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A Computational Method for Simultaneous LQ Optimal
Control Design via Piecewise Constant Output Feedback

Yong-Yan Cao and James Lam

Abstract—This paper is concerned with simultaneous linear-quadratic
(LQ) optimal control design for a set of LTI systems via piecewise constant
output feedback. First, the discrete-time simultaneous LQ optimal control
design problem is reduced to solving a set of coupled matrix inequalities
and an iterative LMI algorithm is presented to compute the feedback gain.
Then, simultaneous stabilization and simultaneous LQ optimal control de-
sign of a set of LTI continuous-time systems are considered via periodic
piecewise constant feedback gain. It is shown that the design of a periodic
piecewise constant feedback gain simultaneously minimizing a set of given
continuous-time performance indexes can be reduced to that of a constant
feedback gain minimizing a set of equivalent discrete-time performance in-
dexes. Explicit formulas for computing the equivalent discrete-time systems
and performance indexes are derived. Examples are used to demonstrate
the effectiveness of the proposed method.

Index Terms—Optimal control, periodic systems, piecewise constant
output feedback, simultaneous stabilization.

I. INTRODUCTION

Simultaneous stabilization of a collection of plants is an important
problem in the area of robust control design. It is concerned with the
determination of a single controller which simultaneously stabilize a
finite collection of plants. The technique finds its applications in stabi-
lizing linear plants characterized by different modes of operation (for
instance, failure modes) or nonlinear plants linearized at several equi-
libria. In designing a control system with integrity, we have a nominal
model, sayP0, and at some point a structural change, such as a loss
of a sensor or actuator, may occur, yielding a new model in the finite
setfP1; . . . ; Prg. In general, we expect to design a single controller
which not only stabilizes every possible model in the finite set, but also
provides acceptable performance.

Recently, Paskotaet al.[12] proposed a computational technique for
optimal simultaneous stabilization for linear single-input systems via
linear state feedback control. In [4], an iterative LMI algorithm was
proposed to obtain output/state feedback gain for a collection of mul-
tiple-input multiple-output (MIMO) continuous-time plants. Caoet al.
[5] proved that a finite number of continuous-time MIMO plants are
simultaneously stabilizable via state feedback and static output feed-
back if and only if a set of coupled linear-quadratic (LQ) control prob-
lems with some compatible cross terms in the cost functional is fea-
sible and then it is reduced to a coupled algebraic matrix inequalities
(ARIs) problem. Lam and Cao [11] addressed the LQ simultaneous
optimal control design for a set of continuous-time systems using the
LMI-based approach.

A multirate approach is presented in Khargonekaret al.[9], where a
simultaneously stabilizing control law based on periodic dynamic com-
pensators is proposed. The basic idea is to divide an output sampling
interval into as many subintervals as there are plants to be stabilized
and to implement a deadbeat controller for each plant. Although the
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approach employed is quite general, an issue it does not address is
the closed-loop performance. This is because excessive intersampling
ripple may occur under the restriction of deadbeat control. As a conse-
quence, the closed-loop system may exhibit large overshoots and may
be sensitive to parameters in many cases [6]. Although the problem
of constant output feedback stabilization is still open since the non-
convexity of the solution set, which renders it a nontrivial computa-
tional task, analytical and numerical alike. Fortunately, it was shown
in [2] that, if a system is controllable and observable, then for almost
all output sampling rates, any self-conjugate pole configuration can be
assigned to the discretized closed-loop system by periodic piecewise
constant output feedback, provided that the number of gain changes is
not less than the system controllability index. As a consequence, such a
control law can stabilize a much larger class of systems than a constant
output feedback.

In this paper, the simultaneous optimal control design is first ad-
dressed using the LMI approach for a collection of discrete-time MIMO
plants via constant output feedback control. We show that the design
of optimal simultaneous stabilization controller for a collection of dis-
crete-time systems can be reduced to an optimization problem sub-
ject to a set of coupled matrix inequalities. Simultaneously optimal de-
sign of a set of LTI systems using periodic piecewise constant output
feedback is then addressed. We show that the problem can be reduced
to the design of an constant output feedback gain minimizing a set
of equivalent discrete-time performance indexes for a set of LTI dis-
crete-time systems. The explicit computing formulation of the equiva-
lent discrete-time systems and performance indexes are derived.

II. SIMULTANEOUS LQ OPTIMAL CONTROL FOR

DISCRETE-TIME SYSTEMS

Consider the followingr discrete-time systems:

xi(k + 1) =Aixi(k) +Biui(k)

yi(k) =Cixi(k) (1)

where
xi 2 R

n state vector;
ui 2 R

m control vector;
yi 2 R

p control output vector fori = 1; . . . ; r.
The matricesAi,Bi, andCi are constant and with appropriate dimen-
sions and the triple(Ai; Bi; Ci) are assumed to be stabilizable and
detectable. The problem considered in this section is the design of a
fixed constant output feedback control law

ui(k) = Fyi(k) (2)

minimizing an upper-bound on the performance measures

Ji = E

1

k=0

xi(k)

ui(k)

T
Qi Si

STi Ri

xi(k)

ui(k)
(3)

for i = 1; . . . ; r, each associated with one of the plants (1), where
standard linear-quadratic assumptions are made for each system,
namely, allQi � 0,Ri > 0, andQi � SiR

�1

i STi � 0, and the math-
ematical expectationE is used to take into account the dependence of
Ji on the initial conditions. We assume thatxi(0) is a random variable
with zero mean and unit covariance.

It is well known that for a givenF , the performance measures in (3)
are given by

Ji = trace(Pi)

1083–4419/01$10.00 © 2001 IEEE
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where eachPi � 0 satisfies, the Lyapunov equation

AT

i PiAi +Q
i
+ (FCi)

TRiFCi = Pi; i = 1; . . . ; r; (4)

whereAi = Ai + BiFCi,Qi
= Qi + SiFCi + (SiFCi)

T.
Lemma 1: Consider discrete-time systems (1) with compatible

weighting matrices(Qi; Ri; Si) for i = 1; . . . ; r. The ith system
is stabilizable via constant output feedback if and only if there exist
matricesF andGpi such that

R
1=2
i FCi +R

�1=2
i (BT

i PiAi + STi ) = Gpi (5)

whereRi = Ri + BT

i PiBi, Pi � 0 is the solution of the algebraic
Riccati equation

AT

i PiAi � (AT

i PiBi + Si)R
�1

i (BT

i PiAi + STi )

+Qi +GT

piGpi = Pi: (6)

In this case, the performance index takes value asJi = trace(Pi).
If there exist real matricesF andGpi such that the Riccati equation
(6) have solutionsPi � 0 for i = 1; . . . ; r, then the feedback gain
simultaneously stabilizes ther systems and minimizes the performance
indexes (3) fori = 1; . . . ; r.

Proof: Sufficiency: Substituting (5) into (6), it is easy to find that
the Riccati equation (6) is equivalent to Lyapunov equation (4). Obvi-
ously, if there exist such matricesF andGpi, then Lyapunov equation
will hold. This means thatF is a stabilizing feedback control law and
minimizes the performance indexes (3).Necessity: Assume that there
exists a feedback gainF stabilizing every system, then Lyapunov equa-
tion (4) will have a solutionPi � 0. This means there exist real ma-
tricesF andGpi satisfying (5) such that (6) has a solutionPi � 0.

Theorem 1 gives a necessary and sufficient condition for static output
feedback stabilizability for a single discrete-time system. WhenGpi =
0; (6) is the standard Riccati equation to construct a state feedback
control law that minimizes the performance index (3). On the other
hand, if Riccati equation (6) has a solutionPi � 0 withGpi = 0 andF
can be selected to satisfy constraint (5), from optimal control theory it is
the optimal feedback gain via state feedback. Theorem 1 is an extension
of the result in [10] for discrete-time systems, where a similar necessary
and sufficient condition on the static output feedback stabilizability was
established for the continuous-time systems withQi = CT

i Ci; Si = 0
andRi = I . Since the concepts such as stabilizability and detectability
are not explicitly employed in Theorem 1, the proof is comparatively
much more transparent.

For a constant feedback gainF , which simultaneously stabilizes the
r systems, it generally does not minimize every performance index (3)
of the corresponding single plant, but there existPi � 0 such that the
following Lyapunov inequalities hold:

AT

i PiAi +Qi + (FCi)
TRiFCi < Pi: (7)

Generally, the performance valuestrace(Pi) � trace(P 0

i ) for i =
1; . . . ; r, whereP 0

i � 0 is the solution of Lyapunov equation (4).
Therefore, we aim to determine an output feedback gain to minimize
the sum of the performance index (3), i.e.,

J =

r

i=1

trace(Pi) (8)

wherePi � 0 satisfies Lyapunov inequality (7) fori = 1; . . . ; r.

III. ILMI A PPROACH TOSIMULTANEOUS OPTIMAL DESIGN

Note that for anyP 0

i � 0 satisfying Lyapunov equation (4),Pi >
P 0

i holds for anyPi > 0 satisfying Lyapunov matrix inequality (7) [3].
It is equivalent to

Qi + (FCi)
TRiFCi � Pi (Ai +BiFCi)

TPi

Pi(Ai +BiFCi) �Pi
< 0

which may be rewritten as

Qi � Pi AT

i Pi

PiAi �Pi � PiBiR
�1

i BT

i Pi
+ �Ti �i < 0 (9)

where�i = [R
1=2
i FCi R

�1=2
i BT

i Pi].
Remark 1: It is clear that (7) withQi = 0, Si = 0, andRi = I is a

necessary and sufficient condition for the stabilizability via a constant
output feedback for a single LTI discrete-time system.

Inequality (9) is still a quadratic matrix inequality. As a result of the
negative sign in the�PiBiR

�1

i BT

i Pi term, (7) cannot be simplified
to an LMI. To accommodate the term�PiBiR

�1

i BT

i Pi, we introduce
an additional design variableXi. Since

(Xi � Pi)
TBiR

�1

i BT

i (Xi � Pi) � 0

for anyPi andXi of the same dimensions, where the equality holds
if Xi = Pi, we obtain a sufficient condition for the feasibility of in-
equality (7), given by

Qi � Pi AT

i Pi

PiAi �Pi ��(Pi; Xi)
+ �Ti �i < 0 (10)

where

�(Pi; Xi) =XiBiR
�1

i BT

i Pi + PiBiR
�1

i BT

i Xi

�XiBiR
�1

i BT

i Xi:

Theorem 1: There exists a solution(Pi > 0; F ) satisfying matrix
inequality (7) if and only if there exist matricesF ,Pi > 0, andXi > 0
satisfying matrix inequality (10) fori = 1; . . . ; r.

This theorem can be established along a similar line as in [11].
Using Schur complement, inequality (10) is equivalent to the fol-

lowing matrix inequality

Qi � Pi AT

i Pi (FCi)
TR

1=2
i

PiAi �Pi ��(Pi; Xi) PiBiR
�1=2
i

R
1=2
i FCi R

�1=2
i BT

i Pi �I

< 0: (11)

This matrix inequality points to an iterative approach to solve forF and
Pi, namely, ifXi is fixed in (11), then it reduces to an LMI problem on
the unknownF andPi. The LMI problem is convex and can be solved
if a feasible solution exists.

WhenXi is fixed, however, LMI (11) is only a sufficient condi-
tion for the feasibility of the matrix inequality (7). In fact, if we find
a solution of LMI (11), then we find a solution of (7). But, in gen-
eral, it has no solution for a fixedXi. On the other hand, we can
solve the optimal output feedback problem repeatedly for modified sys-
tems with the pair(Ai; Bi; Ci) replaced by scaled pairs of the form
(Ai=�

j ; Bi=�
j ; Ci), where�j

� 1. This means that we can first de-
termine a solutionF j such that�(Ai + BiF

jCi) < �j . That is, the
closed-loop system matricesAi + BiF

jCi have eigenvalues in the
�j -circle of in the complexz-plane. From the above derivation, we



838 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS

obtain a necessary condition for the feasibility of (7). Thus, matrix in-
equality (7) has a solution(Pi > 0, F ) then there exist a real number
� � 1 and a matrixXi > 0 such that

Q
i
� Pi AT

i Pi (FCi)
TR

1=2
i

PiAi ��2Pi � PiBiR
�1
i BT

i Pi PiBiR
�1=2
i

R
1=2
i FCi R

�1=2
i BT

i Pi �I

< 0:

(12)

Based on the idea that all eigenvalues ofAi + BiFCi are reduced
progressively toward the unit circle through the reduction of�, we may
close in on the feasibility of (7). In other words, a stabilizing output gain
will be found once� � 1. This technique can even be used to achieve
a prescribed stability degree for the closed-loop system. The following
algorithm is a discrete-time version of the algorithm proposed in [11].

Algorithm 1: ILMI Algorithm for LTI Discrete-Time Systems
Step 1)SETj = 1,F j = 0 and�j be a sufficiently large positive
real number.
Step 2)LET Âj

i = (Ai+BiF
jCi)=�

j and SOLVE the following
optimization problem forP j

i .
OP1: Minimize r

i=1 trace(P
j
i ) subject to LMI constraints

P j
i > 0 and

(Â j
i )
TP j

i Â
j
i +Q j

i + (F jCi)
TRiF

jCi � P j
i < 0;

i = 1; . . . ; r (13)

whereQ
j

i = Qi + SiF
jCi + (SiF

jCi)
T. SetXj

i = P j
i .

Step 3)SOLVE the following optimization problem forP j
i , F j ,

and�j .
OP2: Minimize�j subject to the LMI constraints:

Q j
i � P j

i AT
i P

j
i �

P j
i Ai �(�j)2P j

i ��(P j
i ; X

j
i ) �

R
1=2
i F jCi R

�1=2
i BT

i P
j
i �I

< 0 (14)

for i = 1; . . . ; r, where� represents blocks that are readily
inferred by symmetry and�(P j

i ; X
j
i ) = Xj

iBiR
�1
i BT

i P
j
i

+P j
i BiR

�1
i BT

i X
j
i � Xj

iBiR
�1
i BT

i X
j
i . Denote�̂j andF̂ j as,

respectively, the solutions�j andF j of OP2.
Step 4)IF �̂j � 1, SET �j = 1, GOTO Step 6, ELSE SET
j = j + 1 and�j = �̂j�1, F j = F̂ j�1.
Step 5)IF �j�1 � �j < �, a pre-determined tolerance, GOTO
Step 9, ELSE GOTO Step 2.
Step 6)SOLVE the following optimization problem forP j

i and
F j .
OP3: Minimize r

i=1 trace(P
j
i ) subject to the LMI constraints.

Q j
i � P j

i AT
i P

j
i �

P j
i Ai �P j

i ��(P j
i ; X

j
i ) �

R
1=2
i F jCi R

�1=2
i BT

i P
j
i �I

< 0; (15)

for i = 1; . . . ; r. DenoteP̂ j
i andF̂ j as, respectively, the solu-

tionsP j
i andF j of OP3.

Step 7)IF r
i=1 ktrace(X

j
i � P̂ j

i )k < �, a pre-determined toler-
ance, GOTO Step 8, ELSE SETj = j + 1, Xj

i = P̂ j�1
i GOTO

Step 6.
Step 8)IF �j = 1, obtain the optimal solutionP opt

i = P̂ j
i ,

F opt = F̂ j . STOP.
Step 9)This algorithm cannot get a feasible solution. STOP.

Remark 2: In Step 1, we may set�1 � kAk, then optimization
OP1 must exist a feasible solution atj = 1. For j > 1, the exis-
tence of solution of OP1 can be guaranteed by (14) of the previous
iteration. On the other hand, the existence of solution of optimization
OP2 can be guaranteed by OP1. When a feasible solution is found in
Step 3, that is, the solution of OP2 satisfies�̂j � 1, the algorithm
will go to Step 6 to compute iteratively the optimal solution. At this
step, optimization OP3 is feasible because OP2 has a solution�̂j � 1.
For example, the solution of (14)P j

i andF j also satisfies (15). In the
subsequent iterations, the solution of OP3 can be guaranteed by the
solution of the previous iteration. If the initial conditionsxi(0) of sys-
tems (1) are known, we should use the following minimization objec-
tive r

i=1 [xTi (0)P
j
i xi(0)] in OP1 and OP3 to compute the optimal

feedback gain.
Remark 3: In practical control design, it is always desirable to de-

sign a control system which is not only stable, but also guarantees an
adequate level of performance for every possible operating condition.
Here, the guaranteed-cost performance design can also be treated and
a minimization of a bound on all the performance measures,
, can be
sought where

trace(Pi) � 
; i = 1; . . . ; r (16)

since only the linear constraints (16)trace(P j
i ) � 
, i = 1; . . . ; r

are required to be added in OP1, OP2 and OP3.
Remark 4: The state feedback optimal design corresponds to the

special case whereCi = I . With Qi = 0 andRi = I , the proposed
algorithm then determines the simultaneous stabilizability ofr plants
via constant output feedback.

IV. SIMULTANEOUS LQ DESIGN FORMULTIRATE

SAMPLED-DATA SYSTEMS

To make a distinction, continuous-time signals will be represented
by (�) around an independent variable, whereas discrete-time signals
will be represented by bracket[�] in the following.

It is interesting to explore the possibility to simultaneously stabilize
a collection of LTI systems using periodic time-varying output feed-
back gains. A trivial necessary condition that the optimal multi-model
constant/static output feedback problem has a solution for a time-in-
variant multi-model system of the form (1) is that there exists a sta-
bilizing output feedback gain which simultaneously stabilizes all the
systems. It is a well known fact that not all systems are stabilizable by
constant output feedback, thus the approach proposed in Section III is
not generally applicable. However, analogous to the single model case
we can try to employ periodic constant output feedback for the con-
trol of LTI systems which are not stabilizable via constant output feed-
back. From [2], [9], it is known that provided the periodN is chosen
sufficiently high every LTI system can be stabilized by using periodic
constant output feedback. Moreover, not only can each model of the
multi-model system be stabilized by a periodic constant output feed-
back but an arbitrary fast dynamics can also be achieved simultane-
ously for all the models.

Consider the following LTI continuous-time systems:

_xi(t) =Aixi(t) +Biu(t)

yi(t) =Cixi(t); i = 1; . . . ; r (17)

where(Ai; Bi) and(Ai; Ci) are assumed to be stabilizable and de-
tectable, respectively. The objective is to design, if possible, a controller
which performs well for each of these models. Assume that the sam-
pling period ish0, whereh0 is to be chosen such that(eA h ; Ci) is
detectable fori = 1; . . . ; r. The output measurements are taken at
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time instantst = kh0, k = 0; 1; 2; . . .. The periodic output feedback
control law is given by

u(t) = F (t)y(kh0); F (t+ h0) = F (t);

for kh0 � t < (k + 1)h0, which simultaneously minimizes the fol-
lowing continuous-time performance index:

Ji = E
1

0

xi(t)

ui(t)

Qi 0

0 Ri

xi(t)

ui(t)
dt (18)

for i = 1; . . . ; r.
We consider a controller which samples all the plant outputs with

the same periodh0, and changes theith plant input with shorter pe-
riod hi (and is kept constant over the time interval ofhi), wherehi =
h0=Ni, andNi are some positive integers.h0 is called frame period,
andNi input multiplicity. This means that each component is fed into
the system by means of the following zeroth-order hold mechanism

ui(t) = ui(jhi); t 2 [jhi; (j + 1)hi): (19)

As in [2] and [8], the control law is assumed to be piecewise constant.
That is, it is given by

ui(kh0 + jhi) = fij(k)y(kh0) (20)

for i = 1; . . . ; m, j = 0; . . . ; Ni � 1, or

ui[kN + j] = fij(k)y[kN ] (21)

wherefij(k) is a row vector denoting the time-varying feedback gain.
This type of controller is calledmultirate input constant output feed-
back controller[2], [8], or piecewise constant output feedback con-
troller.

A. Piecewise Constant Output Feedback System

For simplicity, we first consider the following single LTI contin-
uous-time system

_x(t) = Ax(t) +Bu(t); y(t) = Cx(t): (22)

Let N be the least-common multiple of the entries of
fNiji = 1; . . . ; mg andh = h0=N , ni = N=Ni. Let (Ad; Bd; C)
denote the discrete-time system of (22) at rate1=h. That is,
Ad = exp(Ah), Bd =

h

0
exp(As)B ds. The discretized system of

(22) at rate1=h is as follows:

x[l+ 1] = Adx[l] +Bdu[l]; y[l] = Cx[l]: (23)

Denotebi =
h

0
exp(As)bi ds, wherebi is theith column ofB. De-

fine

A =AN
d ; (24)

B = A
n (N �1)
d b1 � � � b1 � � �

A
n (N �1)
d bm � � � bm 2 Rn�N (25)

F k = f̂ T
1 (k) � � � f̂ T

m(k) 2 RN�p

where

N =

m

i=1

Ni; f̂i(k) = fTi; 0(k) � � � fTi;N �1(k)
T

:

Define

B(j) = b̂1(j) � � � b̂m(j) (26)

whereb̂i(j) 2 Rn�N , j = 0; . . . ; N are defined as

b̂i(0) = 0

b̂i(vi) = �bi(vi) 0 � � � 0

b̂i(ni + vi) = Av

d bi �bi(vi) 0 � � � 0 ;

...

b̂i((Ni � 1)ni + vi) = A
(N �2)n +v
d bi � � �

An +v
d bi Av

d bi �bi(vi)

where�bi(vi) =
v h

0
exp(As)bi ds, vi = 1; . . . ; ni. Obviously,

�bi(ni) = bi; b̂i(N) = A
(N �1)n
d bi � � � bi

B(N) =B; B(j) 2 Rm�N :

From (22), we have

x(kh0 + jh)

= Aj

dx(kh0) +
kh +jh

kh

exp[A(kh0 + jh� t)]Bu(t)dt

= Aj

dx(kh0) + Vk(j)y(kh0)

where

Vk(j) =
kh +jh

kh

exp[A(kh0 + jh� t)]BF (t)dt

=
kh +jh

kh

exp[A(kh0 + jh� t)]

m

i=1

bifi(t)dt

=

m

i=1

Vk(j; i)

wherefi(t) is theith row vector ofF (t) and

Vk(j; i)

=
kh +jh

kh

exp[A(kh0 + jh� t)]bifi(t)dt

=

n �1

l=0

kh +(l+1)h

kh +lh

exp[A(kh0 + jh� t)]bifil(k)dt

+
kh +jh

kh +n h

exp[A(kh0 + jh� t)]bifi;n (k)dt

wherenij is an integer satisfyingnijni � j < (nij+1)ni. Obviously
0 � nij � Ni for all j. Note thatfil(k) is a constant vector. Hence,

Vk(j; i) =

n �1

l=0

(l+1)h

lh

exp[A(jh� t)]bi dtfil(k)

+
jh

n h

exp[A(jh� t)]bi dtfi; n (k)

=

n �1

l=0

exp[A((nij � l� 1)ni + vi)h]

�
h

0

exp[A(hi � t)]bi dtfil(k)

+
v h

0

exp[A(vih � t)]bi dtfi; n (k)

= b̂i(j)f̂i(k)
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wherevi = j � nijni. Hence

x(kh0 + jh) =Aj

dx(kh0) +

m

i=1

b̂i(j)f̂i(k)y(kh0)

=Aj

dx(kh0) +B(j)u(kh0)

u(kh0) =F ky(kh0)

whereu(t) is an augmented input and maintains constant on the in-
terval [kh0; (k + 1)h0). The discrete formula of above equations are

x[kN + j] =Aj

dx[kN ] +B(j)u[kN ] (27)

u[kN ] =F ky(kN); j = 0; . . . ; N (28)

whereu[kN + j] will maintain constant forj = 0; . . . ; N � 1. Then,
we have

x[(k + 1)N ] = Ax[kN ] +Bu[kN ] (29)

which is the discretized state equation of continuous-time system (22)
with sampling timeh0. With (27), we can easily compute the dis-
cretized state response with sampling timeh.

Remark 5: If the multirate controller (20) is assumed to be periodic
piecewise constant, the transition matrix (for the frame periodh0) of
the closed-loop system becomes� = A +BFC (see [2]) where

F = fT1; 0 � � � fT1;N �1 � � � fTm; 0 � � � fTm;N �1

T

is a constant matrix. From (29), we can easily obtain the above transi-
tion matrix. It is shown in [2] that for almost everyh0, the matrixBF
can be assigned an arbitrary value by suitable choice ofF if (A; B)
is controllable and ifNi � �i, i = 1; . . . ; m, where�i is a locally
minimum controllability index of(A; B) becauseB has rankn in such
case. If(C; A) is observable, then the eigenvalues of� can be assigned
arbitrarily for almost everyh0 by suitable choice ofF .

B. Discretization of Quadratic Performance Index

Consider the continuous-time quadratic performance index

min
u[k]

J = E
1

0

xT(t)Qx(t) + uT(t)Ru(t) dt (30)

whereR > 0 andQ � 0 are constant matrices. Sampling (30) at rate
1=h yields the equivalent discrete-time weights [1]

Rd =
h

0

H T(t)QH(t) +R dt

Qd =
h

0

(eAt)TQeAt dt; Sd =
h

0

(eAt)TQH(t)dt

whereH(t) =
t

0
eAsB ds. It can be proven that the matrixQd �

SdR
�1
d STd � 0 if Q � 0 andR > 0, andQd � SdR

�1
d STd > 0 if

Q > 0 andR > 0.
Then the sampled-data optimal control problem becomes finding

multirate feedback control law (20) to minimize the following dis-
crete-time performance index

J = E

1

j=0

x[l]

u[l]

T
Qd Sd

STd Rd

x[l]

u[l]
(31)

with the piecewise constant output feedbacku[l] at rate1=h. From the
last subsection, we can rewrite (29) as a LTI system

xN [k + 1] =AxN [k] +BuN [k] (32)

yN [k] =CxN [k] (33)

uN [k] =F kyN [k] (34)

which can be seen as the sampling of system (23) atN , wherexN [k] =
x[kN ], yN [k] = y[kN ],uN [k] = u[kN ],k � 0, with initial condition
xN [0] = x[0]. The inputu[kN + j] in (23) and (31) can be written as

u[kN + j] =Fj(k)y[kN ] = Wj+1uN [k]

j = 0; . . . ; N � 1 (35)

whereWj = fwj

ilg 2 Rm�N , are defined as

wj

il =
1; l =

i�1

r=1

Nr + nij + 1

0; otherwise

; i = 1; . . . ; m;

l = 1; . . . ; N:

(36)

The LTI system (32) can be seen as a state-sampled representation
of (23), feeding by an augmented input vector (34) and producing an
augmented output vector (33). It is easy to find that system (32) is stable
if and only if system (23) is asymptotically stable. Consequently, with
initial conditionxN [0] = x[0], (31) can be rewritten as

J = E

1

k=0

xN [k]

uN [k]

T ~Q ~S

~ST ~R

xN [k]

uN [k]
(37)

where ~Q; ~S and ~R are time-invariant matrices

~Q =

N�1

j=0

(Aj

d)
TQdA

j

d (38)

~R =

N�1

j=0

WT
j+1RdWj+1 +

N�1

j=1

� B(j)TQdB(j) +B(j)TSdWj+1 +WT
j+1S

T
d B(j)

(39)

~S =

N�1

j=0

(Aj

d)
TSdWj+1 +

N�1

j=1

(Aj

d)
TQdB(j): (40)

The above derivation leads to the following result.
Theorem 2: Assume that continuous-time system (22) is given. The

optimal design of periodic constant output feedback control law (20)
minimizing continuous-time performance (30) can be reduced to that of
a constant output feedback control lawF minimizing the discrete-time
performance index (37).

C. Simultaneous LQ Optimal Design

The above derivation for a single plant can be easily extended to
simultaneous LQ optimal design forr continuous-time systems (17)
by the same periodic constant output feedback controller (20). By the
derivation of the last subsection, the continuous-time system model
(17) and the periodic piecewise constant output feedback control law
(20) can be reduced to the following LTI discrete-time system models:

xi;N [k + 1] =Aixi; N [k] +Biui;N [k] (41)

yi; N [k] =Cixi;N [k] (42)

ui;N [k] =Fyi; N [k]

whereAi, Bi can be determined similarly as in (24) and (25), respec-
tively.

Theorem 3: Assume that ther continuous-time systems (17) are
given. The simultaneous optimal design of periodic constant output
feedback control law (20) minimizing continuous-time performances
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TABLE I
COMPARISON OFRESULTS AT DIFFERENTSAMPLING RATES

(18) can be reduced to that of a constant output feedback control law
F minimizing the discrete-time performance index

Ji = E

1

k=0

xi;N [k]

ui;N [k]

T ~Qi
~Si

~STi ~Ri

xi;N [k]

ui;N [k]
(43)

for the LTI discrete-time systems (41), (42), where~Qi, ~Ri, and ~Si can
be determined similarly as in (38)–(40), respectively, fori = 1; . . . ; r.

Based on the above theorem, after selecting the frame periodh0 and
the input multiplicitiesNi, Algorithm 1 of Section III can be used to
solve the feedback gainF .

V. EXAMPLES

Example 1: Consider the following harmonic oscillator model:

_x(t) =
0 1

�1 0
x(t) +

0

1
u(t)

y(t) = [ 1 0 ] x(t); x0(t) = [ 1 1 ]T

and we wish to minimize the linear quadratic regulator index

J =
1

0

1

2
x
2

1(t) + x
2

2(t) + u
2(t) dt:

Table I summarizes the resulting discrete performances at different
sampling rates using periodic constant output feedback obtained by our
ILMI algorithm. We find that asN increases, the optimal performance
index decreases, whenN is much larger than the system controllability
index (in this example, it is equal to Step 1, the optimal performance
indexes at different rates are close to that of continuous periodic output
feedback given in [7]. However, whenh = 3 andh = 10, N = 3,
weak performance indexes are obtained. This is because both cases are
simply too close to the inadmissible sampling time� [1].

Example 2: Consider two plants

G1(s) =
1

s+ 1
; G2(s) =

as+ 1

(s+ 1) (s� 1)

wherea 6= 1 is a constant. It is not difficult to deduce that when
a < �1, the plants are not simultaneously stabilizable by a linear
time-invariant controller. Now we use the approach of the last section

Fig. 1. State responses with periodic constant controllerF .

Fig. 2. State responses with periodic constant controllerF .

to find a simultaneous stabilizing periodic controller fora = �2. That
is, we takeQi = 0:001I andRi = 0:001; Si = 0 for i = 1; 2. Let
the sampling time beh = 1. WhenN = 1, the ILMI algorithm cannot
obtain a feasible solution, but when we selectN = 2, after 25 itera-
tions we obtain

F
1 = [ 7:783 �4:682 ]T :

This means that the above two plants can be simultaneously stabilized
by a 2-periodic piecewise output feedback gain. When we setN = 10,
after 21 iterations we obtain control law

F
2 = [10:161 7:992 5:984 4:096 2:290 0:5304

�1:219 �2:993 �4:827 �6:757]T :

Figs. 1 and 2 show state responses of the plants with the above pe-
riodic piecewise constant controllers under initial conditionsx10 = 1
andx20 = [2; �1]T. Obviously, the states of both systems converge to
0. However, the curves are much smoother whenN is bigger. On the
other hand, although the systems are stabilized by settingN = 2, the
systems have larger overshoot whenN is small.



842 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 5, OCTOBER 2001

REFERENCES

[1] H. Al-Rahmani and G. F. Franklin, “A new optimal multirate control
of linear periodic and time-invariant systems,”IEEE Trans. Automat.
Contr., vol. 35, pp. 406–415, Apr. 1990.

[2] M. Araki and T. Hagiwara, “Pole assignment by multirate sampled-data
output feedback,”Int. J. Contr., vol. 44, pp. 1661–1673, 1986.

[3] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan,Linear Matrix
Inequalities in System and Control Theory. Philadelphia, PA: SIAM,
1994.

[4] Y.-Y. Cao and Y.-X. Sun, “Static output feedback simultaneous stabi-
lization: ILMI approach,”Int. J. Contr., vol. 70, no. 5, pp. 803–814,
1998.

[5] Y.-Y. Cao, Y.-X. Sun, and J. Lam, “Simultaneous stabilization via static
output feedback and state feedback,”IEEE Trans. Automat. Contr., vol.
44, pp. 1277–1282, June 1999.

[6] A. Feuer and C. A. Goodwin, “Generalized sampled-data functions: Fre-
quency domain analysis of robustness, sensitivity, and intersample dif-
ficulties,” IEEE Trans. Automat. Contr., vol. 39, pp. 1042–1047, May
1994.

[7] G. L. Hyslop, H. Schattler, and T.-J. Tarn, “Descent algorithms for op-
timal periodic output feedback control,”IEEE Trans. Automat. Contr.,
vol. 37, pp. 1893–1904, Dec. 1992.

[8] P. T. Kabamba, “Control of linear systems using generalized sam-
pled-data hold functions,”IEEE Trans. Automat. Contr., vol. AC-32,
pp. 772–783, Sept. 1987.

[9] P. P. Khargonekar, K. Poolla, and A. Tannenbaum, “Robust control of
linear time invariant plants using periodic compensation,”IEEE Trans.
Automat. Contr., vol. AC-30, pp. 1088–1096, Nov. 1985.
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Attributed Concept Maps: Fuzzy Integration and Fuzzy
Matching

S.-W. Chen, S. C. Lin, and K. E. Chang

Abstract—A concept map, typically depicted as a connected graph, is
composed of a collection of propositions. Each proposition forming a se-
mantic unit consists of a small set of concept nodes interconnected to one
another with relation links. Concept maps possess a number of appealing
features which make them a promising tool for teaching, learning, evalua-
tion, and curriculum planning. In this paper, we extend concept maps by as-
sociating their concept nodes and relation links with attribute values which
indicate the relative significance of concepts and relationships in knowl-
edge representation. The resulting maps are calledattributed concept maps
(ACM). Assessing students will be conducted by matching their ACMs with
those prebuilt by experts. The associated techniques are referred to asmap
matching techniques. The building of an expert ACM has in the past been
done by only one specialist. In this study, we integrate a number of maps de-
veloped by separate experts into a single map, called themaster map(MM),
which will serve as a prototypical map in map matching. Both map inte-
gration and map matching are conceptualized in terms of fuzzy set disci-
pline. Experimental results have shown that the proposed ideas of ACM,
MM, fuzzy map integration, and fuzzy map matching are well suited for
students with high performances and difficult subject materials.

Index Terms—Attributed concept maps (ACMs), concept mapping, fuzzy
map integration, fuzzy map matching, master maps (MMs).

NOMENCLATURE

CM Concept map.
ACM Attributed concept map.
EACM Extended attributed concept map.
MM Master map.
X Universal set.
A; B Subsets ofX.
g( ) Fuzzy measure function.
g�( ) Sugeon fuzzy measure function.
� Sugeon fuzzy measure parameter.
di Fuzzy density ofxi 2 X.
S = fs1; . . . ; sng Set of specialists.
S0 = fs0

1; . . . ; s
0

ng Sorted set of specialists.
Mi ith ACM.
M 0

i ith EACM.
Ni; Li Sets of nodes and links of ACMMi, respec-

tively.
e Entity representing a node or a link.
ai Attribute value of theith node.
aij Attribute value of the link connecting theith

node andjth node.
C(aj) Confidence of attributeai.
ci(sj) Confidence of specialistsj in attributeai.
� Positive constant.
H(i) Set of first-order neighbors of theith node.
~H(i) Fuzzy version ofH(i).
�
(i)
~H

Membership function of~H(i).
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