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Robust Transceiver with Tomlinson-Harashima
Precoding for Amplify-and-Forward MIMO

Relaying Systems
Chengwen Xing, Minghua Xia, Feifei Gao, and Yik-Chung Wu

Abstract—In this paper, robust transceiver design with
Tomlinson-Harashima precoding (THP) for multi-hop amplify-
and-forward (AF) multiple-input multiple-output (MIMO) relay-
ing systems is investigated. At source node, THP is adopted to
mitigate the spatial intersymbol interference. However, due to its
nonlinear nature, THP is very sensitive to channel estimation
errors. In order to reduce the effects of channel estimation
errors, a joint Bayesian robust design of THP at source, linear
forwarding matrices at relays and linear equalizer at destination
is proposed. With novel applications of elegant characteristics of
multiplicative convexity and matrix-monotone functions, the op-
timal structure of the nonlinear transceiver is first derived. Based
on the derived structure, the transceiver design problem reduces
to a much simpler one with only scalar variables which can
be efficiently solved. Finally, the performance advantage of the
proposed robust design over non-robust design is demonstrated
by simulation results.

Index Terms—Amplify-and-forward (AF), multiple-input
multiple-output (MIMO), Tomlinson-Harashima precoding, ro-
bust design, majorization theory.

I. INTRODUCTION

TRANSCEIVER design for amplify-and-forward (AF)
multiple-input multiple-output (MIMO) relaying systems

attracted a lot of attention recently, as it has a great potential to
enhance the communication range of a simple point-to-point
system, while providing spatial diversity and multiplexing
gains. AF MIMO relaying systems have a broad range of
potential applications including resource exploration, vehicle
communications, military ad hoc networks, satellite commu-
nications, etc [1]. This system has also been considered to
be adopted in the emerging wireless systems, such as LTE-
Advanced and WINNER project.
Linear transceiver design for dual-hop AF MIMO relaying

systems has been extensively studied in [2]–[12]. In particular,
joint design of relay forwarding matrix and destination equal-
izer minimizing mean-square-error (MSE) of data streams
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is discussed in [4]. Joint design of source precoder, relay
forwarding matrix and destination equalizer minimizing MSE
is investigated in [5], [6], [9]. The capacity maximization
transceiver design has also been reported in [2], [3], [9]. On the
other hand, linear transceiver design for multi-hop AF MIMO
relaying systems with prefect channel state information (CSI)
is discussed in [12]. Furthermore, robust design, which takes
channel estimation errors into account, is recently investigated
in [7], [8], [10], [11], where the channel estimation uncertainty
is considered as nuisance parameters and removed in Bayesian
sense.
In general, there are two goals in transceiver designs:

transmitting as much information as possible and recovering
the signal at receiver as accurately as possible. The latter one
is the starting point of this paper. For multiple-antenna systems
with fixed bit rates, it is well-known that nonlinear transceivers
usually have performance advantage in terms of bit error
rate (BER) than their linear counterparts [13]–[15]. Recently,
nonlinear transceiver design for AF MIMO relaying systems
assuming perfect CSI, was introduced in [16]. There are
two kinds of nonlinear transceiver design: decision-feedback
equalization (DFE) based design and Tomlinson-Harashima
precoding (THP) based design. In fact, there exists a duality
between these two designs [16], [17]. However, as THP is
performed at transmitter, it is free of error propagation com-
pared to DFE based one. THP is the transmitter counterpart
of the vertical BELL-Labs Layered Space-Time (V-BLAST)
system. THP can effectively mitigate intersymbol interference
or multi-user interference, and is also widely used as one-
dimensional dirty paper coding (DPC). Due to its nonlinear
nature, unfortunately, THP is more sensitive to channel es-
timation errors than its linear counterpart. In the presence
of channel estimation errors, the performance of THP would
degrade severely [18]. Therefore, robust nonlinear transceiver
design is a promising way to mitigate such problem. This is
the motivation of the current work.
In this paper, we consider a general multi-hop AF MIMO

relaying system. The THP at the source, linear forwarding
matrices at multiple relays and linear destination equalizer
matrix are jointly optimized under channel estimation errors
at all terminals. As in this case many design objectives of
THP can be considered as a multiplicatively Schur-convex
or multiplicatively Schur-concave function, in this work, a
unified optimization problem is investigated whose objective
functions are multiplicative Schur-convex/concave. With novel
applications of results in multiplicative Schur-convexity and
matrix-monotone functions, the optimal diagonal structure of

0733-8716/12/$31.00 c© 2012 IEEE
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Fig. 1. Multi-hop AF MIMO relaying system with Tomlinson-Harashima Precoding at the source.

the transceiver is derived. With the obtained optimal struc-
tures, the transceiver design is then significantly simplified
and then iterative water-filling alike solutions are adopted to
solve for the remaining unknown variables. It is found that
if the objective function is multiplicatively Schur-concave,
the proposed nonlinear transceiver design reduces to linear
transceiver design. The performance advantage of the pro-
posed robust design is assessed by simulations and is shown
to perform much better than the corresponding non-robust
design. Notice that while delay is a critical consideration
for relaying communication, in this paper, we assume that
the network size is limited and the effects of time delay in
transmission are not considered.
The following notations are used throughout this paper.

Boldface lowercase letters denote vectors, while boldface
uppercase letters denote matrices. The notation ZH denotes
the Hermitian of the matrix Z, and Tr(Z) is the trace of the
matrix Z. The symbol IN denotes an N ×N identity matrix.
The notation Z1/2 is the Hermitian square root of the positive
semidefinite matrix Z, such that Z1/2Z1/2 = Z and Z1/2

is also a Hermitian matrix. The symbol E{•} represents the
statistical expectation. For two Hermitian matrices, C � D
means that C − D is a positive semi-definite matrix. The
(n,m)th entry of a matrix Z is denoted as [Z]n,m and λ(Z)
represents the vector consisting of the eigenvalues of Z.

II. SIGNAL MODEL AND PROBLEM FORMULATION

A. Signal Model

In this paper, aK-hop amplify-and-forwardMIMO relaying
system is investigated, in which there is one source, one
destination and K−1 relays, as shown in Fig. 1. The source is
equipped with NT,1 transmit antennas. The kth relay hasNR,k
receive antennas and NT,k+1 transmit antennas. The destina-
tion is equipped with NR,K receive antennas. At the source, at
each time slot, there is a N × 1 vector a = [a1, a2, · · · , aN ]T

to be transmitted. Specifically, the data symbols are chosen
from M-QAM constellation with the real and imaginary parts
of ak belong to the set A = {±1,±3, · · · ,±(

√M− 1)} 1.
As shown by Fig. 1, at the transmitter, the data vector

a is fed into the a precoding unit which consists of a

1In this paper, only square QAM is considered.

N ×N feedback matrix B and a nonlinear modulo operator
MODM(•). The square matrix B is a strictly lower triangular
matrix which allows data precoding in a recursive fashion and
the MODM(•) is defined as

MODM(x)

= x− 2
√
M
[⌊

Re(x)
2
√M +

1
2

⌋
+
√−1

⌊
Im(x)
2
√M +

1
2

⌋]
, (1)

where the symbol �z� denotes the largest integer not exceeding
z. The nonlinear modulo operator reduces the output signals
into a square region [−√M,

√M) × [−√M,
√M). In the

equation,Re(x) and Im(x) denote the real and imaginary parts
of x, respectively.
Generally speaking, nonlinear operation is more compli-

cated to be analyzed than linear operation. To simplify the
following analysis, as shown by Fig. 1, the nonlinear precoder
can be interpreted as the following linear operation as

bk = ak −
k−1∑
l=1

[B]k,lbl + dk (2)

where dk = 2
√MIk and Ik is a complex number whose real

and imaginary components are both integer. While we do not
need to know the exact value of dk, it has the effect of reducing
bk into the square region [−√M,

√M)× [−√M,
√M). The

previous equation can be written into a compact form as

b = (B + IN︸ ︷︷ ︸
�C

)−1(a + d︸ ︷︷ ︸
�s

) (3)

where b � [b1, · · · , bN ]T, d � [d1, · · · , dN ]T, and C is
a lower triangular matrix with unit diagonal elements, i.e.,
[C]k,l = 0 for k < l and [C]k,k = 1.
After the nonlinear operation, the vector b is multiplied

with a precoder matrix P1 under a transmit power constraint
Tr(P1RbPH

1 ) ≤ P1 where P1 is the maximum transmit
power at the source. When the elements of a are independent
and identically distributed (i.i.d.) over the constellation and
the dimension of modulation constellation M is large, b can
be considered as i.i.d. [19], i.e.,

Rb = 2(M− 1)/3IN � σ2
b IN . (4)
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The received signal x1 at the first relay is formulated as

x1 = H1P1b + n1 (5)

where H1 is the channel between the source and the first
relay and n1 is additive Gaussian noise with mean zero and
covariance matrix Rn1 = σ2

n1
INR,1 .

At the first relay, the received signal x1 is multiplied
by a forwarding matrix P2 and then the resultant signal is
transmitted to the second relay. The received signal at the
second relay can be written as

x2 = H2P2H1P1b + H2P2n1 + n2 (6)

where H2 is the MIMO channel matrix between the first and
second relay, and n2 is the additive Gaussian noise vector at
the second hop with zero mean and covariance matrix Rn2 =
σ2
n2

INR,2 . Similarly, at the k
th relay the received signal is

xk = HkPkxk−1 + nk (7)

with Hk and nk are the channel and additive noise at the kth

hop, respectively. In this paper, we considered slow fading
channels with Hk being fixed in each transmission.
The covariance matrix of nk is denoted as Rnk

=
σ2
nk

INR,k
. Finally, for a K-hop AF MIMO relaying system,

the received signal at the destination is

y =

[
K∏
k=1

(HkPk)

]
b +

K−1∑
k=1

{[
K∏

l=k+1

(HlPl)

]
nk

}
+ nK ,

(8)

where
∏K
k=1Zk denotes ZK × · · ·×Z1. In order to guarantee

the transmitted data s can be recovered at the destination, it
is assumed that NT,k and NR,k are greater than or equal to
N [4].
In practice, the channels Hk are estimated and channel

estimation errors are inevitable. Therefore, the channel Hk

can be expressed as

Hk = H̄k + ΔHk, (9)

where H̄k is the estimated channels, and ΔHk is the corre-
sponding channel estimation errors2 whose elements are zero
mean Gaussian random variables. Furthermore, the NR,k ×
NT,k matrix ΔHk can be decomposed using the widely used
Kronecker model [7], [8], [20] as ΔHk = Σ1/2

k HW,kΨ
1/2
k ,

where the elements of the NR,k×NT,k matrix HW,k are i.i.d.
Gaussian random variables with zero mean and unit variance.
The specific formulas of Σk and Ψk are determined by the
training sequences and channel estimators [7], [8], [11], [21].

B. Problem Formulation

As shown by Fig. 1, at the destination, a linear equalizer G
is adopted and is followed by a modulo operator. As the real
and imaginary parts of d are both integer multiples of 2

√M,
the effect of d will be perfectly removed by modulo operator
at the destination. As a result, estimating s is equivalent
to estimating a [14], [15]. Thus at the destination, a linear
equalizer G is used to detect the data vector s. The MSE

2In this paper, only channel estimation errors are taken into account.

matrix of the data vector is defined as E{(Gy−s)(Gy−s)H}
[15], [19], where the expectation is taken with respect to
random data, channel estimation errors, and noise. Following
a similar derivation to that in [8], it can be shown that

Φ(G, {Pk}Kk=1,C)

= E{(Gy − Cb)(Gy − Cb)H}
= G[H̄KPKRxK−1P

H
KH̄H

K + Tr(PKRxK−1P
H
KΨK)ΣK

+ RnK ]GH − σ2
bG

K∏
k=1

(
H̄kPk

)
CH

− σ2
b

[
G

K∏
k=1

(
H̄kPk

)
CH

]H

+ σ2
bCCH (10)

where matrices Rxk
is defined as

Rxk
� E{xkxH

k }
= H̄kPkRxk−1P

H
k H̄H

k +Tr(PkRxk−1P
H
kΨk)Σk+Rnk

.
(11)

It is obvious that Rxk
is the covariance matrix of the received

signal at the relay. Notice that Rx0 = Rb = σ2
b IN .

For MIMO transceiver design, a wide range of ob-
jective functions can be expressed as a function of
the diagonal elements of the MSE matrix. For exam-
ple, for sum MSE minimization, the objective function is
f([MSE1, · · · ,MSEN ]T) =

∑N
n=1 MSEn, where MSEn =

[Φ(G, {Pk}Kk=1,C)]n,n. For product MSE minimization,
the objective function is f([MSE1, · · · ,MSEN ]T) =∏N
n=1 MSEn. Furthermore, worst-case MSE minimization

corresponds to minimizing the objective function given as
f([MSE1, · · · ,MSEN ]T) = maxn=1,2,··· ,N{MSEn} [9],
[13], [15], [23]. On the other hand, weighted geometric mean
MSE minimization corresponds to minimizing the following
objective function f([MSE1, · · · ,MSEN ]T) =

∏N
n=1 MSEwn

n

with w1 ≥ w2 · · · ≥ wN ≥ 0. Therefore, a unified transceiver
design optimization problem can be formulated as

min
G,Pk,C

f([MSE1, · · · ,MSEN ]T)

s.t. MSEn = [Φ(G, {Pk}Kk=1,C)]n,n
Tr(PkRxk−1P

H
k ) ≤ Pk, k = 1, · · · ,K (12)

where the matrix C is a lower triangular matrix with unit
diagonal elements and Pk is the maximum transmit power at
the kth node.
In general, the objective function f(•) possesses two im-

portant properties:
(1) f(•) is an increasing real-valued vector function RN →
R, i.e., for two vectors u = [u1, u2, · · · , uN ]T and v =
[v1, v2, · · · , vN ]T, when un ≥ vn, we have f(u) ≥ f(v).
This property is natural in transceiver design. This is be-
cause for two designs resulting in [MSE1, · · · ,MSEN ]T and
[M̃SE1, · · · , M̃SEN ]T, suppose MSEn < M̃SEn for all n,
we will prefer the former design. This fact is reflected in f(•)
being an increasing function.
(2) f(•) is multiplicatively Schur-convex or concave, with
definitions given below.
Definition 1: For any z ∈ Rn, let z[k] denotes the kth largest
elements of z and z(k) denotes the kth smallest elements of z,
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i.e., z[1] ≥ · · · ≥ z[N ] and z(1) ≤ · · · ≤ z(N). For two vectors
v,u whose elements are nonnegative, v ≺× u is defined as

k∏
i=1

v[i] ≤
k∏
i=1

u[i], k = 1, · · · , N − 1 and
N∏
i=1

v[i] =
N∏
i=1

u[i].

(13)

Definition 2: A function φ(•) is multiplicatively Schur-convex
if and only if v ≺× u implies φ(v) ≤ φ(u). Notice that
φ(•) is multiplicatively Schur-convex if and only if −φ(•) is
multiplicatively Schur-concave.
Notice that Definition 2 cannot be directly used to prove

whether a function is multiplicatively Schur-convex or Schur-
concave. In practice, we need the following Lemma 1.
Lemma 1: Let φ(•) be a continuous real-valued function
defined on D = {z : z1 ≥ · · · ≥ zN ≥ 0}. Then φ(•) is
multiplicatively Schur-convex if and only if for all z ∈ D,

φ(z1, · · · , zk−1, zk/e, zk+1 × e, zk+2, · · · , zN )

is decreasing in e over the following regions

1 ≤ e and zk/e ≥ zk+1 × e for k = 1, · · · , N − 1. (14)

Proof: See Appendix A. �
With Lemma 1 and straightforward computation, it can

be proved that the four objective functions mentioned above
are multiplicatively Schur-convex or concave. In the fol-
lowing, for notational convenience, multiplicatively Schur-
convex/concave is referred to as M-Schur-convex/concave.
Remark 1: Notice that in [14], [15], there is another way to
prove whether a function is M-Schur-convex/concave. How-
ever, the method in [14], [15] requires all input variables
z1, z2, ..., zN > 0. In contrast, Lemma 1 provides a stronger
result and allows elements of z being zero.
Remark 2: The differences between our work and [14], [15]
are twofold. (a) The system considered in [14], [15] is a
point-to-point MIMO system, while our work focuses on
a multi-hop AF MIMO relaying system. (b) In the above
two works, the involved CSI is perfectly known. In this
paper, we consider a robust transceiver design under Gaussian
distributed channel estimation errors. Generally speaking, the
problem tackled in this paper is more complicated and more
challenging, because of more variables, more constraints, a
more complicated objective function.

III. OPTIMAL DESIGN OF G AND C

The linear minimum mean-square-error (LMMSE) equalizer
is obtained by setting the differentiation of the trace of (10)
with respect to G∗ (the conjugate of G) to be zero, and we
have

GLMMSE = σ2
b

[
K∏
k=1

(
H̄kPk

)
CH

]H

[H̄KPKRxK−1P
H
KH̄H

K

+ Tr(PKRxK−1P
H
KΨK)ΣK + RnK ]−1.

(15)

In terms of MSE, LMMSE estimator is a dominated estimator
in linear estimators [23], i.e.,

Φ(GLMMSE, {Pk}Kk=1,C) � Φ(G, {Pk}Kk=1,C) (16)

which implies

[Φ(GLMMSE, {Pk}Kk=1,C)]n,n ≤ [Φ(G, {Pk}Kk=1,C)]n,n.

As f(•) is an increasing function, and there is no constraint on
G in (12), the optimal linear equalizer is LMMSE equalizer,
i.e., Gopt = GLMMSE.
Substituting the optimal equalizer (15) into the MSE for-

mulation (10), the MSE matrix is rewritten as

ΦMSE({Pk}Kk=1,C)

= σ2
bC

(
IN−σ2

b

[
K∏
k=1

(
H̄kPk

)
CH

]H

[H̄KPKRxK−1

× PH
KH̄H

K + Tr(PKRxK−1P
H
KΨK)ΣK + RnK ]−1

×
[
K∏
k=1

(
H̄kPk

)
CH

])
CH (17)

based on which the optimization problem (12) becomes

min
Pk,C

f([MSE1, · · · ,MSEN ]T)

s.t. MSEn = [ΦMSE({Pk}Kk=1,C)]n,n
Tr(PkRxk−1P

H
k ) ≤ Pk. (18)

From the definition of Rxk
in (11), it is noticed that Rxk

is a function of Pl with l ≤ k. In other words, the constraints
in (18) are coupled with each other. In order to simplify the
analysis, we define the following new variables

F1 = P1R
1/2
b QH

0 (19)

and Fk = PkK
1/2
Fk−1

(K−1/2
Fk−1

H̄k−1Fk−1FH
k−1H̄

H
k−1K

−1/2
Fk−1

+ INR,k−1)
1/2QH

k−1 (20)

where KFk
is defined as3

KFk
� Tr(FkFH

kΨk)Σk + σ2
nk

INR,k
, (21)

and the matrix Qk is an additional unknown unitary matrix.
Based on the definition of Fk in (19) and (20), it is easy
to show that FkFH

k = PkRxk−1P
H
k and thus the power

constraints becomes

Tr(PkRxk−1P
H
k ) = Tr(FkFH

k ) ≤ Pk. (22)

Therefore, in terms of the new variables Fk, the power con-
straints become independent of each other, which facilitates
further manipulations.
Meanwhile, using (19) and (20), the MSE matrix is further

reformulated as (23) on the top of the next page. Based on
(22) and (23), the optimization problem (18) is simplified as

min
Fk,Qk,C

f([MSE1, · · · ,MSEN ]T)

s.t. MSEn = σ2
b

[
C(IN − QH

0 ΘQ0)CH
]
n,n

Θ = MH
1 QH

1 · · ·MH
KQH

KQKMK · · ·Q1M1

Tr(FkFH
k ) ≤ Pk, QH

kQk = INR,k
. (24)

Notice that the largest singular value of Mk is smaller than
one. Therefore, the largest eigenvalue of Θ is smaller than

3Putting the definition of Fk into (11) and comparing (11) with (21), the
matrix KFk

can be interpreted as the equivalent noise covariance matrix at
the kth hop.
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ΦMSE(Qk, {Fk}Kk=1,C) = C

(
IN − QH

0

{ K∏
k=1

[Qk(K
−1/2
Fk

H̄kFkFH
k H̄H

kK−1/2
Fk

+ INR,k
)−1/2K−1/2

Fk
H̄kFk]

}H

×
{ K∏
k=1

[Qk (K−1/2
Fk

H̄kFkFH
k H̄H

kK−1/2
Fk

+ INR,k
)−1/2K−1/2

Fk
H̄kFk︸ ︷︷ ︸

�Mk

]
}
Q0

)
CHσ2

b

= σ2
bC(IN − QH

0 MH
1 QH

1 MH
2 QH

2 · · ·MH
KQH

KQKMK · · ·Q2M2Q1M1︸ ︷︷ ︸
�Θ

Q0)CH. (23)

one (see Appendix E) and then IN − QH
0 ΘQ0 is a positive

definite matrix. With the Cholesky factorization

(IN − QH
0 ΘQ0)σ2

b = LLH (25)

where L is a lower triangular matrix, and the definition of
MSEn in the second line of (24), we have

MSEn = σ2
b [C(IN − QH

0 ΘQ0)CH]n,n
= ([CH]:,n)HLLH[CH]:,n

=
n−1∑
i=1

[L]2i,i|[(CLD−1)H]i,n|2 + [L]2n,n

≥ [L]2n,n, (26)

where D is a diagonal matrix defined as

D = diag{[L1,1, · · · ,LN,N ]T}. (27)

In order to make the equality in the final line of (26) to hold,
we need

∑n−1
i=1 [L]2i,i|[(CLD−1)H]i,n|2 = 0, whose solution

is

Copt = DL−1. (28)

As a result MSEn = [L]2n,n, and the optimization problem for
robust transceiver design is formulated as

min
Fk,Qk

f(
[
[L]21,1, · · · , [L]2N,N

]T
)

s.t. σ2
b (IN − QH

0 ΘQ0) = LLH

Θ = MH
1 QH

1 · · ·MH
KQH

KQKMK · · ·Q1M1

Tr(FkFH
k ) ≤ Pk, QH

kQk = INR,k
. (29)

IV. OPTIMIZATION PROBLEM REFORMULATION FOR Fk

A. Optimal Solution of Q0

Because the objective function of the optimization problem
(29) is M-Schur-convex or M-Schur-concave. In the following,
we will discuss the two cases separately.
M-Schur-convex:
Taking the determinant on both sides of (25), we have

|σ2
b (IN − QH

0 ΘQ0)| =
N∏
n=1

[L]2n,n = σ2N
b

N∏
n=1

(1 − λn(Θ))

(30)

where λn(Θ) is the nth largest eigenvalue of Θ. Based on
(30), the following multiplicative majorization relationship can

be established [24]

σ2
b

[
N∏
n=1

(1 − λn(Θ))

] 1
N

⊗ 1N ≺×
[
[L]21,1, · · · , [L]2N,N

]T
,

(31)

where the symbol ⊗ denotes the Kronecker product and 1N
is a N × 1 all-one vector. With Definition 2 and f(•) being
a M-Schur-convex function, (31) leads to

f(
[
[L]21,1, · · · , [L]2N,N

]T
)≥f

⎛
⎝σ2

b

[
N∏
n=1

(1−λn(Θ))

] 1
N

⊗1N

⎞
⎠

︸ ︷︷ ︸
�g[λ(Θ)]

,

(32)

where λ(Θ) = [λ1(Θ), · · · , λN (Θ)]T. The equality in (32)
holds when ≺× in (31) is replaced by equality, which means
that [L]2n,n are identical for all n. Notice that from (25), we
can write LLH = σ2

bQ
H
0 (I − Θ)Q0. Since I − Θ is positive

definite, there always exists an unitary matrixQ0 which makes
the Cholesky factorization matrix of QH

0 (I − Θ)Q0 have
identical diagonal elements [15]. An explicit algorithm for
constructing such Q0 is given in Appendix B.
M-Schur-concave:
From definition of L in (25) and based Weyl’ theorem [25],

we have [
[L]21,1, · · · , [L]2N,N

]T ≺× σ2
b [1N − λ(Θ)]. (33)

Applying f(•) on both sides of (33) and with Definition 2,
we have

f(
[
[L]21,1, · · · , [L]2N,N

]T
) ≥ f(σ2

b [1N − λ(Θ)])︸ ︷︷ ︸
�g[λ(Θ)]

. (34)

The equality in (34) holds when ≺× in (33) is
replaced by equality, which means that [L]2n,n
equals to σ2

b [1 − λn(Θ)]. On the other hand, taking
eigenvalues on both sides of (25), we can obtain
σ2
b [1N − λ(Θ)] = [λN (LLH), · · · , λ1(LLH)]T. Therefore,

[[L]21,1, · · · , [L]2N,N ]T = [λN (LLH), · · · , λ1(LLH)]T, which
implies L is a diagonal matrix. With L being a diagonal
matrix, QH

0 ΘQ0 is also a diagonal matrix. This can be
satisfied if we take Q0 = UΘ, where the unitary matrix UΘ

is defined based on the eigendecompositionΘ = UΘΛΘUH
Θ

with the elements of ΛΘ arranged in decreasing order.
Notice that since L is a diagonal matrix,Copt in (28) is also

a diagonal matrix. Based on the definition ofC in (3) and with
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the fact that C is a lower triangular matrix with unit diagonal
elements, it can be seen that the feedback matrix B must be an
all-zero matrix. Therefore, when the objective function is M-
Schur-concave, THP becomes linear precoding. The optimality
of linear transceiver for M-Schur-concave objective function
has also been obtained in point-to-point MIMO systems with
perfect CSI [14], [15], [17].
Remark 3: The equal bit rate assumption at the beginning
of Section II is for the operation of the nonlinear precoder
only (this assumption also appears in [14], [15], [19]). Notice
that we have not used the equal bit rate assumption in the
derivation of the optimal solution. If the objective function is
chosen such that a linear transceiver is obtained, this equal bit
rate assumption will not appear in the solution. On the other
hand, if the objective function is chosen such that a nonlinear
transceiver is obtained, the nature of the optimal transceiver
is of equal bit rate (see the discussion below (32)). Therefore,
the equal bit rate assumption is not a restriction.
Summary:
Summarizing the previous results, when the objective func-

tion is M-Schur-convex or M-Schur-concave, the optimization
problem (29) is equivalent to

min
Fk,Qk

g[λ(Θ)]

s.t. Θ = MH
1 QH

1 · · ·MH
KQH

KQKMK · · ·Q1M1

Tr(FkFH
k ) ≤ Pk, QH

kQk = INR,k
. (35)

where g[λ(Θ)] equals to

g[λ(Θ)] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f(σ2

b [
∏N
n=1(1 − λn(Θ))]

1
N ⊗ 1N)

if f(•) is M-Schur-convex,
f(σ2

b [1N − λ(Θ)])
if f(•) is M-Schur-concave.

.

(36)

It is difficult to directly solve the optimization problem
(35), because Θ is a product consists of matrices Mk’s which
in turn are complicated functions of the variables Fk’s. In
order to simplify the optimization problem (35), we exploit the
multiplicative majorization theory and transforms the objective
function of (35) to be a direct function of Fk. To this end, we
first provide useful results which form the theoretical basis of
the following derivation.

B. Prerequisites of Multiplicative Majorization Theory

Definition 3: For two vectors v,u ∈ D with D = {z : z1 ≥
· · · ≥ zN ≥ 0}, v ≺×,w u is defined as

k∏
i=1

v[i] ≤
k∏
i=1

u[i], k = 1, · · · , N. (37)

Notice that there is a subtle difference between Definition
1 in (13) and Definition 3. In Definition 3, when k = N ,∏N
i=1 v[i] ≤ ∏N

i=1 u[i] rather than
∏N
i=1 v[i] =

∏N
i=1 u[i] in

Definition 1.
Lemma 2: Let φ(•) be a real-valued function on D. Then
φ(•) is decreasing and multiplicatively Schur-concave on D
if and only if

v ≺×,w u ⇒ φ(v) ≥ φ(u). (38)

Proof: See Appendix C. �
Lemma 3: When φ(•) is increasing and multiplicatively
Schur-concave, for v,u ∈ C = {z : 1 > z1 ≥ · · · ≥ zN ≥ 0}

v ≺×,w u ⇒ φ(1N − v) ≥ φ(1N − u). (39)

Proof: See Appendix D. �

C. Problem Reformulation

Based on the given results of multiplicative majorization
theory, the optimization problem (35) can be transformed into
a much simpler one. Before presenting the result, two useful
properties of the objective function g(•) are first derived based
on the multiplicative majorization theory.
Property 1: The vector λ(Θ) has the following relationship

λ(Θ)≺×,w [γ1({Fk}Kk=1), γ2({Fk}Kk=1), · · · , γN ({Fk}Kk=1)]
T︸ ︷︷ ︸

�γ({Fk}K
k=1)

with γn({Fk}Kk=1) =
K∏
k=1

λn(FH
k H̄H

kK−1
Fk

H̄kFk)

1 + λn(FH
k H̄H

kK−1
Fk

H̄kFk)
, (40)

where the equality holds when

Qk = VMk+1U
H
Mk

, k = 1, · · · ,K − 1 (41)

where UMk
and VMk

are defined based on the singular
value decompositionMk = UMk

ΛMk
VH

Mk
with the diagonal

elements of ΛMk
arranged in decreasing order. Notice that

(41) does not cover the design of QK , but it can be any
unitary matrix because it always appears in the form QH

KQK

and equals to an identity matrix in the objective function.
Proof: See Appendix E. �
Property 2: The objective function g[λ(Θ)] in (35) is a de-
creasing M-Schur-concave function with respective to λ(Θ).
Proof: Based on Lemma 2, it is obvious that g[λ(Θ)]
is a decreasing M-Schur-concave function if and only if
λ(Θ) ≺×,w λ(Θ̃) ⇒ g[λ(Θ)] ≥ g[λ(Θ̃)]. In the following,
we will prove the latter.
When f(•) is M-Schur-convex, g[λ(Θ)] = f(σ2

b [
∏N
n=1(1−

λn(Θ))]
1
N ⊗ 1N). Using Lemma 1,

∏N
n=1(1 − λn(Θ))

can be proved to be a M-Schur-concave function of λ(Θ).
Furthermore, it can be easily seen that

∏N
n=1(1 − λn(Θ)) is

a decreasing function. If λ(Θ) ≺×,w λ(Θ̃) is true, based on
Lemma 2, we have

N∏
n=1

(1 − λn(Θ)) ≥
N∏
n=1

(1 − λn(Θ̃)). (42)

Together with the fact that f(•) is an increasing function, it
is concluded that

f(σ2
b [

N∏
n=1

(1 − λn(Θ))]1/N ⊗ 1N )

︸ ︷︷ ︸
g[λ(Θ)]

≥ f(σ2
b [

N∏
n=1

(1 − λn(Θ̃))]1/N ⊗ 1N)

︸ ︷︷ ︸
g[λ(Θ̃)]

. (43)
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On the other hand, when f(•) is increasing and M-Schur-
concave, g[λ(Θ)] = f(σ2

b [1N −λ(Θ)]). Using Lemma 3 we
directly have λ(Θ) ≺×,w λ(Θ̃) implies

f(σ2
b [1N − λ(Θ)])︸ ︷︷ ︸
g[λ(Θ)]

≥ f(σ2
b [1N − λ(Θ̃)])︸ ︷︷ ︸
g[λ(Θ̃)]

. (44)

�
Based on Properties 1 and 2, the objective function of (35)

has an achievable lower bound g[λ(Θ)] ≥ g[γ({Fk}Kk=1)]
with equality achieved when (41) is satisfied. When the lower
bound is achieved, we have the following three additional
observations:
(a) The constraintsQH

kQk = INR,k
are automatically satisfied.

(b) The objective function g[γ({Fk}Kk=1)] is independent of
Qk.
(c) When Fk’s are known, Qk’s can be directly computed
using (41).
Applying these three observations into (35), we have the

reformulated optimization problem

min
Fk

g[γ({Fk}Kk=1)]

s.t. γn({Fk}Kk=1) =
K∏
k=1

λn(FH
k H̄H

kK−1
Fk

H̄kFk)

1 + λn(FH
k H̄H

kK−1
Fk

H̄kFk)

Tr(FkFH
k ) ≤ Pk. (45)

V. SOLUTION OF Fk

In the following, we first derive the optimal structure of
Fk and then present an algorithm to solve for the remaining
unknown variables.

A. Optimal Structure of Fk

Notice that g(•) is a decreasing function, and γn({Fk}Kk=1)
is an increasing function of λn(FH

k H̄H
kK−1

Fk
H̄kFk). Therefore,

g[γ({Fk}Kk=1)] is a decreasing matrix-monotone function of
FH
k H̄H

kK−1
Fk

H̄kFk [10]. Following the derivation in [11], it
can be proved that at the optimal solution, the power con-
straints hold at the equality, i.e., Tr(FkFH

k ) = Pk, meaning
that the relays transmit at the maximum power.
Defining a variable ηfk

as

ηfk
= αkTr(FkFH

kΨk) + σ2
nk

with αk = Tr(Σk)/NR,k,
(46)

Tr(FkFH
k ) = Pk is exactly equivalent to Tr[FkFH

k (αkPkΨk+
σ2
nk

INT,k
)]/ηfk

= Pk as proved in [10], [11], [26]. Thus the
robust transceiver design problem (45) is equivalent to

min
Fk

g[γ({Fk}Kk=1)]

s.t. γn({Fk}Kk=1) =
K∏
k=1

λn(FH
k H̄H

kK−1
Fk

H̄kFk)

1 + λn(FH
k H̄H

kK−1
Fk

H̄kFk)

Tr[FkFH
k (αkPkΨk + σ2

nk
INT,k

)]/ηfk
= Pk. (47)

It is proved in Appendix F that when Ψk ∝ INT,k
or Σk ∝

INR,k
, the optimal solutions of the optimization problem (47)

have the following structure

Fk,opt =
√
ξk(ΛFk

)(αkPkΨk + σ2
nk

INT,k
)−1/2

× VHk,NΛFk
UH

Arbk,N

with ξk(ΛFk
) = σ2

nk
/{1 − αkTr[VH

Hk,N (αkPkΨk + σ2
nk

× INT,k
)−1/2Ψk(αkPkΨk+σ2

nk
INT,k

)−1/2

× VHk,NΛ2
Fk

]}, (48)
where ΛFk

is a N × N unknown diagonal matrix, and
VHk,N andUArbk,N are the matrices consisting of the first N
columns of VHk

and UArbk
, respectively. The unitary matrix

UArbk
is an arbitrary NR,k−1 × NR,k−1 unitary matrix, and

the unitary matrix VHk
is defined based on the following

singular value decomposition

(KFk
/ηfk

)−1/2H̄k(αkPkΨk + σ2
nk

INT,k
)−1/2

= UHk
ΛHk

VH
Hk

(49)

where the diagonal elements of ΛHk
are arranged in decreas-

ing order.
Remark 4: In general, the expressions of Ψk and Σk depend
on specific channel estimation algorithms. Denote the transmit
and receive antennas correlation matrices and the channel
estimation error variance in the kth hop as RT,k, RR,k and
σ2
e,k , respectively. When the channels are estimated based
on the algorithm proposed in [21], [22], it can be shown
that Ψk = RT,k and Σk = σ2

e,k(INR,k
+ σ2

e,kR
−1
R,k)

−1.
If the transmit antennas or the receive antennas are spaced
widely, we have RT,k ∝ INT,k

or RR,k ∝ INR,k
. These

imply Ψk ∝ INT,k
or Σk ∝ INR,k

. Moreover, if the
length of training is large, the value of σ2

e,k will be small
and INR,k

+ σ2
e,kR

−1
R,k ≈ INR,k

. As a result, Σk will also
approximate an identity matrix even when RR,k �∝ INR,k

.
On the other hand, if the channel statistics are unknown, and
using least-square channel estimator, it can be derived that
Σk ∝ INR,k

always holds regardless of the antenna correlation
or training length [8].

B. Computation of ΛFk

It is obvious that in (48), the only unknown variable is ΛFk
.

In the following, we will discuss how to solve ΛFk
in more

detail. Denoting the following diagonal elements as

[ΛHk
]n,n = hk,n, [ΛFk

]n,n = fk,n, (50)

substituting (48) into the optimization problem (47) and notic-
ing that ξk(ΛFk

) = ηfk
(shown by (79) in Appendix F),

after a straightforward derivation, the optimization for robust
transceiver design is simplified as

min
fk,n

g[γ({Fk}Kk=1)]

s.t. γn({Fk}Kk=1) =
K∏
k=1

f2
k,nh

2
k,n

f2
k,nh

2
k,n + 1

N∑
n=1

f2
k,n = Pk. (51)

The solution of (51) depends on whether f(•) is M-Schur-
convex or M-Schur-concave.
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M-Schur-convex functions:
Notice that when f([MSE1, · · · ,MSEN ]T) is an M-Schur-

convex function, regardless of the specific expression of
f(•), the optimization problem (51) is equivalent to minimize∏N
n=1(1 − γn({Fk}Kk=1)) [15]. Therefore, the transceiver

design problem (51) equals to

min
fk,i

N∑
n=1

log

(
1 −

∏K
k=1 f

2
k,nh

2
k,n∏K

k=1(f
2
k,nh

2
k,n + 1)

)

s.t.
N∑
n=1

f2
k,n = Pk. (52)

In order to solve the optimization problem (52), iterative
water-filling can be used to solve for fk,i with convergence
guaranteed. More specifically, when fl,i’s are fixed with l �= k,
fk,i is computed as

f2
k,n =

1
h2
k,n

(−ak,n +
√
a2
k,n + 4(1 − ak,n)ak,nh2

k,n/μk

2(1 − ak,n)

− 1

)+

n = 1, · · · , N

with ak,n =
∏
l �=k

f2
l,nh

2
l,n/(f

2
l,nh

2
l,n + 1) (53)

where μk is the Lagrange multiplier which makes∑N
n=1 f

2
k,n = Pk hold [27]. Notice that this iterative water-

filling algorithm is guaranteed to converge, as discussed in
[28].
M-Schur-concave functions:
When f([MSE1, · · · ,MSEN ]T) is a M-Schur-concave

functions, there is no unified solution. In this case, ΛFk

should be solved case by case. In the following, we use
the example f([MSE1, · · · ,MSEN ]T) =

∏N
n=1 MSEwn

n for
w1 ≥ w2 · · · ≥ wN ≥ 0 to illustrate how to compute
ΛFk

. For this objective function, using (36) it follows that
g[γ({Fk}Kk=1)] = σ

2
P

nwn

b

∏N
n=1

(
1 − γn({Fk}Kk=1)

)wn and
the optimization (51) is equivalent to

min
fk,i

N∑
n=1

wnlog

(
1 −

∏K
k=1 f

2
k,nh

2
k,n∏K

k=1(f
2
k,nh

2
k,n + 1)

)

s.t.
N∑
n=1

f2
k,n = Pk. (54)

Equation (54) has the same form as (52). Therefore, the
solution can also be obtained by iterative water-filling solution.
Notice that the design problem becomes linear transceiver
design problem when f(•) is M-Schur-concave.

C. Summary and Implementation Issues

The design idea and procedure of the proposed robust
transceiver are summarized in Table I. For the implementation
of the proposed algorithm, the execution order is in reverse,
i.e., from Step 8 to Step 3. Notice that in Step 8, iterative
water-filling is adopted to solve for ΛFk

. In general, only
local optimality of the solution can be guaranteed [29], which
is a common problem for AF MIMO relaying design [6], [9],
[26].

TABLE I
SUMMARY OF ROBUST TRANSCEIVER DESIGN

1. Derive the data estimation MSE matrix (10).
2. Formulate the optimization problem (12) with G, Pk and C

as variables.
3. Derive the optimal equalizer G as a function of Pk and C

given by (15). Substitute the optimal G into the optimization
problem (12) to reduce the number of variables and have
a reformulated optimization problem (18).

4. Simplify the constraints of the optimization problem (18)
by replacing Pk with Qk and Fk , and obtain an equivalent
optimization problem (24).

5. Derive the optimal C as a function of Qk and Fk given
by (28). Substitute the optimal C into the optimization problem
(24) and reformulate the optimization problem as (29).

6. Derive the optimal Qk as a function of Fk based on
majorization theory and substitute the optimal Qk in (41)
into the optimization problem (29) to reduce the number of
variables. The optimization problem is then simplified to be (45).

7. Derive the optimal structure of Fk given by (48).
8. Solve for the unknown diagonal matrices ΛF k

in the optimal
structure using (51).

For information sharing in the implementation of the pro-
posed solution, we can consider two algorithms.
Central Algorithm:
In centralized implementation, a natural assumption is that

there is a central node performing the transceiver designs.
All other nodes send its own estimated CSI to the central
node via control channels, and after completing the design the
central node informs each node the corresponding transceiver
matrix. Since the channel does not change (or change very
slowly), estimated CSI transmitted on control channels can be
considered error-free due to low data transmission rates and
heavy channel coding.
Distributed Algorithm:
Based on the derived optimal structure Fk,opt in (48) and

(49) and the optimal Qk in (41), using the definition of
Fk given by (19) and (20), we can derive that the optimal
forwarding matrix at the kth node has the following structure

Pk = (αkPkΨk + σ2
nk

INT,k
)−1/2

× VHk,NΛPk
UH

Hk−1,NK−1/2
Fk−1

, (55)

where ΛPk
is a diagonal matrix whose elements are functions

of the diagonal elements of ΛFm
for all m. It can be

seen that except ΛPk
, all other matrices in (55) are only

the functions of the channels immediately preceding and
succeeding the kth node. It is easy for each node to obtain
such channel information. As a result, the only information
shared among all the other nodes is the diagonal elements of
matrix ΛFm

denoted by {fm,n}Nn=1. Notice that {fm,n}Nn=1

is the solution of the optimization problem (51). Exploit-
ing the linear network topology and the fact that in the
first constraint of (51) {fm,n}Nn=1 appears in the form of∏K
k=1 f

2
k,nh

2
k,n/(f

2
k,nh

2
k,n + 1), only local information needs

to be shared between adjacent nodes.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, the performance of the proposed algorithms
is assessed by simulations. In the following, we consider
an AF MIMO relaying system where the source, relays
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Fig. 2. BERs of the proposed transceivers with M-Schur-convex and M-
Schur-concave objective functions when ρt = 0, ρr = 0.4, σ2

e = 0.001.

and destination are all equipped with four antennas, i.e.,
NT,k = NR,k = 4. The estimation error correlation matrices
are chosen as the popular exponential model [Ψk] = σ2

eρ
|i−j|
t

and [Σk] = ρ
|i−j|
r [7] where ρt and ρr are the correlation

coefficients, and σ2
e denotes the estimation error variance. The

estimated channels H̄k’s are randomly generated based on the
following complex Gaussian distributions [7], [30], [31]

H̄k ∼ CNNR,k,NT,k
(0NR,k,NT,k

,
(1 − σ2

e)
σ2
e

Σk ⊗ ΨT
k ), (56)

such that channel realizations Hk = H̄k + ΔHk have unit
variance. We define the signal-to-noise ratio (SNR) for the
kth link as Pk/σ2

nk
. At the source node, four independent data

streams are transmitted and in each data stream, NData =
10000 independent 16-QAM symbols are transmitted. Each
point in the following figures is an average of 10000 trials
and the bit error rates (BER) are computed [33]–[35].
First, we consider the objective function as weighted ge-

ometric mean MSE with equal weighting. In this case, the
objective function is both M-Schur-convex and M-Schur-
concave. There are two optimal solutions: one being linear
transceiver and the other one being nonlinear transceiver.
Fig. 2 compares the BERs of these two solutions. Both two-
hop and three-hop systems are simulated with ρt = 0, ρr =
0.4, σ2

e = 0.001, P2/σ
2
n2

= P3/σ
2
n3

= 30dB and P1/σ
2
n1

being varied from 5 to 30dB. As expected, the nonlinear
transceiver has a better performance than linear transceiver, but
the performance improvement of nonlinear transceiver comes
at the expense of higher complexity. Comparing to linear
transceiver, the THP nonlinear transceiver has an additional
N × N triangular matrix multiplication. Thus the additional
complexity is N(1 + N)/2 complex multiplications and
N(N − 1)/2 complex additions for each vector transmission.
Furthermore, although the three-hop system performs not as
good as the two-hop system, due to the extra hop of channel
and noise amplification, the performance of the two-hop and
three-hop systems shows the same trend. In the following,
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Fig. 3. BERs of proposed robust design with M-Schur-convex objective
functions and the algorithm based on estimated CSI only when ρt = 0.5,
ρr = 0, and P1/σ2

n1
= 30dB.

we focus on the M-Schur-convex objective function (i.e.,
nonlinear transceiver) for two-hop system only.
Next, we investigate the effect of the channel estimation

error on the BER performance. Fig. 3 shows the BERs of
the proposed robust nonlinear design and the corresponding
algorithm based on estimated CSI only (which takes the
channel estimates as true channels) with ρt = 0.5, ρt = 0,
P1/σ

2
n1

= 30dB, and P2/σ
2
n2
being varied from 10 to 35dB.

The algorithm based on estimated CSI only is obtained by
simply setting Ψk = 0 in the proposed algorithm (similar
approach has been used in [20] and [21]). From Fig. 3,
it can be seen that smaller estimation errors lead to better
performance for both algorithms, but the performance of the
proposed algorithm is always better than that based on the
estimated CSI only. Furthermore, the performance gap be-
tween the proposed robust design and the algorithm based on
estimated CSI becomes larger as the channel estimation error
increases. Of course, the performance of the two algorithms
coincide when σ2

e = 0.
Finally, we illustrate the effects of correlation in the channel

estimation errors. Fig. 4 shows the BERs of the proposed
robust design with M-Schur-convex objective functions and
the corresponding algorithm based estimated CSI only for
different ρr, when ρt = 0, σ2

e = 0.002, P1/σ
2
n1

= 30dB, and
P2/σ

2
n2
being varied from 10 to 35dB. It can be seen that in

addition to the fact that the performance of the proposed robust
design is always better than that based on the estimated CSI
only, as ρr increases, the performance gain of the proposed
robust design with respect to that based on CSI only becomes
larger. It is most obvious when ρr = 0.9 and at high SNR
at the second hop. The performance gaps come from the
fact that when correlation becomes stronger, Σk will be very
different from identity matrix. Therefore from (48) and (49),
the proposed optimal structure will be significantly different
from that of the algorithm with estimated CSI only. As the
designed precoding and forwarding matrices can be considered
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Fig. 4. BERs of proposed robust design with M-Schur-convex objective
functions and the algorithm based on estimated CSI only with different ρr ,
when ρt = 0, σ2

e = 0.002 and P1/σ2
n1

= 30dB.

as the transmission directions, Fig. 4 shows that correlation of
channel estimation error would affect the direction of data
transmission, and subsequently affect the final BER perfor-
mance. Fig. 5 shows the corresponding BERs for different
ρt, with ρr = 0, σ2

e = 0.002, P2/σ
2
n2

= 30dB, and P1/σ
2
n1

being varied from 10 to 35dB. It can be seen that a similar
conclusion can be drawn.

VII. CONCLUSIONS

Joint Bayesian robust transceiver design for multi-hop AF
MIMO relaying systems was investigated. It was assumed
that channel estimation errors exist in CSI in all hops. At
the source node, a nonlinear Tomlinson-Harashima precoding
was used, and was jointly optimized with linear forwarding
matrices at all relays and linear equalizer at the destination.
A general transceiver optimization problem was formulated
with objective function being either M-Schur-convex or M-
Schur-concave. Using elegant properties of multiplicative ma-
jorization theory and matrix-monotone functions, the optimal
structure of the transceivers was first derived. Then, the
original optimization problem was greatly simplified and an
iterative water-filling solution was proposed to solve for the
remaining unknown variables. Simulation results showed that
the proposed robust design has much better performance than
the non-robust design.

APPENDIX A
PROOF OF LEMMA 1

Based on Definition 2, φ(z) is M-Schur-convex over D =
{z : z1 ≥ · · · ≥ zN ≥ 0} if and only if for v,u ∈ D, v ≺× u
implies φ(v) ≤ φ(u).
For a vector z ∈ D, define

z̃ = [z̃1, · · · , z̃N ]T and z̃k =
k∏
i=1

zi. (57)
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Fig. 5. BERs of proposed robust design with M-Schur-convex objective
functions and the algorithm based on estimated CSI only with different ρt,
when ρr = 0, σ2

e = 0.002 and P2/σ2
n2

= 30dB.

For v,u ∈ D, it is obvious that v ≺× u is equivalent to

{ṽk ≤ ũk}N−1
k=1 , and ṽN = ũN . (58)

On the other hand, based on (57), zk equals to

zk = z̃k/z̃k−1, k ≤ Lz, (59)

where Lz − 1 is the number of the nonzero elements of z.
Therefore φ(v) ≤ φ(u) can be written as

φ(ṽ1, ṽ2/ṽ1 · · · , ṽLv/ṽLv−1, 0, · · · , )︸ ︷︷ ︸
�ψ(ṽ)

≤ φ(ũ1, ũ2/ũ1 · · · , ũLu/ũLu−1, 0, · · · , )︸ ︷︷ ︸
�ψ(ũ)

, (60)

Based on (58) and (60), proving φ(z) is M-Schur-convex is
equivalent to proving when {ṽk ≤ ũk}N−1

k=1 and ṽN = ũN
hold, we have ψ(ṽ) ≤ ψ(ũ). In other words, the proof
becomes to prove ψ(•) is a vector-valued increasing function.
To prove ψ(•) is increasing, we only need to prove that

when ṽk ≤ ũk and ṽl = ũl for all l �=k, we have ψ(ṽ) ≤ ψ(ũ)
[24]. As ṽk ≥ 0 and ũk ≥ 0 , ṽk ≤ ũk is equivalent
to ṽk = ũk/e with e ≥ 1. Substituting ṽk = ũk/e and
ṽl = ũl for all l �=k into (60) and replacing uk = ũk/ũk−1

for k ≤ Lu − 1, proving ψ(ṽ) ≤ ψ(ũ) is equivalent to
proving φ(u1, · · · , uk/e, uk+1e, · · · ) is increasing over e ≥ 1
and uk/e ≥ uk+1e.

APPENDIX B
ALGORITHM FOR COMPUTING Q0

Following the sufficient conditions given in [32], an explicit
algorithm for constructingQ0 is given as follows. Without loss
of generality, in this Appendix, for both singular value decom-
position (SVD) and eigendecomposition, the elements of the
diagonal singular value or eigenvalue matrix are assumed to
be in decreasing order.
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Step 1: DefineA based on the following eigen-decomposition

(IN − MH
1 QH

1 · · ·MH
KQH

KQKMK · · ·Q1M1)1/2σb
= UMΛM︸ ︷︷ ︸

�A

UH
M. (61)

Step 2: Initialize S = 0N×N and set

[S]1,1 =

√
|AHA|1/N − [ΛM]N,N
[ΛM]1,1 − [ΛM]N,N

,

[S]N,1 =

√
[ΛM]1,1 − |AHA|1/N
[ΛM]1,1 − [ΛM]N,N

. (62)

Meanwhile, the orthogonal complement matrix of [S]:,1 is set
to be

[S]⊥:,1 =

⎡
⎣ −[S]1,1 0

0 I
[S]N,1 0

⎤
⎦ . (63)

Step 3: Begin recursion for k = 1, · · · , N − 2. Compute a
(N−k)×(N−k) unitary matrix V(k) based on the following
eigendecomposition

(A[S]⊥:,1:k)
H[I − A[S]:,1:k([S]H:,1:kA

HA[S]:,1:k)−1

× [S]H:,1:kA
H](A[S]⊥:,1:k) = V(k)Λ(k)(V(k))H. (64)

Then update the (k + 1)th column of S as

[S]:,k+1 = [S]⊥:,1:kV
(k)y(k) (65)

and

y(k) =

[√
|AHA|1/N − [Λ(k)]N−k,N−k
[Λ(k)]1,1 − [Λ(k)]N−k,N−k

,01,N−k−1,√
[Λ(k)]1,1 − |AHA|1/N

[Λ(k)]1,1 − [Λ(k)]N−k,N−k

]T

. (66)

Based on the SVD S = USΛSVH
S , the orthogonal comple-

ment matrix of [S]:,1:k+1 is computed as

[S]⊥:,1:k+1 = [US]:,k+2:N . (67)

Step 4: When k = N −1, [S]:,N = [S]⊥:,1:N−2V
(N−2)y(N−1)

and

y(N−1) =

[√
[Λ(N−2)]1,1 − |AHA|1/N
[Λ(N−2)]1,1 − [Λ(N−2)]2,2

,

−
√

|AHA|1/N − [Λ(N−2)]2,2
[Λ(N−2)]1,1 − [Λ(N−2)]2,2

]T

. (68)

Step 5: Finally, Q0 equals to Q0 = UMS.

APPENDIX C
PROOF OF LEMMA 2

Proof of “if” direction
First, we will prove that for any two vectors v,u ∈ D,

v ≺×,w u ⇒ φ(v) ≥ φ(u) implies φ(•) is a decreasing
M-Schur-concave function over D.
When v ≺×,w u ⇒ φ(v) ≥ φ(u) holds, v ≺× u ⇒

φ(v) ≥ φ(u) must hold. Using Lemma 1, φ(•) must be M-
Schur-concave over D.

Furthermore, for v,u ∈ D with vk ≤ uk and vi = ui for
all i �=k, we have v ≺×,w u. Then v ≺×,w u ⇒ φ(v) ≥
φ(u) implies φ(•) is a decreasing function. Therefore, when
v ≺×,w u ⇒ φ(v) ≥ φ(u), then we have φ(•) is a decreasing
M-Schur-concave function.
Proof of “only if” direction
On the other hand, when φ(•) is a decreasing M-Schur-

concave function, we need prove that v ≺×,w u ⇒ φ(v) ≥
φ(u). For any two vectors v,u ∈ D with v ≺×,w u we
can construct a vector τ ∈ D with τi = ui for i < N and
τN is chosen to makes

∏N
i=1 τi =

∏N
i=1 vi. It is obvious that

τN ≤ uN . Then if v ≺×,w u, we have v ≺× τ and τ ≺×,w u.
As φ(•) is M-Schur-concave, based on Lemma 1 we

directly have φ(v) ≥ φ(τ ). Furthermore, since the difference
between τ and u is only in the last element with τN ≤ uN ,
as φ(•) is decreasing, we have φ(τ ) ≥ φ(u). Combining the
two inequalities, we have φ(v) ≤ φ(u).

APPENDIX D
PROOF OF LEMMA 3

Based on Lemma 1, it can be proved that
∏k
i=1(1−zi) is an

M-Schur-concave function. It is also obvious that
∏k
i=1(1−zi)

is a decreasing function for z ∈ C = {z : 1 > z1 ≥ · · · ≥
zN ≥ 0}. Using Lemma 2, for v,u ∈ C with v ≺×,w u, we
have

k∏
i=1

(1 − vi)︸ ︷︷ ︸
�v̂(i)

≥
k∏
i=1

(1 − ui)︸ ︷︷ ︸
�û(i)

> 0, k = 1, · · · , N. (69)

We construct a vector τ̂ = [τ̂(1), · · · , τ̂(N)]T with τ̂(i) =
û(i) for i < N and τ̂(N) is chosen to makes

∏N
i=1 v̂(i) =∏N

i=1 τ̂(i) hold. It is obvious that τ(N) ≥ u(N). As the only
difference between τ(i) and u(i) is at i = N , when φ(•) is in-
creasing, we have φ(τ̂ ) ≥ φ(û) where û = [û(1), · · · , û(N)]T.
On the other hand, based on (69) and the fact that τ̂(i) = û(i)

for i < N , it can be concluded that (a)
∏k
i=1 v̂(i) ≥

∏k
i=1 τ̂(i)

for 1 ≤ k < N . Based on the definition of τ̂N , it can also
be concluded that (b)

∏N
i=1 v̂(i) =

∏N
i=1 τ̂(i) > 0. Results (a)

and (b) implies v̂ ≺× τ̂ where v̂ = [v̂(1), · · · , v̂(N)]T [24].
As φ(•) M-Schur-concave, using Lemma 1, we have φ(v̂) ≥
φ(τ̂ ). Together with the conclusion in the last paragraph, we
can obtain φ(v̂) ≥ φ(û). Finally, with v̂ = 1N − v and
û = 1N − u, the proof is completed.

APPENDIX E
PROOF OF PROPERTY 1

First notice two facts in matrix theory: (a) for two matrices
A andB with compatible dimension λi(AB) = λi(BA) [24,
9.A.1.a]; (b) for two positive semi-definite matrices A and B,∏n
i=1 λi(AB) ≤ ∏n

i=1 λi(A)λi(B) [24, 9.H.1.a], where the
equality holds when A and B has the same unitary matrix in
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eigendecomposition. With these two facts, we have

n∏
i=1

λi(MH
1 QH

1 · · ·MH
KQH

KQKMK · · ·Q1M1)

=
n∏
i=1

λi(MH
2 QH

2 · · ·MH
KQH

KQKMK · · ·

× Q2M2Q1M1MH
1 QH

1 )

≤
n∏
i=1

[λi(MH
2 QH

2 · · ·MH
KQH

KQKMK · · ·Q2M2)

× λi(M1MH
1 )] n = 1, · · · , N, (70)

where the first equality is due to fact (a) and the second
inequality is based on fact (b). Repeating the above two pro-
cesses and based on the fact that λi(MkMH

k ) = λi(MH
kMk)

we can obtain the following inequality

n∏
i=1

λi(Θ)

≤
n∏
i=1

[λi(MH
KMK)λi(MH

K−1MK−1) · · ·λi(MH
1 M1)︸ ︷︷ ︸

�γi({Fk}K
k=1)

],

(71)

where the equality holds when Qk’s satisfy

Qk = VMk+1U
H
Mk

, k = 1, · · · ,K − 1, (72)

where UMk
and VMk

are defined based on the following
singular value decompositionMk = UMk

ΛMk
VH

Mk
with the

diagonal elements of ΛMk
arranged in decreasing order. Fur-

thermore, based on the definition ofMk in (23), γi({Fk}Kk=1)
in (71) equals to

γi({Fk}Kk=1) =
K∏
k=1

λi(FH
k H̄H

kK−1
Fk

H̄kFk)

1 + λi(FH
k H̄H

kK−1
Fk

H̄kFk)
. (73)

APPENDIX F
OPTIMAL STRUCTURE OF Fk

Defining new variables

F̃k = 1/
√
ηfk

(αkPkΨk + σ2
nk

INT,k
)1/2Fk, and

Hk = (KFk
/ηfk

)−1/2H̄k(αkPkΨk + σ2
nk

INT,k
)−1/2, (74)

the optimization problem (47) is reformulated as

min
F̃k

g[γ({F̃k}Kk=1)]

s.t. γn({F̃k}Kk=1) =
K∏
k=1

λn(F̃H
kHH

k HkF̃k)
1 + λn(F̃H

k HH
kHkF̃k)

Tr(F̃kF̃H
k ) = Pk. (75)

When Ψk ∝ INT,k
or Σk ∝ INR,k

, for the optimal solution
KFk

/ηfk
is constant [10], [11], [26] and thus Hk is constant.

Let F̃k,opt be the optimal solution of (75). With the following
singular value decompositions,

HkF̃k,opt = UAk
ΛAk

VH
Ak
, Hk = UHk

ΛHk
VH

Hk
, (76)

where the diagonal elements of ΛAk
and ΛHk

are arranged
in decreasing order, we can construct a matrix F̂k equals to

F̂k = VHk
ΛXk

VH
Ak
, (77)

where ΛXk
is a rectangular diagonal matrix with the same

rank as ΛAk
and 1/bkΛHk

ΛXk
= ΛAk

. The scalar bk is
chosen to make that Tr(F̂kF̂H

k ) = Pk holds.
Using Lemma 12 in [23], we can show that

F̂H
k HH

kHkF̂k � F̃H
k,optHH

kHkF̃k,opt. Together with
the formulation of γn({F̃k}Kk=1) in (75), it can be concluded
that γn({F̂k}Kk=1) ≥ γn({F̃k,opt}Kk=1). Since g(•) is an
decreasing function, g[γ({F̂k}Kk=1)] ≤ g[γ({F̃k,opt}Kk=1)].
Because F̃k,opt is the optimal solution, it is impossible to
have g[γ({F̂k}Kk=1)] < g[γ({F̃k,opt}Kk=1)]. Therefore, F̂k
must be the optimal solution. Furthermore, based on the
relationship between of F̃k and Fk, it follows that

Fk,opt =
√
ηfk

(αkPkΨk + σ2
nk

INT,k
)−1/2VHk

ΛXk
VH

Ak
.

(78)

Notice that in general the unitary matrix VAk
depends on the

optimal solution F̃k,opt. However, from (75), it can be seen
that the value of VAk

does not affect the objective functions
and therefore it can be an arbitrary unitary matrix. Meanwhile,
as the minimum dimension of F̃H

kHH
kHkF̃k is N , onlyN×N

principal submatrix of ΛXk
can be nonzero. For notational

convenience, we denote that [ΛXk
]1:N,1:N = ΛFk

.
Substituting (78) into the definition of ηfk

in (46), we obtain
a simple linear function of ηfk

, and ηfk
can be easily solved

to be

ηfk
= σ2

nk
/{1 − αkTr[VH

Hk,N
(αkPkΨk + σ2

nk
INT,k

)−1/2

× Ψk(αkPkΨk + σ2
nk

INT,k
)−1/2VHk,NΛ2

Fk
]}

� ξk(ΛFk
). (79)
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