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Abstract—This paper proposes a novel method for accurately
counting the number of vehicles that are involved in multiple-
vehicle occlusions, based on the resolvability of each occluded
vehicle, as seen in a monocular traffic image sequence. Assuming
that the occluded vehicles are segmented from the road back-
ground by a previously proposed vehicle segmentation method
and that a deformable model is geometrically fitted onto the
occluded vehicles, the proposed method first deduces the number
of vertices per individual vehicle from the camera configuration.
Second, a contour description model is utilized to describe the
direction of the contour segments with respect to its vanishing
points, from which individual contour description and vehicle
count are determined. Third, it assigns a resolvability index to
each occluded vehicle based on a resolvability model, from which
each occluded vehicle model is resolved and the vehicle dimension
is measured. The proposed method has been tested on 267 sets of
real-world monocular traffic images containing 3074 vehicles with
multiple-vehicle occlusions and is found to be 100% accurate in
calculating vehicle count, in comparison with human inspection.
By comparing the estimated dimensions of the resolved general-
ized deformable model of the vehicle with the actual dimensions
published by the manufacturers, the root-mean-square error for
width, length, and height estimations are found to be 48, 279, and
76 mm, respectively.

Index Terms—Deformable model, occlusion, occlusion reason-
ing, resolvability, vehicle counting, vehicle segmentation, vehicle
tracking.

I. INTRODUCTION

RACKING of moving vehicles in traffic images is a

challenging research topic as it has to directly deal with
hostile but realistic conditions on the road, such as uncontrolled
illuminations, cast shadows, and visual occlusion [1]. Yet, the
outcome of being able to accurately count and resolve vehi-
cles under such conditions has tremendous benefit to traffic
surveillance. Accurate vehicle count enables the extraction
of important traffic information such as congestion level and
lane occupancy, while accurate resolution of vehicles provides
essential input for vehicle tracking, which can result in semantic
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traffic information, such as travel time estimation and driving
behavior analysis. Such information can be disseminated to
road users, which can potentially reduce traffic congestion and
environmental pollution as a consequence, and enhance road
safety [2], [3]. Of all the problems that are associated with
outdoor tracking, visual occlusion presents the biggest obstacle.
It appears frequently in urban and congested traffic [4]-[10],
and introduces ambiguity in vehicle counting, which naturally
depletes our ability and accuracy in tracking these vehicles [3],
[11], [12]. It further leads to erratic estimation of traffic volume,
flow, and other traffic parameters. Although a partial solution
may be obtained by setting the camera’s optical axis perpendic-
ular to the road plane, this configuration severely reduces the
range and amount of visual information available, as compared
with a perspective camera configuration [13]. An alternative
solution is to use more than one camera (i.e., stereo vision)
[14] or use nonvisual sensors such as inductive loops or laser
sensors in addition to the visual sensors to aid the vision system
[15], [16]. However, it is generally known that stereo vision
makes little difference from monocular vision under congested
situations, and the added installation and signal-processing
complexities of nonvisual sensors simply depletes its usabil-
ity [3]. Not surprisingly, most current research in occlusion
handling assumed a perspective monocular configuration for
detecting minor to moderate occlusion problems involving two
or three vehicles in noncongested highways [17]-[20]. These
works represent an important first step in solving the visual
occlusion problem, but clearly, a more general approach for
resolving severe multiple-vehicle occlusions is desirable. It is
the purpose of this paper to propose one such method that can
accurately count the number of vehicles that are involved in
occlusion and resolve these vehicles into individual vehicles
under different level of occlusion severity.

The rest of this paper is organized as follows: a brief problem
analysis is given in Section II, which is followed by an overview
of the recent related research in this area in Section III. The
proposed method is detailed in Section IV. Test results and
discussions are presented in Section V. Suggestions for future
development are given in Section VI, and concluding remarks
can be found in Section VII.

II. PROBLEM ANALYSIS

In this paper, occlusion refers to the visual obstruction of
vehicles from one another in an image due to the perspective
view of the camera [21]. When we consider this problem, we
observe that first, vehicles that are involved in the occlusion
are not uniform in size [Fig. 1(a)]. Second, the severity of
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Fig. 1. Vehicle occlusion cases. (a) Different vehicle sizes, (b) severe occlu-
sion, (c) vehicle cluster, (d) vehicle queue, and (e) PTZ views.

occlusion varies according to the spatial relationship between
vehicles, i.e., a vehicle might be totally occluded by one or more
vehicles, unoccluded, or partially occluded [Fig. 1(b)]. Third,
the number of vehicles involved can be up to N vehicles in a
cluster [Fig. 1(c)] or in a queue [Fig. 1(d)]. Fourth, the camera
viewing configuration changes when the camera undergoes
pan—tilt—-zoom (PTZ) action [Fig. 1(e)].

From our first observation, it can be deduced that vehicle
dimension provides no strong clues as to how severe the oc-
clusion is. Therefore, a good detection method should not rely
on vehicle size. From our second observation, both the totally
occluded and unoccluded vehicles require no action, whereas
the partially occluded vehicles are our major concern. Although
over time, the severity of occlusion may change, it would be
logical to stay focused on resolving the occlusion problem in
each image before extending it to the time axis. From our third
observation, our solution must be general enough to solve the
occlusion of N vehicles in a cluster or queue. From our fourth
observation, as PTZ actions vary the camera parameters as well
as the number of contour outlines and vertices that are seen by
the camera, it is important that the proposed method formalizes
such relationship between the camera configuration and the
vehicle model.

III. RELATED WORKS

Research in occlusion detection/handling has been consid-
ered as the key to practical vehicle or human tracking [11].
Many published solutions to the problem of human occlusion
exploited the uniformity and uniqueness of human shape [22],
while those for vehicle occlusion evolved into a variety of
directions because of shape diversity. In general, solutions
to both human and vehicle problems extend from spatial to
temporal domains and can be broadly classified as follows:
model-based [23], region-based [19], active contour-based [17],
feature-based [24], stereo vision-based [14], and probabilistic-
based [22]. Hybrid approaches [25] will not be separately
discussed here.

The basic principle of model-based methods is to define a
3-D geometric model as a matching template that describes

the shape of a vehicle. Instead of defining a large number of
rigid models, a single parameterized or deformable model is
often adopted for all vehicle types [26]. In most cases, it works
well in free-flow traffic and can be readily adapted to deal with
background occlusion. For instance, Yang et al. [23] proposed
a method that claimed to work under severe background oc-
clusion. Unfortunately, all they have tested were toy cars in a
laboratory environment. A more rigorous and stringent set of
roadside tests would be desirable for verification. Ikeda et al.
[18] described a more realistic approach and achieved 94.8%
of count accuracy for moderate occlusion of two vehicles.
However, in their method, only the front or back of the vehicles
can be identified; thus, the method cannot resolve all 3-Ds of
the vehicle.

The idea of region-based tracking is to connect regions as
“blobs” to represent vehicles. It works well when vehicles are
unoccluded; otherwise, segmenting larger blobs into groups
of smaller ones can be challenging. To deal with this, a
spatio—temporal Markov random field model was proposed to
work on the texture correlation of predefined subimages and
segment the subimages into most likely objects [19]. It achieved
a count accuracy of 94.6%, for moderate occlusion that involves
two or three vehicles only, which is similar to the results that
were obtained by Ikeda et al. [18]. Other tools such as Kalman
filtering and graph optimization have also been proposed [20],
resulting in a blob relationship graph to represent the split and
merge of the blobs between each subsequent frame, with even
lower count accuracy of 85%.

Similarly, active contour-based methods used active contours
to model the boundary of vehicles, which can be updated
dynamically. They have relatively lower computational com-
plexity, but contour initialization for each vehicle is a complex
issue [17], which is difficult to achieve efficiently in practice.
In some cases, shape restriction is applied together with a
Kalman filter to estimate the spatio—temporal relationships of
the contour to improve tracking robustness in the presence
of occlusion [27]. Experimental results were encouraging for
tracking vehicles that are well-separated but not conclusive
in terms of their ability to resolve occlusion effectively since
results that contain vehicle occlusion were not presented in
their work.

On the other hand, feature-based methods track vehicle sub-
features instead of the entire vehicle. The assumption is that,
even in the presence of partial occlusion, subfeatures of vehicles
may still be visible. The question is on how to collate these
subfeatures in the occluded cases. Gentile et al. [24] proposed
using a Kalman filter, with the condition that less than 30%
of these subfeatures are occluded. In practice, this is seldom
the case.

In stereo-based methods, two or more images of the same
scene are used to track densely populated objects. Otsuka and
Mukawa [14] modeled the spatial structure of the occlusion
process between human and its uncertainty, and formulated a
recursive Bayesian estimation method for human position and
posture. Although they have tested their model using six cam-
eras on five people successfully, its reliance on a large number
of camera views implies high computational complexity, which
could be a hindrance to vehicle tracking.
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Fig. 2. Conceptual diagram of a VTS system.

In probabilistic-based methods, a Bayesian model is often
used for segmentation and tracking. Eng et al. [22] proposed
a human shape model for foreground validation and occlusion
handling, while segmentation is obtained when a maximum
a posteriori value is found. Their results have demonstrated that
it can resolve slight occlusion of two humans. Applying this to
vehicle occlusion is yet to be studied as shape is not as uniform,
while occlusion can be more severe when more vehicles are
involved, and vehicle positions are not known a priori.

In summary, we have observed that there is a common
problem among existing occlusion handling methods, i.e., they
are designed for resolving the occlusion of two or three vehicle/
human only [18]-[20], [22]. Although [14] has attempted
to deal with the occlusion of five people, the problem of
N-vehicle/human occlusion has still not been tackled. More-
over, evidence has shown that, if occlusion is too severe, most
of these methods would fail [23], [24]. Therefore, we propose
a generalized deformable model (GDM)-based method to deal
with the occlusion of IV vehicles, which is characterized by its
simplicity and generality.

IV. PROPOSED METHOD
A. Overview

A visual traffic surveillance (VTS) system can be defined
as depicted in Fig. 2 [3]. In the figure, background estimation
[Fig. 2(a)] estimates the background from the image. The
“scoreboard algorithm” from [28] is employed in this paper for
this purpose, as it is fast and accurate for estimating the sta-
tionary background. Vehicle segmentation [Fig. 2(b)] segments
the vehicles from the background. The texture-based vehicle
segmentation approach that is described in [29] is employed to
extract the moving vehicles since it can do that without being
affected by vehicle cast shadow. Camera calibration [Fig. 2(c)]
determines the camera parameters from the background image.
The camera calibration method that was proposed by [30] is
employed to determine the camera parameters for its ability to
cope with all camera PTZ actions. Vehicle modeling [Fig. 2(d)]
fits the GDM onto the binary vehicle mask by transforming it
from 3-D world coordinates to 2-D image coordinates based
on the camera parameters. The detail of the method that was
used can be found in [31]. Occlusion detection [Fig. 2(e)]
determines whether there is occlusion inside the fitted GDM.
The area ratio method that was proposed in [12] is used for
occlusion detection. Vehicle tracking [Fig. 2(f)] and traffic
parameters estimation [Fig. 2(g)] track the fitted model in the
subsequent frames to generate the trajectory of the vehicle,
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GDM of vehicle 1.

and from the trajectory, traffic parameters such as travel time,
speed, driving behavior of individual vehicle, etc. [3] can be
estimated. Occlusion resolution [Fig. 2(h)] partitions the GDM
into smaller ones such that they have one-to-one relationships
with the vehicles [11]. In this paper, our focus is on proposing a
method for resolving multiple occluded vehicles and counting
the vehicle number, and we assume that the input is a composite
vehicle mask of the occluded vehicles [21].

The basic concept of our approach is to count the number
of occluded vehicles by evaluating the property of the contour
segments of the occluded cluster and to assign a “resolvability
index” to each vehicle, which indicates whether the vehicle can
be resolved from an occluded scenario, where “1” indicates
that the vehicle is resolvable and “0” indicates that it is not
resolvable. It begins by assuming that a single GDM can be
fitted into IV occluded vehicles. Essentially, the GDM is a 3-D
rectangular model with 8 vertices (Fig. 3) [3], [31]. The advan-
tage of this model is that it is general enough to represent the
shape of all kinds of vehicles.

The block diagram of the proposed occlusion-resolving
method is depicted in Fig. 4 [21]. Three predefined models are
used to model the aforementioned approaches: 1) the Vertex-
Shape Model (VSM) [Fig. 4(a)]; 2) the Contour Description
Model (CDM) [Fig. 4(b)]; and 3) the Resolvability Model (RM)
[Fig. 4(c)], as shown in the shaded blocks in Fig. 4. Essentially,
the purpose of the VSM is to establish a relationship between
the camera viewing position and the number of vertices of the
projected GDM, as seen in the image. The purpose of the CDM
is to model the direction of the lines as well as the shape of the
projected GDM from the number of vertices that were defined
by the VSM. The RM evaluates whether an occluded GDM is
resolvable. Having defined these three models, the number of
vehicles N that are involved in an occluded cluster is deduced
by first approximating the contour of the composite binary
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vehicle mask by the curvature points that were detected on
the contour [Fig. 4(d)] and then generating a formal linguistic
description of it based on the vanishing points of the road,
which is then subdivided into subsegments with reference to
the CDM [Fig. 4(e)]. Then, the resolvability index R of each
vehicle is determined with reference to the RM, according to
the extent of occlusion of the contour lines [Fig. 4(f)]. If the
resolvability index is positive (which means that the original
GDM of the vehicle is recoverable), then the GDM of the
vehicle is reconstructed based on the unoccluded lines of the
GDM [Fig. 4(g)] [11]. The final outcome is the resolved GDM
that describes the vehicle.

B. VSM

The aim of this model is to establish a relationship between
the camera viewing position (Q. = [X. Y. Z.]7) and the num-
ber of vertices n, on the GDM contour that is seen on the

Pe 12 Hle

& [5] (8] (8] [5)
P[5} {4 a7 4]

P
€ 5] (8] (8 8]

elcicHicicRE

Fig. 6. Relationship between n,, and Q..

image. Since each GDM has eight vertices in 3-D and, at
most, six vertices in 2-D, n,, is one of 6, 5, or 4. In order to
model n, with respect to Q., we introduce the idea of “virtual
extended planes P?” on the GDM in 3-D, which are defined
as the surfaces of the GDM being extended to +o0o and —oo
in space but excluding the surfaces of the GDM itself (Fig. 5).
As a GDM consists of six surfaces in 3-D, there are six P;’s
in total (denoted by P¢, Ps,..., P§ in Fig. 5). Lines {; and [,
are dividing lines on plane Pf, which divide the GDM into four
quarters. The relationship between n,, and Q. is modeled in
terms of these P;’s, lines, and the surfaces of the GDM, which
is depicted in Fig. 6. From Fig. 6, if the camera is located in
the space bounded by four P?’s and a surface of the GDM
[Fig. 7(a)], or if it is located on one of the P{’s and bounded
by two other P’s that are separated by the GDM [Fig. 7(b)],
or if it is located at the intersection of two P?’s [Fig. 7(c)],
then n, = 4. If the camera is located on one of the P’s but
not bounded by two other P’s that are separated by the GDM,
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(i) Camera location  (ii) Projected GDM on image

(a) (b)

(i) Camera location  (ii) Projected GDM on image

(i) Camera location  (ii) Projected GDM on image

(d) (e)
Fig. 7.
TABLE 1
VSM
Qc ny
Located in the space bounded by 4 P;_“ and a surface of the GDM
(Fig. 7(a))

or
Located on one of the Pi" and bounded by two other Pl.“ that are 4
separated by the GDM (Fig. 7(b))
or
Located at the intersection of two Pl_e (Fig. 7(c))

Located on one of the Pl."' but not bounded by two other Pl."' that
are separated by the GDM (Fig. 7(d))
Otherwise (Fig. 7(e) and (f)) 6

then n,, = 5 [Fig. 7(d)]. If the camera is located elsewhere, then
n, = 6 [Fig. 7(e) and (f)]. The relationship between n,, and Q.
is summarized in Table L.

C. CDM

The CDM formulates a set of direction primitives to describe
the outlines of the projected GDM with respect to the vanishing
points px, Py, and p in the image, where py, is the vanishing
point of the road, px is the vanishing point that is perpendicular
to the road direction, and p, is the vanishing point that is
perpendicular to the ground (Fig. 8). It is assumed that all
occluded vehicles share the same set of vanishing points. The
direction of the line segments is described in terms of direction
primitives “a,” “b,” “c,” “A,” “B,” and “C” with respect to their
relationships with pyx, py, and p,, where “a” denotes a line
that intersects p, when it is being extended infinitely, and the
direction of the line goes away from py when the GDM is being
traced in a counterclockwise manner (Fig. 9). On the other
hand, “A” denotes a line that intersects p,, when it is extended
infinitely but points toward p, when the GDM is being traced
in a counterclockwise manner (Fig. 9). Similarly, “b” and “B”
denote the lines that are related to p,, and “c” and “C”” denote
the lines that are related to px in the same manner (Fig. 9). If

(i) Camera location  (ii) Projected GDM on image

(i) Camera location  (ii) Projected GDM on image

()

Number of vertices n,, at different camera locations Qc. (a) ny = 4. (b) ny = 4. (¢) Ny = 4. (d) Ny = 5. (&) Ny = 6. (f) ny = 6.

meetat P

Fig. 8. Vanishing points px, py, and pz.

Fig. 9. Description of GDM outline.

a line does not intersect any of py, py, and p, when extended
infinitely, then the line is simply rejected and not described by
any of the direction primitives. One of the resultant descriptions
of the GDM in Fig. 9 is “aBcAbC'.” It should be noted that this
description is cyclic, which means that it can also be written as
“AbCaBc” or “BcAbCa,” etc.

In some of the cases for n, = 4 or 5, the contour contains
a line that intersects more than one vanishing point when the
line is being extended infinitely. In such cases, two primitives
with an underline are used to represent the line. For example,
the GDM in Fig. 10 contains a line that intersects both p, and
Px-. The underlined convention “aC” is used to describe the line
since the line goes away from py, first and then goes foward px
when the contour is traced in a counterclockwise manner. One
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Fig. 10. Case when an extended line intersects two vanishing points.

- cesto EE0

Fig. 11. Case when a vanishing point falls on a line.
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Fig. 12. Description of the GDM outline.
of the resultant descriptions of the GDM is “BcAbaC'.” In some
of the cases for n, = 4, a vanishing point falls on one of the
GDM outlines. In such cases, three primitives with an underline
are used to represent the line. For example, in Fig. 11, p,, falls
on a GDM outline, so the underlined convention “AaC” is used
to represent the line since the line goes toward py first, then
goes away from py, and then goes foward px when the contour
is traced in a counterclockwise manner. One of the resultant
descriptions of the GDM is “BecbAaC.” The descriptions using
direction primitives for all shape types are given in Fig. 12.

To model the shape of the projected GDM, the three cases of
n, = 4 in Fig. 7(a)—(c) are modeled by S, [Fig. 13(a)]. For the
case of n, = 5 in Fig. 7(d), it is modeled by S5 [Fig. 13(b)].

(a) (b) © (d)

Fig. 13. Shape type of the projected GDM. (a) Type S, (b) type Ss,
(c) type Se,1, and (d) type Sg 2.

Fig. 14.  Shape type of the GDM outline.

TABLE 1I
CDM

Ny ST D
g ‘BaCbAc’
6.1 ‘aBcAbC’
‘aBChAC’
‘aBchAC”
‘ABaCbhc’
‘BeAbaC
‘aBCbAC’
‘aBcbAC’
‘BaCbcA’
‘BeAbaC’
“aBCheA’
‘BCbcAa’
‘BebAaC?
“Bebd aC
‘AaBCbc’
‘BebAaC’
‘BChc’
‘BebC?

For the two cases of n,, = 6 in Fig. 7(e) and (f), due to the fact
that their missing lines will be recovered differently when there
is occlusion, they are modeled as two different types: 1) S 1
and 2) Sg o [Fig. 13(c) and (d)]. The shape type of the projected
GDM is depicted in Fig. 14. The summary of the description
D?, shape type ST, and n,, can be found in Table II.

D. RM

The RM formulates the maximum number of lines of the
GDM contour that are allowed to be completely or partially
occluded in the image such that the original shape of the
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(a) (b) (c)

(d) (e

Fig. 16. S4’s resolvability. (a) Original GDM in S4. (b) nocc = 1 in Sy.

(c) (b) is irresolvable. (d) np = 1 and nocc = 0in Sy. (e) (d) is resolvable.

GDM is still recoverable based on the information given by
the unoccluded and partially occluded lines. In an unoccluded
case, the projected GDM onto the image consists of a full
description of lines. When there is partial occlusion, lines
on the GDM can take on one of the following three states:
1) unoccluded; 2) partially occluded; and 3) completely oc-
cluded (Fig. 15).

These three states could happen on each line of the four
shape types that were introduced in the previous section (i.e.,
S4, S5, 56,1, and Sg 2). In order to derive a set of rules to model
the resolvability of GDM, we have generated all the possible
combinations of the three states (i.e., unoccluded, partially
occluded, and completely occluded) on each of the four shape
types (S4, S5, S6,1, and S 2) and attempted to complete the
missing lines for the generated samples based on the existing
lines. Based on the observation of the huge number of generated
cases, four conclusions are drawn.

1) For Sy [Fig. 16(a)], if there is one or more completely oc-
cluded lines (i.e., noce > 1, where ncc is the number of
completely occluded lines), then the GDM is irresolvable.
An example is illustrated in Fig. 16(b), in which there
is one completely occluded line in Sy (i.e., nocc = 1);
therefore, there is no way to recover the original GDM
with the information given by the nonoccluded lines, as
indicated by the dotted lines in Fig. 16(c). On the other
hand, the number of partially occluded lines n,, does not
affect its resolvability. This is illustrated in Fig. 16(d),
in which there is only one partially occluded line in Sy
(i.e., np = 1 and nocc = 0). Therefore, it is resolvable, as
indicated by the dotted lines in Fig. 16(e).

2) Similarly, in S5 [Fig. 17(a)], if there is one or more
completely occluded lines (i.e., nocc > 1), then the GDM
is irresolvable. An example is shown in Fig. 17(b), in
which there is one completely occluded line (nocc = 1),

(a)

a

(d)

Fig. 17. Ss’s resolvability. (a) Original GDM in Ss. (b) nocc = 1 in S5.
(c) (b) is irresolvable. (d) np = 3 and nocc = 0in S5. (e) (d) is resolvable.

(0 Iy

(©)

)]

F i

) ©)

Fig. 18. Se,1’s resolvability. (a) Original GDM in Sg,1. (b) nocc = 11in Sg,1.
(c) (b) is resolvable. (d) nocc = 2in Se,1. () (d) is irresolvable.

indicating that the original GDM is not resolvable, even
if the information of one of the vertices is exploited, as
indicated by the horizontal dotted line [Fig. 17(c)]. On
the other hand, similar to Sy, the number of partially
occluded lines n, does not affect its resolvability. This
is illustrated in Fig. 17(d), in which the GDM contains
three partially occluded lines but no completely occluded
lines (n, = 3 and nyc. = 0); therefore, the original shape
is recoverable, as depicted in Fig. 17(e).

3) In S [Fig. 18(a)], this case is slightly different in that
if there are more than one completely occluded line (i.e.,
Noce > 1), then the GDM is irresolvable. As illustrated in
Fig. 18(b), the GDM contains one completely occluded
line (noec = 1), which is recoverable with the aid of
extending the partially occluded lines and projecting the
lines to form a complete GDM, as depicted by the dotted
lines in Fig. 18(c). However, if nge. > 2 [Fig. 18(d)],
the GDM becomes irresolvable, as there is no way to
determine the extent of the GDM [Fig. 18(e)].

4) The case of Sg > is, by far, the most complicated. If, in
description D?, either “b” or “B” is between “a” and
“A” [Fig. 19(a)], then, if both “b” and “B” are not com-
pletely occluded and noc. < 1, the GDM is resolvable.
An example is depicted in Fig. 19(b), in which “b” is
not occluded, “B” is only partially occluded (i.e., both of
them are not completely occluded), and ny.. = 1; thus,
the GDM is resolvable [Fig. 19(c)]. On the other hand,
if either “b” or “B” is completely occluded, or if both
“b” and “B” are not completely occluded but nge. > 1,
then the GDM is irresolvable. This is illustrated in
Fig. 19(d) and (e), in which “B” is completely occluded;
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Se,2’s resolvability. (a) Original GDM in Sg 2 where “B” is between

“a” and “A.” (b) “b” and “B” exist and nocc = 1. (¢) (b) is resolvable.
(d) “B” is completely occluded. (e) (d) is irresolvable. (f) “b” and “B” exist
and nocec = 2. (g) (f) is irresolvable.

TABLE 1II
RM
ST R =1 (Resolvable) if R =0 (Irresolvable) if
SyporSs | My, =0 ny, = (any value) otherwise
Se1 M <1 n, = (any value) otherwise
(i) is satisfied, but (ii) is
violated
Se,2 (i) — (iii) are all satisfied or
(i) and (ii) are satisfied, but
(iii) is violated

(i) “b” or ‘B’ is between ‘a’ and ‘4’
(ii) both ‘6” and *B’ exists
(i) n,,, <1

(The same condition holds when ‘b” and B’ are replaced by ‘c” and ‘C” respectively.)

therefore, it is irresolvable. Similarly, in Fig. 19(f), al-
though both “b” and “B” exists, as ngc. = 2, it is irre-
solvable [Fig. 19(g)]. (The same condition holds when
“b” and “B” are replaced by “c” and “C,” respectively).
The conditions that were discussed are summarized

in Table III.

E. Model Application

In this section, the steps to apply the proposed models (i.e.,
VSM, CDM, and RM) are introduced [21]. The proposed
steps are illustrated through a real-world example of vehicle
occlusion, which contains a cluster of six occluded vehicles
(i.e., N = 6) (Fig. 20).

1) Vehicle Segmentation: The texture-based vehicle seg-
mentation approach that was described in [29] is employed
to extract the moving vehicles and contains three steps. First,
three likelihood maps, namely 1) 7T-map; 2) L-map; and
3) C-map, are computed according to the differences in tex-
ture, luminance, and chrominance between input frame f; and
background reference frame f;, respectively. Then, a logical
OR operation is performed on the likelihood maps to produce
the OR-map. Finally, morphological operations are performed
on the OR-map to form the foreground mask, which is used to
extract the vehicle. This method has an inherent advantage that

o e ———

Fig. 20. Example of vehicle occlusion (N = 6).

cast shadow regions are automatically removed, as they have
the same textural properties as the background.

To construct the T-map, each pixel with its neighborhood
from an input frame f; is transformed into p;, as given by

p(z,y)(man):f($+m_May+n_N) (])

where 0 <m < 2M, and 0 < n < 2N, and the same neigh-
borhood from a background reference frame f is transformed
similarly into p,. T-map is constructed according to texture
difference dr, i.e.,

1
2M + 1)(2N + 1)

2M 2N

X Z Z [R(w,y),i (ua U) - R(Ly),b (ua U)] ? 2)

u=0v=0

dT(xvy) = (

where M <z<X-M-1, and N<y<Y -N-1,
which is the mean square difference of two autocorrelation
functions R of p; and p,. T-map is finally computed by
comparing texture threshold 7p with texture difference map
dT, i.e.,

1, ifdr(x,y) > 7
0, otherwise

where M <z < X -M-1l,andN<y<Y-—-N-—1.

To construct the L-map and C'-map, the color model YCbCr
is used to separate the luminance and chrominance components
of the images. A luminance difference dy between input frame
fi and background reference frame f; is computed according to
the following equation:

T-map(z, y)

3

— }/i(xay)_yb(xvy% 1sz(337y)_Yb($7y)>0
dy (2,y) = {O, otherwise

“)
where M <z < X -M-—-1,and N <y<Y — N — 1. The
chrominance difference do between input frame f; and
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Fig. 21. Composite vehicle mask.
background reference frame f; is computed according to the
following equation:

dC(x’y) = [Cbl ((I}, y) - Cbb (xvy)]Q
+[Cri (z,y) — Cry (2,9)]* (5

where M <z < X - M —1,and N <y <Y — N — 1. Both
the L-map and C-map are then calculated by comparing lu-
minance threshold 7y and chrominance threshold 7o with
luminance difference map dy and chrominance difference map
dc, respectively, i.e.,

. _ 17 lde(I7y) > Ty
L-map(z, y) = {O, otherwise

i 1, ifde(x,y) > 10
C-map(z,y) = {0, otherwise @

(6)

where M <x < X-M-1l,andN<y<Y-—-N-—1.
The OR-map is then computed by a basic logical OR opera-
tion of the T-map, L-map, and C-map, i.e.,

OR-map(z,y) = T-map(z,y) + L-map(z,y) + C-map(z, y)
(8)

where M <z <X -M-—-1,and N<y<Y - N —1. Fi-
nally, the OR-map is operated on by a morphological opening
to remove undesired features such as the boundary between the
shadowed and non-shadowed regions of the road and to smooth
the contours. Afterward, morphological closing is employed to
fuse narrow breaks and long thin gulfs, and eliminate small
holes in order to form the foreground mask. The vehicle is
then extracted based on the shape of the foreground mask. This
method proves to be very effective in extracting vehicle details
without shadow and other visual artifacts. The composite vehi-
cle mask of the clustered vehicles extracted from the image by
this method is shown in Fig. 21.

2) Contour Approximation: To approximate the contour of
the extracted vehicle mask (Fig. 21), the tangential slope curva-
ture detection method proposed by [11] is employed to extract

the curvature points due to its simplicity and ability to detect
feature points under noise.

a) Computation of signature curve: The tangential slope
of every data sample on the contour of the segmented object is
first computed [Fig. 22(a) and (b)]. For simplicity, the tangential
slope of data sample ¢ is defined as the vector that joins samples
i — 1 and i + 1. The signature curve of the contour, which is a
set of tangential slopes, can be written mathematically as

sili, o) = 2L ©)

Tit1 — Ti-1

for :+ =2,...,Ng —1, where N, is the number of sam-
ple points on the contour, and x; and y; are the z- and
y-components of the ith sample point, respectively. The merit
of this method is that it is straightforward and retains points
of sharp and gradual curvatures. However, this also implies that
the signature curve also contains a considerable amount of local
variations or noise [Fig. 22(c)] that required suppression in the
next stage.

b) Signature curve filtering: These local variations or
noise are due to quantization in the digitizing process of the
contour, and they must be filtered before the curvature points
can be detected from the signature curve. From a detailed study
of the signature curve, it is found that most of these local
variations have a duration of not more than two samples in
length. As such, the filter can simply eliminate any spikes with
a duration of less than or equal to two samples in length. In
another words, the filter changes the signal [...,p,q,p,...] to
[...,p,p,p,.- ), and [...,p,q,¢,p,...] O [...,p,p, D, D, .. ],
respectively, where p and ¢ are two different tangential slope
values. Mathematically, it can be written as

Ji =si—11f (5; # si—1 and sj1.1 = 5;_1) (10)
fi=si—1and fig1 =51
if (s; # si1, 841 =5i, and s2=s5;1) (11)

where s; and f; are the tangential slope value of the signature
curve and filtered signature curve, respectively. The resulting
filtered signature curve is depicted in Fig. 22(d). Comparing
this with Fig. 22(b), all the local variations have been removed.

c) Curvature detection: To detect the curvature points
from the filtered signature curve, the following rules are used.
First, the start and end points of each disjointed segment on the
filtered signature curve are considered as curvature points since
they represent a substantial change in tangential slopes. Second,
curvature points are also detected at the transition point where
the filtered signature curve changes state. This can be written
mathematically as follows:

if (fifl = iOO7 fz 75 iOO, and fi+1 75 iOO)

then ¢; = [z; yi]Tand Cit1 = [Tiy1 ’yi+1]Tif fi # fina
(12)

lf (fi—l 7é :l:C)O7 f, 7& :tOO, and fi+1 = :|:OO)

then c; = [1‘1;1 yifl]T andc;41 = [:L‘l yi]T if i1 # f;
(13)

if (fi-1 = fi # £ooand fi11 = fir2 # +00)

thenc; = [z; wi]" andcipy = [zip1 wipa]” if fi # fip
(14)
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Fig. 22. Tangential slope curvature points extraction of the vehicle cluster. (a) Composite contour, (b) signature curve of (a), (c) local variations on the signature
curve, (d) filtered signature curve, (e) detected curvature points on curve, and (f) curvature points detected.

where c; is the detected curvature point at [z; yi]T in the
2-D image coordinates. The detected curvature points are
shown in Fig. 22(e). For clustered curvature points, we simply
select one point with the highest curvature out of a cluster of
detected points. The set of final curvature points is depicted
in Fig. 22(f), and we can observe from this diagram that
the proposed algorithm has accurately detected the curvature

points. The set of detected curvature points can be written
as ¢ = [c1,Ca,...,ck|T, where K is the number of detected
curvature points. This results in the approximated contour for
the subsequent process.

3) Count Reasoning: With the approximated contour in
hand, it is then further reasoned in order to find out how
many vehicles are involved in the contour. To do this, the
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Fig. 23. Contour labeling by direction primitives. (a) Direction primitive “a,”
(b) direction primitive “A,” and (c) lines without direction primitives.

Fig. 24. Contour with description D*®.

lines of the approximated contour are first described by di-
rection primitives (i.e., “a,” “b,” “c,” “A,)” “B,” and “C”)
(Section IV-C), depending on to which of the vanishing points
(i.e., Px; Py, Or py) the line relates. The line of the approxi-
mated contour is extended to see if the extend line intersects
Px, Py, Or pPy. If the extend line intersects p,,, and when the
contour is traced in a counterclockwise manner, the direction of
the line is away from py, then it is labeled as “a” [Fig. 23(a)].
On the other hand, if the direction of the line goes foward
py when the contour is traced in a counterclockwise manner,
then it is labeled as “A” [Fig. 23(b)]. The labeling of “b,”
“B,” “c,” and “C” are done in the same manner. If the extend
line does not intersect any of the vanishing points, then it is
simply ignored and deleted from the contour [Fig. 23(c)]. If the
extend line intersects more than one vanishing point, then the
underlined convention (e.g., aC and AaC) is used, as described
in Section IV-C. By tracing the approximated contour in this
way, the description D* = “aBaBcaBcAbCbcAcAbCHCHC”
is obtained (Fig. 24).

L ke
Br 1 p & 2 b 3
A A
=
(a) (b) (©)
< 2 >
4 B(S-Q[ 6 Ib
A
(d) (e) ()
Fig. 25. Segmented subsegments. (a) D7, (b) D3, (c) D3, (d) Dy, (e) Dz,
and (f) Dg.

In order to reason how many vehicles are involved within
the approximated contour, description D? is subdivided into
subsegments D7, with reference to the CDM (i.e., Table II of
Section IV-C), which represents a partially completed GDM.
D? is segmented from D¢ if it matches one of the cases
of Table II. For description D?® (Fig. 24), six subsegments

(D5, ..., D{) are being segmented, which are depicted here.

1) D =“aBcAbC,” which corresponds to “aBcAbC”
(ST = S6,1).

2) D5 = “aBc...b...,” which corresponds to “a BcAbC”
(ST = S6,1).

3) D§=*“...cA...,” which corresponds to “aBcAbC”
(ST == 56,1)-

4) Di=*“...cAbC...,” which corresponds to “aBcAbC”
(ST = Sg,1).

5) D = “aB...bC,” which corresponds to “aBcAbC”
(ST = S6,1).

6) Dg=“...bC...,” which corresponds to “aBcAbC”
(ST = 56,1)-

In another words, six vehicles are being counted from the
cluster, which is a correct count (Fig. 25).

4) Resolvability Evaluation: After the description D? of the
approximated contour is computed and segmented into D},
with reference to the CDM, the next step is to assign resolv-
ability index R to each subsegment according to the criteria in
the RM (Table III), which indicates the likelihood of success
to recover the original GDM of the vehicle. In comparison
with the projection of the GDM in the CDM (Table II), the
number of completely occluded lines n... (indicated as “com-
plete”) and partially occluded lines n,, (indicated as “partial”) is
given here.

1) In D§ = “aBcAbC” the status of the lines are “a (partial)
B (partial) ¢ (partial) A (partial) b (partial) C' (partial).”
Therefore, ng. = 0, and n,, = 6.

2) In D5 = “aBc...b...,” the status of the lines are “a
(partial) B (partial) ¢ (partial) A (complete) b (partial) C'
(complete).” Therefore, nocc = 2, and n, = 4.

3) InD3 = “...cA...,” the status of the lines are “a (com-
plete) B (complete) ¢ (partial) A (partial) b (complete) C
(complete).” Therefore, nocc = 4, and n, = 2.

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 5, 2009 at 03:59 from IEEE Xplore. Restrictions apply.



452 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 8, NO. 3, SEPTEMBER 2007

\ R

P SN 'r
~—=-7"..Q';;' !
—pa
A tF
B i o
= P J P,

HEY T e

! 1y

X L]

From p,

Fig. 26. Resolving the GDM of vehicle 1.

4) In Dj = “...cAbC ...,” the status of the lines are “a
(complete) B (complete) ¢ (partial) A (partial) b (partial)
C (partial).” Therefore, nocc = 2, and n, = 4.

5) In D = “aB...bC,” the status of the lines are “a
(partial) B (partial) ¢ (complete) A (complete) b (partial)
C (partial).” Therefore, nocc = 2, and n, = 4.

6) In Dg = “...bC...,” the status of the lines are “a
(complete) B (complete) ¢ (complete) A (complete) b
(partial) C (partial).” Therefore, nocc = 4, and n, = 2.

Based on the status of the lines of each subsegment, resolv-
ability index R is computed based on the rules in the RM
(Table III), which are depicted here.

1) For D3, since ST = Sg.1, Nocc = 0, and n, =6, R =1,
because noec < 11in Se 1.

2) For D3, since ST = Sg,1, Nocc = 2, and n, =4, R =0,
because nocc > 11in Se 1.

3) For D3, since ST = S6,1, Noce = 4, and np, =2, R =0,
because nqc > 1in Sg 1.

4) For Dj, since ST = S¢1, Nocc = 2, and n, =4, R =0,
because 1qc > 1in Sg 1.

5) For Dg, since ST = Sg,1, Nocc = 2, and np, =4, R =0,
because nocc > 1in Se 1.

6) For Dg, since ST = S¢,1, Noce = 4, and np, =2, R =0,
because 1ec > 1in Se 1.

5) Resolving GDM: After the computation of the resolvabil-
ity index of each vehicle, the final step is to resolve the GDM of
each vehicle [11]. To do this, the missing lines of the GDM are
recovered geometrically according to the existing nonoccluded
lines of the GDM as well as vanishing points px, Py, and p,,
as illustrated in Fig. 26, which shows how the GDM of vehicle
1 is reconstructed. The reconstructed GDM is “aBcAbC'.” The
results of all the reconstructed GDMs are shown in Fig. 27. The
segmentation of each of the vehicles is depicted in Fig. 28. It
can be noted from Fig. 28(a) that the sedan (i.e., vehicle 1)
is perfectly segmented from the image since it is declared as
resolvable. On the other hand, for the rest of the vehicles [i.e.,
the truck at the front (vehicle 2), the taxi at the front (vehicle 3),
the taxi in the middle (vehicle 4), the truck at the back
(vehicle 5), and the taxi at the back (vehicle 6)], due to the fact
that they are declared as irresolvable by the RM, therefore, their
GDMs are not fully recoverable [Fig. 28(b)—(f)]. However, they
were successfully counted.

Fig. 27. Resolved GDMs of all vehicles.

Fig. 28. Segmented vehicles based on the resolved GDM. (a) Sedan, (b) truck,
(c) taxi, (d) taxi, (e) truck, and (f) taxi.

6) Vehicle Dimension Estimation: From the vertices of the
resolved GDM v = [vy,Va,...,vs]T, vehicle dimensions are
determined by transforming them from 2-D image coordinates
to 3-D world coordinates using the camera parameters that are
determined through camera calibration [30]. The model vertices
after the transformation are denoted by the capital letter V,
ie,V=[Vy, Vs, ..., ViT. The dimensions of the resolved
model are then estimated as follows:

W =1|V4— V3] (15)
L=|V5—Vy4 (16)
H=|Vs— V5] (17)

where W, L, and H stand for the width, length, and height
of the vehicle, respectively. The dimensions of the six vehi-
cles of the real-world example are extracted as depicted in
Table IV. It should be noted that some of the dimensions of
the vehicles could not be estimated since they are declared as
irresolvable. The extracted dimensions are compared with the
dimension, as specified by the manufacturer (Table V), and
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TABLE 1V
ESTIMATED DIMENSIONS OF THE REAL-WORLD EXAMPLE
Width () | Length (L) | Height (H)
(mm) (mm) (mm)
Sedan (Vehicle 1) 1733 4292 1435
Truck at the front (Vehicle 2) 2327 — 2418
Taxi at the front (Vehicle 3) - — —
Taxi in the middle (Vehicle 4) - 4758 1470
Truck at the back (Vehicle 5) 2199 5949 —
Taxi at the back (Vehicle 6) - - -
TABLE V
DIMENSIONS SPECIFIED BY THE MANUFACTURER
Width (W) | Length (L) | Height (H)
(mm) (mm) (mm)
Sedan (Honda Civic) 1725 4418 1413
Truck (Toyota Hino) 2240 6115 2505
Taxi (Toyota Crown) 1765 4820 1465
TABLE VI
PERCENTAGE ERROR OF THE REAL-WORLD EXAMPLE
Width (W) | Length (L) | Height ()
Sedan (Vehicle 1) 0.46% 2.85% 1.56%
Truck at the front (Vehicle 2) 3.88% - 3.47%
Taxi at the front (Vehicle 3) - - -
Taxi in the middle (Vehicle 4) — 1.29% 0.34%
Truck at the back (Vehicle 5) 1.83% 2.71% —
Taxi at the back (Vehicle 6) - - -

the percentage error of the estimation is computed by dividing
the absolute dimension error by the actual dimension, as listed
in Table VI.

V. RESULT AND DISCUSSION

The proposed method was evaluated on 267 sets of real-
world monocular traffic images that were taken on a busy
urban road that contains 3074 vehicles with multiple-vehicle
occlusions that can be seen in the image. The texture-based
segmentation approach described in [29] was employed to
extract the composite contour of the occluded vehicles and
eliminate the vehicle cast shadow. The scoreboard algorithm
in [28] was employed to estimate the background image for
vehicle segmentation and to cope with background changing
due to roadside objects. The extracted contour was first approx-
imated by the curvature detection method that was proposed by
Pang et al. [11]. The number of vehicles that were involved in
each case was deduced with reference to the CDM. By com-
paring the vehicle count that was obtained by human inspection
in monocular images with the one obtained by the proposed
method, it was found that the proposed method has achieved a
count accuracy of 100%. It should be noted that this percentage
does not include those vehicles that are being totally occluded
by the image, as there is no way to detect such vehicles in
monocular images by human inspection nor by the proposed
method. The resolvability index of each vehicle was evaluated
with reference to the RM. The individual GDM of the vehicles
was computed [21]. In this case, 93.82% of the vehicles were
resolvable, while the rest were irresolvable, although they were
included in the count. For the irresolvable vehicles, the dimen-
sions of the vehicle could not be correctly estimated, but they

(i) Double-decker bus
(veh#1) (R=1)

(ii) Double-decker bus
(veh#2) (R=1)

(iii) Double-decker bus
(veh#3) (R=1)

(1) Sedan
(veh#4) (R=0)

€3]

(1) Taxi
(veh#5) (R=0)

(i) Truck
(veh#6) (R=1)

(iv) Mini-van (v) Truck (vi) Mini-van
(veh#9) (R=1) (veh#10) (R=0) (veh#11) (R=1)
(h)

(ii) Truck
(veh#7) (R=1)

(iii) Mini-van
(veh#8) (R=0)

Fig. 29. Moderately occluded cluster (N = 11). (a) Image. (b) Composite
GDM. (c) Approximated contour. (d) Computed contour. (¢) Resolved GDM.
(f) Right lane (from the viewer). (g) Middle lane. (h) Left lane.

could be correctly counted. The segmented GDM was further
analyzed subjectively for each case to see if the proposed
method performed in a satisfactory manner (Figs. 29-35). To
objectively evaluate the accuracy of the proposed method,
the dimensions of the vehicles that were segmented from the
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Fig. 30. Close vehicle cluster (N = 2). (a) Image. (b) Composite GDM.
(c) Approximated contour. (d) Computed contour. (e) Resolved GDM.
(f) Minibus (veh#1) (R = 1). (g) Minivan (veh#2) (R = 1).

test images were calculated from the partitioned model. The
estimated values are then compared with the actual dimensions
that were published by the manufacturers, and the percentage
errors of the estimated dimensions are plotted in Fig. 36.

A. Moderately Occluded Cluster

The first set of images that are presented here contains a
cluster of 11 vehicles traveling on three lanes that are moder-
ately occluded [Fig. 29(a)]. The segmented vehicles and the
fitted GDM for the cluster are depicted in Fig. 29(b). The
approximated contour and the computed contour as well as
the resolved GDMs are shown in Fig. 29(c)—(e), respectively.
The segmentation of each vehicle based on the resolved GDMs
are shown in Fig. 29(f)—(h). It can be seen from Fig. 29(d)
that the proposed method successfully deduced the number of
vehicles within the cluster as well as computed the resolvability

(i) Truck
(veh#1) (R=1)

(ii) Sedan
(veh#2) (R=0)

(iii) Taxi
(veh#3) (R=0)

(ii) Truck
(veh#5) (R=0)

(iii) Truck
(veh#6) (R=1)

(@

(iv) Sedan

(veh#d) (R=0) (veh#7) (R=0)

Fig. 31. Low-resolution distant vehicle cluster (N = 7). (a) Image. (b) Com-
posite GDM. (c) Approximated contour. (d) Computed contour. (e) Resolved
GDM. (f) Right lane. (g) Left lane.

index of each vehicle. The result is that the three buses on
the right lane are resolvable, and their GDMs are accurately
resolved [Fig. 29(f)]. On the other hand, the two vehicles in
the middle lane are found to be irresolvable [Fig. 29(g)] due to
severe occlusion. On the left lane, four out of six vehicles are
resolvable [Fig. 29(h)], and their GDMs are reasonably resolved
[Fig. 29(h)(i), (ii), (iv), and (vi)].

B. Close Vehicle Cluster

The second set of images that are presented here contains a
cluster of two vehicles that are close to the camera [Fig. 30(a)].
The segmented vehicles and the fitted GDM for the cluster are
depicted in Fig. 30(b). The approximated contour, the computed
contour, and the resolved GDMs are shown in Fig. 30(c)—(e),
respectively. It can be seen from Fig. 30(d) that the number of
vehicles as well as the resolvability index of both vehicles is
successfully deduced. The result is that both the minibus and the
minivan are resolvable, and their GDMs are accurately resolved
[Fig. 30(f) and (g)].
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(i) Cement truck
(veh#1) (R=1)

(ii) Taxi
(veh#2) (R=0)

(iii) Pickup truck
(veh#3) (R=1)

(iv) Sedan
(veh#4) (R=0)

(v) Taxi
(veh#5) (R=0)

(1) Taxi
(veh#6) (R=1)

(ii) Taxi
(veh#7) (R=0)

Fig. 32. Distant queue of irregular sizes (N = 7). (a) Image. (b) Composite
GDM. (c) Approximated contour. (d) Computed contour. (e¢) Resolved GDM.
(f) Right lane. (g) Left lane.

C. Low-Resolution Distant Vehicle Cluster

The third set of images that are presented here contains a
cluster of seven vehicles that are located relatively far away
in the field of view (FOV) of the image [Fig. 31(a)]. Despite
the resolution of the cluster in the FOV, the proposed method
has successfully computed and counted the vehicles within the
cluster [Fig. 31(c) and (d)]. In terms of resolvability, only two
trucks are resolvable [Fig. 31(f)(i) and (g)(iii)], while the rest
are irresolvable.

D. Distant Queue of Irregular Sizes

The fourth set of images that are presented here contains a
queue of seven vehicles of irregular-shaped sizes, such as a
cement truck and pickup truck [Fig. 32(a)]. The GDM that is
fitted onto the segmented cluster is shown in Fig. 32(b). Once
again, the number of vehicles was successfully computed by the
proposed method [Fig. 32(c) and (d)]. For the resolvability of
the vehicles, the cement truck [Fig. 32(f)(i)], the pickup truck
[Fig. 32(f)(iii)], and the taxi on the left lane [Fig. 32(g)(i)]
are resolvable and accurately segmented, while the rest of the
vehicles are irresolvable.

E. Large Vehicle Cluster

The fifth set of images that are presented here contains
a very big cluster of 26 vehicles in four lanes [Fig. 33(a)].
Some of the vehicles are badly occluded in the image. The
GDM that is fitted onto the segmented cluster is shown in
Fig. 33(b). By applying the proposed method, the number of
vehicles is successfully computed, including the motorcycle in
Fig. 33(g)(iii). The resolved vehicles in each lane are shown
in Fig. 33(f)—(i). It can be seen that the truck on the right lane
[Fig. 33(f)(i)], the four taxis, the sedan, and the cement truck on
the second lane from the right [Fig. 33(g)(i), (ii), (iv)—(vi), and
(viii), respectively], and the taxi on the third lane from the right
[Fig. 33(h)(i)] are resolvable, while the rest of the vehicles are
irresolvable.

FE. Rainy Situation

The sixth set of images that are presented here contains
a cluster of four vehicles that are traveling on a rainy day
[Fig. 34(a)]. It can be noted from Fig. 34(a) that the rain was
quite heavy and the ground was wet, which causes light to be
reflected on the road. Despite these effects that were brought
by the rain, the proposed method successfully segmented the
vehicle cluster from the background and computed the number
and resolvability of the vehicles [Fig. 34(b)—(d)]. The result
was that both the tour bus and the sedan on the right lane are
resolvable [Fig. 34(f)], while the two sedans on the left lane are
irresolvable [Fig. 34(g)].

G. Poor Illumination During Evening

The seventh set of images that are presented here contains
vehicles that were taken in the evening while the illumination
was very poor [Fig. 35(a)]. The images were taken without
flashlight due to the fact that flashlights are impractical for traf-
fic surveillance since it would cause unnecessary disturbance to
drivers. Despite the poor illumination of the images, the vehicle
cluster was successfully segmented from the image, and the
number of vehicles and the resolvability of the vehicles are
successfully computed [Fig. 35(b)—(d)]. The result was that the
truck on the right lane and the truck on the middle lane are
resolvable [Fig. 35(f) and (g)], while the taxi on the left lane is
irresolvable [Fig. 35(h)].
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Fig. 33.
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(vi) Minivan
(veh#17) (R=0)
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(i) Taxi
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@

Large vehicle cluster (N = 26). (a) Image. (b) Composite GDM. (¢) Approximated contour. (d) Computed contour. (¢) Resolved GDM. (f) Right lane.

(g) Second lane from the right. (h) Third lane from the right. (i) Left lane (from the viewer).

H. Dimension Estimation Error

The accuracy of the proposed method is evaluated by
estimating the dimensions from the resolved GDM of the
vehicles in the test images. The estimated values are then
compared with the actual dimensions published by the man-
ufacturers, and the percentage error is computed by divid-
ing the absolute dimension error by the actual dimension,
as depicted in the histograms in Fig. 36. The rms error
for width, length, and height estimations are found to be
48, 279, and 76 mm, respectively. In all three cases, the

worst-case error is 15%, while the minimum error is about
1%. These figures indicate the potential of the proposed
method.

1. Computational Time

The computational time of the proposed method is depicted
in Table VII. It was implemented in MATLAB on a Pentium III
800-MHz platform, and the computational time of each step
was monitored by the “tic” and “toc” functions in MATLAB.
The count reasoning step is the slowest among the four steps,
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(i) Tour bus
(veh#l) (R=1)

(ii) Sedan
(veh#2) (R=1)

(i) Sedan
(veh#3) (R=0)

(ii) Sedan
(veh#4) (R=0)

(2

Fig. 34. Rainy example (N =4). (a) Image. (b) Composite GDM.
(c) Approximated contour. (d) Computed contour. (¢) Resolved GDM. (f) Right
lane. (g) Left lane.

while the resolvability testing step is the fastest. The overall
computational time was about 2 s/image. As such, the proposed
method is computationally feasible.

VI. SUGGESTION FOR FUTURE DEVELOPMENT

For the proposed method, an immediate question that was
raised would be on how to deal with vehicles that are irre-
solvable. One possible solution is to exploit the symmetrical
features of the vehicle such as the license plate or headlight to
estimate the missing dimension of the vehicle. Another possi-
ble approach is to build a database of the relative dimension
ratios of GDMs of different types of vehicles. This allows the
estimation of the missing dimension of the GDM of a particular

(a)
©
(e)
(2

Fig. 35. Evening example (N = 3). (a) Image. (b) Composite GDM.

(c) Approximated contour. (d) Computed contour. (¢) Resolved GDM. (f) Truck
(veh#1) (R = 1). (g) Truck (veh#2)(R = 1). (h) Taxi (veh#3)(R = 0).

3

)

of

(d)

(h)

vehicle type based on the existing dimension information of the
GDM of that vehicle.

VII. CONCLUSION

This paper proposed a novel method for accurately counting
N occluded vehicles as well as determining the resolvability of
the model of each vehicle. The novelty of the proposed method
is that it has addressed the problem of N-vehicle occlusion
as well as the severity of vehicle occlusion. The advantage of
such approach is that it can reason and count the number of
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Fig. 36. Percentage error of the dimension estimation of the individual
vehicles. (a) Width, (b) length, and (c) height.

vehicles that are involved in a large occluded cluster under
different PTZ actions of the camera, and determine whether
the 3-Ds of each vehicle can be correctly estimated. As it
is, accurate counting provides essential information for the
estimation of important traffic parameters, while accurately
resolving the vehicle from an occluded cluster is a prerequisite

TABLE VII
COMPUTATIONAL TIME REQUIREMENT OF THE PROPOSED METHOD
Computational time
Contour approximation 320 ms
Count reasoning 860 ms
Resolvability testing 180 ms
GDM resolving 530 ms
Overall 1890 ms

step for accurate tracking and classification. The proposed
method has been tested on 267 sets of real-world monocular
traffic images that involved multiple-vehicle occlusions and
is found to be successful in counting the vehicles with a
counting accuracy of 100% in comparison with human inspec-
tion. Moreover, the rms error for width, length, and height
estimations are 48, 279, and 76 mm, respectively. Potentially,
the proposed method can be generalized for applications such
as crowd analysis, human counting, object counting, and bin
picking.
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