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A Computational Method for Simultaneous LQ Optimal approach employed is quite general, an issue it does not address is
Control Design via Piecewise Constant Output Feedback the closed-loop performance. This is because excessive intersampling
ripple may occur under the restriction of deadbeat control. As a conse-
Yong-Yan Cao and James Lam guence, the closed-loop system may exhibit large overshoots and may
be sensitive to parameters in many cases [6]. Although the problem
of constant output feedback stabilization is still open since the non-
(LQ) optimal control design for a set of LTI systems via piecewise constant gonveXIty of the Splutlon set, WhI.Ch rer}ders Ita nontrlvllal computa-
output feedback. First, the discrete-time simultaneous LQ optimal control  tional task, analytical and numerical alike. Fortunately, it was shown
design problem is reduced to solving a set of coupled matrix inequalities in [2] that, if a system is controllable and observable, then for almost
and an iterative LMI algorithm is presented to compute the feedback gain.  all output sampling rates, any self-conjugate pole configuration can be
Then, simultaneous stabilization and simultaneous LQ optimal control de- assigned to the discretized closed-loop system by periodic piecewise

sign of a set of LTI continuous-time systems are considered via periodic . . .
piecewise constant feedback gain. It is shown that the design of a periodic constant output feedback, provided that the number of gain changes is

piecewise constant feedback gain simultaneously minimizing a set of given N0t less than the system controllability index. As a consequence, such a
continuous-time performance indexes can be reduced to that of a constant control law can stabilize a much larger class of systems than a constant
feedback gain minimizing a set of equivalent discrete-time performance in-  gutput feedback.

dexes. Explicit formulas for computing the equivalent discrete-time systems In this paper, the simultaneous optimal control design is first ad-

d perf ind derived. E | dtod trat . . . .
{ahne eafeefc?i:,n;ﬁggg g; tﬁ;e;r:;gse%r%eemoéémp e afe tised fo demonstrate dressed using the LMI approach for a collection of discrete-time MIMO
plants via constant output feedback control. We show that the design
of optimal simultaneous stabilization controller for a collection of dis-
crete-time systems can be reduced to an optimization problem sub-
ject to a set of coupled matrix inequalities. Simultaneously optimal de-
|. INTRODUCTION sign of a set of LTI systems using periodic piecewise constant output
. I . . . feedback is then addressed. We show that the problem can be reduced
Simultaneous stabilization of a collection of plants is an mporta@

- - . ) the design of an constant output feedback gain minimizing a set
problem in the area of robust control design. It is concerned with th . . . . )
S . ) . .. _Of equivalent discrete-time performance indexes for a set of LTI dis-
determination of a single controller which simultaneously stabilize

&ete-time systems. The explicit computing formulation of the equiva-

f_|n_|te c_ollectlon of plants. The_ technlqu_e finds its applications n S‘tabl'ént discrete-time systems and performance indexes are derived.
lizing linear plants characterized by different modes of operation (for

instance, failure modes) or nonlinear plants linearized at several equi-
libria. In designing a control system with integrity, we have a nominal
model, sayFy, and at some point a structural change, such as a loss
of a sensor or actuator, may occur, yielding a new model in the finite Consider the following: discrete-time systems:

set{Pi. ..., P.}. In general, we expect to design a single controller

which not only stabilizes every possible model in the finite set, but also zi(k+1) = Aa(k) + Biui(k)

provides acceptable performance.

Recently, Paskotet al.[12] proposed a computational technique for yi(k) = Cizi(k) @
optimal simultaneous stabilization for linear single-input systems V\iﬁhere
linear state feedback control. In [4], an iterative LMI algorithm was
propc_)sed to optain output/state feedba_lck gain _for a collection of mul-ui € R™  control vector:
tiple-input multiple-output (MIMO) continuous-time plants. Ceioal. y; € R®  control output vector foi = 1, ..., r.

[5] proved that a finite number of continuous-time MIMO plants argpo matricest;, B;, andC; are constant and with appropriate dimen-

simultaneously stabilizable via state feedback and static output feg%—ns and the tripléA;, B:, C;) are assumed to be stabilizable and

back if _and only if a set o.f coupled Ilnear-quadratlc (LQ) co_ntrol PrObdetectabIe. The problem considered in this section is the design of a
lems with some compatible cross terms in the cost functional is f

. o . S 'Sed constant output feedback control law
sible and then it is reduced to a coupled algebraic matrix inequalities

Abstract—This paper is concerned with simultaneous linear-quadratic

Index Terms—Optimal control, periodic systems, piecewise constant
output feedback, simultaneous stabilization.

Il. SIMULTANEOUS LQ OPTIMAL CONTROL FOR
DISCRETETIME SYSTEMS

r; € R™  state vector;

(ARIs) problem. Lam and Cao [11] addressed the LQ simultaneous wi(k) = Fyi(k) @)
optimal control design for a set of continuous-time systems using the
LMI-based approach. minimizing an upper-bound on the performance measures
A multirate approach is presented in Khargoneiaal.[9], where a
simultaneously stabilizing control law based on periodic dynamic com- - = [a(k) Tro, s x; (k)
pensators is proposed. The basic idea is to divide an output sampling Ji=& I; {“(k)} {5? R} |:ui(k):| ©)

interval into as many subintervals as there are plants to be stabilized
and to implement a deadbeat controller for each plant. Although the i = 1, ..., r, each associated with one of the plants (1), where
standard linear-quadratic assumptions are made for each system,
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where eactP; > 0 satisfies, the Lyapunov equation [ll. ILMI A PPROACH TOSIMULTANEOUS OPTIMAL DESIGN

o ‘ Note that for anyP? > 0 satisfying Lyapunov equation (4F; >
ATPA + Q,+ (FC‘i)TRiFCi = B, i=1,...,r (4)  P? holds for anyP; > 0 satisfying Lyapunov matrix inequality (7) [3].
It is equivalent to

1=

whered; = A; + B,FC;,Q, = Q; + S:FC; + (S;FC;)".

Lemma 1: Consider discrete-time systems (1) with compatible Q,+ (FC)"R,FC; - P, (4i+B,FC))"P, <0

weighting matricegQ;, R;, S;) fori = 1, ..., r. Theith system Pi(A; + B;FC5) —P;
is stabilizable via constant output feedback if and only if there exist _
matricesF’ andG,; such that which may be rewritten as

—1/2 — 1/ ‘ Q, - P A;rpi R -

RPPC:+ R (Bl PA +57) =Gy (5) { P4 -P-PBRBp ) TEE<0 0O
whereR; = R; + B! P;B;, P, > 0 is the solution of the algebraic where=, = [RWFC; R‘WBTP,'].
Riccati equation Remark 1: Itis clear that (7) withy; = 0, 5; = 0,andR; = Iisa

necessary and sufficient condition for the stabilizability via a constant
Al PA; — (AT PB; + S))R7' (B PA; + 5] output feedback for a single LTI discrete-time system.
T Inequality (9) is still a quadratic matrix inequality. As a result of the
+ Qi + GpiGyi = P (6)  negative sign in the- P, B; R7' BX P, term, (7) cannot be simplified

to an LMI. To accommodate the termP,; B; R; ' B]" P;, we introduce
In this case, the performance index takes valudias= trace(F;). an additional design variabl§,. Since

If there exist real matrice$’ andG,; such that the Riccati equation

(6) have solutiond” > 0 fori = 1, ..., r, then the feedback gain (X; = P)'B:R;'BY (X, —P,) >0
simultaneously stabilizes thesystems and minimizes the performance ' -
indexes (3) for = 1, ..., r.

. . o ) o ) for any P; and X; of the same dimensions, where the equality holds
Proof: SufficiencySubstituting (5) into (6), itis easy tofind thatis v _ p '\ve obtain a sufficient condition for the feasibility of in-

the Riccati equation (6) is equivalent to Lyapunov equation (4). Obviz, i ;

X ) X . quality (7), given by
ously, if there exist such matricdsandG,,;, then Lyapunov equation
will hold. This means thaf’ is a stabilizing feedback control law and Q.- P, AT P,
minimizes the performance indexes (BlecessityAssume that there ' o |t 272 <0 (20)
exists a feedback gaifi stabilizing every system, then Lyapunov equa- PA; —-P—-0(F, Xi)
tion (4) will have a solution”; > 0. This means there exist real ma-
tricesF andG,; satisfying (5) such that (6) has a soluti#h> 0. m  Where

Theorem 1 gives a necessary and sufficient condition for static output ) I e

feedback stabilizability for a single discrete-time system. Wgn= O(P;, Xi) =X,B:R; B; i+ B:R B; X,
0, (6) is the standard Riccati equation to construct a state feedback _ X.B.R'B'X,
control law that minimizes the performance index (3). On the other e T
hand, if Riccati equatl_on ©) hasgsolutlﬂnz OW'.th Gpi = 0andF ... _Theorem 1: There exists a solutionP; > 0, F') satisfying matrix
can be selected to satisfy constraint (5), from optimal control theory it.is . : ; . . -

; > - inequality (7) if and only if there exist matricés P, > 0,andX; > 0
the optimal feedback gain via state feedback. Theorem lis an extensmp . o . )

. : . - satisfying matrix inequality (10) for =1, ..., r.

of the resultin [10] for discrete-time systems, where a similar necessary . ; L .

- o . . his theorem can be established along a similar line as in [11].
and sufficient condition on the static output feedback stabilizability was Using Schur complement, inequality (10) is equivalent to the fol-
established for the continuous-time systems Wiith= CXC;, S; = 0 lowin ?natrix ine u:Iit » INeq y q
andR; = I. Since the concepts such as stabilizability and detectability 9 quaiity

are not explicitly employed in Theorem 1, the proof is comparatively 0,-P ATP (ch)‘TR}/Q
much more transparent. ' / o M
For a constant feedback gaify which simultaneously stabilizes the P4, —P-O(P. X)) PBE? <0 (11)
r systems, it generally does not minimize every performance index (3) | /2 pc, R Y?BI'p, -I
of the corresponding single plant, but there eXist> 0 such that the ’ ' '
following Lyapunov inequalities hold: This matrix inequality points to an iterative approach to solveéfand
P;, namely, ifX; is fixed in (11), then it reduces to an LMI problem on
A'PA 4+ 0. + (FC,)"RiFC; < P.. @ the unknownZ" and P;. The LMI problem is convex and can be solved

if a feasible solution exists.

When X; is fixed, however, LMI (11) is only a sufficient condi-
tion for the feasibility of the matrix inequality (7). In fact, if we find
Qesolution of LMI (11), then we find a solution of (7). But, in gen-
eral, it has no solution for a fixed’;. On the other hand, we can
solve the optimal output feedback problem repeatedly for modified sys-
, tems with the paif A;, B;, C;) replaced by scaled pairs of the form

J— Z trace(P;) ®) (Ai/,_ﬁf./ Bi/,@f,_ Ci), wheres’ > 1. This means that we can first de-
e termine a solutionf™’ such that(A; 4+ B; F’C;) < . That s, the
closed-loop system matrice$; + B; F”C; have eigenvalues in the
whereP; > 0 satisfies Lyapunov inequality (7) for=1, ..., r. 37 -circle of in the complex:-plane. From the above derivation, we

Generally, the performance valuesice(P;) > trace(P?) fori =

1, ..., », whereP? > 0 is the solution of Lyapunov equation (4).
Therefore, we aim to determine an output feedback gain to minimi
the sum of the performance index (3), i.e.,
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obtain a necessary condition for the feasibility of (7). Thus, matrix in- Remark 2: In Step 1, we may set’ > ||A||, then optimization
equality (7) has a solutiofP; > 0, F') then there exist a real numberOP1 must exist a feasible solution at= 1. Forj > 1, the exis-

3 > 1 and a matrixX; > 0 such that tence of solution of OP1 can be guaranteed by (14) of the previous
iteration. On the other hand, the existence of solution of optimization
Q.- P ArP (FCi)'l‘R}/2 OP2 can be guaranteed by OP1. When a feasible solution is found in
PA;  —#*P, — PB:R7'B'P, RBiRi—l/Z <0. Step 3, that is, the solution of OP2 satisfigs < 1, the algorithm

will go to Step 6 to compute iteratively the optimal solution. At this
RI°FC; R7'\?BIP, -1 step, optimization OP3 is feasible because OP2 has a solttigh.
(12)  For example, the solution of (14} andF’ also satisfies (15). In the
subsequent iterations, the solution of OP3 can be guaranteed by the
Based on the idea that all eigenvaluesqf+ B; FC; are reduced Solution of the previous iteration. If the initial conditiong(0) of sys-
progressively toward the unit circle through the reductiod ofle may tems (1) are known, we should use the following minimization objec-
close in on the feasibility of (7). In other words, a stabilizing output gaitive >_/_, [+} (0)P/x;(0)] in OP1 and OP3 to compute the optimal
will be found once? < 1. This technique can even be used to achieviéedback gain.
a prescribed stability degree for the closed-loop system. The followingRemark 3: In practical control design, it is always desirable to de-
algorithm is a discrete-time version of the algorithm proposed in [113ign a control system which is not only stable, but also guarantees an
Algorithm 1:  ILMI Algorithm for LTI Discrete-Time Systems adequate level of performance for every pos_sible operating condition.
Step 1)SETj = 1, F/ = 0 and3’ be a sufficiently large positive Here, the guaranteed-cost performance design can also be treated and
real number. a minimization of a bound on all the performance measurgesan be
Step 2LET A7 = (A, + B, F'C;)/# and SOLVE the following SOught where
optimization problem for®; . )
OP1: Minimize Y7_, trace(P/) subject to LMI constraints trace(P;) <v,  i=1....7 (16)
P/ > 0 and .
since only the linear constraints (16ace(P/) < ~v,i = 1,...,r
are required to be added in OP1, OP2 and OP3.

AN'PIAI 4+ QI+ (FIC)"RFC; — P! <0,
(A PPAT+ QT+ ( ) i < Remark 4: The state feedback optimal design corresponds to the

i=1,...,r (13) special case wher@; = I. With Q; = 0 andR; = I, the proposed
algorithm then determines the simultaneous stabilizability pfants
where@f = Qi+ SiFCi + (S;F/C;)". SetX? = P7. via constant output feedback.
Step 3)SOLVE the following optimization problem foP,f, F7,
and 7. IV. SIMULTANEOUS LQ DESIGN FORMULTIRATE
OP2: Minimize3’ subject to the LMI constraints: SAMPLED-DATA SYSTEMS

—; ; T To make a distinction, continuous-time signals will be represented
Qi - F A By * by (-) around an independent variable, whereas discrete-time signals
iji _(,,31')21373' — (—)(p,.ﬂ Xf') x| <0 (14) will be represented by brackgt in the following.
RY2pic R-V2pT ps I Itis int_eresting to explore thg possit_)ility tq simultar_leously stabilize
i . i v a collection of LTI systems using periodic time-varying output feed-
fori = 1 . Wherex represents blocks that are readil back gains. A trivial necessary condition that the optimal multi-model
= e * pj Cj i T bi Yeonstant/static output feedback problem has a solution for a time-in-
inferred by symmetry an® (P, X}) = X/B;R; B; P : . : ;
; R/ o Vs corTe STt variant multi-model system of the form (1) is that there exists a sta-
+P’B;R; "B, X! — X!B,R; "B, X/. Denote3’ andF’ as, .._. . . : o
T ¢ et e bilizing output feedback gain which simultaneously stabilizes all the
respectively, the solutions’ and™* of OP2. systems. Itis a well known fact that not all systems are stabilizable by
Step 4)IF 3/ < 1, SETj3’ = 1, GOTO Step 6, ELSE SET ) . . .
R ; PO . constant output feedback, thus the approach proposed in Section Il is
j=j+1landp’ = 3~ F? = F77", . ;
not generally applicable. However, analogous to the single model case

Step 5)IF 3°~! — 37 < ¢, a pre-determined tolerance, GOTO - i
Step 9, ELSE GOTO Step 2. we can try to employ periodic constant output feedback for the con

- N ; trol of LTI systems which are not stabilizable via constant output feed-
J
?Eep 6)SOLVE the following optimization problem foP; and back. From [2], [9], it is known that provided the periddis chosen

T e D . . sufficiently high every LTI system can be stabilized by using periodic
OP3: Minimize3 ;. trace(I’/) subjectto the LMI constraints. constant output feedback. Moreover, not only can each model of the
multi-model system be stabilized by a periodic constant output feed-

NI _ pJ AT pJ
Q: , F _ ALE, , , * back but an arbitrary fast dynamics can also be achieved simultane-
P’ A; —-P -O(P,X]) = | <0, (15) ously for all the models.
RV2Fic, R'—l/ZBLTP']‘ _7 Consider the following LTI continuous-time systems:
) . .. . i‘l'(t) = Aiwi(t) + Btu(t)
fori =1, ..., T DenoteP? andF'’ as, respectively, the solu-
tions P/ andF’ of OP3. yi(t) = Ciai(t), i=1...,r a7

Step 7)F Y1_, ||trace(X{ — P/)|| < 6, a pre-determined toler-
ance, GOTO Step 8, ELSE SET=j + 1, X/ = P/~' GOTO where(4;, B;) and(4,, C;) are assumed to be stabilizable and de-

Step 6. , _ . tectable, respectively. The objective is to design, if possible, a controller
Step 8)IF 3 = 1, obtain the optimal solutio™™" = P?, which performs well for each of these models. Assume that the sam-
F°P' = FY_ STOP. pling period isho, whereh, is to be chosen such that*:"e, C;) is

Step 9)This algorithm cannot get a feasible solution. STOP.  detectable for = 1, ..., r. The output measurements are taken at
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time instantg = kho, k = 0, 1, 2, .... The periodic output feedback Where@i()') € RP*Ni j=0,...., N are defined as
control law is given by 5:(0) =0
u(t) = F(f)'y(kho), F(f +ho) = F(f)~ I;;(U,;) = [B,(U,) 0 .- O]
for kho < t < (k + 1)ho, which simultaneously minimizes the fol- bi(ni +vi) = [A570: bi(vi) O -+ 0],
lowing continuous-time performance index:
e[ |0 B P
o L4 i] Le(t) bi(N: = D) + ;) = [AE;“*””?'*”R
fori =1,..., 7.
We consider a controller which samples all the plant outputs with Anitih, AYD; l},;(fu,;)]
the same period,, and changes thih plant input with shorter pe- . i )
riod %; (and is kept constant over the time intervaloj, whereh; = Whereb;(vi) = f7*" exp(As)b; ds, v; = 1. ... n;. Obviously,
ho/N;, andN; are some positive integers, is called frame period, bi(n:) = b; f)i(N) _ |:A(Ni—1)ni5i R‘]
and N; input multiplicity. This means that each component is fed into ¢
the system by means of the following zeroth-order hold mechanism B(N)=B, B(j)e RN
wi(t) =wi(jhi), t€ [jhi, (j+ 1)h;). (19) From (22), we have
As in [2] and [8], the control law is assumed to be piecewise constant. @(kho + jh)
That is, it is given by , ~kho+jh
= Alx(kho) + / exp[A(kho + jh — )] Bu(t) dt
wi(kho + jh:) = fi;(k)y(kho) (20) kha
- Ak " (Dy(kho
fori=1,....,m,j=0,...,N;—1,or = Aga(kho) + Vi(j)y(kho)
where
w;[kN + j] = fij(k)y[kN 21 -kho+jh

[ ] s(ylhN] @D Vi(j) = / exp[A(kho + jh — t)|BF(t)dt
wheref;; (k) is a row vector denoting the time-varying feedback gain. kha
This type of controller is calledhultirate input constant output feed- rkho+jh ' m
back controller[2], [8], or piecewise constant output feedback con- = / exp[A(kho + jh — )] > bifi(t) dt
troller. kho =1
A. Piecewise Constant Output Feedback System = Z Vild, )

=1

For simplicity, we first consider the following single LTI contin-

. wheref;(t) is theith row vector ofF'(¢) and
uous-time system

Vi(4, 1)
HE) = An(t) + Bult), y(t) = Ca(h) (22) —
= / exp[A(kho + jh — )]0, fi(t) dt

Let N be the least-common multiple of the entries of kho

{N;|i =1, ..., m}andh = ho/N,n; = N/N;. Let(Aq, Ba, C) —
denote the discrete-time system of (22) at ratéh. That is, 3 khot (D,
Ag = exp(Ah), B = [ exp(As)B ds. The discretized system of - /

(22) at ratel /1 is as follows:

exp[A(kho + jh — )]b; fu (k) dt

=0 kho+ih;

rkho+jh
ol +1] = Agall] + Baull),  yll] = Cali]. (23) * /kh L, expldlkho ik = )i, (k) di
otni;h;
Denoteb; = fom exp(As)b; ds, whereb, is theith column of B. De- Wheren;; is an integer satisfying;;n; < j < (7;;+1)n,. Obviously
fine 0 < my; < N; forall ;. Note thatfi; (k) is a constant vector. Hence,
A=ay TN DR
— qn1(N1—=1)7 - — th,
B:[Ad bl bl
~7h
B b N xplA(jh — 8)]bi dtf; .. (k
A g, 3] € RO (25) + /_ , CXPLAGH = Dlpsdtf i (8)
Fy = [flT(l’) o fom (k)] e RNXP =1
o = Z exp[A((7i; — 1 = 1)ni + vi)h]
where 1=0
e -hz-
J— “ . 0 T . } ) o . e
N = Z Niy filk) = [fifo(k) e NZ__1(;‘.)] . /0 exp[A(h: — t)]b: dt fu(k)
=1
~v;h
Define +/ exp[A(vih — t)]b; dtf; 5, (k)
9]

BG) = [h() -+ ()] (26) =bi () fi(h)
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wherev; = j — 7;;n,;. Hence which can be seen as the sampling of system (28),atherexy[k] =
v m o ) 2[kN],yn[k] = y[kN], un[k] = u[kN], & > 0, with initial condition
@(kho + jh) = Al w(kho) + Z bi(4)fi(k)y(kho) zn[0] = «[0]. The inputu[kN + j] in (23) and (31) can be written as

=1

= Alu(kho) + B(j)u(kho) ulbN 4 J] = Fi (R)glkN] = Wsprun(h]

_ =0,....N—=1 35
w(kho) = Fry(kho) J=00 (35)
where(t) is an augmented input and maintains constant on the whereW; = {w’} € R™*", are defined as

terval[kho, (k + 1)ho). The discrete formula of above equations are iy

e N A — A LN BN\l N . = N.. ..
a[kN + j] = ALa[kN] + B(j)a[kN] (27) wl) = 1, 1 ;N + i+ 1 Ciml.m (@)
ﬁ[k;\«v] :fij(kAT), ] = 0, PRI N (28) 0, otherwise | = 1, e A_'
wheren[kN + 7] will maintain constantfoj = 0, ..., N — 1. Then,

The LTI system (32) can be seen as a state-sampled representation

of (23), feeding by an augmented input vector (34) and producing an

2[(k + 1)N] = Az[kN] + Ba[kN] (29) augmented output vector (33). Itis easy to find that system (32) is stable

‘ . . if and only if system (23) is asymptotically stable. Consequently, with
which is the discretized state equation of continuous-time system (#ifial condition:ex [0] = (0], (31) can be rewritten as
with sampling timeh,. With (27), we can easily compute the dis- T os -
cretized state response with sampling time T >, | o [K] Q S| |xn[K] 37)
% uN [k]
(4" Qa4 (38)

we have

Remark 5: If the multirate controller (20) is assumed to be periodic un[k] ST R
piecewise constant, the transition matrix (for the frame pekigdof
the closed-loop system becomes= A + BFC (see [2]) where

:=0

whereQ, S andR are time-invariant matrices
T

Enl T T T T

F= [f1,0 fl,lel fm,o fm,Nm71] N—1

is a constant matrix. From (29), we can easily obtain the above transi- Q= Z
tion matrix. It is shown in [2] that for almost evefy, the matrixBF =0
can be assigned an arbitrary value by suitable choicg @f(A, B) o N " N—1
is controllable and ifV; > v;,4 = 1, ..., m, whereu; is a locally R= Z Wi RaWjs + Z
minimum controllability index of 4, B) becauses has rank: in such j=0 j=1
case. IflC, A)isobservable, then the eigenvalue®afan be assigned

T By Tt o 1 T Ty s
arbitrarily for almost every:, by suitable choice of. ' (B(j) QaB(j)+ B(j) SaWjt1 + W1 Sq B(J))

(39)
B. Discretization of Quadratic Performance Index N1 N1
Consider the continuous-time quadratic performance index S= > (AN SaWip + > (A1) QaB(). (40)
oo j=0 j=1
3 - £ 2L ul y y
k] {'] - {/0 [l’ (BQa(t) +u (t)Ru(t)] dt}} (30) The above derivation leads to the following result.
whereR > 0 andQ > 0 are constant matrices. Sampling (30) at rate Theorem 2: Assume that continuous-time system (22) is given. The
1/h yields the equivalent discrete-time weights [1] optimal design of periodic constant output feedback control law (20)
" minimizing continuous-time performance (30) can be reduced to that of
Ry = / (FT(ﬂQF(t) —|—R) dt a constant output feedback control [&minimizing the discrete-time
0 performance index (37).

b ~h
Qu= [ (e")'QeMat, Si= [ (") 'QH(t)dt C. Simultaneous LQ Optimal Design
0 0
The above derivation for a single plant can be easily extended to
1ol ‘ _ Z1ar .. simultaneous LQ optimal design fercontinuous-time systems (17)
f)didoi%diz (;'fOQ 2 0andf > 0,andQq — Saft,"Sq > 0if by the same periodic constant output feedback controller (20). By the
: .derivation of the last subsection, the continuous-time system model

Then the sampled-data optimal control problem becomes findi dth iodic pi i teedback o
multirate feedback control law (20) to minimize the following dis- ) and the periodic piecewise f:onstant.output eedbac control law
crete-time performance index (20) can be reduced to the following LTI discrete-time system models:

where H (t) = jof ¢**Bds. It can be proven that the matrig, —

J_¢ i 27" [Qa Sa [l 1) i vk + 1] = Aiai v K] + Bius, (K] (41)
T = Lull] ST Ry | | ul] yi, n[k] = Cizi n[E] (42)
with the piecewise constant output feedba¢h at ratel /~. From the wi, n[k] = Fyi v K]

last subsection, we can rewrite (29) as a LTI system o ) o ]
_ _ whereA;, B; can be determined similarly as in (24) and (25), respec-
zn[k + 1] = Azn[k] + Bun|[k] 32) tively.
gk = Canlk] (33) _Theorem 3 Assume that the contlr_1uous-t|m<_e systems (17) are
B given. The simultaneous optimal design of periodic constant output
un[k] = Fryn[k] (34) feedback control law (20) minimizing continuous-time performances
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TABLE | . . . . Plant 1 , . ,
COMPARISON OFRESULTS AT DIFFERENT SAMPLING RATES
RIN[J F °r l
1|1 | 6.648] 0.5089 <ol |
3 | 4.619] ~0.6259,0.4218,1.2677
5 | 4512 —0.8561, ~0.1809, 0.4161, 0.9407, 1.4005 ] J
10| 4.468 | —1.035, ~0.6785, —0.3421, —-0.0255, 0.2718
0.5507, 0.8119, 1.0566, 1.2856, 1.4998 0 . Y . . .
3 |1 | 28.28] 0.1635 0 ! 2 8 4 s 8 7 8
3 | 23.22| 1.0602, 0.4401, ~0.0381 Plant 2
5 | 23.26| 1.1241, 0.8494, 0.4409, 0.1130, —0.0677 30 T T T . T T T
10} 23.27 | 1.1385, 1.0875, 0.9410, 0.7464, 0.5401
0.3479, 0.1851, 0.0591, —0.0296, —0.0847
5 |1} 9.305{ 0.6649
3 | 4.445| 0.2031, 0.6426,—0.1489
5 | 3.932| —0.1322,0.7263, 0.4478,0.0625, —0.1314
10| 3.756 | —0.4978,0.2996, 0.6333, 0.6483, 0.4987
0.303, 0.1294, 0.0036, —0.0792, —0.1356
10 1 | 12.73] 0.3864
3 19.998( 0.1384, —0.1507, 0.1382
5 | 3.560 0.1916,0.6673, ~0.3037, 0.0687, 0.0048 . . o _
10| 2.310 | —0.5429, 0.8156, 0.5861, 0.1015, —0.1004 Fig. 1. State responses with periodic constant contrallér
-0.0814, —0.0173,0.0131, 0.0125, 0.0016 Prant 1

3 T T T T T T T

(18) can be reduced to that of a constant output feedback control [:
F minimizing the discrete-time performance index

e |:,rl"N[k]:|T |:©1 Sz

oL J
*x 1.5 i
2, N|K]

us, N [K]

Ji=€ 43) ‘ ]
0.5 1

s, N [K] St R

k=0

1 2 3 4 5 6 7 8

for the LTI discrete-time systems (41), (42), whele R,, andS; can

be determined similarly as in (38)—(40), respectively;fer 1, ..., r. Plant 2
15 T T T T

Based on the above theorem, after selecting the frame pleyiadd
the input multiplicitiesN;, Algorithm 1 of Section Il can be used to
solve the feedback gaif.

V. EXAMPLES

Example 1: Consider the following harmonic oscillator model:

. _ O 1 . N
(t) = |:_1 0:| x(t) + u(t)

Fig. 2. State responses with periodic constant contrélér
y(t)=1[1 0]a(t), =xo(t)=[1 1]
and we wish to minimize the linear quadratic regulator index Fo find a simultaneous stabilizing periodic controller fo= —2. That
is, we take); = 0.0017 andR; = 0.001, S; = 0fori = 1, 2. Let
the sampling time bé = 1. WhenN = 1, the ILMI algorithm cannot
obtain a feasible solution, but when we sel8tt= 2, after 25 itera-

. . . ... _tions we obtain
Table | summarizes the resulting discrete performances at different

sampling rates using periodic constant output feedback obtained by our F'=[7783 —4.682]".

ILMI algorithm. We find that asV increases, the optimal performance

index decreases, whéhis much larger than the system controllabilityThis means that the above two plants can be simultaneously stabilized
index (in this example, it is equal to Step 1, the optimal performangg a 2-periodic piecewise output feedback gain. When wé/set 10,
indexes at different rates are close to that of continuous periodic outpiter 21 iterations we obtain control law

feedback given in [7]. However, when = 3 andh = 10, N = 3,

weak performance indexes are obtained. This is because both cases are

J= /m L3 (1) 4 23(r) + u2(1)] dt.

F? =[10.161 7.992 5.984 4.096 2.290 0.5304

simply too close to the inadmissible sampling timé§L1]. ~1.219 —2.993 —4.827 —6.757] .
Example 2: Consider two plants
Figs. 1 and 2 show state responses of the plants with the above pe-
1 as+ 1 LI . . .
Gi(s) = ——, Ga(s)= ——F+—— riodic piecewise constant controllers under initial conditiefs= 1
s+1 (s+1)(s—1)

andz2 = [2, —1]T. Obviously, the states of both systems converge to
wherea # 1 is a constant. It is not difficult to deduce that wherD. However, the curves are much smoother whers bigger. On the

a < —1, the plants are not simultaneously stabilizable by a lineather hand, although the systems are stabilized by se¥irg 2, the
time-invariant controller. Now we use the approach of the last sectiggstems have larger overshoot whgris small.
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