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Abstract

The issue of how to improve product quality and product yield in a brief period

of time becomes more critical in many industries. Even though industrial processes

are totally different in appearance, the problems to solve are highly similar: how to

build a reliable model from a limited data, how to analyze the model and relate it to

first principles, how to optimize operating condition, and how to realize an on-line

monitoring and control system and maintain it. In this paper, statistical process

monitoring and control methodologies are briefly surveyed, and our application

results in steel facilities are presented. The achievements of the present work are as

follows: 1) the development of a new method that can cope with qualitative quality

information and relate operating conditions to product quality or product yield,

2) the simultaneous analysis of multiple processing units including a converter, a

continuous caster, a blooming process, and rolling processes, and 3) the successful
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application results in the steel industry.

Key words: Soft-sensor, Multivariate Statistical Process Control, Multivariate

Analysis, Iron and Steel Process, Qualty Improvement, Quantification

1 Introduction

How can we improve product quality and yield? More than ever, the answer to

this question is vital as product life cycles are getting shorter and international

competition is getting keener. Since this question arises repeatedly when a new

product is developed, quality improvement should be achieved faster and in a

more systematic way.

Although the most reliable approach to quality improvement will be the use of

precise first-principle models, such models are not available in most newly de-

veloped processes and modeling of a complex industrial process is very difficult

and time-consuming. In particular, it is difficult to build precise first-principle

models that can explain why defects appear in products. In the steel industry,

for example, the relationship of operating conditions to product defects such

as surface flaws and internal defects is not clear. The product qualities have

been usually maintained by skilled operators on the basis of their experience

and intuition. Although much effort has been devoted to clarify the relation-

ship between operating conditions and product quality, the problem remains

unsolved. No first-principle model is available for product quality improve-

ment.

∗ Corresponding author.
Email address: manabu@cheme.kyoto-u.ac.jp (Manabu Kano).
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Another option to solve this difficult situation is the use of operation data.

In the last decade or so, data-based approaches have been widely accepted

for process control and monitoring in various industries. In the steel industry,

for example, many companies have built integrated data-bases to store many

operation data from all factories and product properties data from inspection.

Thus, data-based approaches are expected to become solutions.

To achieve product quality improvement, we need to develop a system having

at least the following functions: 1) to predict product quality from operating

conditions, 2) to derive better operating conditions that can improve the prod-

uct quality, and 3) to detect faults or malfunctions for preventing undesirable

operation. The first function is realized by developing a soft-sensor, which is a

mathematical model to relate operating conditions to product quality. On the

basis of the model, the second function is realized by formulating and solv-

ing an optimization problem. The third function is realized by multivariate

statistical process control (MSPC).

In this paper, selected application results of statistical methods to iron and

steel processes are presented. The objective is to improve product quality and

achieve higher product yield – the percentage of good products to all products

– of various products. Although many researches have been reported in this

area, the achievements of the present work are 1) the development of a new

method that can cope with qualitative quality information and relate operat-

ing conditions to product yield and 2) the simultaneous analysis of multiple

processing units including a converter, a continuous caster, a blooming pro-

cess, and rolling processes. The proposed method is referred to as Data-Driven

Quality Improvement (DDQI), which was originally reported by Kano et al.

(2004b). Since 2004, DDQI has been applied to many processes including iron
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making, steel making, blooming, hot rolling, cold rolling, and continuous gal-

vanic lines for improving product quality and realizing stable operation. This

paper aims to formulate DDQI and demonstrate its usefulness via industrial

applications.

This paper is organized in the following manner. First, data-based process

monitoring and control techniques are briefly surveyed in section 2. Section

3 aims to describe past results and recent developments of DDQI, including

a new quantification method of product quality. Then, application results

of DDQI to iron and steel processes are described in section 4. Finally, the

summary of this paper is given in conclusions.

2 Statistical Methods for Process Monitoring and Control: Trends

and Problems

To achieve product quality improvement, we need to predict product quality

from operating conditions, to derive better operating conditions that can im-

prove the product quality, and to detect faults or malfunctions for preventing

undesirable operation. These requirements are common among various indus-

tries, although processes are totally different in appearance. The authors have

focused on statistical methods, especially soft-sensors and MSPC. They are

expected to be key tools for realizing significant improvement of steel product

quality under the situation where a first-principle model is not available.

In this section, data-based process monitoring and control techniques are

briefly surveyed. The focal points are recent trends and the remaining prob-

lems in the fields of soft-sensor design and MSPC. Both techniques are highly
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Table 1

Problems with hardware sensors. The results of a questionnaire to 26 companies in

Japan.

percentage recognized problem

27% time-consuming maintenance

21% need for calibration

15% aged deterioration

13% insufficient accuracy

10% long dead-time, slow dynamics

8% large noise

2% low reproducibility

4% others

relevant to our industrial applications.

2.1 Soft-sensor Design

When hardware sensors are not available, soft-sensors are key technologies for

producing high quality products. Even when hardware sensors can be used,

operators and engineers have found the problems listed in Table 1. These prob-

lems with hardware sensors were identified as the results of a questionnaire to

26 companies in Japan (PSE 143 committee, 2004). Soft-sensors are judged to

be useful for addressing these problems. Ookita (2006) investigated the present

state of soft-sensor technologies in Mitsubishi Chemical Corporation. A part
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Table 2

Purpose in using soft-sensors in Mitsubishi Chemical Corporation.

percentage purpose

37% stabilize quality

28% reduce feed and utility

18% improve reliability with online analyzer

9% stabilize operation

6% reduce manual analysis

1% avoid installing special analyzer

1% analyze key factors

Table 3

Processes which soft-sensors are applied to in Mitsubishi Chemical Corporation.

percentage process

37% distillation

28% reaction

18% evaporation

9% others

of the investigation results are shown in Tables 2 and 3. The major purposes

of using soft-sensors are to 1) stabilize product quality via its online estima-

tion, 2) reduce energy and material consumption via effective operation close

to specifications/constraints, and 3) validate online analyzers by comparison

with the soft-sensors. Most soft-sensor applications were found in distillation

6



processes. In addition, it was reported that most soft-sensors were developed

through partial least squares (PLS).

Chemometric techniques such as PLS have been widely applied for process

modeling, monitoring, and control. The main advantage of those methods

is that they can generate latent variables, which are uncorrelated with each

other, and cope with correlated input variables. This characteristic is suitable

for analyzing data from industrial processes, because industrial processes are

multivariable systems and a great number of variables are mutually correlated.

To develop soft-sensors for distillation processes, composition estimators using

PLS have been widely used in the literature (Mejdell and Skogestad, 1991a,b;

Kresta et al., 1994). In the work of these researchers, steady-state inferential

models of product compositions were built. Mejdell and Skogestad (1993) com-

pared three different estimators using a linear model of a binary distillation

column. They concluded that good control performance could be achieved with

the steady-state PCR (Principal Component Regression) estimator, which was

almost as good as the dynamic Kalman filter, because the steady-state esti-

mator has an inherent feedforward effect. The inherent feedforward effect was

investigated in more detail by Kano et al. (2003a) and Showchaiya et al. (2001).

They suggested using predictive inferential control with a dynamic inferential

model within the cascade control configuration to achieve good performance

without demanding iterative modeling. Kano et al. (2000) further investigated

PLS-based inferential models, which can estimate the product compositions of

the multicomponent distillation column from on-line measured process vari-

ables. They compared steady-state, static, and dynamic inferential models and

found that the estimation accuracy could be greatly improved by using dy-

namic models. In other words, the performance of soft-sensors can be greatly
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Fig. 1. The number of research articles related to soft-sensor.

improved by taking process dynamics into account.

Soft-sensors are usually used in inferential control systems. Any control algo-

rithm is applicable to inferential control because estimates are used instead

of measurements. However, statistical feedback controllers based on multivari-

ate analysis have been proposed. Piovoso and Kosanovich (1994) developed a

feedback controller based on a static PCA/PCR model and applied it to a bi-

nary distillation column. Chen et al. (1998) designed a controller in the model

predictive control (MPC) framework, and it was used to control the equivalent

score space representation of the process. The score predictive model for the

MPC algorithm was built using PLS.

Figure 1, which is the keyword search results using Scopus, shows the research

trend in the field of soft-sensor design. Artificial neural network (ANN) has

been dominant in the literature since the middle 90’s, while PLS is popular in

industry as shown by Ookita (2006). ANN is a useful tool for building non-

linear models and supposed to be suitable for industrial processes. However,

linear models have produced satisfactory results in many cases because in-

dustrial processes are operated within certain range to produce the required
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products and linear models function well. In the last few years, support vec-

tor machine (SVM) and support vector regression (SVR) have been emerging.

These methods have attracted researchers’ and engineers’ attention. Another

method for developing soft sensors is subspace identification (SSID), which

can build a state space model from input-output data (Overschee and Moor,

1994). SSID is a useful tool to build a dynamic inferential model of a multivari-

able process, and it is suitable for soft-sensor design because the performance

of soft-sensors can be greatly improved by taking process dynamics into ac-

count. Amirthalingam and Lee (1999) used SSID for inferential control of a

continuous pulp digester. Lee et al. (2006) proposed two-stage SSID to de-

velop highly accurate softsensors that can take into account the influence of

unmeasured disturbances on estimated key variables, and they demonstrated

the superiority of the proposed method over conventional methods through

their application to an industrial ethylene fractionator.

A great deal of research has been conducted to develop data-based soft-sensors

for various processes. A data-based soft-sensor, however, does not always func-

tion well, because a black-box model is not valid when a process is operated

outside certain conditions where operation data used for modeling were ob-

tained. The product quality and process performance will deteriorate if esti-

mates of the soft-sensor are blindly believed by operators and used in a control

system. On-line monitoring of the validity of the soft-sensor will avoid such a

dangerous situation. The simplest approach is to check whether an estimation

error exceeds its control limit when a measurement becomes available. This

approach enables us to detect the inconsistency between the analyzer and the

soft-sensor, but the cause of the inconsistency cannot be identified. In industry

practice, it is assumed that an estimation error is caused by inaccurate esti-
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mation; however, this assumption is not always true because analyzers are not

always reliable. For example, when blockage occurs within a sampling line, a

hardware sensor cannot provide accurate measurements. To address such prac-

tical problems, Kamohara et al. (2004) proposed a PLS-based framework for

developing a soft-sensor and monitoring its validity on-line. The on-line mon-

itoring system was based on the dynamic PLS model designed for estimating

the product quality. In addition, simple rules were established for checking the

performance of a process gas chromatograph by combining the soft-sensor and

the statistical monitoring system. The effectiveness of the developed system

was demonstrated through its application to an ethylene production plant.

2.2 Statistical Process Monitoring

For the successful operation of any process, it is important to detect process

upsets, equipment malfunctions, or other special events as early as possible

and then to find and remove the factors causing those events. In industrial pro-

cesses, data-based process monitoring methods have been widely used (Mont-

gomery, 1997). Conventional SPC charts such as Shewhart control charts,

cumulative sum (CUSUM) control charts, and exponentially weighted moving

average (EWMA) control charts are well established for monitoring univariate

processes. Industrial processes are, however, multivariable systems consisting

of a large number of mutually correlated variables. Unfortunately, univariate

SPC charts do not function well for such multivariable processes because they

cannot cope with correlation among variables. To monitor such multivariable

processes, MSPC has been developed.

The original Shewhart-type control chart for correlated variables is the Hotelling
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T 2 control chart. Jackson (1959) used principal component analysis (PCA)

and proposed a T 2 control chart for principal components. Later, Jackson

and Mudholkar (1979) investigated PCA as a tool of MSPC and introduced

a residual analysis. The control chart was introduced for the sum of squared

errors (SPE) as well as T 2 of principal components retained in a PCA model.

T 2 =
R∑

r=1

t2r
σ2

tr

(1)

SPE =
P∑

p=1

(xp − x̂p)
2 (2)

where tr is the rth principal component score and σ2
tr is the variance of tr. xp

and x̂p are a measurement of the pth variable and its predicted (reconstructed)

value, respectively. R and P denote the number of principal components re-

tained in the PCA model and the number of process variables, respectively.

The T 2 statistic is a measure of the variation within the PCA model, and the

SPE statistic is a measure of the amount of variation not captured by the

PCA model. Kresta et al. (1991) demonstrated the usefulness of MSPC with

applications to simulated data from a fluidized bed reactor and an extrac-

tive distillation column. In the last decade or so, various extensions of MSPC

have been proposed. For example, multiway PCA/PLS for monitoring batch

processes (Wold et al., 1987), multiblock PCA/PLS for monitoring large pro-

cesses (MacGregor et al., 1994), dynamic PCA for including process dynamics

in a PCA model (Ku et al., 1995), multiscale PCA based on wavelet analysis

for monitoring signals at several different frequency ranges (Bakshi, 1998),

model-based PCA for integrating a first-principle model with PCA (Rotem

et al., 2000), moving PCA that monitors changes in directions of principal

components (Kano et al., 2001), a method called DISSIM that is based on

the dissimilarity of process data sets (Kano et al., 2002), a method based on
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Fig. 2. The number of research articles related to multivariate statistical process

control.

constrained PCA for incorporating external information into a PCA model

(Yoon and MacGregor, 2001), and a method based on independent compo-

nent analysis (ICA) to further improve the fault detection performance (Kano

et al., 2003b).

These are only a small part of the research efforts dedicated to this field.

Figure 2, which is the keyword search results using Scopus, shows the research

trend in the field of MSPC. The research trend of MSPC is similar to that

of soft-sensors. PCA and ANN are dominant in the literature, and in the

last few years, ICA, SVM, and SVR have been emerging. These methods have

attracted researchers’ and engineers’ attention. Another method for statistical

process monitoring is SSID. The total number of articles is steadily increasing.

When an out-of-control signal is detected by T 2 or SPE, it is necessary to

identify the process variables that cause the out-of-control signal. This infor-

mation helps operators to further diagnose the actual cause of a fault. For this

purpose, contribution plots can be used. A contribution of the pth variable to

the SPE statistic is defined as
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C [SPE]
p =(xp − x̂p)

2 (3)

On the other hand, a contribution of each variable to the T 2 statistic cannot

be easily defined. If only one principal component is related to the detected

fault, a contribution of the pth variable to the important score can be used.

However, when several scores are related to the fault, this contribution is not

sufficient. Nomikos (1996) derived the contribution of the pth variable to the

T 2 statistic:

C
[T 2]
p = tT S−1

T xppp (4)

where t and pp denote a score vector and the transposed pth row vector of

the loading matrix P , respectively. ST is the covariance matrix of scores. This

contribution can be positive or negative, although the T 2 statistic is always

positive. In practice, however, only a few variables whose contributions are

positive large are important (Westerhuis et al., 2000).

Another approach to fault identification is the use of process data obtained

from several past faulty operating conditions (Raich and Cinar, 1996). When

such process data are available, a fault can be identified by comparing the sim-

ilarity between data sets representing faulty operating conditions in the past

and the data set representing an operating condition when the fault is de-

tected. For applying MSPC-based fault identification, the following procedure

is adopted.

(1) Apply PCA to data sets representing past faulty situations and determine

reference PCA models.

(2) Calculate T 2 and SPE of the current data using the reference PCA mod-

els when a faulty situation is detected.
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(3) Identify the past faulty situation whose data set gives the smallest T 2

and SPE of all. Identification with T 2 and SPE is performed separately.

For fault identification, the data matrix representing the current faulty situa-

tion is updated step by step, and it is scaled with the means and the standard

deviations obtained from the data set representing the past faulty situations.

In process industries, PCA and PLS have been dominant tools for statistical

process monitoring. However, linear discriminant analysis (LDA) or Fisher dis-

criminant analysis is also useful for fault diagnosis (Chiang et al., 2000). LDA

provides an optimal lower dimensional representation in terms of discrimi-

nating among classes of data, it has been extensively studied in the pattern

classification literature, and it has advantages over PCA when the objective

is to discriminate among faults. Another technique suitable for fault diagnosis

is discriminant PLS (Kemsley, 1996; Chiang et al., 2000).

MSPC has been widely accepted in process industries. However, their practi-

cability and achievable performance are limited due to the assumption that a

continuous process is operated in a particular steady state. Operating condi-

tions cannot be constant in many processes because of load changes, product

grade transitions, or other causes. In addition, steady-state set-points of not

only controlled variables but also manipulated variables are frequently changed

by a steady-state optimizer, which gives the optimal steady-state values to

multivariable control systems. Such a hierarchical control system, consisting

of a steady-state optimizer at a higher level and multivariable control systems

at a lower level, has been widely accepted, especially in petrochemical process

industries to achieve higher product qualities and lower operating costs at

the same time. Kano et al. (2004a) developed a monitoring method based on
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external analysis to distinguish faults from normal changes in operating con-

ditions such as load changes and grade transitions. Yamamoto et al. (2004)

reported an application of the monitoring method based on external analysis

to an industrial monomer plant.

Recently, Dudzic and Zhang (2004) reported successful application results of

MSPC to steel processes. They developed an integrated on-line monitoring

system for a continuous caster. The monitoring system consists of four func-

tions: start-up monitoring, process transition monitoring, run-time operation

monitoring, and process state determination. The latter is able to determine

the process state based on the current process conditions, and automatically

selects the appropriate model and monitoring function. Multiway PCA is used

for start-up monitoring and process transition monitoring while PCA is used

for run-time operation monitoring.

2.3 Recognized Problems

Soft-sensors play an important role to predict product quality from operat-

ing conditions and to derive better operating conditions that can improve

the product quality. Conventional techniques are useful in most cases. How-

ever, they are not directly applicable to our problems in the steel industry

because the product quality is given as qualitative information and it cannot

be specified quantitatively. Conventional quantification methods are useful for

building a quality model, but not for solving its inverse problem. A serious

problem is that the physical meaning of the quantified variable is not clear at

all. To address this issue, a novel quantification method that can give physical

meaning to quantified variables is described in section 3.
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As introduced in this section, extensive research on soft-sensor design and

MSPC has been conducted. Many research works have focused on the perfor-

mance of the developed systems, i.e., the estimation accuracy and the fault

detection ability. However, from a practical viewpoint, there are other impor-

tant issues to address. One of such important issues is model adaptation or

model maintenance. The process characteristics will change with time. For

example, reaction velocity changes due to inactivation of catalyst, and overall

coefficient of heat transfer changes due to adhesion of dirt. To keep the per-

formance of process models, for example, the estimation accuracy, the models

must be updated. A simple approach to adapt an inferential model to a time-

variant process is bias update based on measurements. The bias update is

widely used in industries but it is not always sufficient. Several more advanced

model adaptation methods such as recursive PCA/PLS have been proposed

(Li et al., 2000; Qin , 1998). To make the recursive algorithms useful in real

time, the issues of missing values and outliers were discussed. Although indus-

trial application results have been reported, such recursive methods are not

widely used in real plants. A difficulty of applying recursive modeling methods

to real plants is anxiety that a model is updated in an undesirable way. For

example, the model will cover narrower operating conditions when the process

continues to be operated successfully around a specific operating point. As a

result, the updated model will not be applicable in wide operating conditions,

in which the model is expected to function well. Engineers are hesitant, fearing

that automatic model adaptation might cause serious damage to the process.

In fact, the key issue of soft-sensor design and MSPC is not only selection or

usage of modeling methods but selection of process data suitable for modeling

and selection of input variables necessary for estimation and monitoring. In

practice, most efforts are devoted to such preparation. Therefore, an efficient
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and robust procedure needs to be developed for adequate data preprocessing

and model adaptation.

Another obstacle standing in our way to put statistical methods in practice

is engineers’ and operators’ refusal. The validation of a statistical model is

a difficult task. To win operators’ trust, models and systems need to be un-

derstandable and consistent with process knowledge. In addition, models and

systems need to be easily maintained.

3 Data-Driven Quality Improvement

In this section, DDQI is formulated. DDQI constructs a statistical model from

operation data, analyzes the cause of inferior quality and low yield, selects ma-

nipulated variables, and optimizes the operating conditions that can achieve

the desired quality. Jaeckle and MacGregor (1998) proposed a product de-

sign method based on linear/nonlinear multivariate analysis. DDQI uses such

conventional methods for modeling processes and optimizing operating con-

ditions, but DDQI has several additional important functions. The advanced

features of DDQI include: 1) handling qualitative variables as well as quanti-

tative variables in a unified framework and 2) modeling batch processes and

optimizing operation profiles through wavelet analysis and multivariate anal-

ysis. These features are explained in this section.

3.1 Preprocessing Data

A quality data matrix Y ∈ �N×Q and an operating condition data matrix X ∈
�N×P are observed. N , Q, and P are the numbers of samples, quality variables,
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and operating condition variables, respectively. The nth measurements of the

qth quality variable and the pth operating condition variable are denoted

by ynq and xnp, respectively. For simplicity, it is assumed that quality data

yq ∈ �N×1 and operating condition data xp ∈ �N×1 are mean-centered and

scaled if necessary. In general, their standard deviations are scaled to be unity.

xp =
x∗

p − x̄p

σxp

(5)

where x∗
p and xp are measurements before and after scaling. x̄p and σxp denote

the mean and the standard deviation of x∗
p, respectively. However, they can

be scaled independently on the basis of their characteristics. For example,

signal-to-noise ratio can be reflected in scaling as follows:

xp =
x∗

p − x̄p

σxp

σxp − σxpe

σxp

(6)

where σxpe denotes the standard deviation of noise included in x∗
p. This scaling

technique is useful when σxpe is given or can be estimated.

3.2 Modeling Quality and Operating Conditions

DDQI is based on a statistical quality model that relates operating condi-

tions with product quality. Multiple regression analysis (MRA) is the simplest

method for building a quality model, but it cannot be used if a colinearity

problem occurs. To cope with this problem, PCR and PLS can be used. The

following formulation of DDQI is based on PCR for simplicity. DDQI can be

formulated on the basis of PLS in the same way.

The singular value decomposition of an operating condition data matrix X is

written as

18



X =USV T

=

⎡
⎣

UR U 0

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

SR 0

0 S0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣

V R V 0

⎤
⎦

T

(7)

where U and V are orthogonal matrices. R denotes the number of principal

components to be retained in a PCA model. The diagonal matrix S has sin-

gular values sr in its diagonal elements in decreasing order. The rth principal

component is given as the rth column vr of the loading matrix V R, and the

rth score tr is given by

tr = Xvr = srur . (8)

The score matrix is given by

T R =XV R = URSR . (9)

Since the scores tr are uncorrelated with each other, the covariance matrix of

T R is diagonal.

1

N − 1
T T

RT R =
1

N − 1
S2

R (10)

The dimensionality can be reduced from P to R via PCA, and T R is obtained.

Then, X can be reconstructed as X̂ by projecting T R onto the original P

dimensional space.

X̂ =T RV T
R = XV RV T

R (11)

The size of X̂ is the same as that of X, but the rank of X̂ is only R.

In PCR, the scores are used as input variables of MRA. The colinearity prob-

lem does not occur any more, because the scores are uncorrelated with each
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other. The PCR model can be written as

Y = T RK + E (12)

where K is a regression coefficient matrix and E is an error matrix. By least

squares, K is determined.

K = (T T
RT R)−1T T

RY (13)

The prediction of product quality can be given by

Ŷ = T RK = XV RK = XKPCR (14)

KPCR ≡V RK . (15)

The coefficient matrix KPCR shows the influence of operating conditions on

quality. Basically, the operating condition variable with the larger coefficient

has greater influence on the quality. However, the estimated coefficients are

biased due to correlation among input variables.

Although PCR and PLS are useful for building a quality model, they cannot

cope with process nonlinearity. On the other hand, nonlinear modeling meth-

ods such as artificial neural networks are not always desirable because limited

samples make it difficult to build a reliable nonlinear model; moreover, its in-

terpretation is difficult. Therefore, in real applications of DDQI, the first step

is always to build a linear regression model by using PCR or PLS. To build

a reliable model, input variables should be carefully selected on the basis of

process knowledge as well as statistical tests. Then, a minimum number of

nonlinear terms, in particular second order terms, are introduced into a model

if the linear model is not good enough. The analysis of variance (ANOVA)

is useful to clarify whether significant interaction exists between specific in-

put variables. If it exists, then an interaction term, xixj , is introduced into
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the quality model as an additional input variable. In addition, nonlinearity

between prediction error and each input variable is analyzed, and a second

order term, x2
i , is introduced into the quality model if necessary. As a result,

the derived model is easy to analyze and interpret. This approach can gener-

ate a simple quality model with minimum nonlinear terms. Another effective

approach to treat process nonlinearity is the use of nonlinear transformation.

The nonlinear transformation is useful when suitable transformation is given

or can be estimated. Furthermore, nonlinearity analysis is useful to select ma-

nipulated variables (Fujiwara et al., 2006). Once a model is developed and

the relation between product quality and operating conditions is clarified, it is

possible to select a limited number of manipulated variables, which are suit-

able for the use in a linear control system including run-to-run (R2R) control.

The basic idea is to avoid using input variables that nonlinearly affect product

quality or have significant interaction with other input variables.

3.3 Optimizing Operating Condition

DDQI is an off-line analysis system that provides an optimal operating con-

dition under a given objective function and constraints. To determine the

optimal operating condition, an inverse problem of the quality model needs

to be solved. The method adopted in DDQI is similar to the product design

method based on multivariate analysis proposed by Jaeckle and MacGregor

(1998).

In general, the number of quality variables Q is less than that of principal com-

ponents R, and thus, the operating condition cannot be determined uniquely.

Based on Eq. (14), the operating conditions x̃ ∈ �P×1 that can achieve the
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desired quality ỹ ∈ �Q×1 are determined. The operating conditions must exist

in the space spanned by R principal components, because correlation among

operating condition variables, which is theoretically defined by physical or

chemical laws, is extracted from operation data by using PCA. Therefore, at

the first step to solving the inverse problem, the scores t̃ ∈ �R×1 that can

achieve the desired quality ỹ are determined. The scores t̃ are related to the

desired quality ỹ via

ỹ = KT t̃ . (16)

If t̃ is found, then the operating conditions x̃ can be determined.

x̃= V Rt̃ (17)

When the number of quality variables Q is larger than that of principal compo-

nents R, there is no score t̃ that can achieve the desired quality. In such a case,

the score that achieves as desired quality as possible should be determined.

t̃ = (KKT )−1Kỹ (18)

From Eq. (17), the operating condition recommended for quality improvement

is

x̃= V R(KKT )−1Kỹ . (19)

On the other hand, there is a unique score vector t̃ when Q = R. In this

case, the operating condition recommended for quality improvement is also

determined by Eq. (19) or

x̃= V R(KT )−1ỹ . (20)
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In many cases, however, Q is less than R. Therefore, the scores t̃ cannot be

determined uniquely. In such a case, a solution set St̃ where any score can

achieve the desired quality is searched. By using a matrix T̃ 0 ∈ �R×(R−Q)

whose columns are bases of the null space (kernel) of KT , t̃ can be described

as

t̃ = (KT )+ỹ + T̃ 0φ . (21)

where (KT )+ denotes the generalized inverse of KT and φ ∈ �(R−Q)×1 is

any coefficient vector. Finally the operating conditions that can achieve the

desired quality ỹ are given by

x̃= V R

{
(KT )+ỹ + T̃ 0φ

}
. (22)

Any general solution x̃ is an element of the column space of the loading matrix

V R, and thus it is clear that x̃ exists in the space spanned by R principal

components.

Even though the operating condition cannot be determined uniquely, it can

be optimized when an objective function is provided. The objective function

is optimized under the following constraints: 1) the desired product quality

is achieved, 2) all operating condition variables exist within their upper and

lower bounds, and 3) T 2 statistic of scores is below its upper control limit or

approximately 3’) all scores exist within their upper and lower bounds. The last

constraint is necessary for finding a new optimal operating condition within the

region where the statistical model is valid. In other words, extrapolation should

be avoided by using the last constraint. If there is no solution that satisfies

all constraints, i.e., the imposed specifications on quality are too severe, the

operating condition that achieves as desired quality as possible should be
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determined.

The formulation described in this subsection is based on PCR for simplicity,

but any linear/nonlinear model can be used for optimizing operating condi-

tions.

3.4 Operation Profile Optimization

In section 3.3, the method to optimize the operating conditions was explained.

However, the method needs to be modified when an operation profile is cru-

cial. A batch process is a typical example of such a situation. To apply mul-

tivariate analysis to batch process data, multiway methods such as multiway

PCA (MPCA) and multiway PLS (MPLS) have been developed (Nomikos

and MacGregor, 1994, 1995). In multiway methods, three-dimensional arrays

are unfolded to two-dimensional arrays. For example, a three-dimensional ar-

ray (batches × variables × time) can be unfolded to (batches × (variables

× time)) when variables at different sampling points are regarded as differ-

ent variables. In this type of approach, the number of input variables after

unfolding becomes significantly larger than that of original input variables.

The increase of input variables generally causes deterioration in the reliability

or the estimation accuracy of the statistical model. Although one practical

approach for solving this problem is to thin out data at a part of sampling

points and to make the ratio of the number of samples, i.e., batches, to that

of input variables higher, process information corresponding to the removed

data is lost.

To relate product quality with operation profiles efficiently, the use of wavelet
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analysis has been investigated by many researchers. The key idea is to realize

feature extraction and data compression through wavelet analysis. However,

to optimize operation profiles that can achieve the desired product quality, not

only the estimation performance of product quality but also the reconstruction

performance of operation profiles is important, and wavelet coefficients useful

for reconstructing original signals and estimating outputs must be selected

appropriately. Kano et al. (2006) proposed such a method, in which impor-

tant wavelet coefficients of operation profiles are selected as input variables

of a statistical model, and then further dimensionality reduction is achieved

through multivariate analysis. In addition, the indicator variable technique

is used to cope with the problem of unequal duration of each batch and to

align batch trajectories (Nomikos and MacGregor, 1994). DDQI has this func-

tion of optimizing operation profiles through wavelet analysis and multivariate

analysis.

3.5 Handling Qualitative Variables

In previous subsections, the method to optimize the operating conditions was

explained. However, it is applicable only to cases where all quality variables

are quantitative. When the quality variables are qualitative, e.g., good and

bad, the product quality cannot be specified quantitatively.

To build a quality model, qualitative variables should be quantified. As is

well-known, for example, qualitative information such as good and bad can be

quantified and denoted by 1 and 0, respectively.
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ynq =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, for good product

0, for bad product

(23)

The quantified variable is then mean-centered, and the quality model can be

built via PCR.

ŷq = XkPCR (24)

A quality variable can be quantified in a similar way by using discriminant

PLS.

This conventional quantification method is useful for building a quality model,

but not for solving its inverse problem. A serious problem is that the physical

meaning of the quantified variable is not clear at all. For example, what does

0.6 mean when a quality variable is quantified through Eq. (23)? Is it accept-

able or not? Nobody can answer this question. To address this problem, Kano

et al. (2004b) proposed a novel quantification method that was able to give

physical meaning to quantified variables.

The proposed quantification method consists of the following five steps:

(1) All operation data are classified into two classes, good products and bad

products, on the basis of available qualitative information on product

quality.

(2) PCA is applied to the data for dimensionality reduction.

(3) LDA is applied to the principal component scores to discriminate between

good products and bad products. (Fig. 3(a))

(4) All data are projected onto the discriminant axis, and histograms of

good products and bad products are drawn against the discriminant axis.
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(a) Discrimination between good products 
and bad products on the subspace spanned 
by principal components by using LDA.

(b) Histograms of good products and bad 
products against the discriminant axis.

(c) Product yield against the discriminant axis.

Fig. 3. Quantification method based on PCA-LDA.

(Fig. 3(b))

(5) Product yield is calculated from the histograms. (Fig. 3(c))
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This method is referred to as PCA-LDA. The first three steps of PCA-LDA

are the same as the conventional quantification method. It should be noticed

that the derived coefficient vector kPCR in Eq. (24) is proportional to the

vector describing the discriminant function of PCA-LDA.

In PCA-LDA, the product yield can be specified instead of the quality itself on

the basis of the histogram for each category. Each histogram can be obtained

from operation data, and it can be drawn as the frequency distribution of

good or bad samples against the axis defined by kPCR. Then, the product

yield against kPCR can be defined by

yield(Δi)=
Ngood(Δi)

Ngood(Δi) + Nbad(Δi)
(25)

where Δi is the ith bin of the histogram. Ngood(Δi) and Nbad(Δi) are the

numbers of good and bad samples contained in Δi , respectively. To calculate

the product yield through Eq. (25), the position of each bin must be the same

between the histogram for good products and that for bad products. Once the

desired yield is specified, operating conditions that can achieve the desired

yield can be found by following the above-mentioned approach.

4 Applications to Industrial Iron and Steel Processes

Sumitomo Metals Kokura manufactures steel bars and wire rods. These prod-

ucts are widely used for automobiles, vessels, industrial machinery, electrical

machinery, buildings, civil engineering, and so on. The products are produced

through various processes. Iron ore and coke are fed to the blast furnace to

make iron. The blast furnace is a huge chemical reactor where reduction re-
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actions take place. The iron is sent to the steel making process where bloom

is produced. The steel making process consists of converters for removing car-

bon, refiners for adjusting elements, and continuous casters. Then, the bloom-

ing process resizes bloom to billet for the next rolling process. The bar rolling

process or the wire rolling process rolls the billet to the desired size. Finally,

surface flaws, internal defects, hardness, and other properties are inspected.

In the iron and steel industry, process control systems have been designed on

the assumption that the relationship between controlled product quality vari-

ables and manipulated variables is known for the most part. For example, a

setup (feedforward) control system and a real-time (feedback) control system

of strip thickness in a rolling process can be developed by using a mathe-

matical model based on the theory of rolling (Bland and Ford, 1948). In this

control application, the influence of tension between rolling stands and roll

gap, both of which are manipulated variables, on strip thickness can be calcu-

lated through the mathematical model. Therefore, both manipulated variables

are adjusted in advance to realize desired strip thickness. This type of control

is referred to as setup control. In addition, a thickness sensor is installed at

least after the last stand of a rolling mill, and strip thickness can be measured

on-line. Therefore, real-time feedback control is applied to remove deviation

of strip thickness during rolling.

On the other hand, the relationship of operating conditions to product defects

such as surface flaws and internal defects is not clear. In general, the product

quality has been maintained by skilled operators on the basis of their expe-

rience and intuition. It is empirically known that the occurrence of surface

flaws and internal defects is affected by operating conditions of a furnace in a

rolling process and a continuous casting equipment in a steel making process.
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However, it is not clear which operating condition has an influence on prod-

uct qualities and to what extent. Although much effort has been devoted to

clarify the relationship between operating conditions and product quality, the

problem remains unsolved because there are too many operating conditions to

investigate. Therefore, effective setup control is difficult to apply. In addition,

since internal defects are checked by using ultrasonic testing after a rolling

process, and it may take a few days to get control results in a steel making

process, real-time control cannot be applied to this type of quality control

problem. To improve product yield, it is important to predict final product

qualities on-line.

Due to these characteristics, surface flaws and internal defects have not been

the target of process control for many years. However, the business situation

is changing. To meet customers’ requirements for higher product quality, to

realize higher product yield, and to cope with a decrease in skilled operators

(Year 2007 problem in Japan), most iron and steel companies have started to

cope with product quality issues within a framework of process control. For

this purpose, modeling is the key to success.

Recently, many companies build integrated data-bases. At Sumitomo Metals

Kokura, huge amounts of data of operating conditions and inspection results

are stored in the integrated data-base, and any technical staff in any factory

can access the integrated data-base easily.

Under the above-mentioned situation, the authors have investigated a statis-

tical approach to improve the product quality in iron and steel processes. In

this section, two application results are presented.

In general, PLS outperforms PCR in the estimation performance. However,
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PCA-LDA were used in both applications and others, because PCA had been

used for process analysis and monitoring rather than PLS in the processes

that DDQI has been applied to. In other words, PCA-LDA is more consistent

with existing tools and systems, and engineers and operators are more familiar

with PCA than PLS.

4.1 Reduction of Surface Flaws

Reducing surface flaws is crucial for improving product yield. Surface flaws

are checked after cold rolling as one of the key product qualities, and their

shape and size are varied depending on their factors and steel grades produced.

In this application, surface flaws frequently occurring in a specific alloy steel

product are investigated. It is empirically known that the occurrence of sur-

face flaws is affected by operating conditions of a rolling process and a steel

making process. A large amount of defective steel is produced if steel making

causes surface flaws, because surface flaws cannot be detected before the final

inspection process. Therefore, it is important to clarify the cause of surface

flaws, to find the operating condition that can minimize them, and to realize

setup control.

First, a model relating operating conditions in steel making and hot rolling

to surface flaws inspection results was developed. Input variables include con-

tents of various additive elements in a steel making process, temperature and

residence time in each heating zone in a hot rolling process, and temperature

at the exit of each stand in a hot rolling process. The total number of in-

put variables selected was 55. The sample number was 138 consisting of 122

samples with surface flaws, classified into bad, and only 16 samples without
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surface flaws, classified into good.

In general, the use of process knowledge for selecting input variables is key to

success in building statistical models. In this application, the number of pro-

cess variables that can be used as input variables is several hundreds or more.

Therefore, input variable selection is crucial for effective modeling. Input vari-

ables were selected by engineers and operators who have profound knowledge

of the processes. In addition, operation data were carefully examined, unre-

liable data were excluded, and linear interpolation was used for coping with

missing data or outliers by taking the process characteristics into account.

Furthermore, the developed model was carefully examined by the engineers

and operators.

The dimensionality was reduced from 55 to 6 via PCA after all variables were

normalized. Then, LDA was used for discriminating between two classes, good

and bad. The developed PCA-LDA model was able to successfully discrimi-

nate between good products and bad products along the discriminant axis as

shown in Fig. 4. This PCA-LDA model can relate operating conditions with

the product yield through the proposed quantification method. Six variables

having the largest influence on the product yield are listed in Fig. 5 with their

regression coefficients. On the basis of this result, process engineers selected

to manipulate the content of alloy element e1 considering both operation cost

and operability. Figure 5 suggests that surface flaws can be reduced by increas-

ing the content of alloy element e1. The results of verification experiments are

shown in Fig. 6. The verification experiments confirmed that surface flaws can

be significantly reduced by increasing the content of alloy element e1.
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4.2 Reduction of Internal Defects

The objective in this application is to minimize internal defects. The target

process consists of a steel making process, a blooming process, and a bar rolling

process. Internal defects are checked by using ultrasonic testing (UST) after

the bar rolling process. In this application, 40 operating condition variables

are selected as input variables. The sample number is 740 consisting of 208
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samples with internal defects and 532 samples without internal defects.

The developed PCA-LDA model with five principal components was able to

discriminate between good products and bad products along the discrimi-

nant axis. On the basis of the PCA-LDA model, process engineers selected

to manipulate two factors in the steel making process and one factor in the

blooming process considering both operation cost and operability. The next

step is to optimize operating conditions. The optimal operating condition that

can improve the product yield by 20% is searched. To verify the results, test

experiments were performed at the operating condition close to the optimal

point, and it was confirmed that the percentage of defective products was

reduced by half.

4.3 Effect of Dimensionality Reduction

In most applications, PCA-LDA was used to build a model relating operating

conditions to product quality. Although other methods such as discriminant

34



PLS can be used for influential factor analysis, LDA should not be used di-

rectly. To clarify the advantage of PCA-LDA over LDA, these two methods

were compared by analyzing influential factors on steel sheet surface flaws.

A total of 73 operating condition variables with 105 samples classified into

”no flaws” and 47 samples classified into ”flaws” were used for modeling. In

PCA-LDA, 10 principal components were retained in the PCA model. The

classification power of LDA is significantly higher than PCA-LDA when they

are applied to data used for modeling. However, the LDA model provides

misleading results because operating condition variables are highly correlated.

For example, temperatures at two different measurement points had signif-

icant coefficients with different sign in the LDA model, although these two

temperatures have very strong positive correlation. It is impossible to change

these two temperatures in different directions. The result suggests that PCA

or another method must be used together with LDA to get a reliable result.

In fact, from the PCA-LDA model with 10 principal components, it was con-

cluded that temperatures identified by the LDA model were not key variables

to reduce defects, and it was suggested that sheet steel should be cooled down

rapidly after the hot rolling process. The results of the PCA-LDA model were

confirmed to be correct by changing the operating condition.

4.4 Integration of DDQI with MSPC

In the process industry, a hierarchical control system has been widely accepted.

The most famous one would be a model predictive control system which is in-

tegrated with a steady-state optimizer and local controllers. At the top (first)

layer is the steady-state optimizer that determines the optimal steady state.
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At the second layer, model predictive control aims to bring a process to its

optimal steady state. The model predictive controller optimizes future ma-

nipulated variables under a given objective function and constraints. Usually,

the objective function is determined according to the trade-off between the

control performance and the stability. The optimal manipulated variables are

given to local controllers at the third layer as their set-points.

Qin et al. (2004) proposed a hierarchical fab-wide control framework to main-

tain highly efficient operations, minimize downtime of equipment, and opti-

mize the yield of high quality products in the semiconductor industry. The

fab-wide control system is analogous to the model predictive control system.

The hierarchical quality improvement system (HiQIS) proposed by Fujiwara

et al. (2006) is also an analogue to them. A schematic diagram of HiQIS is

shown in Fig. 7. DDQI is located at the top of the hierarchy. R2R control

updates operating conditions or operation profiles for the next batch (Castillo

and Huriwitz, 1997; Moyne et al., 2001), and it gives set-points to local con-

trollers on the basis of information provided by DDQI, i.e., the quality model,
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the manipulated variables or control structure, and the optimal operating con-

ditions. In addition, MSPC detects and diagnoses faults on the basis of the

statistical model built in DDQI.

The authors have succeeded in applying DDQI to the iron and steel processes

and reducing surface flaws and internal defects significantly. However, to keep

stable operation and to realize continuous improvement, DDQI needs to be in-

tegrated with MSPC. PCA-based MSPC is used to be consistent with DDQI,

in which PCA-LDA models are used. Through the applications of DDQI, pro-

cess characteristics, in particular the influence of operating conditions on prod-

uct quality, became more clear than ever before. As a result, good models are

available not only for DDQI but also for MSPC. DDQI and MSPC are cur-

rently being integrated in the plants.

5 Conclusions

How can we improve product quality and yield? This question becomes more

critical in various industries. Even though the processes are totally different in

appearance, the problems to solve are highly similar. Therefore, it is expected

that a unified framework can be developed to answer the above question.

The model-based approach is preferable to the data-based approach if first-

principle models with sufficient accuracy are available. However, in the steel

industry, for example, any quantitative first-principle model to relate surface

flaws or internal defects to operating conditions is not available. Therefore,

data-based approaches were adopted.

In this paper, first, data-based process monitoring and control techniques were
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briefly surveyed. The focal points were recent trends and remaining problems

in the fields of soft-sensor design and statistical process monitoring. Then,

Data-Driven Quality Improvement (DDQI) was explained. DDQI constructs

a statistical model from operation data, analyzes the cause of inferior qual-

ity and low yield, selects manipulated variables, and optimizes the operating

conditions that can achieve the desired quality. Since 2004, DDQI has been

applied to many processes including iron making, steel making, blooming, hot

rolling, cold rolling, and continuous galvanic lines for improving product qual-

ity and realizing stable operation. In this paper, the selected application results

of DDQI to the iron and steel processes were presented. The achievements of

the present work are as follows: 1) the development of a new method that

can cope with qualitative quality information and relate operating conditions

to product yield, 2) the simultaneous analysis of multiple processing units

including a converter, a continuous caster, a blooming process, and rolling

processes, and 3) the successful application results. From their experience in

applying DDQI to several industrial processes, the authors hope to develop

a unified framework that can answer to the question ”How can we improve

product quality and yield?” on the basis of data-based methodologies.
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