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A Minimax Search Algorithm for Robust Continuous
Speech Recognition

Hui Jiang Member, IEEEKeikichi Hirose Member, IEEEand Qiang HupMember, IEEE

Abstract—In this paper, we propose a novel implementation of minimax rule in speech recognition community and proposed
a minimax decision rule for continuous density hidden Markov- an implementation for isolated word recognition task. In [2], a
model-based robust speech recognition. By combining the idea of so-calledmodified minimaxmethod was proposed to perform

the minimax decision rule with a normal Viterbi search, we de- minimax rule under a Bavesian framework. In both of these
rive a recursive minimax search algorithm, where the minimax de- y :

cision rule is repetitively applied to determine the partial paths €Xisting minimax implementations, instead of dynamically
during the search procedure. Because of its intrinsic nature of a searching a desired answer in a structural network represen-
recursive search, the proposed method can be easily extended totation of all possible hypotheses, decisions are made only
perform continuous speech recognition. Experimental results on from a list of finite candidates. This makes them difficult to

Japanese isolated digits and TIDIGITS, where the mismatch be- b tended t f fi h i CSR
tween training and testing conditions is caused by additive white e extended to perform continuous speech recognition ( )

Gaussian noise, show the viability and efficiency of the proposed €xcept in an N-Best rescoring mode.
minimax search algorithm. In this paper, we combine the idea of the minimax rule with a
Index Terms—Minimax rule, plug-in-MAP rule, robust decision nprmal Viterb.i searchto dgrivg aminimax recursive search algo-
rule, robust speech recognition. rithm for continuous density hidden Markov model (CDHMM)-
based speech recognition. The proposed implementation can be
outlined as follows:
« for every time instant, the least favorable model parame-
T IS now well known that the mismatches between training  ters in the minimax rule are estimated based on each active
and testing conditions will considerably degrade the per-  partial path via only one iteration; then
formance of an automatic speech recognition (ASR) system. « score of the partial path can be recomputed accordingly
How to maintain the recognizer's performance under various by using the estimated least favorable parameters, based
mismatches has recently become one of the hottest topics in on these recomputed scores;
the area of robust speech recognition. The so-called “com- « all the active partial paths are propagated in the network
pensation/adaptation” approaches [6], which aim at reducing in a similar way as in the normal Viterbi search.
the involved mismatches as much as possible, have formedecause of its intrinsic nature of a recursive search, the ap-
the mainstream of the current robust speech recognition teghfeach can be easily extended to perform CSR. A series of ex-
nology. However, in the past few years, based on robustnggsiments are performed on the recognition of isolated digits
theory, some works have been performed to modify the basiad TI connected digit strings (TIDIGITS), where the mismatch
decision rule used by the speech recognition system. Instémdween training and testing conditions is caused by additive
of directly compensating for the underlying mismatches, thehite Gaussian noise (AWGN). The experimental results show
decision rule of the ASR system is designed to be inherentlyat
robust to the possible unknown mismatches. This scheme. for the isolated digit recognition task, in comparison with
becomes a potential approach for robust ASR because no the standard Plug-in-MAP method, all three minimax al-
rigid assumptions about the sources and mechanisms of the gorithms are able to improve the robustness considerably,
mismatches have to be made. Two sets of robust decision \yhjle the proposed algorithm performs the best;

rule, namelyminimaxdecision rule [2], [5], [8] andBayesian . for connected digit task (TIDIGITS), the proposed min-

I. INTRODUCTION

predictive classification(BPC) rule [2], [4], [9] have been imax search algorithm also achieves a much better perfor-
studied for ASR. In [8], Merhav and Lee first mentioned the mance than that of the conventional Viterbi search algo-
rithm;
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Finally, we conclude the paper with some discussions in Sélhis decision rule is known as the optimal maximarnposte-
tion VI. riori (MAP) decision rule [2], [10]. However, in practice, we
have no means to determip€lV, X) exactly. Therefore, the
II. MINIMAX RULE FORROBUST SPEECHRECOGNITION above optimal rule will never be achievable. A simple heuristic

In a tvical speech recoanition problem. our task is to class'fp?lmion is first to assume a parametric form f¢#V, X) and
ypI P gniion p » ou ' 'Men to estimate its parameters from training data using a param-

a speech observatlo? (usually featur(_e vector sequence extrag%g estimation technique. Then, we plug in the estimators to the
from speech signalX into one of a fixed number of classes.

i . optimal rule to obtain glug-in MAPrule [2], [9], [10]. In the
E(;r Z?]Tj\{ﬁn'g:iﬁ;i‘:&gﬁfzﬁ:gg:dam\ggﬂz hbe;i?f;r' plug-in MAP rule, the estimators are treated as the true values.
pending P ' AW y Y The uncertainty with respect to estimation and model assump-

linguistic unit, €.g., a phoneme, a syllable, a word, a phraseﬁgh is not taken into account in the decision making procedure.

isent;?ce,getf. tl‘fét E[jernote the sretbof arl\ll v;/iorr(]ds to be z:ar‘:‘sltﬁedrherefore, the plug-in MAP rule is not a robust decision rule.
€., W € Q. Letfeature spacor observation spagey denote Alternatively, we have another strategy to construct a deci-

the set of all possible speech observationi.e., X € x.Ina sion rule, which can take uncertainty into account in the de-

ge;'cség] prﬁgfz’)r\]’?staslv;?f" h?)Vses'zlzn(;t:c'sse'gn(;a:]:?;:?nna dcision-making as follows: We first assume that the true distri-
P » WhI ! possi ISl ution lies in a neighborhood of the estimated (or hypothet-

For speech recognition, SImply = {dy/|W' € {2}, whereds ical) one. Such a neighborhood is referred te-g@®viation un-

means that the wordy’ is chosen_gs the final recog_nltlo_n re'certainty neighborhood in robust statistics literature (e.g., [1]).
sult. Obviously, a speech recognition problem consists in ¢

. - ) i ~Then, the decision is made to safeguard some criteria within that
structing a decision rule which may be defined as a mapp'ﬂ%ighborhood
function fromy to D If we define the robustness to mean insensitivity with regard
to small deviations from the assumptions, a quantitative measure
of robustness might be concerned with the maximum degrada-
Any mappingy — D defines a decision rule. Hence there exi§tOn of:erftt))rmance f(()jr a pohssm&gd.ev!atlong.rom th(_a assu(rjnp-
an infinite set of decision rules, denoted By, for the same tlo?_s. r'Icl) tESt %roce”u;et a't minimizes td|s maximum degra-
problem. Not all of them are of equal value in practice thougﬁi.a lon Wil thus be called a minimax procedure.

They may be compared by many characteristics, e.g., classific:a—':Or S'mg'c'tﬁ/we_ d:)h_not;:(zjnsge_zr thi#ncert3|_?ty Ofl tdh_e tl".m'
tion accuracy in speech recognition. In a more general setti 'lageé mo ep(W) in this study. Given the conditional distri-

we usually assign Bss functions(d(X), X, W) to a decision bution p(X|W) and itSe-dgviation uncertainty neigh_b_orhood
rule d(-), wherew(d(X), X, W) denotes the loss involved indenOte(.j. a‘CPF(W)’ we'gonglder_the expected recognition error
making decision!( X ) when the observatioX actually comes probability (i.e., classification risk)

from W. In a statistical paradigm, a woid” and an observa-

d=d(X) where X e€x,deD. Q)

tion X are viewed as a jointly distributed random p@ir, X), Pr(d(), p()) =Ew, x[§(d(X) — W]
whose joint distribution is denoted aéi¥, X). Theclassifica- B . .
tion risk for a decision rulei(-) is then defined as an expected o / Z p(X[W) -p(W)dX. (5)

X wur
value of the loss function W)
Let Pr. T(d(-)) denote the upper bound of the above expected
error probability wherp(X|W) takes all admissible distribu-
pns within (W), i.e.,

r(d(-)) = Ew, x [w(d(X), X, W)] )

whereEyw;, x| - | denotes mathematical expectation with respeE
to the joint distribution ofiv’ and X.

+
In speech recognition, what we are interested in is the recodz(d(-)) = sup / Z p(X|W) - p(W)dX.
nition accuracy. Consequently, a so-called (0-1)-lods often ~ © PXIWICL(W) Xy a0x)
used: (6)

A decision rule which minimizes the above maximum error
w(d(X), X, W) = §(d(X) — W) = {0 dX)=w 3) Pprobability Pr. *(d(-)) (with respect to uncertainty, (1)) is

1 dX)#W referred to asninimaxdecision rule [1]

whereé(-) is the indicator function. In this case, the loss is O for di(-) = arg min Pr *(d(-))
each correct decision and 1 for each wrong decisigi(Wif, X) d(-)cp e
is exactly known, an optimal decision rud(-) can then be .

. e . . . = arg min sup
defined as the one to minimize the above classification risk dC)CD* p(X WP (W) Jx

d'() = arg min Ew, x[6(d(X) — W)] © > X [W) - p(W)dX. ™
d(-)eD* Wd(X)

B argd(l.l)lé%* Z / 8(d(X) = W) - p(W, X)dX A minimax rule is in principle geared to protect against the pos-
W&’QY sibly worst case. It serves as a reliable decision strategy when a
= argmax p(W]X). (4) thorough knowledge about uncertainty is unavailable. However,
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as shown in (7), a minimax decision rule usually does not pofr}, a;;, mj,,, 77} denote the pre-trained model parameters.
sess a straightforward form to implement, even for some simglaus, their quasiminimax rule is achieved as
distributions. In most of practical applications, some more re- .
laxed minimax rule has to be adopted. One possibility is to use W = arg max [p(W) - e p(XI[A, W) (12)
the upper bound aPr (d(-)) !
whereW is the recognition result. In their implementation, in

/ W) order to approximate the operatiamx.,x) p(X|A, W) in
X #d(X) (12), the following iterative procedure is used.
sup p(X|W)dX 8) « Initialize A with the values obtained in the training phase.
p(X|w YCP.(W) * In each iteration, for an observation sequet€eo be
recognized, the optimal path of the corresponding unob-
A decision rule which minimizes the abo¥, T+(d(-)) is as served state sequenet and the associated sequence of
follows: the unobserved mixture component labglds first de-

coded using the Viterbi algorithm. Then the model param-
eterA is re-estimated based e, [* according to max-
imum likelihood (ML) criterion.
* If the newA falls in n(A), itis used to update the old;
This is the so-calledninimax decision rulevhich was first otherwise, the parameter withiffA) which is closest to
studied by Merhav and Lee in [8]. In order to emphasize its the newA is chosen.
difference from the minimax decision rule defined in (7), Inthis paper, the above Merhav and Lee’s implementation of

the above decision rulds(.) is referred to agjuasiminimax duasiminimax is referred to as minimax1 for convenience.
decision rule Besides, another so-called modified minimax rule used in [2]

works as follows:

dy(X) = argmax [p(W)-  sup  p(X|W)|. (9)
w P(X|W)EP(W)

[ll. Two PREVIOUSMINIMAX METHODS FORROBUSTASR W = arg max [p(W) . p(X|AMAP7 W)] (13)

Suppose we model eagord W with an N-state CDHMM
with parameter vectak = (7, A, 6), wherer is the initial state where
distribution,A = {a,;; 1 < ¢, j < N} is the transition matrix,
and# is the parameter vector composed of mixture parameters Apap = arg max p(X[A, W) - p(Ale, W) (14)
0; = {wik, Mik, ik bi=1, 2, ... x fOr each state, whereK de-
notes the number of Gaussian mixtures in each state. The syt the prior p.d.fp(Alp, W), wherey denotes théyperpa-
observatlon probabllrty den5|ty func“on (p d. f) is assumed fgmeters This mod|f|ed minimax method is referred to as min-

cision matrices under a BayeS|an framework where the least favorable param-

eters are acquired by the MAP estimate which is implemented
by an iterative EM algorithm [2]. In the following experiments,
wirN (x]0;x) we adopt one of the prior specification methods described in [3]
to choosep(Alp, W) as the best normal approximation to the
D ; . o L .
H W 0/ Dratremie? (10) icno?lsir)euned uniform distribution within the neighborhogd)
d=1 In both minimax1 and minimax2, instead of dynamically
searching a desired answer in a structural network represen-
tation of all possible hypotheses, decisions are made only
from a list of finite candidates. This makes them difficult to be
extended to perform continuous speech recognition except in
an N-Best rescoring mode.

[
(=

p(x[6;)

x>

=l
—

where the mixture coefficients);;’s satisfy the constraint
Ei‘zl wir = 1, m;q iS the mean and;;q is the precision
(inverse variance) idth dimension, and) is the dimension of
the feature vector.

As stated above, in practice, the quasiminimax rule is oft
used for the sake of simplicity. In [8], tkedeviation uncertainty
neighborhood®.(W) is parametricallydefined: the true param-
eters of the CDHMMs are assumed to lie within the neighbor-

IV. MINIMAX SEARCH ALGORITHM FOR ROBUST CONTINUOUS
SPEECHRECOGNITION

hood#n(A) of the pretrained models’ parameters In order to execute the minimax decision rule in robust contin-
uous speech recognition, we combine the idea of the quasimin-
n(A) ={Alm =7}, aiy = af, wix = Wi, v =T, imax rule (min_irr]axl) with the norrnal Viterbi s_earc_h to derive
Mg — miy <C d~1p?, 1 <i <N, a recursive minimax search algorithm as outlined in the intro-

duction section. Our implementation of the quasiminimax rule

1<k<K, 1<d<Dj (11)  can be represented as

where constant§’ (C > 0) andp (0 < p < 1l)areusedto .
control respectively the possible mismasiheandshape and W—arglr‘l/gx p(W)- Hﬂx AI?%(\) (X, s, 1A, W) (19)
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wheres is the unobserved state sequencelandhe associated
sequence of the unobserved mixture component labels corre-
sponding to the observation sequed€eThis recursive quasi-
minimax search method is referred to as minimax3 in this paper.

Given a test utteranc& = (1, x2, ---, z7), CDHMM
parameter A as well as its corresponding uncertainty
neighborhood(A),t the recursive search algorithm t&p-
proximately achieve the minimax3 decision rule in (15) is
described as follows.

1) Initialization ¢ = 0)

api)=m; 1<i<N (16)
Po(i) =0 1<i<N 17)
$o(i) =0 1<i<N (18)

wherec; (¢) denotes the score of the optimal partial path
arriving at state at the time instant. The corresponding
best partial path is represented by a chain of state points
started fromy,(¢) and a chain of mixture component label
points started frong, (¢).
2) Recursion: fol <t < 7,1 <3< N,do
2.1) Path-merging in statge

m
() = A [ar—1(%) - aiy) (19)
Vely) = arg max faey (i) - ay] (20)

691

if (the mixandm;;, is included in the partial
path {s,, (i), ls,(»)}), then
_ k)

i“’ﬂi‘s (37(;;)@) - L) 6 (lift)(i)
=1

Mikd = —
;6 (37(4;)(1‘) - L) 6 (l‘(?:t-)(i) - k)
(1<d<D) (23)
else
Mika = Mixa (1< d< D) (24)

where sf;;)Z and lf;;)(i) denote respectively
the state and mixture component labels corre-
sponding to the time instamtin the partial path
backtracked from the pointg.(i) and ¢:(i).
Hereé(-) denotes the Kronecher delta function.
Then the least favorable mean vectors are cal-
culated as: (forall < ¢ < N,1 <k < K and

1<d<D)
mira — Cd™ p* if Mika < mia — Cd=p
 _ ) Mira if Mg — CdLp% < Mg
ihd < mypg + CdLp?
Mikg + Cd™ p?  if Mg > mipa + Cd™1p
(25)
2.3) Rescore the partial path based on the
updated least favorable parameters

A = ({mi}, {ai}, {wind, {mia)s {rival):
t—1 t

H A () [+ - H Wory
7=1 7=1

Oéf(J) =nn ol
g (1) e (4

D Wi (D) wi (i) e (1)
. Tikd _ )2
d (1) = arglgﬂ)} Wik - H \ /é—ﬁe (1/2)rjna(@ia—"M50a) D T 4 4
T d=1 . H (D) D ()
(21) e 2
where B 2
*(1/2)”.,<j>(_>l<,r->(_>d(’”"d*"’;<r-> N
Mjkd — Cd—lpd if ZTrd S Mjkd — gvd—lpd ¢ P bt Wi} e (4) (26)
o) Mk if mjpg — Cd™*p? < g 3) Termination
ikd = < mjra+ Cd tp? )
Mjkd + Cd Lot if zyg > Mjkd + od—1pd, st = argmax ap(9) 27)
(22) ’
2.2) For each active partial path, estimate the least4) Path Backtracking
favorable parameters™: . .
P s =ti(sty)  t=T-1T-2..., 1 (28
A" = arg pnax (1, -5 Ty Sp,0)y Loy ()| N) The final recognition result¥’ can be derived from the op-

timal path {s;|t =1, 2, ---, T}.

where sy, (;

the state sequence and the mixture comp&an
nent label sequence corresponding to tHéON

y and Iy, denote respectively Because of its intrinsic nature of recursive search, minimax3
(2

be easily extended to perform continuous speech recogni-

. In comparison with the normal Viterbi algorithm, min-

active optimal partial path backtracked fronimax3 needs extra efforts to rescore each active partial path
the pointsy,(i) and ¢,(:). When the neigh- during the search process. However, if the size of the network
borhood (11) is adopted, only the mean vedo be examined is moderate, the increased computational cost is
tors are adjusted. Thus, all the mean vectog@enerally affordable.

mip(l <i< N,1<k<K)of COHMM are
reestimated as follows:

1The neighborhood in (11) is still adopted fpfA ) here, in which only the
uncertainty of mean vectors is taken into account.

V. EXPERIMENTS

In order to examine the viability of the proposed minimax3 al-
gorithm, we present a series of experiments where the minimax3
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algorithm is compared with other existing methods. Firstly, inan TABLE |

isolated Japanese digit recognition task, minimax3 is compar8gR-ORMANCE(WORD ACCURACY IN PERCENT) COMPARISON OFMINIMAX 3
. . . . . . ITH PLUG-IN-MAP, MINIMAX 1 AND MINIMAX 2 IN | SOLATED JAPANESE DIGIT

with the Plug-in-MAP based Viterbi algorithm, minimax1 and  RecosniTion TAsk WHEN TEST DATA ARE DISTORTED BY ADDITIVE

minimax2. As a remark, only a Viterbi version of the minimax2GaussiaN WHITE NOISE [THE NUMBERS IN THE PARENTHESESDENOTE THE

in [2] is implemented here. Next, in another connected WorOOPﬂMAL NEIGHBORHOODPARAMETERS (C', p) FOR THE CORRESPONDING

" . . . METHOD TO ACHIEVE THE SHOWN PERFORMANCE IN EACH CASE]
recognition task on TIDIGITS [7], minimax3 is compared with ]

the conventional Viterbi search in terms of both the recognition SNR | Plug-in MAP | minimax1 | minimax2 | minimax3
accuracy and computational complexity. In all the experiments o 93.50 99.58 99.58 99.58
the mismatch between training and testing conditions is cause (1,0.9) (1,0.5) (1,0.9)
by adding, at different SNR (signal-to-noise ratio) levels, com- il et I
puter-generated white Gaussian noise (AWGN) into the test dat 30(dB) 62.08 73.33 71.67 77.50
prior to the pre-processing stage. The AWGN is scaled to a fixec (2,0.5) (1,04 (8,0.3)
level for all utterances in the test set. The degree of mismatcl 20(dB) 26.10 57.92 53.33 61.67
is measured by SNR level (in terms of dB) of the contaminated (3,0.4) (1,0.6) (9,0.2)
speech, which is calculated over the whole testing set as follows 1¢(dB) 5.42 28.33 26.25 33.33

Z oy (i) (7,0.3) (5,0.2) (8,0.2)

SNRZ 10log;y 55— (29)
Z on(i) imax rule is repetitively applied during the recursive minimax3
€S search, which provides a chance to find a better path than both

whereos (i) denotes the signal variance of tith speech utter- minimax1 and minimax2 in which the quasiminimax rule is
ance intest sef, ands, (i) the variance of noise signal added t@nly used to rescore the paths found by the normal Viterbi
theith utterance. Compared with other methods, the SNR valuggarch. Next, we also see that the performance of minimax1l
in this paper which are computed from (29) are relatively lovg better than that of minimax2. This mainly attributes to the
because we summarize signal variances over the whole dataptor difference in minimaxl and minimax2. In minimax1,
Moreover, in the following experiments, no knowledge of tha constrained uniform distribution is chosen while a normal
related mismatch is explicitly exploited in testing phase. In alpproximation is used in our implementation of minimax2.
of the following experiments, we do not perform cepstral mearhe heavy tail of the normal distribution obviously degrades

normalization in either training or testing phase. the performance 2%-3% in this case. Finally, we also note
that, in the specific case here, the performance of all three
A. Isolated Digit Recognition: ATR-JPD guasiminimax methods is better than that of Viterbi method

In order to compare the performance of minimax3 with oth&ven in the matched condition (SNR o0). _ _
two previous quasiminimax methods (minimax1 and minimax2), e have to note that in Table | we only give the optimal
we firstperformaseries of comparative experiments on aspeakgtformance for all three quasiminimax methods when the hy-
independent (SI) recognition task of isolated Japanese digitsRiifParametergC, p) are manually adjusted within the range:
the ATR-JPD database, which is selected from ATR Japanéses [1; 10 andp € [0.1, 0.9]. As a reference, we also list in
Speech Database and contains isolated utterances of Japanesg)g | the optimal choice of the hyperparametéFs p) for the
digits from 60 speakers (half male, half female). The databa@@responding methods to achieve the shown performance. Be-
ATR-JPD is recorded in a quiet environment at a sampling ratiles the optimal performance in Table I, we also observed in
of 20 kHz with 16 bit quantization accuracy. Each digit is modRur €xperiments that minimax1, minimax2 and minimax3 out-
eled by a left-to-right four-state CDHMM without state skippini‘:;;/Orm the plug-in-MAP method for a wide range (@, p).
and each state has 6 Gaussian mixture components with diagé#vever, we have not found a good method yet to automatically
covariance matrices. Each feature vector consists of 16 LPC-88iust(C, p) for the optimal performance in all these minimax
rived cepstral coefficients, which are not warped to Mel scal@ethods. We also find that the recognition performance of min-
For each digit, in total, we have 56 tokens from 46 speakers #§2x3 method tends to be relatively insensitive( €@ p) in a
speaker-independent (SI) training, and 24 tokens from other @4ite wide range, as shown in Table |I.
different speakers for Sl testing. »

In Table I, the averaged recognition accuracy of the mif®: Connected Word Recognition: TIDIGITS
imax3 is compared with that of the standard plug-in-MAP-basedIn order to examine the feasibility of the minimax3 in terms
Viterbi search algorithm, minimax1, and minimax2 at threef its computational complexity in a continuous speech recogni-
SNR levels, 10 (dB), 20 (dB), and 30 (dB). The experiment#ibn task, we also perform a series of comparative experiments
results clearly show that all three quasiminimax algorithms SI connected digits recognition on TIDIGITS English con-
are able to improve the robustness considerably in comparis@tted digit-string database[7]. Only the part of adult speech
with the standard Plug-in-MAP based Viterbi algorithm whedata (111 men, 114 women) is used in the experiments. The fea-
the AWGN-caused mismatch exists between the training atae vector consists of 12 LPC-derived cepstral coefficients, en-
testing conditions. We also note that minimax3 significantlgrgy, and their delta features, which are also not warped to Mel
outperforms both minimax1 and minimax2 in three examinestale. Because we are using the delta features in this part of ex-
SNR levels. This can be explained by the fact that the quasimperiments, the mean vector;;, consists of static feature in the
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TABLE I
RECOGNITION ACCURACY (IN PERCENT) AS A FUNCTION OF NEIGHBORHOODPARAMETERS C' AND p OF MINIMAX 3 AT SNR= 30 dB

C\p| 010} 020 | 0.30 | 0.40 | 0.50 | 0.60 | 0.70 | 0.80 | 0.90
1.00 | 62.92 | 65.42 | 65.00 | 67.08 | 60.17 | 70.42 | 72.08 | 73.33 | 74.58
2.00 | 65.00 | 67.08 | 70.83 | 72.08 | 74.58 | 73.75 | 76.67 | 74.58 | 68.75
3.00 | 65.42 | 70.83 | 72.50 | 74.58 | 75.00 | 76.25 | 76.25 | 66.67 | 45.42
4.00 | 67.08 | 71.25 | 74.17 | 75.83 | 76.67 | 75.00 | 74.58 | 59.58 | 27.08
5.00 | 68.33 | 72.08 | 75.42 | 75.83 | 77.60 | 75.83 | 71.25 | 50.00 | 19.58
6.00 | 71.25 | 73.33 | 74.17 | 75.42 | 74.17 | 73.75 | 65.83 | 41.25 | 13.33
7.00 | 72.08 | 74.58 | 75.83 | 75.00 | 73.33 |- 75.00 | 62.92 | 36.25 | 15.00
8.00 | 72.08 | 75.00 | 77.50 | 75.42 | 72.92 | 74.58 | 57.92 | 28.75 | 13.75
9.00 | 72.08 [ 75.00 | 76.25 | 75.00 | 74.17 | 73.33 | 567.50 | 30.83 | 15.42
10.00 | 72.08 | 75.42 | 76.25 | 72.08 | 76.67 | 70.83 | 57.08 | 27.08 | 12.92

TABLE Il
PERFORMANCE(IN PERCENT) COMPARISON OFMINIMAX 3 WITH PLUG-IN-MAP METHOD ONTIDIGITS CORPUSWHEN TEST DATA ARE DISTORTED BY ADDITIVE
GAUSSIAN WHITE NOISE, WHERE STR STANDS FOR STRING CORRECTRATE, Wd-C FOR WORD CORRECTRATE, Wd-A FORWORD ACCURACY WER FOR WORD
ERRORRATE, DEL, SUB AND INS FOR DELETION, SUBSTITUTIONAND INSERTIONERROR RATES, RESPECTIVELY

SNR | | (C,p) | Str | Wd-C | Wd-A | WER | Del | Sub | Ins
oo |Plug-in-MAP| - |8814] 9844 | 97.34 | 2.64 | 0.69 | 0.87 | 1.10

minimax3 | (0.1,0.1) [ 87.64 | 98.43 | 97.20 | 2.80 | 0.65 | 0.92 | 1.22
36.8 | Plug-in-MAP | - |17.45] 67.37 | 66.28 | 33.72 [ 16.22 | 16.40 | 1.09
(dB) | minimax3 | (2,0.3) [64.78 | 95.49 | 90.0 [ 10.0 | 0.90 | 3.60 | 5.49
27.3 | Plug-in-MAP | - 0.23 | 45.25 | 43.90 | 56.10 | 25.10 | 29.70 | 1.40
(dB) | minimax3 | (2,04) [42.03 | 87.20 [ 79.03 [ 20.97 | 2.67 | 10.0 | 8.26
168 | Plugin-MAP | - 0.0 | 24.89 | 23.93 | 76.07 | 45.40 | 29.70 | 0.96
(dB) | minimax3 | (5,0.3) | 14.47 | 66.19 | 57.52 | 42.48 | 7.60 | 26.20 | 8.70

low dimensions and delta feature in the high dimensions. The TABLE IV
uncertainty neighborhood of defined in (11) will be slightly TOTAL RECOGNITION TIME (IN SECONDY COMPARISON OFMINIMAX 3 FULL

. . SEARCH WITH PLUG-IN-MAP BASED VITERBI FULL SEARCH ALGORITHM FOR
modified as follows: 300 UrTERANCESFROM TIDIGITS (ON A SUN ULTRA-I WORKSTATION)

* * * *
() ={A|m =7, ay = afj, win = Wi, Tin =73 — —
(R 137 vh? ko Viterbi search | minimax3 search

* —1 d
[Mika — migal < C d™"p%, o Total CPU time used (second) |  771.94 1538.73
|mik(D/2+d) - m:k(p/2+d)| < Cd™pY,

1<i<N 1<k<K 1<d<D/zy (30) part of it remains unchanged as in (24). In the experiment, we

where forl < d < D/2, m;y's correspond to the static observed that in this small vocabulary task where the recogni-
feature part whilem;,p/244)’s correspond to the delta fea-tion network is not very large, the calculation overhead of the
ture part. The SI model for each digit is a ten-state, ten-miriinimax3 is affordable. As an example, we list in Table IV the
ture-per-state CDHMM. These whole digit HMMs are trainetbtal CPU time used by Viterbi and minimax3 full searches (i.e.,
on 8623 utterances from adult training data subset of TIDIGITghe beam width is set to infinity) to recognize in total 300 ut-
The algorithms are evaluated on 8700 utterances from adult tesainces randomly chosen from the test set of TIDIGITS. The
data subset distorted by various levels of computer-generat@U time in Table IV shows that the computational complexity
Gaussian white noises. is approximately doubled in the minimax3 search in comparison

The experimental results in Table Il show that the minimax®&ith the normal Viterbi search. However, we have to note that
also performs much better than the conventional Viterbi algtke result of the quantitative comparison heavily depends on the
rithm in continuous speech recognition task for the three exasize of the recognition network used by the search engine. The
ined SNR levels. In the table, we also give the correspondingsults in Table IV are obtained by using a recognition network,
values of(C, p) which minimax3 used. As far as the compuwhere all digit models are in parallel, with a silence model al-
tational complexity is concerned, in minimax3, the increasddwed preceding and succeeding the digit string.
computation mainly lies in 1) estimating the least favorable pa- As aremark, in the above experiments on TIDIGITS, we have
rameters as in egs. (23) and (25) and 2) rescoring the partial pastablished the baseline system as simple as possible. The high
in (26). However, in each search step, only a small portion of thecognition error rate (2.7% WER) in the baseline system is
individual partial path need to be re-calculated while the mostainly attributed to the following reasons: we don't include the
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delta-delta feature, we use only one model for each digit anflo] B. D. Ripley, Pattern Recognition and Neural NetworksCambridge,
do not adopt such as gender-dependent model, we also don’t Y-K.: Cambridge Univ. Press, 1996.

refine the system in many aspects including preprocessing and

modeling due to the lack of CPU power, etc.
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