fuzzy
logic, neural networks, and genetic algorithms, has achieved
great success in many applications. Unlike traditional hard com-
puting, soft computing exploits tolerance of imprecision, uncer-
tainty, and partial truth to achieve tractable, robust, and low-cost
solutions to decision problems. The neural network is able to
learn through the acquired data and to make generalizations on
new in-coming data, and thus mimic human decision process
to some extent. The multilayer network (MLN) has been suc-
cessfully applied in solving pattern recognition problems, using
the back error propagation algorithm in training. Fuzzy logic
systems emulate human decision-making more closely than the

Fig. 2. Basic configuration of fuzzy logic system with fuzzifier and
defuzzifier.

ANN. The fuzzy systems at first fuzzify inputs into member-
ship degrees of fuzzy sets, and then infer by fuzzy logic through
rules which usually come from experience. Fuzzy systems have
been widely applied in solving control problems. In short, soft
computing approaches are good at coping with imprecisely-de-
fined situations in a model-free way, without having to model a
system beforehand. In other words, they are sufficiently “soft”
to be versatile models.

The kernel of a fuzzy system is the fuzzy inference engine.
The knowledge of an expert or well-classified examples are ex-
pressed as or transferred to a set of “fuzzy production rules” of
the form IF-THEN, leading to algorithms describing what ac-
tion or selection should be taken based on the currently observed
information. In the fuzzy method, nothing is done at random. In-
formation containing a certain amount of vagueness is expressed
as faithfully as possible, without the distortion of forcing it into
a “crisp” mold, and it is then processed in a proper manner.

A. The Structure and Training of Fuzzy System

The fuzzy system used in the present paper has been reported
by Wang [18]. Fig. 2 shows the basic configuration of a fuzzy
logic system with a fuzzifier and a defuzzifier. The fuzzy logic
system with center average defuzzifier, product-inference rule,
nonsingleton fuzzifier, and Gaussian membership function can
be described by the following function [18]:

input: output by

This system is used in the present paper. It has been shown
that the system can be a "universal approximator" in a manner
similar to the ANN [18].

The fuzzy system described above can be represented by a
three-layer feed-forward network (but different from the MLN)
as depicted in Fig. 3. It resembles a radial basis neural network
(RBN) [11]. However, both the fuzzy set definition (represented
by centroid and width) and the rules (represented by the con-
necting weights) are trained by the back-propagation algorithm
in the fuzzy system, while usually only the weights are trained
in the RBN. The training formulation has been thoroughly dis-
cussed in [18].

In our implementation (Fig. 4), the mean-squared-error
(MSE) over the four subfuzzy systems, with the output of each
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Fig. 3. Network representation of fuzzy logic system(�fz is the gaussian
fuzzfier, wherej = 1; 2; . . . ;M; i = 1; 2; . . . ; n. See text for details).

standing for the activation level of one function, is used to
decide whether or not to stop training. The MSE is defined as

MSE

where
number of categories (= 4);
number of trials (= 80);
activation output level of trialof the th category com-
ponent, for example the case corresponds to the
function of supination, so is OUT_SP in Fig. 4 at
trial ;
is the desired output of ( 0.1 or 0.9).

Here is not included under the denominator because the
word “mean” in MSE is indicating averaging the error across
trials only and we have calculated the MSE in neural network
counterpart in the same way. According to the tests performed
on the system, the stopping MSE is ususally set to 0.1–0.3. All
four outputs are used in order to generate the “selected function”
although the subfuzzy systems are independent before they are
fed to the “output logic.” In practice the MSE values are not
necessarily the same across outputs and hence an average or
total MSE is used.

B. Feature Selection

Most of the features used in our fuzzy system are the same as
that of Hudginset al. [5], except that SSC was not adopted as it
proved to be insignificant. In reproducing the ANN classifica-
tion scheme of Hudginset al. [5], we found that classification
performance was not improved and even deteriorated for some
subjects with the involvement of the SSC. In this work, the EMG
signal is divided into several adjacent segments. Each time seg-
ment duration is 40 ms and six segments are used, so that a total
of features are extracted from 240 ms of EMG
signal. The features used are: MAV1, MAVSLP1, ZC1, WC1,
MAV2, , WC2, MAV3, , WC3, MAV4, , WC4, MAV5,

, WC5, MAV6, , WC6. In comparison, five segments (i.e.,
totally 200 ms) of EMG signal were used by Hudginset al. [5].
To prevent any perceivable delay in real-time prosthesis con-
trol, the function action should be identified within 300 ms from
the onset of the EMG; hence feature extraction may not be per-
formed over any longer period. In this paper, we use six seg-
ments (i.e., 240 ms) instead of five to collect more information.

For comparison the reproduction of the ANN approach is also
based on six segments of EMG.

C. System Structure, Training, and Classification

The schematic structure of the fuzzy approach is similar to
that of the ANN approach as in Fig. 1, except that the ANN
block is replaced with the fuzzy logic system. Fig. 4 illustrates
the fuzzy approach. The block “Fuzzy Logic System” is com-
posed of four parallel subsystems similar to that in Fig. 3 gener-
ating OUT_EX, OUT_FL, OUT_PR, and OUT_SP, which rep-
resent the activation level of each function, respectively. The
output logic generates the final classification result.

The “Basic Isodata for Initialization” block is activated in
order to initialize the system’s fuzzy sets before the training
phase. The desired outputs of OUT_EX, OUT_FL, OUT_PR,
and OUT_SP are set to 0.9 for the selected function and 0.1 for
others in the training phase. The four sub-systems are trained si-
multaneously with presentations of the whole training set. When
MSE is lower than a preset threshold [usually 0.1–0.3, refer to
Fig. 5(b)], the training stops.

After the system is trained, the initialization block is de-
activated, and the whole system is ready for classification.
The “output logic” block finds the maximum value among
OUT_EX, OUT_FL, OUT_PR, and OUT_SP. If this value is
greater than 0.3, then the corresponding function is selected;
otherwise, no function is activated. This threshold was opti-
mally determined with many experiments by the following
optimality criteria: there is one but only one output among
the four that exceeds the threshold. It should be noted that the
OUT_EX, OUT_FL, OUT_PR, and OUT_SP have relative
meaning rather than absolute, and they should not be regarded
or interpreted as probabilities.

D. Convergence Problem and Initialization of the Fuzzy
System

Generally speaking, the ANN is able to converge well due
to the global nature of the sigmoid neuron-activation function
used. However, with a Gaussian-shaped function no quick or
good convergence is guaranteed without appropriate initializa-
tion.

It has been determined by Lippman [14] that a three-layer
ANN is able to have a decision region of convex-open or closed
regions. Selected carefully, good features tend to gather the
items belonging to the same class into one or more clusters in
the feature space, such that they tend to reflect their similarities
quantitatively. The basic Isodata algorithm [3] is able to cluster
items automatically. If cluster parameters are used to initialize
the fuzzy sets, each fuzzy set will be able to represent all or
part of the items in the same class at the very beginning, so
that blindness to initial definition of fuzzy sets is avoided and
convergence is accelerated in the next training stage. Based
on this idea, the fuzzy set’s centroid and width was initialized
using the results of the following Basic Isodata algorithm:

1) Randomly choose (24-dimensional) training data inputs
as initial values for the means , where
is the desired cluster number, usually varying from 8 to
14 in this problem.
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Fig. 4. Schematic diagram of fuzzy approach for EMG classification (MAV1 through WCare the 24 segmented features extracted; the initialization of fuzzy
sets in fuzzy logic system is activated only once with clusters generated from Basic ISODATA algorithm; fuzzy logic system is trained and generates four outputs
representing the possibility of each function; Output logic makes choice among these four outputs.)

Fig. 5. Mean squared error over training set and classification error rate over
test set vs. training epoch number. (a) SIG-ANN system, training step size=

0.25; (b) ISO-FUZ system, training step size= 0.015. Isodata cluster number
= 12, rule= 12� 4. Subject #: no. 1.

Loop:
2) Classify all the training samples by assigning them to

the class of the closest mean.
3) Recompute the means through the averages of the sam-

ples in their class.
4) If any mean changed value, go to Loop; otherwise, go to

step 5).
5) Assign the mean of each cluster to ,

the centroid of the corresponding fuzzy set; compute
average radii of each cluster and assign these values to

, the widths of the fuzzy sets.
Initialization as above proved to be a very effective way to

ensure good convergence in the training process. Its strength
is demonstrated in Fig. 5(b). In this example, the fuzzy system
reached maximum classification performance level (lowest clas-
sification error rate) after only the fourth training epoch with the
appropriate initialization.

To decrease the chance of cluster crossing over different
classes, and to generate adequate rules in the fuzzy system,
more than four clusters (four was the class total) were generated
with several clusters assigned to the same class. However, the
number of clusters has to be decided through experiments and
experience. The larger the training set size, the more clusters
that can be generated with little effect from noise-polluted
samples. The cluster number was set to be 8–14 according to
the class number (4 classes) and training set size (20 for each
class) in this problem.

III. EXPERIMENTAL RESULTS

We denote the EMG Neural Network classification method
with sigmoid activation function proposed by Hudginset al. [5]
asSIG-ANN; and the EMG fuzzy system classification method

Fig. 6. Comparison of EMG recognition rates by SIG-ANN and ISO-FUZ.

TABLE II
COMPUTATIONAL COMPLEXITIES OFSIG-ANN AND ISO-FUZ PER TRAINING

EPOCH IN OUR OPTIMIZED IMPLEMENTATION (PENTIUM PC)

proposed in this paper asISO-FUZ, which is initialized with the
Basic Isodata algorithm and trained with the back-propagation
algorithm.

Data sets from four subjects were used in the experiments;
they are the same as those used by Hudginset al. [5]. The
training vs. test set size was 20 vs. 20 for each function for
each subject so that at least 160 trials composed of four func-
tion categories were required in each subject’s data set. Both the
SIG-ANN method and the ISO-FUZ method were applied to the
data sets. The (correct) recognition rates of the two approaches
were measured, and are compared in Fig. 6. The rates are close,
with ISO-FUZ being slightly higher. As a matter of interest,
ISO-FUZ was also tested on the mean of the time-segmented
features (number of features reduced from 24 to 4); ISO-FUZ,
in general, gave classification results comparable to SIG-ANN
based on the same mean features.

The training speeds of ISO-FUZ and SIG-ANN are almost the
same, e.g., 23 s for SIG-ANN and 25 s for ISO-FUZ with our
software running on a Pentium PC (see Table II for complexity
per epoch and Section IV-B for training epochs). The training
speed depends on the computational complexity of the training
procedure, which will be further discussed.

Fig. 7 demonstrates the outputs from ISO-FUZ compared
with SIG-ANN outputs for each test trial of the same subject’s
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Fig. 7. (a) Output of SIG-ANN system (learning rate: 0.25; training MSE
= 0.1). (b) Output of ISO-FUZ system (learning rate: 0.015; training MSE =
0.2). For both: Trial 1 20 are extension; 21–40 are flexion; 41–60 are pronation;
61–80 are supination. Subject: no. 1; Correct classification rate: 91.3% (7 trials
misclassified or rejected in the category of pronation).

data set. The categories are mutually exclusive, and as explained
in Section II-C the selected function corresponds to the largest
of the four outputs. In Fig. 7, trials 41 through 60 are pronation,
and there are quite a few misclassifications among these 20 trials
or samples. The features chosen for the classification algorithm
have difficulty in distinguishing pronation, and these samples
are often misclassified. The figure suggests that ISO-FUZ tends
to give more consistent and hence more “stable” results than
SIG-ANN does, since the former output variations over the same
class are obviously smaller than the latter. To support this, we
define , an average variation over the correctly-classified trials
as the measure of output fluctuations (hence reflecting the con-
sistency):

where
total number of categories(= 4);
total number of trials (= 80);
1 if trial is correctly classified or 0, otherwise;
trial ’s activation output level ofth category compo-
nent, for example, corresponds to the function
of supination, so is OUT_SP in Fig. 4 at trial no.
;

average activation output level of cth category compo-
nent over all the correctly classified trials in the same
class of trial , calculated by

TABLE III
OUTPUT VARIATIONS OF CLASSIFIERS: SIG-ANN VS. ISO-FUZ

Fig. 8. Comparison of SIG-ANN and ISO-FUZ by classification error rate
versus decision threshold on outputs.

In the example depicted in Fig. 7, the average variationover
subject no. 1 is 0.0647 for SIG-ANN, and 0.0495 for ISO-FUZ.
The average variations of subject no. 1 through no. 4 are given in
Table III, and indicate better output consistency for ISO-FUZ.

When the decision threshold in the output logic is increased,
the error rate of classification also increases due to more rejected
trials. On the other hand, if the threshold is arbitrarily decreased,
to say less than 0.3, it will not make much sense since the lower
threshold is too close to the inactivate level (= 0.1). We investi-
gated the relation between error rate and decision threshold, as
depicted in Fig. 8. From the figure, it is seen that the threshold
of ISO-FUZ can be varied from 0.3 to 0.5 without increasing the
error rate, while the range is only from 0.3 to 0.4 for SIG-ANN.
The results presented in Fig. 8 are representative of the four sub-
jects. They demonstrate ISO-FUZ’s wider threshold tolerance
compared to SIG-ANN.

The overtraining problem was investigated by experiments,
results of which are illustrated in Fig. 5. It was found that
ISO-FUZ is less sensitive to overtraining when compared with
SIG-ANN. In both methods, the mean squared error (MSE)
over the training set decreased as the training epoch increased,
but the classification rate over the test set did not decrease
monotonically, with the rate increasing slightly after reaching
its minimum point. We define B, the increased amplitude of
error rate, as the measure of over-training side effect:

where is the test error rate after n training epochs.
Greater implies a more serious over-training effect.
could be replaced with . But with , ISO-FUZ would be
too good because . In reality, ISO-FUZ still has a little
over-training problem. In the example of Fig. 5,was 0.025
for SIG-ANN, and 0.013 for ISO-FUZ, i.e., the over-training
side effect of SIG-ANN is double that of ISO-FUZ. The results
of for all the four subject are tabulated in Table IV. It can be
seen that ISO-FUZ involves less overtraining.

IV. DISCUSSION

The ISO-FUZ method proposed in this paper was compared
with SIG-ANN over the same data set and the same feature
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TABLE IV
ERRORRATE CAUSED BY OVER-TRAINING WITH B DEFINED IN TEXT

space. Recognition rates of the two methods are comparable.
This result is consistent with the classifier’s performance inves-
tigation by Chen [1], [2], confirming that the radial basis neural
network (RBNN) has a recognition rate very similar to that of
the multilayer perceptron using the backpropagation algorithm
(BPN or ANN or SIG-ANN). In addition, both RBFN and BPN
are insensitive to the number of training samples, provided of
course that each class is well represented in the training set. The
fuzzy system used in the our classification method is structurally
similar to RBFN. Hence it is not surprising that ISO-FUZ re-
sulted in recognition rates comparable to those of SIG-ANN.

In this section, we discuss the superiority, training time, and
overtraining problem of the proposed fuzzy system.

A. Superiority of ISO-FUZ

The results of Fig. 6 show that for all four subjects the
ISO-FUZ provides a small but consistent improvement in
classification performance. The small number of subjects and
differences make testing for statistical significance problematic,
and is left for a more extensive study. The major advantages
of ISO-FUZ demonstrated in this work are better output
consistency, wider threshold tolerance, and lower overtraining
risk. Some further advantages are discussed here.

ISO-FUZ helps to investigate the distribution in the feature
space, while SIG-ANN is unable to achieve the same due to
its inscrutability. This is helpful in discovering which features
are effective and which ones are insignificant. In the ISO-FUZ
system, the training set is clustered so that the approximate class
distribution of features is disclosed and utilized. The fuzzy sets
are then fine-tuned via the backpropagation algorithm. The re-
fined class distributions can be better represented by the trained
fuzzy sets, allowing inter-class “fuzzy” overlap.

In step 1 of the Basic Isodata algorithm, the initial values
for the means are chosen randomly from the
training set, and clusters are formed iteratively according to the
steps. Sometimes elements in the same cluster may belong to
different classes, resulting in a longer training process and infe-
rior classification performance. In practice, we select the cluster
distribution to avoid the above-mentioned distribution. This “su-
pervising” procedure helps to further avoid the blindness in ini-
tialization, to achieve high training speed, a more reasonable
training result, and to avoid local minima. However, the weight
initialization vector in SIG-ANN has to be chosen randomly.

The fuzzy system with Gaussian membership function is the
only network that can combine numerical and linguistic infor-
mation [11]. It is possible to integrate expert experience into the
ISO-FUZ system by additional fuzzy units in parallel with the
rules generated from training the numerical data set. This ad-
vantage is especially valuable in solving biological and medical
problems.

TABLE V
STATISTICS OF A SAMPLE TRAINING PROCESS

The ISO-FUZ method requires human involvement at the
Basic Isodata initialization stage in order to get the minimum
inter-class cross-over. Hence it is not automatic to the same ex-
tent as SIG-ANN. This drawback comes out of the trade-off be-
tween performance and automation.

B. Training Time Comparison

The algorithms were implemented on a Pentium PC in Turbo
C. The computational complexities of SIG-ANN and ISO-FUZ
at each training epoch are tabulated in Table II. The analysis
shows that ISO-FUZ time cost per epoch is about 12.7 times
as much as that of SIG-ANN to reach optimal classification re-
sult. ISO-FUZ, however, needs much fewer epochs to converge:
ISO-FUZ 6 epochs vs. SIG-ANN 80 epochs. Table V gives the
statistics of a sample training process over the data set of sub-
ject no. 1, in which the error rate of ISO-FUZ is lower than that
of SIG-ANN, even when the MSE of the former is larger than
that of the latter. Taking the example in Fig. 5, ISO-FUZ can be
a good classifier even with large training MSE (as large as 0.5).
Further, practical training of ISO-FUZ is potentially quicker
than that of SIG-ANN.

C. Over-Training Situations

In the example of Fig. 5, the side-effect of over-training the
SIG-ANN, measured by , the error rate’s increasing ampli-
tudes, is twice that of ISO-FUZ. Generally speaking, there is
little over-training side effect for ISO-FUZ, while SIG-ANN
can more easily suffer from over-training. When over-trained,
SIG-ANN can yield such complex boundaries (overfitting)
between classes that the generalization performance is under-
mined. Fuzzy systems approximate the ideal classifier (if it
exists) by many patches (Kosko) [12]. It is the “local” nature of
these patches that makes a fuzzy system robust and insensitive
to over-training.

Overtraining of SIG-ANN can also result from a small
training set size relative to the number of hidden neurons, or
each class not being well represented in the training set. This
is also true for ISO-FUZ, with the number of hidden neurons
replaced with the number of rules.

V. CONCLUSION

This paper has proposed a new fuzzy approach for classifi-
cation of EMG patterns. The training process and classifica-
tion results of the proposed method are superior to those of
a neural network-based approach, primarily in that the fuzzy
system gives more consistent classification results and is insen-
sitive to over-training. These features may be attributed to the
structure of the ISO-FUZ system and the “supervised” selection
of fuzzy set initialization data by the Basic Isodata algorithm.
More favorably, it can adopt expert experience at the same time
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by additional fuzzy units in parallel. The fuzzy approach de-
scribed in this paper can be universally applied to other classi-
fication problems as well.

The classification rates by ISO-FUZ are subject-dependent
as in the SIG-ANN method evaluated, although with slight im-
provement. We are aiming for 95% with appropriate feature se-
lection.
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